Главная · Болезни кишечника · «Красноярский государственный медицинский университет. Патология клетки и болезнь

«Красноярский государственный медицинский университет. Патология клетки и болезнь

Клетка является структурно-функциональной единицей организма. Пато­логические и физиологические процессы, происходящие в организме, связа­ны с изменениями структуры и функции клеток. Поэтому, прежде чем присту­пить к разбору патологических процессов, необходимо рассмотреть типовые изменения со стороны клетки.

Со стороны ядра возможны: 1) полиплоидия ядра, она отмечается при репаративной регенерации, компенсаторной гипертрофии, при токсических воз­действиях (например, в печени из-за нарушения деления клеток при отравле­нии барбитуратами, под воздействием цитостатиков), под действием ионизи­рующего излучения, а также при опухолевом росте, размеры ядра чаще пропорциональны размерам всей клетки (нормальный ядерно-цитоплазмати-ческий индекс); 2) функциональное набухание ядра с увеличением объема хро­матина из-за превращения неактивного гетеропикнотического конденсирован­ного хроматина (гетерохроматина) в активный эухроматин; 3) "дегенератив­ное" набухание ядра в результате коллоидно-осмотического набухания после нарушения активного транспорта; 4) увеличение размеров ядра в связи с реп­ликацией в нём вируса; 5) уменьшение объёма ядра при снижении обмена ве­ществ.

Среди изменений хроматина выделяют:

1) гипергетерохромазию с мелко­очаговой конденсацией хроматина и инактивацией отдельных участков хромосом.
2) дискариозы - равномерно распространенную, обычно мелкоочагвую гетерохромазию ядра, что характерно для низкодифференцированных клеток 3) маргинацию хроматина оболочек ядра - конденсацию хроматина в области ядерной мембраны, что является признаком начинающейся гибели клетки
Ядрышко в условиях патологии может: 1) приобретать форму кольца, черепицы или губки, что может сопровождаться снижением синтетической активности клеток; 2) быть сегрегированным, уменьшенным в разме­рах, что наблюдается при блокаде транскрипции антибиотиками или цитостатиками
Под воздействием разнообразных факторов возможно повреждение клеточной мембраны с последующим набуханием и, нередко, гибелью клетки.
Под воздействием различных факторов возможна дезагрегация полирибосом клетки с их распадом на отдельные рибосомы.
Изменения формы шероховатого ретикулума: 1) фрагментирование, 2) оьразование пузырьков или вакуолей из-за нарушения работы натриевого насоса 3) коллапс цистерн в результате нарушения синтеза из-за повреждения мембран

Со стороны гладкого эндоплазматического ретикулума (ГЭР) отмечаются.

I) увеличение ГЭР при алкоголизме, длительном введении антигистаминных и ряда других препаратов; 2) редукция ГЭР мембран в старческом возрасте и при хронических отравлениях.
Кроме того, возможно увеличение или уменьшение объёма ЭР.
Со стороны митохондрий возможны: 1) набухание митохондрий и дест­рукция крист; 2) увеличение их количества в результате пролиферации, чаще вего при хроническом поражении или при усиленной функции, например, миокарда; 3) обеднение митохондриями при остром повреждении клетки, а ыкже при атрофии; 4) образование гигантских митохондрий при нарушении питания, в частности при гиповитаминозах и интоксикациях.
Со стороны лизосом может наблюдаться повышение проницаемости их мембраны, что может привести к выходу в цитоплазму лизосомальных фер­ментов и гибели клетки.
В процессе жизнедеятельности клетка подвергается воздействию внешних стимулов, обычно обозначаемых как повреждающие факторы. Результат такого воздействия зависит от природы повреждающего фактора, его силы и про­должительности действия, а также от вида и состояния самой клетки. При слабых внешних воздействиях в клетке может не происходить никаких изме­нений. При более сильном и продолжительном воздействии возможны:
1) адаптивные изменения клетки, лежащие в основе компенсаторных и приспособительных процессов, 2) обратимое повреждение клетки, 3) необратимое повреждение клетки с последующей её гибелью. Эти процессы могут приводить к изменениям структуры и функции различных тканей и органов.

Повреждение (альтерация)

В основе всех патологических и многих физиологических процессов в организме лежит повреждение его структур. Повреждение классифицируют по различным принципам: 1) по причинным факторам - экзогенное (биоло-гическое, в том числе вызванное бактериями, вирусами, микоплазмами, простейшими; физическое; химическое) и эндогенное (гипоксия, интоксикация, иммунное повреждение); 2) по характеру воздействия повреждающего фактора- прямое и непрямое; 3) по тяжести процесса - обратимое и необратимое; 4) по значению для организма - патологическое и физиологическое; 5) по распространенности - числу и объему поврежденных структур.
Любое повреждение проявляется на различных уровнях: молекулярном, субклеточном (ультраструктурном), клеточном, тканевом и организменном. Иногда дополнительно выделяют и уровень тканевых комплексов или гистионов, включающих в свой состав сосуды микроциркуляторного русла (артериола, капилляры, венула) и питаемые ими клетки, паренхимы, соединительную ткань и терминальные нервные окончания.
Повреждения на молекулярном уровне известны еще мало и их изучение проводится в рамках молекулярной биохимии, генетики и биофизики. В эту группу повреждений могут быть отнесены изменения клеточных рецепторов под влиянием различных повреждающих факторов, выявляемые при иммунной электронной микроскопии.
Большинство наблюдаемых при электронно-микроскопическом изучении повреждений на субклеточном (ультраструктурном) уровне имеет неспецифический характер и не зависит от вида повреждающих факторов. Так, например, в миокарде при острой ишемии, токсических воздействиях катехоламинов, отравлении морфином, разлитом гнойном перитоните, облучении наблюдаются аналогичные изменения поврежденных клеток: 1) набухание митохондрий и разрушение их мембран; 2) вакуолизация эндоплазматического ретикулума; 3) очаговая деструкция миофибрилл; 4) появление избыточного количества липидных включений.

Свойство ультраструктур подвергаться идентичным изменениям под влиянием различных факторов носит название стереотипизм.
Известно, что функциональные возможности любого органа превышают потребности, предъявляемые к нему в оптимальных условиях жизнедеятельности. Следствием того, что клетки в момент воздействия повреждающего фактора находятся на разных фазах жизненного цикла и обладают различной функциональной активностью, является неодинаковая чувствительность (ранимость) клеток и неравномерность их вовлечения в патологический процесс. Мри одинаковом воздействии на весь орган какого-либо повреждающего фактора обычно наблюдается весь спектр возможных состояний клетки от прак-шчески нормального и даже усиленно функционирующего до гибели. Это явление называется мозаичностъю или дискретностью функций. Примером, иллюстрирующим это положение, может служить неравномерность поражения гепатоцитов при хроническом венозном застое или отравлении этанолом.
Тесная функциональная взаимосвязь всех клеточных ультраструктур прииодит в случае достаточно длительного и сильного воздействия повреждающего фактора к существенным поражениям всех компонентов клетки, вне зависимости от локализации начальных изменений. Эта закономерность носит название комплексности.
На основании результатов гистохимического изучения установлена стадийность развития повреждения клетки. Так, при гипоксии на начальном этапе происходит снижение выработки АТФ в митохондриях. На втором этапе наблюдается компенсаторное усиление анаэробного гликолиза, проявляющееся в повышении активности лактатдегидрогеназы (ЛДГ), одновременно с уменьшением содержания гликогена. Результатом этого этапа является увеличение содержания в клетках молочной кислоты, обусловливающей увеличение кислотности клеточной среды. Третий этап характеризуется клеточным ацидозом, в условиях которого повышается активность гидролитических ли-зосомальных ферментов, в первую очередь кислой фосфатазы, усиливающих внутриклеточные аутолитические процессы.
Повреждения на клеточном уровне иногда могут носить специфический характер. Специфические изменения обусловливаются внутриклеточной репликацией вируса (с появлением в ядре или цитоплазме включений, представляющих собой или скопления вирусных частиц, или реактивные изменения клеточного вещества в ответ на их репликацию), опухолевым метаморфозом и врожденными или приобретенными ферментопатиями, приводящими к накоплению в клетке нормальных метаболитов в избыточном количестве или аномальных - в виде включений Правда, специфичность клеточных изменений в ряде случаев весьма относительна; так, например, опухолевые клетки могут быть практически неотличимы от регенерирующих.
Клетки и их составные части могут претерпевать различные структурные изменения. На начальных этапах воздействия они носят обратимый характер и свидетельствуют лишь о функциональном напряжении клеток.

Как отдельные клетки, так и целые многоклеточные организмы могут подвергаться различным воздействиям, которые приводят к их структурно-функциональным изменениям, к нарушениям их жизненных функций – патологии.

Патологические изменения одноклеточных организмов, приводящие к временным нарушениям их отдельных функций или приводящие к стойким нарушениям, кончающимся гибелью этой клетки - организма, есть результат поражения отдельных внутриклеточных структур.

В многоклеточных организмах также по ряду разнообразных причин происходят изменения или повреждения группы клеток, которые могут приводить к развитию целого набора дополнительных функциональных нарушений уже вторичного характера, связанных с изменением других клеток, так развивается патологические изменения целого организма, развивается болезнь как системное нарушение целого ряда клеток и тканей.

Изучение различных типов клеточного поражения, процессов их развития, способности клеток к репаративным процессам имеет большое общебиологическое значение, раскрывая пути взаимосвязи и регуляции между отдельными клеточными компонентами и прикладное значение, так как прямо связано с задачами медицины.

Современная биология рассматривает клетку как единую комплексную, интегрированную систему, где отдельные функции взаимосвязаны и сбалансированы друг с другом. Поэтому нарушение и выпадение отдельных этапов клеточного метаболизма должны приводить или к активации запасных обходных путей или к развертыванию событий уже патологического характера. У многоклеточных организмов патология и гибель ряда клеток используются в здоровом организме в целях прогрессивных нормальных процессов. В этом случае происходит запрограммированное выключение тех или иных клеточных функций, приводящих к смерти клетки.

Более подробно изучено действие на различные клетки внешних повреждающих факторов, физических и химических, таких как температура, лучистая энергия, давление, действие неспецифических альтерирующих химических веществ и влияние ингибиторов отдельных звеньев клеточного метаболизма и антибиотиков.

Разнообразные факторы при обратимом повреждении клетки отвечают ограниченным числом неспецифических изменений. Наблюдения привели к выводу, что эти морфофункциональные показатели повреждения возникают стереотипно вне зависимости от природы клеток или от типа повреждающего фактора. Неспецифический характер ответных реакций клетки на различные повреждающие факторы может свидетельствовать о наличии, каких – то общих процессов, вызывающих развитие сходных ответов клеток. При этом в клетках всегда значительно падает окислительное фосфорилирование, возрастание гликолитических процессов, активация протеолиза.


Характерной общеклеточной реакцией на повреждение является изменение способности клетки связывать различные красители. В морфологическом отношении начинают появляться структурно–патологические изменения: распад вакуолярной системы, активация лизосом, изменение структуры митохондрий и ядра. Совокупность неспецифических обратимых изменений цитоплазмы, возникающих под воздействием различных агентов, была обозначена термином «паранекроз».

К патологическим процессам на клеточном уровне относятся не только явления, связанные деструкцией клеток. Другой уровень клеточной патологии – изменение регуляторных процессов. Это могут быть нарушения регуляции обменных процессов, приводящие к отложению различных веществ, нарушения дифференцировки (например, опухолевый рост).

Некоторые термины:

пролиферация (proliferatio; лат. proles потомство + fero несу, приношу) - увеличение числа клеток какой-либо ткани вследствие их размножения;

пролиферативный пул - отношение количества размножающихся клеток ко всей массе данной клеточной популяции;

репродукция (ре- + лат. productio производство) - 1) в биологии = Размножение; 2) в психологии = Воспроизведение;

кариотип (карио- греч. karyon ядро, орех + греч. typos форма, образец) -- совокупность морфологических особенностей хромосомного набора соматической клетки организма данного биологического вида;

ген (-ы) (греч. genos род, рождение, происхождение) -- структурная и функциональная единица наследственности, контролирующая образование какого-либо признака, представляющая собой отрезок молекулы дезоксирибонуклеиновой кислоты (у некоторых вирусов -- рибонуклеиновой кислоты);

генотип (ген + греч. typos отпечаток, образец, тип; син.: идиотип, конституция генетическая) -- совокупность всех генов, присущих данной особи;

геном (англ. genome, от греч. genos род, происхождение) -- совокупность хромосомных наследственных факторов, передаваемых от родительской особи к дочерней, представляющая собой у эукариотов, в том числе у человека, гаплоидный набор хромосом;

Контрольные вопросы:

1. Механизм и роль амитоза

2. Значение митоза для клетки

3. Этапы митоза

4. Роль центросомы в делении клетки

5. Этапы мейоза

6. Первое деление мейоза

7. Второе деление мейоза

8. Роль кроссинговера в модифицировании индивидуальной наследственной информации

9. Отличия митоза и мейоза, их биологическое значение

10. Клеточный цикл, его фазы и регуляция

1. Альбертс Б., Брей Д., Льюис Д. И др. Молекулярная биология клетки: В 3-х тт. -М., «Мир», 2004.

2. Ролан Ж.-К., Селоши А., Селоши Д. Атлас по биологии клетки.
М., 2008.

3. Ченцов Ю.С. Введение в клеточную биологию. М., 2004.

4. Заварзин А.А., Харазова А.Д. Основы общей цитологии. – Л., 1982.

5. Ченцов Ю.С. Основы цитологии. – М., 1984.

