Главная · Боли в желудке · Клонирование стволовых клеток. Клонирование человеческих тканей и органов. Клонирование многоклеточных организмов

Клонирование стволовых клеток. Клонирование человеческих тканей и органов. Клонирование многоклеточных организмов

Image caption Во время исследования клонированные эмбрионы были использованы для получения стволовых клеток

Использование знаний о клонировании человека при создании эмбрионов стало "важной вехой" для медицины, сообщили американские ученые.

Клонированные эмбрионы были использованы для получения стволовых клеток, которые затем могут быть применены для создания мышц сердца, кости, мозговой ткани и любого другого вида клеток человеческого организма.

Однако исследователи полагают, что стволовые клетки могут быть получены и из других источников - более дешевых, простых и не столь этически спорных.

Противники метода считают, что неэтично ставить эксперименты над человеческими эмбрионами, и призывают ввести на это запрет.

Стволовые клетки являются одной из главных надежд медицины. Способность создавать новые ткани может помочь, к примеру, при лечении последствий сердечного приступа или повреждения спинного мозга.

Выход - в клонировании?

Уже сейчас проводятся исследования с использованием стволовых клеток, взятых из эмбрионов, для восстановления зрения.

Но такие клетки чужеродны для пациента, поэтому организм их просто отторгает. Клонирование решает эту проблему.

В основе процесса лежит технология переноса ядра соматической клетки, хорошо известная с тех пор, как овечка Долли стала первым клонированным млекопитающим в 1996 году.

У взрослой особи взяли клетки кожи, и полученная из них генетическая информация была помещена в донорскую яйцеклетку, из которой предварительно была удалена собственная ДНК. Затем при помощи электрических разрядов стимулировалось развитие яйцеклетки до эмбриона.

Однако исследователям не удавалось повторить подобное с человеческой яйцеклеткой, которая начинала делиться, но не развивалась дальше стадии в 6-12 клеток.

Южнокорейский ученый Хван Ву Сок утверждал, что ему удалось создать стволовые клетки из клонированных человеческих эмбрионов, но оказалось, что он подтасовал факты.

Зародышевый пузырек

Image caption Команде ученых из Орегона удалось довести развитие эмбриона до этапа зародышевого пузырька

В ходе нынешнего исследования команда ученых университета здоровья и науки штата Орегон сумела довести развитие эмбриона до этапа зародышевого пузырька (примерно 150 клеток). Этого достаточно, чтобы получить стволовые клетки.

Руководитель исследовательской группы доктор Шухрат Миталипов заявил: "Тщательный анализ стволовых клеток, полученных с помощью этой технологии, показал их способность превращаться в разные виды клеток, в том числе нервные клетки, клетки печени и клетки сердца."

"И хотя предстоит еще немало работы для создания безопасного и эффективного процесса лечения стволовыми клетками, мы уверены, что нами сделан значительный шаг в создании клеток, которые могут использоваться в регенеративной медицине", - добавил он.

"Выглядит правдоподобно"

Профессор регенеративной медицины в Университетском колледже Лондона Крис Мейсон сказал, что проведенное исследование выглядит правдоподобно. "Они сделали примерно то же, что и братья Райт (для самолетостроения). Они взяли на вооружение все лучшее, что было сделано ранее другими группами исследователей, и свели все воедино", - сказал Мейсен.

Исследования в области стволовых клеток, получаемых из эмбрионов, поднимают вопрос об этичности подобных научных работ. Также существует проблема недостатка донорских яйцеклеток.

Новая технология также предусматривает использование клеток кожи, но преобразует их с помощью белков в индуцированные плюрипотентные стволовые клетки.

Критики нового метода считают, что все эмбрионы, будь они искусственные или натуральные, могут развиться в полноценного человека, поэтому проводить с ними эксперименты аморально. Они считают, что необходимо получать стволовые клетки из тканей взрослых людей.

Но сторонники нового метода уверяют, что эмбрионы, полученные с его помощью, никогда не смогут развиться в полноценного человека.















1 из 14

Презентация на тему: Стволовые клетки

№ слайда 1

Описание слайда:

№ слайда 2

Описание слайда:

№ слайда 3

Описание слайда:

Определение стволовых клеток Пуповинная кровь содержит стволовые клетки новорожденного. Стволовые клетки- это стержень жизни, источник, из которого образуются все остальные клетки организма. Они способны к преобразованию в клетки любых органов и тканей организма. Клетки обеспечивают восстановление поврежденных участков органов и тканей. Из стволовых клеток можно создать любую ткань, вырастить любой орган. Столь необычные их свойства были открыты не так давно, однако прорыв в этой области за последние несколько лет был уникальным.

№ слайда 4

Описание слайда:

Применение в медицине Ученые уже успешно применяют стволовые клетки для лечения различных недугов. Недавно медики заявили, что готовы выращивать на основе стволовых клеток новые здоровые зубы. И уж совсем невероятная метаморфоза-стволовые клетки могут настолько «забыть» о своем костномозговом происхождении, что под влиянием определенных факторов превращаются даже в нервные клетки (нейроны). Через две недели после добавления специального сигнального вещества в культуру стволовых клеток они уже на 80% состоят из нейронов. Это пока лишь «пробирочное» достижение,но оно вселяет надежду на излечение больных с тяжелыми поражениями спинного и головного мозга.При введении собственных стволовых клеток костного мозга в спинномозговой канал человека они равномерно распределяются по всем отделам головного мозга, не нарушая его структуры. Стволовые клетки превращаются в печеночные. Установлено,что при повреждении печени новые печеночные клетки (гепатоциты) и их предшественники формируются в основном из донорских стволовых клеток костного мозга.

№ слайда 5

Описание слайда:

Стволовые клетки в клинической практике В терапевтическом применении стволовых клеток сегодня, без сомнения, лидирует ортопедия.Дело в том, что в руках у медиков имеются уникальные вещества: особые белки,так называемые bone morphogenic proteins (BMP), вызывающие перерождение стволовых клеток в клетке костной ткани (остеобласты). В США уже проходят последнюю стадию испытаний и скоро начнут широко применяться в клиниках специальные пористые губки, наполненные одновременно и стволовыми клетками и ВМР.Помещая такие чудо-губки в поврежденное место (зону перелома или пустоту после удаления остеосаркомы),можно уже в течение двух месяцев заполнить недостающий промежуток до 25 сантиметров длиной. Более того, сейчас ведется работа по встраиванию гена ВМР в стволовые клетки. Это означает, что, переродившись в костные клетки, они смогут сами по себе вырабатывать белок – ВМР, инициирующих процесс превращения стволовых клеток в костные.