ПЛАН ПРОВЕДЕНИЯ ЛАБОРАТОРНЫХ ЗАНЯТИЙ

Методические рекомендации к выполнению лабораторных занятий: прежде чем приступить к работе, нужно осмыслить значение и цель работы, внимательно прочитать и уяснить, что нужно делать, как ее оформить, затем – изучить теоретический материал по рекомендуемой литературе. Выполните задания, опишите ход эксперимента и сделайте соответствующие выводы. И в конце работы приводится ответы на контрольные вопросы.

Шамрай Владимир Степанович - заведующий гематологическим отделом ГУЗ «Ростовская областная клиническая больница», главный гематолог МЗ РО, ассистент кафедры внутренних болезней,врач высшей квалификационной категории

Редактор страницы: Крючкова Оксана Александровна

Ретикулярная клетка. Клетка основы кроветворных органов (ретикулярного синцития). Большей частью форма неправильная, вытянутая, ядро круглое, оваль­ное или вытянутое, цитоплазма обильная, окрашивается слабо базофильно, в ней может быть обнаружена мел­кая азурофильная грануляция. Обнаруживается в стернальном пунктате в количестве 1-3%.

В патологических условиях может превращаться в макрофаги, плазматические клетки.

Гемогистобласт. Клетка стромы кроветворных орга­нов величиной до 20-25, имеющая различную форму. Ядро круглое, нежного, губчатого строения, содержит 2- 3 ядрышка. Цитоплазма слабо базофильна, вклю­чений не содержит. Иногда в цитоплазме обнаруживают­ся азурофильные включения в виде мельчайшей зерни­стости, иногда в форме палочек.

Гемоцитобласт. Общая родоначальная клетка (со­гласно унитарной теории) для всех кровяных элемен­тов: белого, красного ряда и кровяных пластинок (тром­боцитов). Имеет крупную величину - до 20. Форма круглая или овальная, ядро большое круглое или овальное, почковидное или лопастное, нежной сетчато- зернистой структуры. При окраске азур-эозином - красно-фиолетовое. Ядро содержит 2-5 ядрышек. Во­круг ядра может быть обнаружена (не всегда) розова­того цвета перинуклеарная зона. Цитоплазма базофильна, обычно без включений. Иногда в цитоплазме может быть обнаружена мелкая азурофильная зерни­

стость или азурофильные тельца сигарообразной или палочковидной формы (тельца Ауэра). В пунктате костного мозга содержание гемоцитобластов достигает 2,5%. В крови гемоцитобласты обнаруживаются при остром лейкозе (гемоцитобластозе), могут обнару­живаться также при хроническом миелозе.

Миелобласт. Ряд авторов отождествляют с гемоцитобластом, другие-выделяют как следующую стадию развития. Последние рассматривают миелобласт, как клетку с ограниченными потенциями, могущую разви­ваться лишь в сторону гранулоцитов. По морфологии напоминает гемоцитобласт. Ядро нежно структуриро­ванное, содержит ядрышки, цитоплазма базофильна, в ней содержится азурофильная зернистость.

Обнаруживается в крови при острых и хронических миелозах.

Промиелоцит. Клетка, развивающаяся из миелобласта. Ядро несколько более грубой структуры, но сохраняет ядрышки, цитоплазма более базофильна, вокруг ядра имеется более светлая перинуклеарная зона. Наряду с азурофильной грануляцией может появ­ляться специальная: нейтрофильная, эозинофильная или базофильная зернистость. В зависимости от нали­чия той или иной зернистости различают промиелоциты нейтрофильные, эозинофильные и базофильные.

Обнаруживаются в крови при миелозах, при лейкемоидных реакциях.

Миелоциты. Дальнейшая стадия дифференциации миелобластов через стадию промиелоцитов. Размеры 12-20. Ядро круглое или овальное, структура хрома­тина грубая, компактная, ядрышки не обнаруживаются. Цитоплазма содержит ту или иную специфическую зер­нистость: иейтрофильную; эозинофильную, базофильную. В зависимости от вида зернистости различают миелоциты нейтрофильные, эозинофильные и базофильные. В стернальном пунктате -количество миелоцитов достигает 10-20%. В нормальных условиях дочерние миелоциты являются основными элементами, размно­жение которых пополняет запас зрелых лейкоцитов.

В крови могут обнаруживаться в виде единичных экземпляров при лейкоцитозах с гиперрегенеративным ядерным сдвигом, при лейкемоидной реакции миелоидного типа; обычно встречаются в крови при лейкемическом миелозе.

Лейкоциты юные; метамиелоциты. Недозрелые фор­мы лейкоцитов, образующиеся из миелоцитов. Ядро бо­лее рыхлое, чем у сегментированных форм, имеет изо­гнутую колбасовидную форму, форму подковы или усе­ченного S. Цитоплазма оксифильна, иногда может со­держать остатки базофилии. В зависимости от вида со­держащейся в цитоплазме зернистости различают нейтрофильные, эозинофильные и базофильные метамиело­циты.

В нормальной крови отсутствуют или встречаются в количестве не более 0,5%. Появляются при лейкоци­тозах с выраженным ядерным сдвигом, лейкемоидных реакциях миелоидного типа, при миелозах.

Из метамиелоцитов в костном мозгу путем дальней­шего созревания ядра и образования перемычек обра­зуются сегментоядерные и палочкоядерные лейкоциты.

Лейкоциты палочкоядерные. Образуются в костном мозгу из метамиелоцитов путем дальнейшего уплотне­ния их ядра, но без образования отдельных сегментов. В нормальной крови содержание 2-5%. Отличаются формой ядра, которое имеет вид изогнутой палочки или буквы S. Увеличение количества палочкоядерных нейтрофилов наблюдается при лейкоцитозах с ядерным сдвигом, лейкемоидной реакции миелоидного типа. Уве­личение эозинофильных и базофильных форм может быть характерно для миелоза.

Лейкоциты. Белые кровяные тельца. В крови имеет­ся три вида зернистых лейкоцитов (гранулоцитов): нейтрофильные, эозинофильные и базофильные лейко­циты и 2 вида незернистых лейкоцитов (агранулоцитов): лимфоциты и моноциты. Общее количество у здо­рового человека колеблется от 4,5 до 8 тысяч.

Лейкоциты нейтрофильные. Содержание в крови - 48-60% (2,2-4,2 тыс. в 1 мм3). Размеры 10-12 ц.

Ядро довольно компактное, состоит из 3-4 сегментов, соединенных мостиками того же ядерного вещества. Цитоплазма окрашивается в розовый цвет, содержит мелкую обильную зернистость, воспринимающую сине­вато-розоватый оттенок. При лейкоцитозах цитоплазма может сохранять остатки базофилии либо диффузной, либо в виде голубых гранул (так называемые тельца Деле). Более контурированными становятся эти голубые гранулы, если азур П-эозину предшествовала суправитальная окраска. При инфекциях и воспалениях нейтрофилы выполняют функцию микрофагов. Содер­жат трефоны Карреля, которые при раневом процессе могут стимулировать ход заживления (Г. К. Хрущев).

Лейкоциты эозинофильные. Нормальное содержа­ние-1-5% (100-300 клеток в 1 мм3). Клетки круп­нее нейтрофильных лейкоцитов, диаметр их до 12. Ядро часто состоит из двух сегментов, реже 3 или бо­лее. Цитоплазма слегка базофильна, содержит круп­ную, ярко окрашенную эозином зернистость, дающую положительную оксидазную и пероксидазную реакцию.

Лейкоциты базофильные. Содержание в крови 0- 1,0% (до 60 в 1 мм3). Величина от 8 до 10 ц. Ядро клеток широкое, неправильной, лопастовидпой формы. Цитоплазма содержит крупную зернистость, окраши­вающуюся метахроматически в фиолетовый, черно-синие гона.

Лимфоциты. В нормальных условиях - 27-44% (1500-2800 в 1 мм3). Клежи размером с эритроцит (7-9 р,). Ядро занимает большую часть территория клетки, имеет круглую, овальную или слегка бобовид­ную форму. Структура хроматина компактная, ядро производит впечатление глыбчатого. Цитоплазма в виде узкой каймы, окрашивается базофильно в голубой цвет; в части клеток в цитоплазме обнаруживается ок­рашивающаяся в вишневый цвет скудная грануляция - азурофильная зернистость лимфоцитов. Помимо обычно встречающихся малых лимфоцитов могут быть также, особенно в крови детей, средние лимфоциты (мезолимфоциты), а при лимфаденозах, особенно острых, - большие лимфоциты или лимфобласты.

Образуются в лимфатических узлах и селезенке. В условиях воспаления могут превращаться в макро­фаги, участвовать в образовании клеток, свойственных грануляционной ткани (А. Д. Тимофеевский).

Генез моноцитов (И. А. Кассирский и Г. А. Алексеев)

КЛЕТКИ БЕЛОЙ КРОВИ (НОРМА И ПАТОЛОГИЯ)

Моноциты. Содержание в условиях нормы -4-8% (200-550 клеток в 1 мм3). Самые крупные клетки нор­мальной крови, размером от 12 до 20. Ядро большое, рыхлое, с неравномерным распределением хроматина; форма его бобовидная, лопастовидная, подковообраз­ная, реже круглая или овальная. Довольно широкая кайма цитоплазмы, окрашивающейся менее базофильно, чем у лимфоцитов, и имеющей при окраске, по Романовскому-Гимза, дымчатый или сероватый оттенок. Мо­жет обнаруживаться мелкая азурофильная зернистость (азурофильная запыленность).

Образуются из ретикулярных и эндотелиальных кле­ток костного мозга, селезенки, печени.

Выселяясь в поздние стадии воспаления, могут пре­вращаться в макрофаги, участвовать в образовании грануляционной ткани, клеток некоторых гранулем.

Мегакариобласт. Незрелые гигантские клетки кост­ного мозга, образующиеся из гемоцитобластов. Округ­лые или овальные клетки с большим, неправильной формы ядром, более грубой, чем у гемоцитобласта, структуры. Цитоплазма в виде относительно узкой зо­ны, базофильная. Отшнуровывающиеся иногда отрост­ки цитоплазмы могут давать образование «голубым» пластинкам.

Промегакариоцит. Гигантская клетка костного мозга, из которой образуются мегакариоциты. Крупнее мега- кариобласта, ядро более грубой, нежели у первого, структуры, форма его неправильная - бухтообразная, с началом сегментации. Цитоплазма базофильная, мо­жет содержать скудную азурофильную грануляцию В результате отшнуровки частей цитоплазмы также мо­гут образовываться «голубые» пластинки.

Мегакариоцит. Гигантская клетка костного мозга, размером 40-50 ц в диаметре. Ядро неправильной фор­мы- сегментированное, кольцеподобное, либо прибли­жающееся к округлому, пикнотичному. Цитоплазма слабо базофильна, содержит мелкую или более грубую азурофильную грануляцию.

Образование кровяных пластинок (тромбоцитов) происходит путем отделения фрагментов цитоплазмы мегакарноцита, попадающих в кровь через стенки синусоидов костного мозга.

Мегакариоциты развиваются в костном мозгу из ге­моцитобластов через стадию мегакариобласта и промегакариоцита.

Тромбоциты. Кровяные (пластинки, бляшки Биццоцеро. Мелкие образования, имеющие размер 2-4

Форма округлая, овальная, звездчатая или неправиль­ная. Окрашиваются слабо базофильно, иногда в розо­вые тона. В центральной части обнаруживается мелкая или более грубая азурофильная зернистость. На обыч­ных мазках располагаются группами, реже - в виде изолированных форм. Образуются в костном мозгу из отшнуровывающихся частей протоплазмы мегакариоцитов. Общее количество в крови 200-3-50 тысяч в 1 мм3. В крови здорового человека различают следующие формы тромбоцитов.

1. Нормальные (зрелые) формы, количество которых составляет 87-98%. Форма круглая или овальная, диа­метр 2-3 р. В них различают бледно-голубую наруж­ную зону (гиаломер) и центральную (грануломер) с азурофильной зернистостью средней величины.

2. Юные формы (незрелые) имеют несколько боль­шие размеры, форму круглую или овальную. Цитоплаз­ма базофильная разной интенсивности, азурофильная грануляция мелкая и средняя, располагается чаще в центре.

3. Старые формы (0-3%) имеют круглую, оваль­ную или зубчатую форму, узкий ободок более темной цитоплазмы, обильную грубую грануляцию; могут быть вакуоли.

4. Формы раздражения (1-4,5%) имеют большие размеры, форму вытянутую, колбасовидную, хвостатую, цитоплазма голубоватая или розовая, разной величины азурофильная зернистость, рассеянная или разбросан­ная неравномерно.

5. Дегенеративные формы. В норме не встречаются. Гиаломер голубовато-фиолетовый, зернистость в виде комков или совершенно отсутствует (пустые пластин­ки), или формы в виде мелких осколков, пылинок.

Продолжительность жизни тромбоцитов около 4 дней, в последнее время с помощью Сг51 и Р32 уста­новлено, что длительность пребывания их в крови со­ставляет 7-9 дней, а при гипопластических состояниях костного мозга с тромбоцитопенией - всего до 3 дней (цит. по Г. А. Алексееву).

Резкое постарение пластинок наблюдается при ра­ках различной локализации (сдвиг вправо); процент старых форм может доходить до 22-88%, при одно­временном уменьшении зрелых форм -до 20-9%

(Т. В. Кенигсен и А. А. Коровин). Увеличение старых форм наблюдается также у пожилых лиц.