№ слайда 6

Описание слайда:

Источники стволовых клеток для восстановительной терапии В здоровом организме существует универсальный механизм залечивания повреждений с использованием внутреннего клеточного резерва – стволовых клеток костного мозга. Эти клетки могут превратиться в какие угодно другие клетки, попав в соответствующий отдел организма. Стволовые клетки начинают поступать в поврежденный участок, когда получают соответствующий сигнал из центральной нервной системы. Достигнув места повреждения, они под действием определенных сигнальных молекул превращаются в недостающие клетки поврежденной ткани. Но хранилище стволовых клеток не может быть неисчерпаемым. После залечивания обширных повреждений костный мозг «пустеет», да и с возрастом запас стволовых клеток значительно уменьшается. Когда мы рождаемся, у нас в костном мозге на 10 тысяч кроветворных клеток приходится одна стволовая клетка. У подростков стволовых клеток уже в 10 раз меньше. К 50-ти годам на полмиллиона кроветворных клеток одна стволовая клетка, а в 70 лет отбирать пробу костного мозга просто бессмысленно- там всего лишь одна стволовая клетка на миллион кроветворных клеток. То есть сдавать костный мозг имеет смысл только в молодом возрасте, старикам придется использовать чужие культуры стволовых клеток. При чем донорские стволовые клетки удобнее всего получать прямо при рождении из пуповины и плаценты, где они тоже содержатся в достаточном количестве.

№ слайда 7

Описание слайда:

Применение ростовых дифференцирующих факторов стволовых клеток в стоматологии Ростовые факторы стволовых клеток вводят в дозе 10 мкг ежедневно, в течение 3-5 дней больным с генерализованным пародонтитом различной степени тяжести в область переходной складки преддверия рта. После применения ростовых факторов стволовых клеток у 80% пациентов отмечается положительный эффект:Улучшилось самочувствие, исчезли зуд и боли (100%);Кровоточивость десен (71%);Нормализовались плотность и цвет десны (66,7%);Проба Шиллера-Писарева была отрицательной в 81% случаев. Ростовые факторы клеток способствовали восстановлению показателей иммунитета, неспецифической резистентности и гемостаза преимущественно при легкой и средней степени тяжести пародонтита. Через 8-10 месяцев у больных пародонтитом получавших ростовые факторы стволовых клеток, отсутствовало обострение процесса, исчезли неприятные ощущения в деснах, укрепились подвижные зубы. На рентгенограммах не было выявлено прогрессирование деструкции костной ткани, а число очагов остеопороза уменьшилось.

№ слайда 8

Описание слайда:

Гемабанк стволовых клеток Гемабанк- это хранилище стволовых клеток. Его назначение – сохранение при сверхнизкой температуре в течение многих лет стволовых клеток, выделенных из пуповинной крови. В банке стволовые клетки каждого новорожденного хранятся совершенно отдельно и могут быть использованы только в его интересах или интересах его семьи. Гемабанк был создан в ноябре 2003года. Центр стволовых клеток будет находится в графстве Хартфордшир на юге Англии. Банк основан Советом медицинских исследований и Советом по биотехнологиям и биологическими исследованиям Британии. Над проектом его трудились ученые из Лондонского Кингс колледжа и Научного центра жизни в Ньюкасле. Он использует многолетний опыт работы банка костного мозга Российского Онкологического Научного Центра РАМН им. Н.Н.Блохина, а также опыт, накопленный многочисленными банками пуповинной крови, существующих в США и многих европейских странах. Банк будет использовать стволовые клетки, взятые из эмбрионов и других человеческих тканей, а затем будет создавать условия для их бесконечного размножения и выращивать из них различные специфические клетки. Банк также займется хранением и поставкой стволовых клеток, необходимых для изучения и лечения диабета, рака, болезни Паркинсона и других заболеваний.

№ слайда 9

Описание слайда:

Стволовые клетки. «ЗА» и «ПРОТИВ» – позиции зарубежных стран Во многих странах Европейского Союза законов по поводу стволовых клеток нет вообще, там же, где они есть, их диапазон – от абсолютного запрещения исследований на эмбрионах (Франция, Германия, Ирландия) до разрешения создавать эмбрионы в исследовательских целях (Великобритания). Разнообразие мнений отражает существующие культурные и религиозные различия. В большинстве стран обнаруживается параллель между допустимостью абортов. Ирландия – единственная страна Европейского Союза (ЕС), чья конституция подтверждает право на жизнь еще не рожденных людей, и это право приравнивается к праву матери на жизнь. Несмотря на это,аборт законен, если жизни матери угрожает прямая опасность. Изнасилование, кровосмешение или аномалии зародыша не являются оправданием. Бельгия и Нидерланды проводят исследования на эмбрионах при отсутствии законодательных рамок. В Португалии, где аборт незаконен, кроме случаев изнасилования или по серьезным медицинским причинам, и безоговорочно запрещен после 12-й недели беременности, нет законодательства, но нет и исследований. Они запрещены в Австрии, Германии и даже во Франции, но последняя позволяет изучение эмбрионов без нанесения ущерба их целостности и преимплантационную диагностику.

№ слайда 10

Описание слайда:

Стволовые клетки. «ЗА» и «ПРОТИВ» - позиции зарубежных стран Испанская конституция предлагает защиту только для жизнеспособных эмбрионов in vitro, образующиеся при оплодотворении in vitro. Исследования на эмбрионах при тех же условиях допустимы в Финляндии, Испании и Швеции. Еще в девяти европейских странах законодательство либо пересматривается, либо исправляется. Эти страны, как и те, где законодательство вообще отсутствует, могут руководствоваться международными правилами. Соединенные Штаты, подобно Германии, проявляют лицемерие и нерешительность. Десять штатов ввели у себя законы,регулирующие или ограничивающее исследования на человеческих эмбрионах, зародышах или еще не рожденных детях. На федеральном уровне запрещена финансовая поддержка любого исследования, в котором эмбрионы разрушаются.

№ слайда 11

Описание слайда:

Этические проблемы Этические аспекты исследования человеческих стволовых клеток затрагивают широкий круг спорных и важных проблем. Многие из них связаны с получением этих клеток, источником которых может быть взрослый организм,кровь из пуповины, ткань зародыша или ткань на различных стадиях его развития. Сегодня общепризнанно, что лучший источник стволовых клеток для терапевтических целей – это эмбрионы. Поэтому встает вопрос, можно ли специально создавать эмбрионы для получения стволовых клеток, для лечения и выживания взрослых людей? Существуют проблемы добровольного информационного согласия как доноров, так и получателей клеток; оценки приемлемого риска; применения этических стандартов в исследованиях на людях; анонимности доноров; охраны и безопасности клеточных банков; конфиденциальность и защиты частного характера генетической информации. Наконец, есть проблемы коммерции и компенсации участникам процесса; защита человеческих тканей, генетического материала и информации при их перемещении через границы как в пределах ЕС, так и по всему миру. Все эти проблемы важны, но большинство из них в последние годы уже обсуждались.

№ слайда 12

Описание слайда:

Этические проблемы В настоящее время, как уже говорилось, наиболее многообещающим источником стволовых клеток для исследовательских и терапевтических целей являются либо абортированные плоды, либо эмбрионы до стадии имплантации. Однако недавно появились перспективные исследования стволовых клеток взрослых людей. Отказ от исследований эмбрионов в надежде на то, что будет достаточно стволовых клеток взрослых, чрезвычайно опасен и проблематичен порядок причин. Во- первых, будут ли взрослые клетки столь же хороши в терапии, как эмбриональные (в настоящее время накоплено гораздо больше данных и просматривается гораздо больше терапевтических перспектив от использования человеческих эмбриональных стволовых клеток (ЭСК). Во – вторых, может оказаться, что взрослые клетки подойдут для одних терапевтических целей, а ЭСК – для других. В – третьих, мы знаем, что можно изменять или замещать практически любой ген в человеческих ЭСК, но верно ли это для взрослых стволовых клеток, еще необходимо установить. Было бы безответственной авантюрой по отношению к человеческим жизням поддерживать только один из двух источников клеток, заставляя людей ждать, а возможно, и умирать, ожидая получения и использования клеток из менее подходящего источника. Таким образом, этические проблемы человеческих ЭСК остры и неотложны, в обозримом будущем их не удастся обойти, сконцентрировавшись на взрослых стволовых клетках.

№ слайда 13

Описание слайда:

Этические проблемы Известно, что из ранних, доимплантационных, эмбрионов можно без ущерба удалять отдельные клетки. Такой способ может быть одним из решений проблемы получения ЭСК. Однако, если удаленные клетки тотипотенты (т. е. способны развиться в любой орган и даже в самостоятельный организм), значит, они по сути дела – отдельные зиготы, «эмбрионы», и по тому должны защищаться в той же мере, что и исходные эмбрионы. Если же такие клетки только плюрипотенты, то их нельзя рассматривать в качестве эмбрионов. К сожалению, пока заранее невозможно сказать, является ли та или иная клетка тоти- или плюрипотентной. С уверенностью это можно установить только ретроспективно, наблюдая, на что способны клетки. Сформулируем две проблемы этических позиций: Согласованность исследований стволовых клеток с тем, что считается приемлемым и этичным в отношении нормального сексуального воспроизводства. Согласованность с позициями и моральными верованиями, касающимися аборта и искусственной репродукции человека. Этический принцип, который в полной мере касается использования эмбрионов при исследовании. Это «принцип избежания ненужных трат», предполагающий, что правильно приносить пользу людям, если это в наших силах, и неправильно вредить им.

№ слайда 14

Описание слайда:

Клонирование сказка или быль Сегодня применение эмбриональных клеток возрождается на новом уровне. Наука смогла понять механизм воздействия эмбриональных тканей на больные органы. Миграция стволовых клеток в организме и их способность восстановить любой орган могут решить многие проблемы медицины и отодвинуть на второй план клонирование, вызывающее столько споров. Как показывают последние исследования, клонирование органов не защищено то ошибок при копировании генетического материала. Так, при клонировании мышей все мыши умирают, начиная с шестого поколения. По-видимому, накопление ошибок в ДНК приводит к деградации и смерти.

Рассматриваются вопросы сущности, статуса и функций биоэтики, ее генезиса и исторической эволюции. Выявляются междисциплинарные стратегии и приоритеты биоэтики. Анализируются морально-этические, организационные и нравственные аспекты жизни и смерти, трансплантологии, психиатрической помощи, применения новых генно-инженерных технологий, манипуляций со стволовыми клетками, клонирования человека, регулирования биобезопасности и биомедицинских исследований с участием человека и животных.

Для студентов, магистрантов, аспирантов, преподавателей медицинских, биологических и других специальностей высших учебных заведений, а также всех тех, кто интересуется проблемами биоэтики, этикой современных научных исследований.

Исследования в области человеческих эмбриональных стволовых клеток в целом, и связанные с бессмертием в частности, побуждают задаться еще одним острым вопросом. Если мы станем жить намного дольше и будем здоровее, мы тем самым в корне изменим свою природу. Смертность – одна из определяющих характеристик человеческого существования. Есть ли моральные основания выступать против дальнейшей эволюции, будь то «естественная» дарвиновская эволюция или эволюция, определяемая осознанным выбором?

Мы можем оказаться перед проблемой допустимости так называемой «терапии улучшения». Например, благодаря своим регенеративным способностям стволовые клетки могут не только восстановить функцию поврежденного мозга, но и улучшить его работу. Этично ли улучшать функционирование мозга? Если подобная лечебная терапия станет безопасной, то будет трудно отказаться от ее применения как «терапии улучшения». Если научиться изменять человеческий геном так, чтобы защититься от наиболее распространенных болезней и удлинить полноценную жизнь на 25 %, то, очевидно, многие захотят воспользоваться такой возможностью.

Люди сейчас живут в среднем на 25 % дольше, чем 100 лет назад. Это достижение прогресса ни у кого не вызывает сожалений. Почему же дальнейший выигрыш в здоровье путем модификации вида или «направленной» эволюции вызывает опасения и страхи? Некоторые считают, что пока люди сохраняют способность к естественному размножению, они остаются, в биологическом смысле, представителями своего вида. Но вопрос не в том, принадлежим ли мы к своему виду в узкобиологическом смысле, а в том, изменили ли мы свою природу, а с ней, возможно, и наше понимание нормального видового функционирования.

Эти и другие проблемы очень важны и интересны, но невозможно обсудить их все. Остановимся подробнее на этической проблеме получения эмбриональных стволовых клеток, связанной с возможностью создания и использования человеческих эмбрионов. Можно ли специально создавать и/или использовать эмбрионы для получения стволовых клеток с целью лечения взрослых людей? И если да, то до какого возраста эмбрион можно рассматривать как эмбрион, а не человеческое существо? Последний вопрос связан с тем, что при терапевтическом клонировании используются эмбрионы до 14-дневного возраста.