Гистиоциты. Ретикуло-эндотелиальные элементы и от­торгнувшиеся клетки эндотелия. Для обнаружения ре­комендуется взятие крови из мочки уха. Имеют различ­ную форму: вытянутую, хвостатую; ядро чаще расположен о эксцентрически, форма его овальная, круглая, или неправильная, напоминающая ядро моноцита. До­вольно широкая зона слабо-базофильной цитоплазмы, иногда содержащей азурофильные гранулы. Иногда в гистиоцитах обнаруживаются фагоцитированные клет­ки белой или красной крови, их осколки, зерна пигмен­та. Обнаруживаются в крови при септическом эндо­кардите, язвенном эндокардите, септических инфекциях, сыпном и возвратном тифе, скарлатине.

Плазматические клетки. Могут появляться, в крови при некоторых инфекционных заболеваниях (сыпном тифе, кори, краснухе, инфекционном мононуклеозе), при лейкозах, лучевой болезни, анафилактических со­стояниях. Величина от 7 до 15 ц, форма круглая или овальная. Характеризуются резко базофильной, иногда пенистой цитоплазмой, в которой могут обнаруживать­ся вакуоли; ядро компактное (хроматин может иметь структуру в виде спиц колеса), расположено в центре клеток или эксцентрично. Образуются из ретикулогистиоцитарных элементов. Имеются указания на связь плазматических клеток с образованием антител.

Метамиелоциты гигантские. Крупные формы мета­миелоцитов (юных лейкоцитов), которые могут обнару­живаться в мазках из стернальных пунктатов при ане­мии Аддисон-Бирмера и других В12-дефицитных анеми­ях. В подобных случаях появление гигантских метамие­лоцитов предшествует во времени развитию мегалобластического кроветворения и на фазе макроцитарной анемии может рассматриваться как более ранний симптом скрытого В 12-авитаминоза (А. И. Гольдберг).

Нейтрофилы гиперсегментированные. Нейтрофильные лейкоциты, ядра которых имеют увеличенное коли­чество сегментов (до 10-12). Появление гиперсегментированных форм рассматривается как признак деге­нерации. Обнаруживаются при анемии Аддисон-Бирмера, других В 12-дефицитных анемиях, при лучевой бо­лезни, септических состояниях.

Размер подобных клеток может быть увеличен (ги­гантские гиперсегментированные формы).

Токсическая зернистость нейтрофилов. Дегенератив­ная зернистость нейтрофилов. Грубая, различной вели­чины и темно-окрашивающаяся зернистость в цитоплаз­ме сегментоядерных нейтрофилов, (палочкоядерных и юных форм. Обнаруживается при окраске карболфуксинметиленовой синью или по Май-Грюневальд-Гимза.

Появлению токсической зернистости в нейтрофилах придается диагностическое и прогностическое значение. Она обнаруживается при гнойно-септических заболева­ниях, крупозной пневмонии, дизентерии, оспе, ряде вос­палительных процессов, лейкемоидных реакциях миело­идного типа. Токсическая зернистость может появляться рано, еще до развития ядерного сдвига, и указывает на тяжесть заболевания, иногда на плохой прогноз.

Природа токсической зернистости связана с резуль­татом физико-химических изменений белков цитоплазмы и коагуляции белка под влиянием инфекционного (ток­сического) агента (И. А. Кассирский и Г. А. Алек­сеев).

Вакуолизация цитоплазмы нейтрофилов. Появление вакуоль в цитоплазме может наблюдаться при септиче­ских состояниях, пневмонии, дифтерии, дизентерии и других инфекциях, при лучевой болезни. Рассматрива­ется как признак дегенерации.

Тельца Деле. Тельца (Князькова-Деле. Обнаружи­ваются в нейтрофилах при некоторых инфекционных лейкоцитозах (скарлатина, пневмония, дифтерия и др.).

Представляют собой при окраске азур II-эозином оди­ночные, реже 2-3 голубых тельца, расположенных в цитоплазме нейтрофилов между специфической нейтрофильной зернистостью. Могут обнаруживаться и в лейкоцитах лягушки. По данным нашей кафедры, пред­ставляют собой коагулированные остатки базофильной цитоплазмы незрелых предстадий лейкоцитов (М. А. Верховская).

Тени Боткина-Гумпрехта. Неправильной формы об­разования, окрашивающиеся в красно-фиолетовые тона, образующиеся из разрушенных и раздавленных при изготовлении мазка крови клеток. Особенно часто тени Боткина-Гумпрехта (формы растворения) обнаружи­ваются при лимфаденозах.

Пельгеровская семейная аномалия лейкоцитов. Се­мейная (наследственная) форма аномалии ядра лейко­цитов, описанная впервые Пельгером (1928), характе­ризуется асегментацией и бисепментацней ядра гранулоцитов. Особенностью ядра (является комковатость, крупнопикнотическая его структура, что отличает такие лейкоциты от незрелых метамиелоцитов при ядерном сдвиге влево.

Дается следующая номенклатура зрелых пельгеровских нейтрофилов: Г) несегментированные, с ядром в виде эллипса, боба, почки, земляного ореха, гимна­стической гири; 2) бисегментированные формы (с ядра­ми в виде пенсне); 3) круглоядерные (с плотным яд­ром); 4) палочкоядерные, с ядром в виде толстой короткой палочки; 5) трисегментированные (Г. А. Алексеев).

Аномалия диагносцируется случайно. Число лейко­цитов у носителей нормально, пониженной сопротивляе­мости к инфекциям не наблюдается. При гетерозигот­ной передаче отмечается у 50% потомков. У гомозиготов ядра зрелых гранулоцитов имеют преимущественно круглую форму. Предполагается, что в основе феномена гипосегментации лежит генетически наследуемый дефи­цит энзимного фактора, ответственного за развитие нормальной ядерной дифференциации (Г. А. Алексеев).

Половой хроматин. Впервые описан в ядрах нервных клеток кошек Барром и Бертрамом (1949) в виде тем­ных хроматиновых узелков, прилегающих к оболочке ядра. В 1955 году Моор и Барр предложили буккальный тест для определения полового хроматина в эпителии слизистой щеки, полученном путем соскоба. Девидсон и Смит (1954) нашли половой хроматин в нейтрофильных лейкоцитах крови.

Половой хроматин сегментированных нейтрофилов представляет собой небольшие отростки, напоминающие барабанные палочки (различают темноокрашенную го­ловку, соединенную с одним из сегментов ядра тонкой нитью). Кроме барабанных палочек (тип А), типичным для полового хроматина женщины считаются образо­вания, имеющие форму сидящих на ядерном сегменте узелков или капель, связанных с сегментом толстой шейкой, или плотно сидящих на нем (тип В). Ядерные придатки в виде столбиков, нитей, крючков (тип С), а также кольцевые формы, напоминающие теннисные ракетки (тип Д), не считаются характерными для поло­вого хроматина женщин и могут встречаться в нейтро­филах крови у мужчин. В среднем один хроматиновый придаток встречается на каждые 38 лейкоцитов женщи­ны, что может быть использовано для диагностики пола по мазкам крови.

Теперь считается, что половой хроматин определяет­ся числом Х-хромосом в ядрах клеток. У мужских особей имеется одна X и одна У-хромосома, поэтому хроматиновое тельце отсутствует. Ядра клеток жен­ских организмов содержат 2 Х-хромосомы и могут об­наруживать один хроматиновый (половой) придаток. Половой хроматиновый придаток представляет собой гетерохроматиновую массу одной Х-хромосомы, вторая же неразличима в покоящейся массе интеркинетического ядра. В случаях, когда количество Х-хромосом увели­чено, а также при умножении набора хромосом (полип­лоидия) количество хроматиновых телец в ядре разных тканей равно числу Х-хромосом без одного.

Что такое патология крови?

Патология крови может быть вызвана различными наследственными и приобретенными заболеваниями. Это зависит от множества факторов.

Механизмы появления патологий крови

Системы крови формируются еще на эмбриональной стадии развития человека. Самыми первыми клетками считаются стволовые. А из них уже далее формируются другие клетки. Они могут проходить дифференцирование в любые клетки на различных стадиях. Вся схема преобразования разбита на 6 этапов, где первым этапом считается стволовая клетка, а заключительным этапом – различные типы клеток организма человека, в том числе кровяные клетки.

Пока клетка находится в первичном положении, степень ее развития создают Т-лимфоциты. Когда клетка переходит на третий этап, она становится более восприимчивой к различным специальным регуляторам гуморального типа (тромбопоэтинам, лейкопоэтинам, эритропоэтинам и прочим), а также ингибиторам, которые им соответствуют. Данные вещества, которые являются регуляторами, могут формироваться в разных клетках и тканях. К примеру, эритропоэтин формируется желудком, почками и эритроцитами. Когда у человека начинается гипоксия, то количество продукции, которая вырабатывается эритропоэтинами, начинает возрастать. Когда зрелые клетки – лейкоциты и эритроциты – начинают распадаться, то выделяются лейкопоэтин и эритропоэтин соответственно. Они вызывают процесс формирования новых клеток. Ингибиторы располагаются в селезенке и печени.

Далее в действие вступают эндокринная и нервная системы. Они влияют на клетки как на третьем этапе, так и при их дифференцировании. Вот почему еще не созревшие клеточные формирования уже могут быть восприимчивыми к различным типам регуляторов. К примеру, катехоламины и кортикостероиды, которые вырабатываются надпочечниками, способны изменять эритропоэз за счет увеличения количества эритропоэзной продукции почками.

Кроме того, пищевая система органов тоже участвует в этом процессе. Например, двенадцатиперстная кишка, тощая кишка высасывают железо при необходимости. Слизистая оболочка желудка имеет ряд факторов, которые регулируют этот процесс. Кроме того, здесь присутствует гликопротеин. Он отвечает за всасывание витамина В12. Если не хватает данного витамина, то разделение эритроцитов переходит на этап эмбриона, кроме того, тромбоциты и нейтрофилы вырабатываются в меньшем количестве и появляются изменения в них. Все старые клетки, некачественные клеточные образования эритроцитного типа разрушаются в селезенке и печени.

Процесс гемопоэза может изменяться под действием различных факторов, которые вызываются как различными заболеваниями, так и другими проблемами, в том числе и ядами.

Патология красной крови

Под действием различных факторов может нарушаться процесс эритропоэза, что приводит развитию синдромов анемии и эритроцитоза. Эти явления известны как патологии красной крови.

Эритроцитоз – это процесс, при котором увеличивается количество клеток эритроцитов на единицу объема кровяной жидкости. Эритроцитоз может быть как истинным, так и ложным.

Истинный еще называют абсолютным, т. к. при этом процессе количество клеток начинает увеличиваться не только на единицу объема в сосуде, но и в русле кровеносного сосуда в общем. Это может развиваться в тех случаях, когда количество клеток растет из-за усиленной их выработки, а также в тех ситуациях, когда рост их количества остается на естественном уровне, но скорость их распада начинает замедляться, что и приводит к скапливанию эритроцитов в кровяной жидкости. Эти явления могут вызывать и некоторые яды и вредные элементы. Существует и другое объяснение.

В некоторых случаях эритропоэз усиливается из-за того, что наблюдается перевес эритропоэтина над соответствующими видами ингибиторов. Такое явление наблюдается тогда, когда человек длительное время пребывает в высокогорной территории, при некоторых болезнях, которые вызывают гипоксию. Тогда заболевание имеет компенсаторные характеристики. Кроме того, к возникновению эритроцитоза приводит уменьшение разрушительной активности клеток эритроцитов. Такое может возникать и в тех случаях, когда у клеток начинаются проблемы с восприимчивостью к регуляторам. Например, такое можно наблюдать при гемобластозе, при заболеваниях опухолевого характера.

Ложный эритроцитоз называют еще относительным, т. к. увеличивается количество эритроцитов в объеме только за счет того, что они сгущаются, а эритропоэз при этом не происходит. Факторы, вызывающие подобные явления, возникают при обезвоживании и заболеваниях, которые его вызывают.

Анемия тоже является одним из синдромов при патологиях эритроцитов. Это заболевание имеет клинико-гематологические характеристики. У пациента в крови снижается количество гемоглобина. Кроме того, снижается количество эритроцитов, появляются проблемы с эритропоэзом. Это заболевание проявляется, главным образом, как кислородное голодание различных клеток, тканей и органов. У человека появляются бледность, головные боли, шум в ушах, обмороки, слабость и прочие симптомы.

Это может быть сформировано из-за действия различных ядов и первичных болезней. Чтобы установить причины, требуется проведение различных анализов, в том числе установление изменений в эритропоэзе. Анемия может возникать из-за того, что есть нарушения в составе крови, вызванные большими ее потерями. В таком случае она называется постгеморрагической. Она имеет острую и хроническую формы. Анемия может быть вызвана гемолизом. Здесь существуют и другие причины. К примеру, это может быть генетическое изменение эритроцитов. Причина может скрываться в иммунологических процессах, а также в влиянии различных физико-химических и биологических факторов на эритроциты. Последний тип анемии может быть связан с проблемами в эритропоэзе. Причины могут скрываться в уменьшении эритроцитов, в снижении формирования гемоглобина, в нарушениях разделения клеток на классы.

Патология белой крови

Изменения в количестве лейкоцитов известны как патологии белой крови. Лейкоцитоз – это процесс, при котором увеличивается количество зрелых лейкоцитов. Но легко спутать это явление с лейкемоидной реакцией, когда количество лейкоцитов увеличивается за счет роста количества незрелых лимфоцитов, лейкоцитов и моноцитов.

Различные микроорганизмы и продукты, которые они вырабатывают, могут влиять на продукцию, которую формируют фагоциты лейкопоэтинов.

Лейкоцитоз может иметь вид нейтрофильного. В таком случае у пациента начинаются воспалительные процессы с гнойными образованиями. Кроме того, лейкоцитоз способен приобретать эозинофильную форму, когда у пациента развиваются симптомы аллергии. При базофильном лейкоцитозе развивается симптоматика заболеваний крови. При моноцитозе заметны характеристики острых форм вирусных болезней, а при лимфоцитозе появляются проблемы, которые вызывают заболевания крови системного характера.