Международный комитет по биоэтике (IBC) при ЮНЕСКО не пришел к единому мнению в отношении создания и использования эмбрионов для терапевтического клонирования, но признает, что решения по этому вопросу, принятые национальными комитетами по биоэтике или национальными законодательными органами, могут быть различны в разных странах и регионах. Такие различия неизбежны в плюралистическом мире, где одни могут принимать этические нормы, которые являются недопустимыми для других. Отношение к этой проблеме не совпадает как в разных странах, так и у различных религий и философских течений. Что допустимо в буддизме, то может быть недопустимым в христианстве и наоборот.

Ислам, например, допускает использование человеческих эмбрионов в период до 40 дней после оплодотворения, объясняя это тем, что у такого эмбриона еще нет души. Иудаизм считает, что оплодотворенная яйцеклетка не является еще человеческим существом, а становится им в процессе развития внутри матери. Более того, развивающийся эмбрион вне матери приравнивается к гамете и может считаться существом только после его имплантации матери. Наиболее строгое отношение к эмбриону у Римской католической церкви, ибо, согласно католическим канонам, человеческое существо появляется в момент зачатия, т. е. с момента оплодотворения яйцеклетки. Некоторые ветви христианской религии, например протестантская церковь, считают, что ранний эмбрион не является полноправным человеческим существом. Однако протестантские теологические воззрения не однородны, и этические нормы по отношению к эмбриону могут быть разными в различных протестантских этносах.

В качестве мнения Русской православной церкви можно привести слова священника Антония Ильина: «Церковная позиция по этому вопросу изложена в Святом Евангелии, в котором говорится, что возраст зачатого Пресвятой Девой Марией Богомладенца был менее 14 дней, а Елисавета уже почитала Его как Господа. Согласно церковной позиции, с момента зачатия эмбрион является человеческим существом и будущей личностью».

Этические нормы и основанное на них законодательство различны в разных странах с преобладанием одной и той же религии. Например, Великобритания приветствует исследование стволовых клеток. Она стала первой страной, по крайней мере, в Европе, одобрившей исследование человеческих эмбриональных стволовых клеток, правда, при условии «адекватных мер предосторожности». Для их соблюдения правительство создало экспертную группу и в августе 2000 г. обнародовало свою позицию, сформулированную в докладе экспертов. Затем обе палаты Парламента Великобритании подавляющим большинством голосов одобрили исследования стволовых клеток и так называемое терапевтическое клонирование. Экспертная группа в своих рекомендациях основывалась главным образом на том, что в Великобритании исследования на эмбрионах уже разрешены и обстоятельно регламентированы «Актом о человеческом оплодотворении и эмбриологии» от 1990 г. Их регулирование осуществляется специальным органом – Управлением по человеческому оплодотворению и эмбриологии (HFEA). Работы с эмбрионами разрешены для изучения ограниченного круга проблем, в частности, бесплодия. Теперь перечень разрешенных целей расширился, включив исследования человеческих эмбриональных стволовых клеток.

Во многих странах Европейского Союза законы по поводу эмбриональных стволовых клеток отсутствуют вообще, а принятые и действующие в некоторых странах имеют диапазон от абсолютного запрещения исследований на эмбрионах (во Франции, Германии, Ирландии) до разрешения создавать эмбрионы в исследовательских целях. Разнообразие мнений отражает существующие культурные и религиозные различия; в отдельных странах эмоции столь сильны, что трудно прийти к компромиссным решениям. Правительствам приходится балансировать между крайними воззрениями на статус эмбриона, с одной стороны, и обещаниями успехов в лечении болезней, с другой. Конфликт возникает между обязанностями государства по сохранению здоровья населения и обязанностями по защите его моральных установок.

В большинстве стран обнаруживается параллель между допустимостью исследований на эмбрионах и допустимостью абортов. Ирландия – единственная страна ЕС, чья конституция подтверждает право на жизнь еще не рожденных людей, и это право приравнивается к праву матери на жизнь, хотя неясно, действует ли это право от момента оплодотворения или от момента имплантации. Несмотря на это, аборт разрешается, только если жизни матери угрожает прямая опасность, изнасилование или аномалии зародыша не являются оправданием. Этот закон противоречит решению Европейского суда справедливости, согласно которому аборт представляет собой медицинскую услугу и любое ограничение в этой услуге со стороны государства – члена ЕС является компетенцией Европейского суда, а не ирландского законодательства. Ирландия должна оговаривать особые условия в Маастрихтском договоре, чтобы поддержать свои меры против абортов. Многим странам – новым членам ЕС, где есть запреты или ограничения на аборты, таким как Польша, Словакия, Литва, Венгрия, Словения, Чешская Республика и Мальта, вероятно, придется делать то же самое.

Бельгия и Нидерланды проводят исследования на эмбрионах при отсутствии законодательных рамок. В Португалии, где аборт незаконен, кроме случаев изнасилования или по серьезным медицинским причинам, и безоговорочно запрещен после 12-й недели беременности, нет законодательства, но нет и исследований. Такие исследования запрещены в Австрии, Германии и даже во Франции, но последняя позволяет «изучение эмбрионов без нанесения ущерба их целостности» и преимплантационную диагностику.

Испанская конституция предлагает защиту только для жизнеспособных эмбрионов in vitro, причем критерии жизнеспособности не распространяются на «лишние» эмбрионы, образующиеся при оплодотворении in vitro. Исследования на эмбрионах при тех же условиях допустимы в Финляндии и Швеции. Еще в девяти европейских странах законодательство либо пересматривается, либо исправляется. Эти страны, как и те, где законодательство вообще отсутствует, могут руководствоваться международными правилами.

В США десять штатов ввели у себя законы, регулирующие или ограничивающие исследования на человеческих эмбрионах, зародышах или еще не рожденных детях. На федеральном уровне запрещена финансовая поддержка любого исследования, в котором эмбрионы разрушаются.

Международные руководства не вносят особой ясности в проблему исследования человеческих эмбрионов. Все вопросы, кроме запрета репродуктивного клонирования человека, соглашения на европейском уровне оставляют на усмотрение каждого государства. Существует несколько общих руководств и «Конвенция о правах человека и биомедицине» Совета Европы, которая утверждает: 1) там, где закон разрешает проводить исследование in vitro, он должен обеспечить адекватную охрану эмбрионов; 2) создание эмбриона для исследовательских целей запрещено. Дополнительный протокол, запрещающий клонирование человека, вступил в силу в 2002 г. Однако Европейская группа по этике в науке и новых технологиях, действующая при Европейской комиссии, высказалась за выделение средств из бюджета сообщества для проведения исследований на лишних эмбрионах, хотя и подтвердила, что считает создание эмбрионов для исследований из донорских гамет этически неприемлемым и «полагает преждевременным» терапевтическое клонирование.

Против такого решения Совета Европы выступила Международная академия гуманизма. В ее декларации указывается: «Мы не видим в клонировании высших животных, исключая человека, каких-либо неразрешимых этических дилемм. Не считаем мы очевидным и то, что будущие достижения в клонировании человеческих тканей и даже человеческих существ создадут моральные затруднения, которые не сможет разрешить человеческий разум. Моральные проблемы, порождаемые клонированием, не являются более крупными и более глубокими, чем вопросы, с которыми люди уже сталкивались по поводу таких технологий, как ядерная энергия, рекомбинантная ДНК и компьютерное шифрование. Они просто новые».

Наиболее взвешенная и интересная позиция по этому вопросу приведена в Рекомендации Национальной консультативной комиссии по биоэтике (США). Обращают на себя внимание существенные различия между американским и европейским документами. В американском речь идет не просто о запрете, а о моратории на проведение работ по клонированию человека и о необходимости вернуться к вопросу через несколько лет с тем, чтобы оценить ситуацию в свете новых научных данных, а также результатов общественного обсуждения этических и социальных проблем клонирования человека, что выглядит не столь категорично, как позиция Совета Европы. Более того, специально отмечается, что данный мораторий не должен затронуть другие исследования, включая исследования эмбриональных стволовых клеток. Таким образом, согласно американскому документу, последующие решения намечается предпринимать после специальных усилий, направленных на то, чтобы мнение общества было информированным и просвещенным.

<<< Назад
Вперед >>>

Древние были уверены в существовании вечно возраждающейся из пепла птицы Феникс. Древнеегипетский бог Гор раз за разом собирал разбросанные по всем сторонам света куски тела своего отца Озириса и оживлял его с помощью матери Исиды. Не удивительно, что ученые называли гидрой кишечнополостное наших водоемов – ее способность к регенерации просто сказочна. Регенерация тканей наблюдается и у человека: срастание костей, заживление кожи и мышц, постоянно протекающий в нашем организме процесс «творения» крови.

Загадка кроветворения не давала покоя нашему выдающемуся ученому Александру Александровичу Максимову, который еще в 1916 г. начал использовать метод культуры ткани. Напомним, что за разработку данного метода француз А.Каррель, долго работавший за океаном, был удостоен в 1912 г. Нобелевской премии. В 1922 г. Максимов уехал из России и оказался в конечном итоге в Чикаго, где занимался исследованиями в области воспаления и кроветворения.

В 1908 г. Нобелевской премии за исследования процесса воспаления и открытие макрофагов был удостоен И.И. Мечников. Ученых начала века волновал вопрос: откуда при воспалении берутся многочисленные клетки соединительной ткани, в результате чего образуются припухлость, флюс и нарыв?

Максимов постулировал, что в соединительной ткани (крови, костном мозге, являющемся органом кроветворения) пожизненно сохраняются недифференцированные, так называемые мезенхимные, или камбиальные, клетки, которые могут превращаться в различные клетки крови, а также кости, сухожилия, связки и т.д. Он называл их еще «блуждающими клетками в покое». Наличием этих клеток он и объяснял образование новых клеток при воспалении.

Поясним некоторые слова. Дифференцировкой называется «специализация» клетки, в ходе которой та приобретает свойства, необходимые для выполнения возложенной на нее природой функции. Недифференцированная клетка не способна сокращаться, как мышечная, генерировать электрический сигнал, как нервная, и синтезировать гормон инсулин, как клетки островков Лангерганса поджелудочной железы. Говорят еще, что в процессе дифференцировки клетки созревают.

Обычно в названии незрелых клеток имеется слово «бласт», то есть «шар» (бластула – это шарообразная стадия развития эмбриона, при этом стенка шара представлена одним слоем клеток). Клетка – предшественник кости называется остеобластом; предшественник меланоцита, синтезирующего темный красящий пигмент меланин, благодаря которому мы темнеем при загаре, – меланобластом, а клетки нервной системы – нейробластами. Эти «первичные» клетки действительно похожи на шарики: нейро- и меланобласт не имеют характерных для взрослых стадий отростков, которые появляются только в ходе дифференцировки.

Нечто похожее видел в культурах и Максимов. Так «общим родоначальником кроветворения» он считал большой лимфоцит, который происходит от первичной мезенхимной клетки через стадию малого лимфоцита, представляющего относительно небольшую клетку с большим ядром.

Слово «мезенхима» греческого происхождения и означае «посредник». Максимов вслед за эмбриологами XIX в. считал, что мезенхима представляет собой средний (между экто- и эндодермой) зародышевый листок, из которого образуется затем соединительная ткань и ее производные в виде сосудов, крови, хряща и кости. Сегодня мы знаем, что мезенхимные клетки выселяются из верхней спинной (дорзальной) половины нервной трубки, так что тоже имеют эктодермальное происхождение. Вот почему у нейрона и лимфоцита так много сходных генов и свойств.

Интерес к клеткам-предшественникам (прекурсорам) возродился в 1960-е гг., когда Дж.Гердон, эмбриолог из Оксфордского университета, поразил весь мир клонированными лягушками. Гердон придумал метод переноса ядра одной клетки в цитоплазму другой.

Для своих опытов он взял икринки, видимые невооруженным глазом, и удалил из них ядра. Таким образом, он получил «энуклеированную» цитоплазму, в которую и пересадил диплоидные ядра (с двойным набором хромосом) соматических клеток, которые и в обычных условиях постоянно делятся (клетки слизистой кишечного эпителия). Таким образом для своих экспериментов по клонированию Гердон, возможно, использовал стволовые клетки кишечного эпителия. Но тогда так никто проблему не рассматривал.

Практически одновременно с работами Гердона стали появляться статьи, посвященные описанию нейрогенеза в гиппокампе мозга. Сначала образование новых нервных клеток видели просто под микроскопом, затем наблюдения стали подтверждать с помощью авторадиографии, которая свидетельствовала о синтезе новых молекул ДНК. В конечном итоге процесс был подтвержден и с помощью электронного микроскопа. Но народ и поныне убежден, что «нервные клетки не восстанавливаются».

Гердон задавался вопросом, каким образом цитоплазма яйцеклетки перепрограммирует соматическое ядро, т.е. ядро дифференцированной клетки. Созревает клетка не сразу. Для этого она должна пройти несколько клеточных циклов.

Стволовая клетка в процесс созревания не вступает. Ранее полагали, что она при этом и не делится, находясь в состоянии «ареста» клеточного цикла, т.е. как бы в «замороженном» состоянии. Однако сейчас выясняется, что все намного сложнее, по крайней мере в клеточных культурах. Но об этом ниже.