При лейкопении количество эритроцитов начинает уменьшаться и составляет параметр ниже нормы.

Ценность этого параметра для диагностики других заболеваний незначительная, т. к. она только способна отражать тяжесть другого заболевания.

Важно понимать, что, если угнетается работа ростков крови всех типов, то возможен токсический характер причин заболевания, а если уменьшается количество лифмоцитов и лейкоцитов сугубо избирательно, то, скорее всего, причина в иммунной реакции человека. Эти факты очень важны для диагностики заболевания и выявления его причин. Иммунный тип возникает из-за того, что формируются антитела к лейкоцитам из-за того, что длительное время использовались препараты. Токсический тип возникает из-за действия цитостатиков.

Патологические клетки крови это

Клинический анализ крови - как его расшифровать и понять

Гормоны. Когда что сдавать

Эстрогены Общее собирательное название подкласса стероидных гормонов, производимых в основном фолликулярным аппаратом яичников у женщин. В небольших количествах эстрогены производятся также яичками у мужчин и корой надпочечников у обоих полов. Относятся группе женских половых гормонов. В эту группу принято включать три основных гормона - эстрадиол, эстрон, эстриол. Наиболее активен гормон эстрадиол, но при беременности главное значение приобретает эстриол. Снижение эстриола при беременности может быть признаком патологии плода. Повышение уровня эстрогенов может быть при опухолях яичников или надпочечников. Может проявляться маточными.

Девочки, возьмите на заметку!

ПРИЧИНЫ ОТСУТСТВИЯ ИМПЛАНТАЦИИ: Многие женщины не имеют проблем с гормональным фоном, овуляцией, наличием инфекций, проходимостью труб, но беременность все же не наступает… Причиной этого, могут служить проблемы с имплантацией плода. Они же могут послужить причиной неудачного ЭКО. Известны 4 фактора, влияющие на имплантацию: Иммунные факторы Иммунные факторы можно разделить на две категории: Отсутствие или нарушение механизмов адаптации иммунной системы к беременности. Наличие антител к клеткам или молекулам, которые важны для развития беременности. Рассмотрим по очереди эти механизмы. Одной из основных.

О чем расскажут клетки крови?

В крови содержатся различные типы клеток, выполняющих совершенно разные функции - от переноса кислорода до выработки защитного иммунитета. Для того, чтобы понимать, изменения формулы крови при различных заболеваниях, необходимо знать, какие функции выполняет каждый тип клеток. Некоторые из этих клеток никогда в норме не покидают кровеносное русло, другие же для исполнения своего предназначения выходят в другие ткани организма, в которых обнаруживается воспаление или повреждение.

ЭФИРНЫЕ МАСЛА И АНТИБИОТИКИ

ЭФИРНЫЕ МАСЛА И АНТИБИОТИКИ Агрессивность эфирных масел по отношению к микробам сочетается с их совершенной безвредностью для организма человека. Это очень актуально в наши дни и связано с широким применением антибиотиков. Всем памятно одно из открытий XX века - пенициллин, спасший множество жизней. С этого открытия началась эра антибиотиков. Если бы человек не начал целенаправленно разводить драгоценную кистевидную плесень, из которой оказалось возможным получить враждебное бактериям вещество, тех количеств, в которых она развивается в природе, было бы совершенно недостаточно. Нужно.

Норма гормонов у женщин

Большинство половых гормонов женщины (эстрогены, прогестерон), которые в основном влияют на циклические процессы, синтезируются в яичниках. Однако высший контроль над этими железами внутренней секреции имеет гипофиз. Его клетки гонадотрофы вырабатывают гонадотропные гормоны. К их числу относят ФСГ, пролактин, ЛГ.Все они напрямую влияют на репродуктивную функцию женщины и ее возможность продолжить род. С их помощью осуществляется тонкая и точная регуляция менструального цикла.

Совместная покупка средств личной гигиены по оптовым ценам.

Дневные, ночные, ежедневные женские гигиенические прокладки Anion-Relax AIRIZ. ЦЕНА 1550 руб. Цена за кейс. Кейса хватает на 2.5 месяца. Женские гигиенические прокладки Тяньши являются плодом современной технологии двойного внутреннего слоя, которая способствует воздействию активного кислорода и отрицательно заряженных ионов. Анионы - незаменимый помощник в укреплении здоровья, «воздушный витамин», уничтожающий вирусы с положительно заряженными электронами, проникающий в клетки микробов и уничтожающий их. Женские гигиенические прокладки Тяньши имеют внутренний слой, который высвобождает более 6100 отрицательных ионов на 1 см3. Благодаря специальной формуле.

Роль фолатов в развитии осложнений беременности при полиморфизме MTHFR

Статья из журнала «ЭФФЕКТИВНАЯ ФАРМАКОТЕРАПИЯ. Акушерство и гинекология», 2014, анализирует роль фолиевой кислоты при беременности, а также негативные последствия дефицита и переизбытка фолатов в период гестации. Приведены результаты наблюдения за беременными с полиморфизмом гена MTHFR, которые принимали витаминно-минеральный комплекс, содержащий активную форму фолатов - метафолин. Применение комплекса позволило качественно и количественно нормализовать гематологические показатели, а также значительно снизить риск осложнений

Причины неудачной имплантации плода и методы их диагностики.

Многие женщины не имеют проблем с гормональным фоном, овуляцией, наличием инфекций, проходимостью труб, но беременность все же не наступает. Причиной этого, могут служить проблемы с имплантацией плода. Они же могут послужить причиной неудачного ЭКО. Известны 4 фактора, влияющие на имплантацию: Иммунные факторы Иммунные факторы можно разделить на две категории: Отсутствие или нарушение механизмов адаптации иммунной системы к беременности. Наличие антител к клеткам или молекулам, которые важны для развития беременности. Рассмотрим по очереди эти механизмы. Одной из основных функций иммунной системы.

Общий анализ крови

Общий анализ крови у детей. Норма и расшифровка результатов

Тремор у новорожденных - причины, симптомы, лечение, последствия

Нам пришлось пережить этот ужас. После рождения моего Ванечку забрали у меня через сутки совместного прибывания, в детское отделение (благо оно было всего лишь этажом ниже) именно из-за тремора. Причем мне толком ничего не объяснили, а просто сказали что надо понаблюдать, что я тогда пережила. Ну сейчас не об этом, кому интересно могут почитать у меня в дневнике рождение Ванечки.Тремер у нас был где-то до 4-х месяцев, первые два месяца очень сильно, мы плохо спали и постоянно плакали, я не.

Про гормоны

Гормоны (греч. Ορμ?νη) - сигнальные химические вещества, выделяемые эндокринными железами непосредственно в кровь и оказывающие сложное и многогранное воздействие на организм в целом либо на определённые органы и ткани-мишени. Гормоны служат

ЧТО ДЕЛАТЬ, ЕСЛИ У РЕБЕНКА ПОЯВИЛИСЬ СИНЯКИ ПОД ГЛАЗАМИ?

Синяки под глазами у ребенка являются причиной множества тревог и опасений его родителей. Что это - обычное переутомление или признак серьезного заболевания? Почему возникают синяки под глазами и что делать, если они вдруг появились?

Оптимизация ведения женщин с синдромом поликистозных яичников, метаболическим синдромом и тромбофили

Оптимизация ведения женщин с синдромом поликистозных яичников, метаболическим синдромом и тромбофилией Т.Б. Пшеничникова, Е.Б. Пшеничникова ММА имени И.М. Сеченова На сегодняшний день синдром поликистозных яичников (СПКЯ) остается одной из самых непознанных гинекологических проблем. Синдром поликистозных яичников - наиболее частая эндокринная патология, встречающаяся у 15% женщин репродуктивного возраста, у 73% женщин с ановуляторным бесплодием и у 85% женщин с гирсутизмом. Подавляющее большинство исследователей считают, что СПКЯ - гетерогенная патология, характеризующаяся ожирением, хронической ановуляцией, гиперандрогенией, нарушением гонадотропной функции, увеличением размеров яичников и.

Неразвивающаяся беременность: вопросы этиологии и патогенеза

И.А.Агаркова. Неразвивающаяся беременность: вопросы этиологии и патогенеза. Гинекология. 2010; 05:Невынашивание беременности - проблема, значение которой не только не уменьшается со временем, но, пожалуй, даже возрастает. Население Европы вообще и России в частности достаточно быстро стареет. К 2015 г. 46% женщин будут старше 45 лет . При этом если в высокоразвитых странах возрастная разница между средней продолжительностью жизни мужчин и женщин составляет 4-5 лет, то в России в последние годылет. Таким образом, Россия медленно превращается.

Эндометриоз – лечение возможно

Недавно узнала, что такое эндометриоз, и почему он появляется у женщин. Симптомы заболевания показались мне уж больно знакомыми, и я не ошиблась. Да уж, заболевание не из приятных, мало того в будущем может способствовать формированию раковых клеток и онкологическим диагнозам. Так что лучше всего на эту проблему реагировать своевременно.

Степень зрелости плаценты 2-3 на 31нед.ВЗРП 1. Стационар.

Делала УЗи 23.03.2015г, (31,2недель) по УЗи малышка (. девочка) наша соответствует сроку) но вот степень зрелости плаценты у нас уже 2-3. Врач на УЗИ засыпала пришлось подтолкнуть ее раз 5 чтоб досмотрела. Еще в заключении УЗИ написано расширение МВП плаценты, раннее созревание плаценты, ВЗРП1 степени. Что это за такое?.Вот и незнаю, переживать или как?! К врачу на явку надо было бы 30.03 но сказали УЗИ сразу показать, вот показала вчера 24.03 дали направление в стационар.Сегодня 25.03 пойду записываться с 12 до.

Чтобы такое съесть, чтобы похудеть?

Или хотя бы не поправиться? Извечный женский вопрос:))) Каждая девушка задается им перманентно или с различной периодичностью во времени. А я знаю ответ!Как известно, в каждой шутке лишь доля шутки, все остальное - правда:))))Под невиданный аттракцион великодушия от айхерб и скидки на бренд Now Foods:)Клетчатка! Любимица диетологов, а с недавних пор и моя:))О пользе клетчатки. Сто бед - один ответ!

Необходимые анализы для ЭКО с объяснением (из инета)

про беременность и гемоглобин

Во многих странах все беременные женщины регулярно сдают анализ крови на содержание гемоглобина (пигмента, содержащегося в эритроцитах). Широко распространено мнение о том, что это - эффективный способ выявить анемию и дефицит железа. На самом же деле этим анализом недостаток железа определить нельзя, ведь объем крови в течение беременности значительно возрастает, так что концентрация гемоглобина отражает, прежде всего, степень разведения крови вследствие плацентарной активности. Изучая это явление, британские ученые проанализировали данные более 150 тысяч беременных женщин. Это масштабное исследование показало, что.

полимедэл-чудо или развод?

Позвонила маме,узнала,что та думает купить сие чудо,якобы от всех болезней =) краткое описание из интернета(все копировать не стала):

Препараты при задержки речи

Краткий обзор ноотропных и других препаратов, применяемых при лечении речевых нарушениях.НАЗНАЧАЕТ ПРЕПАРАТЫ ТОЛЬКО ВРАЧ! Не занимайтесь самолечением, это опасно! Ноотропы - это вещества, оказывающие специфическое позитивное влияние на высшие интегративные функции мозга. Они улучшают умственную деятельность, стимулируют когнитивные (познавательные) функции, облегчают процесс обучения, улучшают память, стимулируют интеллектуальную деятельность. Энцефабол - препарат, который улучшает патологически сниженные обменные процессы в тканях головного мозга, снижает вязкость крови и улучшает кровоток. Улучшает кровообращение в ишемизированных участках мозга, увеличивает их оксигенацию (насыщает кислородом), усиливает обмен.

Медицинская учебная литература

Учебная медицинская литература, онлайн-библиотека для учащихся в ВУЗах и для медицинских работников

Болезни системы крови

ФУНКЦИИ СИСТЕМЫ КРОВИ

  • органы и ткани кроветворения, или гемопоэза, в которых созревают форменные элементы крови;
  • периферическую кровь, которая включает циркулирующую и депонированную в органах и тканях фракции;
  • органы кроворазрушения;

Система крови является внутренней средой организма и одной из его интегрирующих систем. Кровь выполняет многочисленные функции - дыхания, обмена веществ, экскреции, терморегуляции, поддержания водно-электролитного баланса. Она осуществляет защитные и регуляторные функции благодаря наличию в ней фагоцитов, различных антител, биологически активных веществ, гормонов. На процессы кроветворения влияют многие факторы. Важное значение имеют особые вещества, регулирующие пролиферацию и созревание клеток крови, - гемопоэтины, но общее регулирующее влияние оказывает нервная система. Все многочисленные функции крови направлены на поддержание гомеостаза.

Картина периферической крови и костного мозга позволяет судить о функциях многих систем организма. При этом наиболее полное представление о состоянии самой кроветворной системы можно получить, лишь исследуя костный мозг. Для этого специальной иглой (трепаном) проводят пункцию грудины или гребня подвздошной кости и получают костномозговую ткань, которую затем исследуют под микроскопом.

МОРФОЛОГИЯ КРОВЕТВОРЕНИЯ

Все форменные элементы крови в нормальных условиях образуются в красном костном мозге плоских костей - грудины, ребер, костей таза, позвонков. В трубчатых костях взрослого человека костный мозг представлен в основном жировой тканью и имеет желтый цвет. У детей в трубчатых костях происходит кроветворение, поэтому костный мозг красный.

Морфогенез кроветворения.