В самое последнее время экспериментаторы, возможно, под влиянием экологов, выдвинули концепцию ниши. Ниша – это клеточное окружение, в котором клетка не только живет, но и выходит из состояния ареста, чтобы начать развитие.

Классическим примером ниши является граафов пузырек яичника, в котором яйцеклетка может пребывать в состоянии клеточного ареста в течение всей жизни женской особи. Кстати заметим, что яйцеклетка до самого момента оплодотворения содержит – в отличие от спермия – двойной набор хромосом (второй набор удаляется только после внедрения спермия). Таким образом, чисто теоретически яйцеклетка до образования зиготы по набору хромосом ничем не отличается от любой другой соматической клетки.

Еще одной нишей является дно волосяного фолликула, где «обитают» стволовые клетки, из которых образуются меланоциты. Нишей же нейрогенеза, помимо гиппокампа, является также субвентрикулярная зона. Это слой клеток, окружающих мозговые желудочки – полости в глубине полушарий, заполненные жидкостью, похожей на лимфу. Именно в этой зоне постоянно образуются новые нервные клетки, которые затем мигрируют в направлении носа. Это открытие было сделано в начале 1990-х гг. и доказано экспериментально!

Обонятельные нейроны постоянно контактируют с разного рода летучими веществами атмосферы. Это для нас они означают ароматы и запахи, а для обонятельных нейронов они токсичны, особенно в больших концентрациях. Вот и приходится постоянно генерировать новые нервные клетки, чтобы восполнить их дефицит.

Но дело не только в химикатах. Обонятельные нейроны располагаются ближе к поверхности слизистой носа, чем все другие нервные клетки. От внешней среды их отделяют какие-то несколько микронов слизи, выделяемой слизистым эпителием. И гораздо большую опасность для обонятельных нейронов представляют постоянные вирусные атаки, особенно во время эпидемий респираторных заболеваний. Вот почему слизистая носоглотки представляет собой третью нишу постоянного нейрогенеза.

В первом номере журнала Science за 1995 г. была опубликована статья о выделении и определении свойств гематопоэтических стволовых клеток человека. Частота встречаемости стволовых клеток составляет около 1 на 105 клеток костного мозга. Незадолго до того, в середине ноября 1994 г., журнал Nature напечатал статью об изоляции из эмбрионального мозга крыс самообновляющихся мультипотентных стволовых клеток мозговой коры. Так занималась заря экспериментального изучения стволовых клеток в их естественных нишах и изолированных культурах.

Параллельно этому разворачивались исследования процессов перепрограммирования. Выше уже говорилось о перепрограммировании самой яйцеклетки и ядра соматической клетки, помещенного в ее цитоплазму. Сегодня мы знаем, что перепрограммирование может быть осуществлено путем добавления ядерного и цитоплазматического экстракта яйцеклеток, а также «первичных» Т-лимфоцитов человека.

Перепрограммированию способствует также добавление ростовых факторов – специальных белков, которые стимулируют рост и размножение клеток. О действии ростовых факторов ученые знают довольно давно, поэтому в культуры клеток обычно добавляют сыворотку телячьей крови, которая их содержит. Можно действовать более целенаправленно, например, культивировать клетки с «представителями» других тканей. Это приводит к смене клетками типа ткани. Так, если взять фибробласты кожи и добавить в культуральную среду экстракт предшественников (прекурсоров) нейрональных клеток, то фибробласты начинают синтезировать нехарактерный для них белок нервных волокон. Дело доходит даже до того, что у фибробластов появляются нервные отростки – дендриты.

Но все эти воздействия были ненаправленными. Преимуществом современного подхода является четко направленное воздействие, которое включает нужные гены, позволяя тем самым управлять развитием клеток. Уже относительно давно в ходе онкологических исследований был выделен так называемый ФИЛ – фактор подавления лейкемии. Этот белок, который является транскрипционным (активирующим транскрипцию) фактором, подавляет развитие мезодермальных, в частности мышечных, клеток и стимулирует начало нейрональной дифференцировки. Можно сказать, что он перепрограммирует стволовые клетки на путь развития нервных клеток.

ФИЛ, можно надеяться, позволит решить одну важную проблему клонирования. Дело в том, что эмбриональные стволовые клетки при всей своей плюрипотентности обладают одним неприятным свойством – они образуют тератомы, т. е. уродливые разрастания. В этом отношении гораздо лучше использовать стволовые клетки взрослого организма, тем более что ученые уже научились «расширять» пределы тканевой специфичности, т. е. получать потомство клеток одних тканей с характеристиками других тканей.

Но у взрослых свои проблемы, одной из которых является небольшой пролиферативный потенциал (клетки довольно быстро перестают делиться). Так вот добавление ФИЛа приводит к снятию этого ограничения: мезенхимальные стволовые клетки, выделенные из костного мозга взрослой мыши, претерпевали в культуре более 80 делений! По внешнему виду клетки точь-в-точь максимовские: диаметром 8–10 мкм, округлые, с большим сферическим ядром и тонким ободком цитоплазмы. Способность к делению подтверждается и сохранностью теломер. Напомним, что это концевые участки хромосом, которые имеют одноцепочную ДНК. При каждом делении 200–300 нуклеотидов этой ДНК «отрезаются», в результате чего длина теломер сокращается. По достижении определенного предела клетка теряет способность делиться и подвергается апоптозу.

Стволовые клетки после переноса их облученному животному восстанавливают гемопоэз, печеночный эпителий, а также клетки легких и кишечника. У них нет характерных для взрослых клеток иммунологических мембранных белков, запускающих в норме реакцию отторжения. Кроме того, в них высока активность теломеразы – фермента, который синтезирует теломерную ДНК. Средняя длина теломер составляет у клеток культуры 27 килобаз, т. е. тысяч «букв» ген-кода. Такая величина «устанавливается» после 40 клеточных делений и остается неизменной и после 102!

Для направления развития клеток костного мозга по пути нейронов ученые ввели в культуру так называемый «Нурр» – «нуклеарный (ядерный) рецептор», – представляющий собой транскрипционный фактор, специфичный для предшественников среднего мозга, «направляющимся» по пути развития допаминовых нейронов (гибель которых приводит к развитию паркинсонизма). Полученные таким образом допаминовые нейроны имеют те же электрофизиологические характеристики, что и нормальные. После пересадки таких нейронов крысе с моделью паркинсонизма у нее восстанавливаются нормальные движения лап.