Родоначальником всех клеток крови является стволовая кроветворная клетка костного мозга, которая трансформируется в клетки-предшественники, морфологически неотличимые друг от друга, но дающие начало миело- и лим-фопоэзу (рис. 42). Эти процессы регулируются гемопоэтинами, среди которых выделяют эритро-, лейко- и тромбоцитопоэтины. В зависимости от преобладания тех или иных поэтинов усиливается миелопоэз и клетки-предшественники начинают трансформироваться в бластные формы миелоцитарного, эритроцитарного и тромбоцитарного ростков крови. При стимуляции лимфопоэза начинается созревание лимфоцитарного, а также моноцитарного ростков крови. Таким образом происходит развитие зрелых клеточных форм - Т- и В-лимфоцитов, моноцитов, базофилов, эозинофилов, нейтрофилов, эритроцитов и тромбоцитов.

На разных этапах гемопоэза в результате патологических воздействий могут возникать нарушения созревания кроветворных клеток и развиваются болезни крови. Кроме того, на многие патологические процессы, возникающие в организме, система крови реагирует изменением своего клеточного состава и других параметров.

НАРУШЕНИЯ ОБЪЕМА ЦИРКУЛИРУЮЩЕЙ КРОВИ

Рис. 42. Схема кроветворения (по И. Л. Черткову и А. И. Воробьеву).

При различных болезнях и патологических процессах может меняться общий объем крови, а также соотношение ее форменных элементов и плазмы. Выделяют 2 основные группы нарушений объема крови:

  • гиперволемии - состояния, характеризующиеся увеличением общего объема крови и. обычно, изменением гематокрита;
  • гиповолемии - состояния, характеризующиеся уменьшением общего объема крови и сочетающегося со снижением или увеличением гематокрита.

ГИПЕРВОЛЕМИИ

  • Нормоцитемическая гиперволемия- состояние, проявляющееся эквивалентным увеличением объема форменных элементов и жидкой части циркулирующей крови. Гематокрит остается в пределах нормы. Такое состояние возникает, например. при переливании большого количества (не менее 2 л) крови.
  • Олигоцитемическая гиперволемия - состояние, характеризующееся увеличением общего объема крови вследствие возрастания главным образом объема плазмы. Показатель гематокрита при этом ниже нормы. Такая гиперволемия появляется при введении большого количества физиологического раствора или кровезаменителей, а также при недостаточности выделительной функции почек.
  • Полицитемическая гиперволемия - состояние, проявляющееся увеличением общего объема крови вследствие преимущественного повышения числа ее форменных элементов, в первую очередь эритроцитов. При этом гематокрит становится выше нормы. Наиболее часто такое явление наблюдается при длительной гипоксии, стимулирующей выход эритроцитов из костного мозга в кровь, например у жителей высокогорья, на определенных этапах патогенеза ряда заболеваний легких и сердца.

ГИПОВОЛЕМИИ

  • Нормоцитемическая гиповолемия- состояние, проявляющееся уменьшением общего объема крови при сохранении гематокрита в пределах нормы, что наблюдается сразу после кровопотери.
  • Олигоцитемическая гиповолемия характеризуется уменьшением общего объема крови с преимущественным снижением количества ее форменных элементов. Гематокрит при этом ниже нормы. Наблюдается также после кровопотери, но в более поздние сроки, когда из межклеточного пространства в сосуды поступает тканевая жидкость. В этом случае объем циркулирующей крови начинает возрастать, а количество эритроцитов остается на низком уровне.
  • Полицитемическая гиповолемия - состояние, при котором снижение общего объема крови обусловлено в основном уменьшением объема плазмы. Показатель гематокрита при этом выше нормы. Такое сгущение крови наблюдается при потере жидкости после обширных ожогов, при гипертермии с массивным потоотделением, холере, характеризующейся неукротимой рвотой и поносом. Сгущение крови способствует также образованию тромбов, а уменьшение общего объема крови нередко приводит к сердечной недостаточности.

ПАТОЛОГИЯ СИСТЕМЫ ЭРИТРОЦИТОВ

Анемия, или малокровие, - снижение общего количества гемоглобина в организме и, как правило, гематокрита. В большинстве случаев анемии сопровождаются эритропенией - снижением количества эритроцитов в единице объема крови ниже нормы (менее 3 10 9 /л у женщин и 4 10 9 /л у мужчин). Исключением являются железодефицитная анемия и талассемия, при которых количество эритроцитов может быть нормальным или даже увеличенным.

Значение анемии для организма определяется прежде всего уменьшением кислородной емкости крови и развитием гипоксии, с которой связаны основные симптомы расстройств жизнедеятельности этих больных.

  • вследствие кровопотери - постгеморрагические;
  • вследствие нарушенного кровообразования - дефицитные;
  • вследствие повышенного кроворазрушения - гемолитические.

По течению анемии могут быть острыми и хроническими.

По изменениям структуры эритроцитов при анемиях выделяют:

  • анизоцитоз, который характеризуется разной формой эритроцитов;
  • пойкилоцитоз - характеризуется разными размерами эритроцитов.

При анемиях изменяется цветной показатель - содержание гемоглобина в эритроцитах, который в норме равен I. При анемиях он может быть:

  • больше 1 (гиперхромная анемия);
  • меньше 1 (гипохромная анемия).

АНЕМИИ ВСЛЕДСТВИЕ КРОВОПОТЕРИ (ПОСТГЕМОРРАГИЧЕСКИЕ)

Эти анемии всегда вторичны, так как возникают в результате болезней или ранений.

Острая постгеморрагическая анемия возникает при острой кровопотере. например из сосудов дна язвы желудка, при разрыве маточной трубы в случае трубной беременности, из легочных каверн при туберкулезе и т. п. (внутреннее кровотечение) или из поврежденных сосудов при ранениях конечностей, шеи и других частей тела (наружное кровотечение).

Механизмы развития острых постгеморрагических состояний. На начальном этапе кровопотери в большей или меньшей мере снижается объем циркулирующей крови и развивается гиповолемия. В связи с этим уменьшается приток венозной крови к сердцу. его ударный и минутный выброс. Это обусловливает падение уровня артериального давления и ослабление сердечной деятельности. В результате уменьшается транспорт кислорода и субстратов метаболизма из крови к клеткам, а от последних - углекислого газа и отработанных продуктов обмена веществ. Развивается гипоксия, которая во многом определяет исход кровопотери. Крайняя степень указанных расстройств в организме обозначается как постгеморратический шок.

Проявлениями острой анемии являются бледность кожных покровов и малокровие внутренних органов. В связи с резким уменьшением оксигенации тканей повышается выработка эритропоэтина, стимулирующего эритропоэз. В костном мозге при этом происходит значительное увеличение числа клеток эритроидного ряда и костный мозг приобретает малиновый цвет. В селезенке, лимфатических узлах, периваскулярной ткани появляются очаги внекостномозгового, или экстрамедуллярного, кроветворения. Нормализация показателей периферической крови после восполнения кровопотери наступает примерно через 48-72 ч.

Нарушение гемодинамики и снижение интенсивности биологического окисления в клетках обусловливают включение адаптивных механизмов:

  • активацию тромбообразования;
  • реакции сердечно-сосудистой компенсации кровопотери в виде сужения просвета мелких сосудов и выброса крови из депо;
  • повышение сердечного выброса;
  • поддержание объема циркулирующей крови за счет поступления в сосуды жидкости из интерстиция.

Хроническая постгеморрагическая анемия возникает при значительной кровопотере вследствие повторяющихся кровотечений, например из геморроидальных вен, при маточных кровотечениях и т. п. Такая кровопотеря приводит к хронической гипоксии тканей и нарушению в них обмена веществ.

Хроническая гипоксия способствует развитию жировой дистрофии паренхиматозных органов. Желтый костный мозг трансформируется в красный, так как усиливаются эритро-и миелопоэз. В печени, селезенке, лимфатических узлах могут появляться очаги экстрамедуллярного кроветворения. Вместе с тем при длительно повторяющихся и выраженных ковопотерях может наступить гипо- и аплазия кроветворной ткани, что указывает на истощение гемопоэза.

АНЕМИИ ВСЛЕДСТВИЕ НАРУШЕННОГО КРОВООБРАЗОВАНИЯ (ДЕФИЦИТНЫЕ)

Эти анемии являются следствием недостатка ряда веществ, необходимых для нормального гемопоэза - железа, витамина B 12 , фолиевой кислоты и др. Среди них наибольшее значение имеет злокачественная анемия Аддисона-Бирмера. в основе которой лежит дефицит витамина В 12 и фолиевой кислоты.

В 12 -дефицитная, или фолиеводефицитная, анемия. Этиология анемии связана с дефицитом витамина В 12 и фолиевой кислоты, которая регулирует нормальный гемопоэз в костном мозге. Однако для активации фолиевой кислоты необходимо, чтобы поступающий с пищей витамин В 12 (внешний фактор) соединился с образующимся в желудке белком - гастромукопротеином (внутренний фактор) , который вырабатывается добавочными клетками желез слизистой оболочки желудка. Вместе они образуют комплекс, который называется антианемическим фактором. Затем этот комплекс поступает в печень и активирует фолиевую кислоту, а та в свою очередь стимулирует эритропоэз по эритробластическому типу. Если же развивается аутоиммунный гастрит и появляются антитела к добавочным клеткам или гастромукопротеину, которые уничтожают эти клетки или внутренний фактор, то в слизистой оболочке желудка не всасывается витамин В 12 и не образуется гастромукопротеин. Такая же ситуация возникает при высокой резекции желудка по поводу опухоли или язвенного процесса.

В результате атрофии слизистой оболочки желудка аутоиммунного характера возникает дефицит фолиевой кислоты и витамина В 12 . Нарушается эритропоэз и вместо эритроцитов образуются их предшественники - крупные мегалобласты, которые появляются в периферической крови. Однако мегалобласты быстро разрушаются, развиваются анемия и общий гемосидероз. Кроме того, при дефиците витамина В 12 нарушается образование миелина в оболочках нервных стволов, что нарушает их функцию.

У больных отмечаются бледность кожных покровов, водянистая кровь, точечные кровоизлияния, из-за атрофии слизистой оболочки языка он приобретает малиновую окраску (гунтеровский глоссит), характерны атрофический гастрит, уплотнение и увеличение печени из-за жировой дистрофии и гемосидероза, связанных с гипоксией и с усиленным разрушением мегалобластов. В спинном мозге - распад осевых цилиндров в задних и боковых столбах и очаги размягчения ткани мозга (фуникулярный миелоз), что сопровождается тяжелой неврологической симптоматикой. Костный мозг плоских и трубчатых костей красный, напоминает малиновое желе. В селезенке и лимфатических узлах очаги экстрамедуллярного кроветворения.

Течение заболевания прогрессирующее, с периодами ремиссии и обострения. Лечение анемии препаратами фолиевой кислоты и витамина B 12 привело к тому, что больные перестали умирать от этого заболевания.

АНЕМИИ ВСЛЕДСТВИЕ ПОВЫШЕННОГО КРОВОРАЗРУШЕНИЯ - ГЕМОЛИТИЧЕСКИЕ

Для этих анемий характерно преобладание процесса разрушения эритроцитов (гемолиз) над их образованием. Продолжительность жизни эритроцитов при этом снижена и не превышает 90- 100 дней.

Виды гемолитических анемий

По происхождению гемолитические анемии делят на приобретенные (вторичные) и врожденные или наследственные.

Приобретенные гемолитические анемии могут быть вызваны многочисленными факторами. Этиология этих анемий связана с действием факторов физического, химического и биологического, в том числе аутоиммунного, характера, особенно при дефиците веществ, стабилизирующих мембраны эритроцитов, например а-токоферола. Наибольшее значение имеют так называемые гемолитические яды химического (соединения мышьяка, свинца, фосфора и др.) и биологического происхождения. Среди последних - яды грибов, различные токсичные вещества, образующиеся в организме при тяжелых ожогах, инфекционные болезни (например, малярия, возвратный тиф), переливание крови, несовместимой по группе или резус-фактору.

Гемолиз эритроцитов может происходить внутри сосудов и за их пределами. При этом распадается гемоглобин и из гема синтезируются два пигмента - гемосидерин и билирубин. Поэтому гемолитические анемии обычно сопровождаются развитием общего гемосидероза и желтухи. Кроме того, эритропения и распад гемоглобина приводят к появлению выраженной гипоксии, сопровождающейся жировой дистрофией паренхиматозных органов.

Морфология гемолитических анемий характеризуется развитием гиперпластических процессов в костном мозге, в связи с чем он приобретает малиновый цвет, появлением очагов экстрамедуллярного кроветворения, выраженной желтухой кожных покровов и внутренних органов, гемосидерозом и жировой дистрофией печени, сердца и почек.

Гемолитическая болезнь новорожденных является примером приобретенных гемолитических анемий и имеет большое значение в акушерской и педиатрической практике. В ее основе лежит иммунный конфликт между матерью и плодом по резус-фактору, который обладает антигенными свойствами. Этот фактор впервые был обнаружен в эритроцитах обезьян макак резусов и имеется у 80-85 % людей. Если мать резус-отрицательна, т. е. не имеет резус-фактора, а плод резус-положительный, то в организме матери образуются антитела против эритроцитов плода и у него возникает внутрисосудистый гемолиз эритроцитов.

Рис. 43. Серповидно-клеточная анемия. Эритроциты серповидной формы. Электронограмма.

При этом плод может погибнуть на 5-7-м месяце беременности, а у новорожденных развивается гемолитическая анемия, сопровождающаяся малокровием и жировой дистрофией внутренних органов, выраженной желтухой и гемосидерозом.

Наследственные, или врожденные, гемолитические анемии связаны с каким-либо генетическим дефектом структуры мембран, ферментов или гемоглобина. Этот дефект передается по наследству.

Виды: врожденные гемолитические анемии в зависимости от генетического дефекта могут быть обусловлены мембранопатиями, ферментопатиями, гемоглобинопатиями.

Патогенез всех врожденных гемолитических анемий в основном сходен - в результате того или иного генетического дефекта либо разрушается мембрана эритроцитов, а сами эритроциты уменьшаются в размерах и могут принимать сферическую форму (микросфероцитоз), либо повышается проницаемость мембраны и эритроциты увеличиваются в размерах за счет поступления избыточного количества жидкости, либо нарушается синтез гемоглобина (гемоглобинозы) и образуются эритроциты неправильной формы, содержащие быстро распадающийся гемоглобин, причем удерживающий кислород (талассемия, серповидно-клеточная анемия и др.) (рис. 43).

Морфология врожденных гемолитических анемий мало отличается от изменений при вторичных гемолитических анемиях, за исключением размеров и формы эритроцитов. Также характерны выраженный внутрисосудистый гемолиз, гипоксия, гемосидероз, жировая дистрофия паренхиматозных органов, гиперплазия кроветворной ткани, возможны очаги экстрамедуллярного кроветворения, гепато- и спленомегалия.

ПАТОЛОГИЯ СИСТЕМЫ ЛЕЙКОЦИТОВ

В крови здорового человека в условиях покоя натощак содержится 4 10 9 /л лейкоцитов. Много лейкоцитов находится в тканях, где они участвуют в иммунном контроле.

Типовые изменения количества лейкоцитов в единице объема крови характеризуются либо их снижением - лейкопении, либо увеличением - лейкоцитозы, что, как правило, является реакцией системы лейкоцитов, развивающейся при болезнях и патологических состояниях. Поэтому излечение болезни приводит к нормализации лейкоцитарной формулы.

Лейкопения - уменьшение количества лейкоцитов в единице объема крови ниже нормы, обычно менее 4 10 9 /л. Она возникает в результате угнетения белого ростка системы гемопоэза, при усиленном разрушении лейкоцитов или при перераспределении крови между кровеносным руслом и депо крови, что наблюдается, например, при шоке.

Значение лейкопении заключается в ослаблении защитных сил организма и повышении его восприимчивости к различным инфекционным возбудителям.

Виды лейкопений по происхождению:

  • первичные лейкопении (врожденные или наследственные) связаны с различными генетическими дефектами в системе кроветворения на разных этапах лейкопоэза;
  • вторичные лейкопении возникают при действии на организм различных факторов - физических (ионизирующие излучения и т. п.), химических (бензол, инсектициды, цитостатики, сульфаниламиды, барбитураты и др.), продуктов метаболизма или компонентов различных возбудителей болезней.

Лейкоцитарная формула - соотношение различных видов циркулирующих лейкоцитов.

Если увеличивается количество молодых форм нейтрофилов (палочкоядерных, метамиелоцитов, миелоцитов, промиелоцитов), расположенных в левой части лейкоцитарной формулы, говорят о сдвиге формулы влево, что указывает на усиление пролиферации клеток миелоцитарного ряда. В правой части формулы располагаются зрелые формы этих клеток. Излечение болезни приводит к нормализации лейкоцитарной формулы. Уменьшение нормального числа лейкоцитов в лейкоцитарной формуле указывает на снижение регенераторных возможностей миелоидной ткани.

Патогенез лейкопений отражает нарушение или угнетение процесса лейкопоэза, а также чрезмерное разрушение лейкоцитов в циркулирующей крови или в органах гемопоэза, перераспределение лейкоцитов в сосудистом русле, возможна также потеря лейкоцитов организмом. При этом вследствие угнетения регенерации лейкопоэтической ткани на начальных этапах лейкопении снижается количество молодых форм нейтрофилов, а увеличение их молодых форм (т. е. сдвиг лейкоцитарной формулы влево) указывает на прекращение повреждающего действия и активацию лейкопоэза. Возможно также появление анизоцитоза и пойкилоцитоза лейкоцитов.

Лейкоцитоз - увеличение количества лейкоцитов в единице объема крови выше 4 10 9 /л. Он может быть физиологическим, адаптивным, патологическим или носить форму пейкемоидной реакции.

  • Физиологический лейкоцитозвозникает у здоровых людей в связи с перераспределением крови во время пищеварения, при физической работе.
  • Адаптивный лейкоцитоз развивается при заболеваниях, особенно характеризующихся воспалением. При этом количество лейкоцитов может увеличиваться до 40 10 9 /л.
  • Патологический лейкоцитозотражает опухолевую природу лейкоцитоза и характеризует лейкоз.

Лейкемоидная реакция - повышение общего чиста лейкоцитов периферической крови более 40 10 9 /л с появлением их незрелых форм (промиелоцитов, миелобластов), что делает лейкоцитоз похожим на лейкоз.

Агранулоцитоз - отсутствие или значительное снижение абсолютного числа всех видов зернистых гранулоцитов (лейкоцитов) - нейтрофилов, эозинофилов, базофилов. Агранулоцитоз, как правило, сочетается с лейкопенией.

ОПУХОЛИ СИСТЕМЫ КРОВИ, ИЛИ ГЕМОБЛАСТОЗЫ

Гемобластозы - опухолевые заболевания кроветворной и лимфатической ткани. Они подразделяются на системные заболевания - лейкозы, и регионарные - злокачественные лимфомы, или гематосаркомы. При лейкозах первично поражается костный мозг и опухолевые клетки обнаруживаются в крови (лейкемия), а при лимфомах в терминальной стадии наступает обширное метастазирование со вторичным поражением костного мозга. По распространенности гемобластозы занимают 5-е место среди всех опухолей человека. У детей первых 5 лет жизни на их долю приходится 30 % случаев онкологических заболеваний.

Этиология гемобластом принципиально не отличается от причин, вызывающих другие опухоли (см. главу 10) - это различные мутагенные факторы экзо- и эндогенного происхождения, действующие на стволовые и полустволовые клетки-предшественницы. Большое значение в возникновении гемобластозов имеет наследственный фактор.

Множество этиологических факторов воздействуют на геном стволовых и полустволовых клеток, приводя к их злокачественной трансформации. Поэтому геном является так называемым узким местом, через которое мутагены воздействуют на протоонкогены и антионкогены, превращая их в клеточные онкогены, что приводит к появлению опухоли. Развитие гемобластозов начинается с малигнизации одной стволовой или полустволовой клетки, дающей пул опухолевых клеток. Следовательно, все гемобластозы имеют моноклоновое происхождение, и все последующие опухолевые клетки развиваются из первоначально мутировавшей клетки и относятся к одному клону. Кроме малигнизации на уровне стволовых и полустволовых клеток-предшествен-ниц, развивается еще блок дифференцировки в пуле опухолевых клеток и они теряют способность к созреванию.

ЛЕЙКОЗЫ

Лейкозы - системные опухолевые заболевания, возникающие из кроветворных клеток с поражением костного мозга.

Заболеваемость лейкозами колеблется от 3 до 10 нанаселения. Мужчины болеют в 1,5 раза чаще женщин. Острые лейкозы чаще наблюдаются в возрасте от 10 до 18 лет, а хронические - у людей старше 40 лет.

При лейкозах опухолевая ткань первоначально разрастается на территории костного мозга и постепенно подавляет и вытесняет нормальные ростки кроветворения. Поэтому у больных лейкозом развиваются анемия, тромбоците-, лимфоците-, гранулоцитопения, что приводит к повышенной кровоточивости, кровоизлияниям, снижению иммунитета и присоединением инфекционных заболеваний. Метастазирование при лейкозах заключается в появлении лейкозных инфильтратов в печени, селезенке, лимфатических узлах, стенках сосудов и др. Обтурация сосудов опухолевыми клетками приводит к развитию инфарктов органов и язвенно-некротическим осложнениям.

Классификация лейкозов основана на 5 признаках этих заболеваний.

  1. По степени дифференцировки опухолевых клетоквыделяют недифференцированные, властные и цитарные лейкозы. При высоком уровне блока дифференцировки клетки опухоли напоминают недифференцированные и бластные формы ге мопоэза. Такие лейкозы протекают остро и очень злокачественно.

При остановке дифференцирования на уровне процитарных и цитарных клеток-предшественниц лейкозы протекают хронически и менее злокачественно.

  • По цитогенетическому признаку острые лейкозы подразделяют на лимфобластный, миелобластный, монобластный, эритромиелобластный, мегакариобластный, недифференцированный. Хронические лейкозы делят на лейкозы миелоцитарного происхождения (хронический миелоцитарный, хронический нейтрофильный, хронический эозинофильный и др.), лимфоцитарного (хронический лимфолейкоз и парапротеинемические лейкозы - миеломная болезнь, первичная макроглобулинемия Вальденстрема и др.) и моноцитарного - хронический моноцитарный лейкоз, гистиоцитоз X.
  • По иммунному фенотипу опухолевых клеток: на основании выявления маркеров их антигенов.
  • По общему количеству лейкоцитов в периферической крови выделяют лейкозы:
    • лейкемические - десятки и сотни тысяч лейкоцитов в 1 мкл крови, в том числе бласты;
    • сублейкемические - число лейкоцитов крови составляет 25-50 10 9 /л, включая бластные формы;
    • лейкопенические - количество лейкоцитов в периферической крови ниже нормы, но есть бласты;
    • алейкемические - количество лейкоците» в крови меньше нормы и отсутствуют бластные формы.
  • По характеру течения выделяют:
    1. острые лейкозы (они же недифференцированные и бластные);
    2. хронические лейкозы (цитарные).
  • Острые лейкозы развиваются из всех ростков морфологически недифференцируемых кроветворных клеток-предшественниц. Длительность течения заболевания составляет 2-18 мес, при успешном лечении ремиссии могут длиться до 5-8 лет.

    Различные формы острых лейкозо» имеют стереотипные морфологические проявления. Они заклинаются в развитии лейкозной инфильтрации костного мозга атипичными клетками ранних стадий гемопоэза (рис. 44). Ввиду нецифференциро-ванности этих клеток их цитогенетическую принадлежность можно выявить лишь с помощью цитохимических и иммуногистохи-мических методов. Костный мозг трубчатых костей становится красным, при некоторых острых лейкозах он приобретает зеленоватый цвет, свойственный гною, - пиоидный костный мозг. При этом происходит вытеснение нормальных клеток гемопоэза опухолевыми клетками. В периферической крови и в костном мозге имеются только бластные и зрелые формы клеток, но отсутствуют их промежуточные формы. Такая картина крови называется «лейкемический провал« . Лейкозные инфильтраты обнаруживаются в лимфатических узлах, селезенке и печени, что приводит к увеличению воспаления полости рта и ткани миндалин осложняется некротическим гингивитом, тонзиллитом, некротической ангиной, а при инфильтрации оболочек мозга развивается лейкозный менингит. Подавление эритроцитарного ростка приводит к нарастающей гипоксии и жировой дистрофии паренхиматозных органов.

    Рис. 44. Костный мозг при остром лимфобластном лейкозе. Ткань мозга состоит в основном из лимфобластов (а), просветы сосудов заполнены теми же клетками (б).

    В результате тромбоцитопении, поражения печени и стенок сосудов у больных развивается геморрагический синдром вплоть до кровоизлияний в мозг и смертельных желудочно-кишечных кровотечений. На этом фоне иногда присоединяется сепсис, приводящий больных к смерти (рис. 45).

    Наиболее часто, особенно у детей, встречается острый лимфобластный лейкоз, связанный с опухолевой трансформацией предшественников Т- и В-лимфоцитов, и острый миелобластный лейкоз, которым чаще страдают взрослые, обусловленный опухолевой пролиферацией клеток-предшественниц миелоидного ряда.

    Рис. 45. Острый лейкоз, а - лейкозная инфильтрация печени (показано стрелками); б - некроз миндалины (некротическая ангина); в - лейкозная инфильтрация почек; г - множественные кровоизлияния в эпикарде и эндокарде; д - лейкозная инфильтрация костного мозга (пиоидный костный мозг), истончение кортикального слоя бедренной кости (показано стрелкой).

    Рис. 46. Печень при хроническом миелолейкозе. Разрастание клеток миелоидного рода (а) по ходу синусоидов.

    Хронические лейкозы текут более 4 лет, при успешном лечении ремиссии заболевания могут продолжаться 20 лет и более. Хронические лейкозы отличаются от острых цитарной дифференцировкой опухолевых клеток и более длительным течением, которое имеет определенные стадии:

    • моноклоновая стадия характеризуется присутствием только одного клона опухолевых клеток, течет годами, относительно доброкачественно;
    • поликлоновая стадия, или властный криз, связана с появлением вторичных опухолевых клонов, характеризуется быстрым злокачественным течением, и 80 % больных погибают именно в этой стадии.

    Лейкозные инфильтраты разрастаются в костном мозге, печени, селезенке, почках, в лимфатических узлах, брыжейке кишечника, нередко в средостении, в связи с чем эти органы и ткани резко увеличиваются в размерах и могут сдавливать соседние органы (рис. 46). Особенно выражена спленомегалия (масса селезенки достигает 6-8 кг) и гепатомегалия (масса печени 5-6 кг). В сосудах образуются лейкозные тромбы, которые могут привести к развитию ишемических инфарктов, чаще в селезенке и почках. В крови нарастает количество нейтрофильных лейкоцитов или лимфоцитов, много переходных клеточных форм. Выражена анемия, тромбоцитопения, значительная иммунодепрессия и предрасположенность к инфекционным осложнениям, от которых больные нередко погибают. Костный мозг серо-красный. Жировая дистрофия паренхиматозных органов придает им серо-желтую окраску.