В других экспериментах было показано, что процесс перепрограммирования состоит как минимум из пяти стадий. На первом этапе с помощью цитомегаловируса (естественно модифицированного, чтобы он не мог размножаться в клетках) был перенесен ген Нурр, в результате чего был простимулирован ген тирозин-гидроксилазы. Этот фермент добавляет группу –ОН к аминокислоте тирозину, в результате чего начинает вырабатываться допамин. Помимо этого Нурр «открыл» и ген тубулина – белка, из которого делаются тубулы, микротрубочки, без которых нельзя себе представить нервную клетку: по микротрубочкам, как известно, идет транспорт нейротрансмиттеров, например того же допамина, к синапсам, где они и выделяются.

На ранних этапах эмбриональные стволовые клетки могут превращаться и в инсулинсинтезирующие клетки. Тем самым открывается путь помощи миллионам диабетиков, которые так нуждаются в этом белковом гормоне (только в США этот диагноз ставят ежегодно 800 пациентов).

Можно на одной из стадий направить развитие стволовых клеток и по пути серотониновых нейронов. Серотонин также является одним из важнейших нейротрансмиттеров, недостаток его ведет к различным психическим расстройствам, начинающимся с депрессии. Интересно, что развитие нейронов зависит от действия ростового фактора фибробластов, т. е. клеток соединительной (мезодермальной) ткани. Этим лишний раз подтверждается факт «единства» происхождения нейро- и мезодермы. Добавление фактора роста фибробластов вызывает увеличение количества серотониновых нейронов в 2,5 раза. При этом уменьшается количество клеток с тирозингидроксилазой, т. е. допаминовых.

Если в клетки внести побольше копий гена Нурр, то доля допаминовых нейронов культуры возрастает с 5 до 50%. Если же на 4-й стадии добавить еще пару стимуляторов развития именно допаминовой «ветви», то число таких клеток возрастает почти до 80%.

Сейчас задача – постараться как можно быстрее перенести опыты с мышей на человека. Во многом эта проблема связана с самой техникой культивирования стволовых клеток: их «высаживают» на фидерные (питающие) мышиные клетки и добавляют плазму крови телят (сыворотку). Это потенциально опасно тем, что клетки человека можно заразить ретровирусами животных. Такие клетки не могут использоваться для лечения человека. Это позволяет проверить все продукты с помощью стандартных тестов на СПИД, герпес, гепатит и т.д.

Однако недавно запатентован метод, в котором в качестве фидерных клеток используются мышечные клетки человека, а для стимуляции роста добавляется сыворотка крови человека.

Пока же опыты в основном идут на животных. Для решения многих практических и теоретических проблем необходимо получение как можно более «чистого» в генетическом отношении материала.


1 – удаление ядра из яйцеклетки; 2 – «внесение» диплоидного ядра лимфоцита; 3 – стадия бластоциста с эмбриональными стволовыми клетками; 4 – культура стволовых клеток и эмбрион из них; 5 – суррогатная мать и мышонок; 6 – взятие лимфоцита у обычной мыши

Тут следует сделать одно теоретическое отступление. Дело в том, что в лимфоцитах постоянно происходят так называемые генные реаранжировки, или перестройки, «тасование» генных участков, отвечающих за синтез антител. Благодаря этому «тасованию» иммунные клетки получают возможность отвечать на разнообразие белков постоянно меняющихся болезнетворных агентов. В норме в обычных тканях вне иммунной системы такие аранжировки не происходят. Это позволяет хотя бы частично решить проблему перепрограммирования, которое во многом зависит от цитоплазмы яйцеклетки. Лимфоциты хорошо подходят для решения этой проблемы, поскольку все их потомство есть клон, сохраняющий одни и те же генные маркеры.

Были получены две линии мышей: одна из В-клетки, а вторая была потомком Т-лимфоцита. Надо отметить, что лимфоциты довольно плохо поддаются перепрограммированию. В-лимфоцитарные мыши имели реаранжировки гена иммуноглобулина во всех тканях и были жизнеспособны. А вот потомство Т-лимфоцита оказалось с жизнью «несовместимым» – эмбрионы гибли внутриутробно, а единственный родившийся оказался мертвым. Таким образом, попытка получить моноклональное потомство показало разный потенциал со стороны клеток, их способность или неспособность перепрограммироваться, а также наличие других проблем. Так что придется все же вернуться к стволовым клеткам костного мозга, о которых писал Максимов, хотя потенциал их и довольно ограничен, если речь идет об организме, а не о культуре, где можно вводить разные гены на разных стадиях дифференцировки.

В одном из экспериментов облученным мышам одной линии (с убитым костным мозгом) перенесли 2 тыс. костномозговых клеток другой линии. Последние несли генетический маркер, благодаря которому при действии одного из веществ окрашивались в синий цвет. Через 12 недель окрашивалось от 80 до 95% кровяных клеток реципиента. Через 4 месяца мышек забили. На срезах головного мозга нервных клеток, окрашивающихся в синий цвет, ученым увидеть так и не удалось. А те, что окрасились (менее 5 клеток), имели округлую форму и не несли никаких отростков. Таким образом, превращения клеток костного мозга в клетки головного мозга в организме не происходит.

Поскольку стволовые клетки сохраняются в организме в течение всей жизни, мы должны были бы жить дольше и при этом не болеть, так как стволовые клетки должны заменять умершие и заболевшие в наших органах. Однако этого, как все знают, нет.

Сейчас во многом внимание ученых сконцентрировано на теломерах, как главных регуляторах клеточного деления, без которого не бывает дифференцировки. При дефектах в теломерах вернее находящихся с ними в комплексе белков, возникает состояние ускоренного укорачивания их длины. Один из белков получил название Est, что является сокращенным английским выражением «постоянно укорачивающиеся теломеры» (Evershortening telomeres ). Такое состояние быстро приводит к преждевременной смерти клеток.

Est стимулирует теломеразу, которая удлиняет ДНК теломер, задерживая тем самым достижение предела жизни клетки. Казалось бы, к чему все эти детали, если ученые уже научились управлять дифференцировкой стволовых клеток в культуре? Тут можно возразить.

Во-первых, стволовые клетки разных линий мышей по-разному сопротивляются повреждению ДНК, например ультрафиолетом. Скрещивание разных линий выявило в 11-й хромосоме локус «ремонта ДНК», который ответствен за «починку» молекулы жизни, если в ней образуются одно- и двуцепочные разрывы после облучения или действия свободных радикалов кислорода. Такой же локус есть и в 11-й хромосоме человека. Вполне возможно, что все это имеет отношение к теломерам, поскольку там тоже есть дву- и одноцепочная ДНК...