    Доброкачественное течение сменяется бластным кризом. При этом в крови быстро нарастает количество бластных форм - миело-, эритро-, лимфо-, мегакариобластов и др. Общее число лейкоцитов периферической крови может достигать несколько миллионов в 1 мкл. Властный криз служит причиной смерти больных.

    ПАРАПРОТЕИНЕМИЧЕСКИЕ ЛЕЙКОЗЫ

    Парапротеинемические лейкозы характеризуются способностью опухолевых клеток синтезировать однородные иммуноглобулины или их фрагменты - парапротеины. При этом опухолевые клетки представляют собой атипичные плазмоциты и поэтому сохраняют способность в извращенной форме синтезировать атипичные иммуноглобулины.

    Миеломная болезнь (плазмоцитома) - хронический лейкоз, наиболее часто встречающийся среди парапротеинемических гемобластозов.

    Возникает в основном у взрослых и при современных методах лечения может продолжаться 4-5 лет. В основе болезни лежит опухолевое разрастание в костном мозге атипичных плазмоцитов, получивших название миеломных клеток. Они синтезируют парапротеины, которые обнаруживаются в крови и моче больных. По характеру и распространенности опухолевого инфильтрата в костном мозге выделяют узловатую и диффузную формы болезни.

    При узловатой форме плазмоцитома образует опухолевые узлы в костном мозге, обычно плоских костей (свода черепа, ребер, таза) и позвонков. Лейкозная инфильтрация сопровождается разжижением кости или ее пазушным рассасыванием (остеолизис и остеопороз) с образованием правильной формы округлых дефектов, которые на рентгенограмме выглядят как гладкостенные пробоины. Пазушное рассасывание обусловливает выход кальция из костей и развитие гиперкальциемии с появлением множественных известковых метастазов в мышцах и паренхиматозных органах. Кроме того, возникают патологические переломы костей.

    При генерализованной форме миеломной болезни разрастание миеломных клеток происходит, помимо костного мозга, в селезенке, лимфатических узлах, печени, почках и других внутренних органах.

    В периферической крови обнаруживаются аномальные иммунные белки (парапротеины), в том числе мелкодисперсный белок Бенс-Джонса, который легко проходит через почечный фильтр и выявляется в моче. В связи с большой концентрацией белка Бенс-Джонса развивается парапротеинемический нефроз. Кроме того, в связи с нарушениями нормального синтеза иммунопротеинов плазмоцитома часто осложняется развитием амилоидоза с поражением почек. Поэтому причиной смерти этих больных нередко является уремия. Из-за резкого угнетения функции иммунной системы к основному заболеванию может присоединяться вторичная инфекция, которая также служит причиной смерти больных миеломной болезнью.

    ЗЛОКАЧЕСТВЕННЫЕ ЛИМФОМЫ (ГЕМАТОСАРКОМЫ)

    Злокачественные лимфомы (гематосаркомы) - регионарные злокачественные опухоли лимфоидной ткани, имеющие моноклоновое происхождение.

    Лимфомы развиваются из незрелых форм лимфоцитов и поражают лимфатическую ткань какой-либо одной области, однако в терминальной стадии заболеваний возможна генерализация опухолевого процесса с развитием метастазов в костный мозг.

    Этиология.

    Причины возникновения злокачественных лимфом в принципе не отличаются от причин, вызывающих опухоли другого происхождения. Вместе с тем доказано, что часть лимфом. так же как и некоторые другие лейкозы, имеет вирусное происхождение. Не исключена и наследственная предрасположенность к заболеванию. Трансформация нормальных гемопоэтических клеток в опухолевые происходит в результате изменений в геноме, вследствие чего нормальная генетическая программа гемопоэза изменяется в направлении опухолевого атипизма.

    Классификация лимфом.

    1. По клинико-морфологическим особенностями:
      • лимфогранулематоз, или болезнь Ходжкина;
      • неходжкинские лимфомы.
    2. По источнику роста (цитогенезу):
      • В-лимфоцитарные;
      • Т-лимфоцитарные.
    3. По степени дифференцировки опухолевых клеток:
      • низкой злокачественности;
      • умеренной злокачественности;
      • высокой злокачественности.

    Лимфогранулематоз (болезнь Ходжкина) описан в 1832 г. английским врачом Т. Ходжкиным. Частота заболевания составляет 3 случая нанаселения, или 1 % всех злокачественных новообразований. Опухоль поражает лимфатические узлы обычно одной области - шейные, медиастинальные, забрюшинные, реже подмышечные или паховые.

    Пораженные лимфатические узлы увеличиваются в размерах, сливаются между собой и образуют крупные пакеты. В начале заболевания лимфатические узлы мягкие, на разрезе розового цвета. По мере прогрессирования лимфомы в них развиваются некротические, а затем склеротические изменения, в связи с чем лимфатические узлы уплотняются, на разрезе выглядят суховатыми и пестрыми. В своем развитии лимфогранулематоз проходит несколько стадий - от изолированного поражения группы лимфатических узлов до генерализованного поражения внутренних органов с подавлением лимфоидной ткани и замещением ее полями склероза.

    При микроскопическом исследовании опухоль состоит из полиморфных опухолевых клеток лимфоцитарного ряда, среди которых имеются характерные гигантские клетки с лопастным ядром и узким ободком цитоплазмы - клетки Березовского-Штернберга. Эти клетки служат диагностическим признаком лимфогранулематоза. Кроме того, характерны клетки Ходжкина - крупные клетки с большим светлым ядром и темным ядрышком.

    Нередко в финале заболевания оно приобретает генерализованный характер с поражением многих внутренних органов - желудка, легких, печени, кожи. При вскрытии умерших от лимфогранулематоза особенно демонстративно выглядит селезенка - она увеличена в размерах, плотная, на разрезе красная с множественными бело-желтыми очагами некроза и склероза, что придает ей сходство с особым видом гранита - порфиром (порфировая селезенка).

    Неходжкинские лимфомы.

    Это группа злокачественных опухолей из недифференцированных и бластных форм В- и Т-клеток лимфатической ткани. Диагноз этих заболеваний требует обязательного морфологического и иммуногистохимического исследования биоптатов лимфатичесих узлов.

    Нарушение жизнедеятельности организма человека при различных экстремальных состояниях и заболеваниях всегда, так или иначе, связано с изменением функционирования клеток. Клетка является структурно-функциональной единицей тканей и органов. В ней протекают процессы, лежащие в основе энергетического и пластического обеспечения структур и функций тканей. Под действием неблагоприятных факторов окружающей среды, нарушение функционирования клеток может приобретать стойкий характер и быть обусловленным их повреждением. Патология всегда начинается с повреждения, когда адаптационные возможности становятся несостоятельными. Любой патологический процесс протекает с большей или меньшей степенью и масштабом повреждения клеток, которое выражается в определенном нарушении их структуры и функций. Исходя из этого, под повреждением клетки понимают такие изменения ее структуры, обмена веществ, физико-химических свойств и функций, которые ведут к нарушению ее жизнедеятельности и которые сохраняются после удаления повреждающего агента. Однако, принимая во внимание, что организм, как система, есть совокупность элементов и связей между ними, то природу болезни необходимо рассматривать с двояких позиций - структурно-метаболических и информационных, поскольку она связана как с повреждением самих клеток, их исполнительного клеточного аппарата, так и с нарушением информационных процессов - сигнализации, рецепции и межклеточных связей, т.е. с дизрегуляцией, а по терминологии Г.Н. Крыжановского с дизрегуляторной патологией. В то же время, несмотря на разнообразие патогенных факторов, действующих на клетки, они отвечают принципиально однотипными реакциями, в основе которых лежат тканевые механизмы клеточной альтерации. Таким образом, повреждение следует рассматривать как типовой патологический процесс, основу которого составляют нарушения внутриклеточного гомеостаза, структурой целостности клетки, а также ее функциональной способности.

    Переходя к конкретным аспектам патофизиологии повреждения, исходя из учения основоположника клеточной патологии Р. Вирхова, учитывая «приоритет повреждения элементов над расстройством связи», в начале рассмотрим типовые нарушения внутриклеточного гомеостаза, патохимические и патофизиологические аспекты повреждения клетки, ее исполнительного аппарата.

    Причины нарушения функционирования и повреждения клетки

    Непосредственной причиной нарушения функционирования клетки служат изменения в ее окружении, в то время как повреждение клетки вызвано действием на нее повреждающих агентов. Повреждение клетки, сущность которого составляют нарушения внутриклеточного гомеостаза, может быть результатом непосредственного (прямых) или опосредованного, вследствие нарушения межклеточного взаимодействия, постоянства внутренней среды самого организма (гипоксия, ацидоз, алкалоз, гипогликемия, гиперкалиемия, повышение содержания в организме конечных продуктов метаболизма), воздействия множества патогенных факторов, которые подразделяются на три основные группы: физического, химического и биологического характера.

    Среди факторов физического характера причинами повреждения клеток наиболее часто являются следующие:

    Механические воздействия: они обусловливают нарушение структуры плазмолеммы и мембран субклеточных образований;

    Температурный фактор: повышенная температура среды, в которой находится клетка, до 45-50°С и более может привести к денатурации белка, нуклеиновых кислот, декомпозиции липопротеидных комплексов, повышению проницаемости клеточных мембран и другим изменениям. Значительное снижение температуры может обусловить существенное замедление или необратимое прекращение метаболических процессов в клетке, кристаллизацию внутриклеточной жидкости и разрыв мембран;

    Изменения осмотического давления в клетке: накопление в ней продуктов неполного окисления органических субстратов, а также избытка ионов сопровождается током жидкости в клетку по градиенту осмотического давления, набуханием ее и растяжением (вплоть до разрыва) ее плазмолеммы и мембран органелл. Снижение внутриклеточного осмотического давления или повышение его во внеклеточной среде ведет к потере клеткой жидкости, ее сморщиванию (пикнозу) и нередко к гибели;

    Воздействие ионизирующей радиации, обусловливающей образование свободных радикалов и активацию перекисных свободно-радикальных процессов, продукты которых повреждают мембраны и денатурируют ферменты клеток;

    Гравитационные, электромагнитные факторы.

    Повреждение клеток нередко вызывают воздействия факторов химической природы. К их числу относятся разнообразные вещества экзогенного и эндогенного происхождения: кислоты, щелочи, соли тяжелых металлов, яды растительного и животного происхождения, продукты нарушенного метаболизма. Так, цианиды подавляют активность цитохромоксидазы. Этанол и его метаболиты ингибируют многие ферменты клетки. Вещества, содержащие соли мышьяка, угнетают пируватоксидазу. Неправильное применение лекарственных средств также может привести к повреждению клеток. Например, передозировка строфантина обусловливает значительное подавление активности К + - Na + -АТФазы сарколеммы клеток миокарда, что ведет к дисбалансу интрацеллюлярного содержания ионов и жидкости.

    Важно, что повреждение клетки может быть обусловлено как избытком, так и дефицитом одного и того же фактора. Например, избыточное содержание кислорода в тканях активирует процесс перекисного окисления липидов (ПОЛ), продукты которого повреждают ферменты и мембраны клеток. С другой стороны, снижение содержания кислорода обусловливает нарушение окислительных процессов, понижение образования АТФ и, как следствие, расстройство функций клетки.

    Повреждение клеток нередко обусловливается факторами иммунных и аллергических процессов. Они могут быть вызваны, в частности, сходством антигенов, например, микробов и клеток организма.

    Повреждение может быть также результатом образования антител или влияния Т-лимфоцитов, действующих против неизмененных клеток организма вследствие мутации в геноме В- или Т-лимфоцитов иммунной системы.

    Важную роль в поддержании метаболических процессов в клетке играют вещества, поступающие в нее из окончаний нейронов, в частности, нейромедиаторы, трофогены, нейропептиды. Уменьшение или прекращение их транспорта является причиной расстройства обмена веществ в клетках, нарушения их жизнедеятельности и развития патологических состояний, получивших название нейродистрофий.

    Кроме указанных факторов, повреждение клеток нередко бывает обусловлено значительно повышенной функцией органов и тканей. Например, при длительной чрезмерной физической нагрузке возможно развитие сердечной недостаточности в результате нарушения жизнедеятельности кардиомиоцитов.

    Повреждение клетки может быть результатом действия не только патогенных факторов, но и следствием генетически запрограммированных процессов. Примером может служить гибель эпидермиса, эпителия кишечника, эритроцитов и других клеток в результате процесса их старения. К механизмам старения и смерти клетки относят постепенное необратимое изменение структуры мембран, ферментов, нуклеиновых кислот, истощение субстратов метаболических реакций, снижение устойчивости клеток к патогенным воздействиям.

    По происхождению все причинные факторы повреждения клетки делят на: экзогенные и эндогенные; инфекционного и неинфекционного генеза.

    Общие механизмы повреждения клеток

    В зависимости от скорости развития и выраженности основных проявлений повреждение клетки может быть острым и хроническим. В зависимости от степени нарушения внутриклеточного гомеостаза повреждение бывает обратимым и необратимым.

    Выделяются два патогенетических варианта повреждения клеток.

    Насильственный вариант . Развивается в случае действия на исходно здоровую клетку физических, химических и биологических факторов, интенсивность которых превышает обычные возмущающие воздействия, к которым клетка адаптирована. Наиболее чувствительны к данному варианту повреждения функционально малоактивные клетки, обладающие малой мощностью собственных гомеостатических механизмов.