С точки зрения дифференцировки, как эмбриональные, так и взрослые стволовые клетки представляют собой поезд, который уже ушел. Гораздо проще было бы разобраться во многих вопросах клеточной биологии, если бы могли анализировать процессы с самого начала, а именно с гамет. Но культуры гамет до сих пор не было...

И вот два самых свежих сообщения. Прежде всего, удалось наладить дифференцировку в культуре сперматогониев – стволовых клеток семенников, из которых образуются спермии. Достигнуто это с помощью переноса в сперматогонии каталитической единицы теломеразы (это вторая причина, почему ученые так интересуются теломерами).

Сперматогонии выделяли у 6-дневного мышонка, после чего в них с помощью ретровируса вносился ген теломеразы. При этом были получены стволовые клетки – с большим округлым ядром и небольшим ободком цитоплазмы (опять Максимов!). И через год культивирования эти стволовые клетки имели «свежую» морфологию.

В них появляется РНК-связывающий белок, который характерен для стволовых клеток, а также транскрипционный фактор Oct, который необходим для развития плюрипотентных эмбриональных клеток. Известно, что у самцов Oct сохраняется до начала дифференцировки сперматогониев и начала сперматогенеза.

Похоже, что многие неудачи ученых, с которыми им приходилось сталкиваться до сих пор, связаны с... выделением яйцеклетки из фолликула! Дело в том, что она окружена тремя слоями питающих и защитных клеток, которые, в частности, накладывают на нее «арест», о котором говорилось выше. Ученые Коннектикутского университета решили выделить весь фолликул, после чего «зажали» его между двумя покровными стеклами. Размер фолликула 260–470 мкм, поэтому с ним удобнее и легче работать, нежели с «голой» яйцеклеткой.

Для того чтобы понять, что является причиной ареста, ученые ввели микропипеткой под мембрану ооцита моноклональные антитела против так называемой стимулирующей субъединицы Г-белка. Г-белки – это ферменты, добывающие энергию при расщеплении не АТФ, а гуанозинтрифосфата (ГТФ). Тратят эту энергию они на разные вещи, в том числе и на стимуляции мембранного фермента аденилатциклазы, которая из ATФ «делает» циклический аденозинмонофосфат (цАМФ).

Мембрана клетки с различными рецепторами, ионными каналами (Ca2+, Na+) и ферментами

Циклический AMФ является важнейшим регулятором процессов в цитоплазме, вызывая в том числе и арест жизненного цикла яйцеклетки. Введение моноклональных антител против Г-белка приводит к блоку аденилатциклазы и падению уровня цАМФ, в результате чего арест преодолевается, и клетка вступает в мейоз. Тем самым смоделировано действие лютеинизирующего гормона гипофиза, который то же самое делает каждый месяц с той или иной яйцеклеткой в яичниках. Так что вполне возможно, что скоро мы услышим и о культуре ооцитов, с помощью которой исследователям удастся разобраться в тех процессах, которые происходят на самых первых этапах развития (еще до оплодотворения).

И последнее. Удалось, по всей видимости, понять и причину других неудач, связанных с клонированном. Дело в том, что для начала клонирования и получения стволовых клеток необходимо «изъять» ядро ооцита из цитоплазмы и на его место ввести ядро диплоидной соматической клетки. При этом через разрыв мембраны яйцеклетки вытекает до трети цитоплазмы с ее питательными и регуляторными веществами и протеинами. Из-за этого клоны и оказываются нежизнеспособными.

Уже относительно давно было предложено «делить» цитоплазму ооцита на две половинки – содержащую ядро и без него. Последняя получила название «цитопласт». Теперь Габор Байта из Сельскохозяйственного института в Копенгагене предложил вообще не изымать ядро соматической клетки, а просто «сливать» ее с одним или двумя цитопластами. При этом не нужны дорогостоящие манипуляторы и высококвалифицированные специалисты – все может делаться буквально в полевых условиях студентами или лаборантами.

Метод уже опробовали австралийские ученые, которые с его помощью резко повысили «выход» клонированных телят: из 7 бластоцистов – «шариков» из эмбриональных клеток, – перенесенных в матки коров, шесть имплантировались в слизистой и привели к беременности, в результате которой родились бычки и телки. Напомним, что овечка Долли родилась в результате более чем 300 неудачных попыток.

По материалам журналов Nature и Science .

Клонирование стволовых клеток человека впервые. Почти два десятилетия назад, ученые смогли клонировать милую овечку Долли. Теперь тот же самый процесс, чтобы позволить им клонировать эмбриональные стволовые клетки человеческих зародышей в первый раз. Это революционное достижение было совершено Шукратом Малиповым в университете штата Орегон и использует метод, называемый перенос ядра. Проще говоря, это включает в себя прием клетки – в этом случае стволовые клетки вводятся в специальную яйцеклетку, чья ДНК была удалена.

Затем эта клетка стимулируется, чтобы начать делится. В результате растущей массы из стволовых клеток, которые если начали расти, могут стать клоном. Это метод, с помощью которого клонировали овцу Долли в 1996 году. Интересно, что этот метод до сих пор не сработал с человеческой клеткой.


Согласно сообщению в журнале Cell, его команда смогли повторить процедуру, используя человеческие стволовые клетки из кожи зародыша, чтобы “подкормить“ клетки-яйца. Успех эксперимента может привести к клонированию целого человека, хотя этические и моральные нормы принципиально вступают в конфликт с аналогичной идеей.

Именно по этой причине, Малипов и его команда не планируют производить клонов, а клонированные стволовые клетки будут предназначены исключительно для медицинских целей. Стволовые клетки являются панацеей в современной медицине и используется практически для лечения раковых заболеваний, пораженных нервных тканей и сердечно-сосудистых заболеваний.


Малипов придает успеху большое значение и определяет два фактора. Во-первых, для клетки-яйца используются здоровые клетки от донора, а в предыдущих попытках, это было сделано с остатками гинекологической клиники. Во-вторых, имеет немного другой подход к передаче ядра, с небольшими улучшениями здесь и там, в том числе использование кофеина в данный момент.

Ожидания Малипова продолжались долгие годы экспериментов и попыток, чтобы оптимизировать процесс клонирования так, что он работает с человеческими клетками, но при первой попытке его команда получила линии клонированных клеток всего за несколько месяцев. Это действительно огромный шаг в медицине, который может значительно уменьшить стоимость лечения стволовыми клетками и помочь ряду пациентов с дегенеративными и потенциально неизлечимыми заболеваниями. Кроме того, это дает надежду, чтобы обрести бессмертие путем постоянного клонирования тканей и жизненно важных органов. Но это уже научная фантастика. По крайней мере пока.