    Цитопатический вариант . Возникает в результате первичного нарушения защитно-компенсаторных гомеостатических механизмов клетки. В этом случае фактором, запускающим патогенетические механизмы повреждения, являются естественные для данной клетки возмущающие стимулы, которые в этих условиях стано­вятся повреждающими. К цитопатическому варианту относятся все виды повреждения клетки вследствие отсутствия каких-либо необходимых ей компонентов (гипоксическое, при голодании, гиповитаминоз, нейротрофическое, при антиоксидантной недостаточности, при генетических дефектах и др.). К цитопатическому повреждению наиболее чувствительны те клетки, интенсивность возмущений, а, следовательно, и функциональная активность которых в естественных условиях очень высоки (нейроны, миокардиоциты).

    На уровне клетки повреждающие факторы «включают» несколько патогенетических звеньев. К их числу относят:

    Расстройство процессов энергетического обеспечения клеток;

    Повреждение мембран и ферментных систем;

    Дисбаланс ионов и жидкости;

    Нарушение генетической программы и/или ее реализации;

    Расстройство механизмов регуляции функции клеток.

    Нарушение энергетического обеспечения процессов, протекающих в клетках, часто является инициальным и ведущим механизмом их альтерации. Энергоснабжение может расстраиваться на этапах синтеза АТФ, ее доставки и использования.

    Нарушение процессов энергообеспечения, в свою очередь, может стать одним из факторов расстройств функции мембранного аппарата клеток, их ферментных систем (АТФазы актомиозина, К + - Na + - зависимой АТФазы плазмолеммы, Mg 2+ -зависимой АТФазы «кальциевой помпы» саркоплазмати-ческого ретикулума и др.), баланса ионов и жидкости, снижения мембранного потенциала, а также механизмов регуляции клетки.

    Повреждение мембран и ферментов играет существенную роль в расстройстве жизнедеятельности клетки, а также переходе обратимых изменений в ней в необратимые. Это обусловлено тем, что основные свойства клетки в существенной мере зависят от состояния ее мембран и связанных с ними энзимов.

    Одним из важнейших механизмов повреждения мембран и ферментов является интенсификация перекисного окисления их компонентов. Образующиеся в больших количествах радикалы кислорода (супероксид и гидроксильный радикал) и липидов вызывают: 1) изменение физико-химических свойств липидов мембран, что обусловливает нарушение конформации их липопротеидных комплексов и в связи с этим снижение активности белков и ферментных систем, обеспечивающих рецепцию гуморальных воздействий, трансмембранный перенос ионов и молекул, структурную целостность мембран; 2) изменение физико-химических свойств белковых мицелл, выполняющих структурную и ферментные функции в клетке; 3) образование структурных дефектов в мембране - т.н. простейших каналов (кластеров) вследствие внедрения в них продуктов ПОЛ. Указанные процессы, в свою очередь, обусловливают нарушение важных для жизнедеятельности клеток процессов – возбудимости, генерации и проведения нервного импульса, обмена веществ, восприятия и реализации регулирующих воздействий, межклеточного взаимодействия и др.

    В норме состав и состояние мембран модифицируется не только свободнорадикальными и липоперексидными процессами, но также мембраносвязанными, свободными (солюбилизированными) и лизосомальными ферментами: липазами, фосфолипазами, протеазами. Под влиянием патогенных факторов их активность или содержание в гиалоплазме клетки может повыситься (в частности, вследствие развития ацидоза, способствующего увеличению выхода ферментов из лизосом и их последующей активации, проникновению ионов кальция в клетку). В связи с этим интенсивному гидролизу подвергаются глицерофосфолипиды и белки мембран, а также ферменты клеток. Это сопровождается значительным повышением проницаемости мембран и снижением кинетических свойств ферментов.

    В результате действия гидролаз (главным образом липаз и фосфолипаз) в клетке накапливаются свободные жирные кислоты и лизофосфолипиды, в частности, глицерофосфолипиды: фосфатидилхолин, фосфатидил-этаноламин, фосфатидилсерин. Они получили название амфифильных соединений в связи со способностью проникать и фиксироваться в обеих - как в гидрофобной, так и в гидрофильных средах мембран клеток (амфи - означает «оба», «два»). Накопление в большом количестве амфифилов в мембранах, что так же, как и избыток гидроперекисей липидов, ведет к формированию кластеров и микроразрывов в них. Повреждение мембран и ферментов клеток является одной из главных причин существенного расстройства жизнедеятельности клеток и нередко приводит к их гибели.

    Дисбаланс ионов и жидкости в клетке. Как правило, нарушение трансмембранного распределения, а также внутриклеточного содержания и соотношения различных ионов развивается вслед за или одновременно с расстройствами энергетического обеспечения и сочетается с признаками повреждения мембран и ферментов клеток. В результате этого существенно изменяется проницаемость мембран для многих ионов. В наибольшей мере это относится к калию, натрию, кальцию, магнию, хлору, то есть ионам, которые принимают участие в таких жизненно важных процессах, как возбуждение, его проведение, электромеханическое сопряжение и др.

    Следствием дисбаланса ионов является изменение мембранного потенциала покоя и действия, а также нарушение проведения импульса возбуждения. Эти изменения имеют важное значение, поскольку они нередко являются одним из важных признаков наличия и характера повреждения клеток. Примером могут служить изменения электрокардиограммы при повреждении клеток миокарда, электроэнцефалограммы при нарушении структуры и функций нейронов головного мозга.

    Нарушения внутриклеточного содержания ионов обусловливают изменение объема клеток вследствие дисбаланса жидкости. Это может проявляться гипергидратацией клетки. Так, например, повышение содержания ионов натрия и кальция в поврежденных клетках сопровождается увеличением в них осмотического давления. В результате этого в клетках накапливается вода. Клетки при этом набухают, объем их увеличивается, что сопровождается увеличением растяжения, нередко микроразрывами цитолеммы и мембран органелл. Напротив, дегидратация клеток (например, при некоторых инфекционных заболеваниях, обусловливающих потерю воды) характеризуется выходом из них жидкости и растворенных в ней белков (в том числе ферментов), а также других органических и неорганических водорастворимых соединений. Внутриклеточная дегидратация нередко сочетается со сморщиванием ядра, распадом митохондрий и других органелл.

    Одним из существенных механизмов расстройства жизнедеятельности клетки является повреждение генетической программы и/или механизмов ее реализации. Основными процессами, ведущими к изменению генетической информации клетки, являются мутации, дерепрессия патогенных генов (например, онкогенов), подавление активности жизненно важных генов (например, регулирующих синтез ферментов) или внедрение в геном фрагмента чужеродной ДНК (например, ДНК онкогенного вируса, аномального участка ДНК другой клетки). Помимо изменений в генетической программе, важным механизмом расстройства жизнедеятельности клеток является нарушение реализации этой программы , главным образом, в процессе клеточного деления при митозе или мейозе.

    Важным механизмом повреждения клеток является расстройство регуляции внутриклеточных процессов. Это может быть результатом нарушений, развивающихся на одном или нескольких уровнях регуляторных механизмов:

    На уровне взаимодействия биологически активных веществ (гормонов, нейромедиаторов и др.) с рецепторами клетки;

    На уровне клеточных т.н. «вторых посредников» (мессенджеров) нервных влияний: циклических нуклеотидов-аденозинмонофосфата (цАМФ) и гуанозинмонофосфата (цГМФ), образующихся в ответ на действие «первых посредников» - гормонов и нейромедиаторов. Примером может служить нарушение формирования мембранного потенциала в кардиомиоцитах при накоплении в них цАМФ, что является, в частности, одной из возможных причин развития сердечных аритмий;

    На уровне метаболических реакций, регулируемых циклическими нуклеотидами или другими внутриклеточными факторами. Так, нарушение процесса активации клеточных ферментов может существенно изменить интенсивность метаболических реакций и, как следствие, привести к расстройству жизнедеятельности клетки.

    Рассмотрев патохимические аспекты повреждения клетки, необходимо не забывать, что проблема клеточного повреждения имеет и другую, очень важную сторону - информационный аспект проблемы повреждения клетки. Связь между клетками, те сигналы, которыми они обмениваются тоже могут быть источниками болезни.

    В большинстве случаев клетки в организме управляются химическими регуляторными сигналами, а именно гормонами, медиаторами, антителами, субстратами, ионами. Недостаток или отсутствие того или иного сигнала, как и избыток, может воспрепятствовать включению тех или иных адаптивных программ или способствовать излишне интенсивному, а, возможно, ненормально долгому их функционированию, что приводит к определенным патологическим последствиям. Особый случай представляет достаточно распространенная ситуация, когда клетка ошибочно принимает один сигнал за другой - так называемая мимикрия биорегуляторов, приводящая к серьезным регуляторным расстройствам. Примерами болезней, вызванных патологией сигнализации, могут служить: паркинсонизм, квашиоркор, инсулинозависимый сахарный диабет (патология, обусловленная дефицитом сигнала), болезнь фон Базедова, синдром Иценко-Кушинга, ожирение (патология, обусловленная избытком сигнала). Особенно ярко видна патогенность избытка субстратов на примере ожирения.

    В ряде случаев, даже при адекватной сигнализации, клетка не в состоянии ответить должным образом, если она «слепа и глуха» по отношению к данному сигналу. Именно такая ситуация создается при отсутствии или дефиците рецепторов, соответствующих какому-либо биорегулятору. В частности, примером такой патологии может служить семейная наследственная гиперхолестеринемия, патогенез которой связан с дефектом белка-рецептора, ответственного за распознавание клетками сосудистой стенки и некоторых других тканей и органов белкового компонента липопротеинов низкой и очень низкой плотности - апопротеина В, а также инсулинрезистивная форма сахарного диабета.

    Однако, даже при адекватной сигнализации и правильном распознавании сигналов клеточными рецепторами, клетки не в состоянии подключить надлежащие адаптационные программы, если отсутствует передача информации от рецепторов поверхностной мембраны внутрь клетки. По современным представлениям механизмы, опосредующие внутриклеточную передачу сигнала на геном клетки, разнообразны. Особое значение имеют пути пострецепторной передачи сигналов в клетке через систему G-белков (гуанозинтрифосфатсвязывающих белков). Эти белки - передатчики занимают ключевое положение в обмене информацией между поверхностно раположенными на клеточных мембранах рецепторами и внутриклеточным регуляторным аппаратом, потому что они способны интегрировать сигналы, воспринимаемые несколькими различными рецепторами, и в ответ на определенный рецепторно-опосредованный сигнал могут включать множество различных эффекторных программ, вводя в действие сеть различных внутриклеточных модуляторов, посредников, таких как цАМФ и цГМФ.

    Неадекватное использование клеткой своих адаптационных возможностей при ряде наследственных и приобретенных болезней может быть результатом сбоев в работе не только пострецепторных информационных механизмов, но и дефектом генетических программ и/или механизмов их реализации (в результате повреждения мутациями ДНК, возникновения хромосомных аномалий). Из-за этого они либо не реализуются, либо дают неадекватный или несоответствующий ситуации результат.

    Основные проявления повреждений клетки

    Дистрофии . Под дистрофиями (dys - нарушение, расстройство, trophe- питание) понимают нарушения обмена веществ в клетках и тканях, сопровождающиеся расстройствами их функций, пластических проявлений, а также структурными изменениями, ведущими к нарушению их жизнедеятельности.

    Основными механизмами дистрофий являются:

    Синтез аномальных веществ в клетке, например, белково-полисахаридного комплекса амилоида;

    Избыточная трансформация одних соединений в другие, например, жиров и углеводов в белки, углеводов в жиры;

    Декомпозиция (фанероз), например, белково-липидных комплексов мембран;

    Инфильтрация клеток и межклеточного вещества, органическими и неорганическими соединениями, например, холестерином и его эфирами стенок артерий при атеросклерозе.

    К числу основных клеточных дистрофий относят белковые (диспротеинозы), жировые (липидозы), углеводные и минеральные.

    Дисплазии (dys - нарушение, расстройство, plaseo- образую) представляют собой нарушение процесса развития клеток, проявляющееся стойким изменением их структуры и функции, что ведет к расстройству их жизнедеятельности.

    Причиной дисплазии является повреждение генома клетки. Именно это обусловливает стойкие и, как правило, наследуемые от клетки к клетке изменения, в отличие от дистрофий, которые нередко носят временный, обратимый характер и могут устраниться при прекращении действия причинного фактора.

    Основным механизмом дисплазии является расстройство процесса дифференцировки, который заключается в формировании структурной и функциональной специализации клетки. Структурными признаками дисплазии являются изменения величины и формы клеток, их ядер и других органелл, числа и строения хромосом. Как правило, клетки увеличены в размерах, имеют неправильную, причудливую форму («клетки-монстры»), соотношение различных органелл в них диспропорционально. Нередко в таких клетках обнаруживаются различные включения, признаки дистрофических процессов. В качестве примеров дисплазии клеток можно назвать образование мегалобластов в костном мозге при пернициозной анемии, серповидных эритроцитов при патологии гемоглобина, многоядерных гигантских клеток с причудливым расположением хроматина при нейрофиброматозе Реклингхаузена. Клеточные дисплазии являются одним из проявлений атипизма опухолевых клеток.

    Изменение структуры и функций клеточных органелл при повреждении клетки . Повреждение клетки характеризуется большим или меньшим нарушением структуры и функции всех ее компонентов. Однако при действии различных патогенных факторов могут преобладать признаки повреждения тех или иных органелл.

    При действии патогенных факторов отмечается уменьшение числа митохондрий по отношению к общей массе клетки. Стереотипными для действия большинства повреждающих факторов изменениями отдельных митохондрий является уменьшение или увеличение их размеров и формы. Многие патогенные воздействия на клетку (гипоксия, эндо- и экзогенные токсические агенты, в том числе лекарственные препараты при их передозировке, ионизирующая радиация, изменение осмотического давления) сопровождаются набуханием и вакуолизацией митохондрий, что может привести к разрыву их мембраны, фрагментации и гомогенизации крист. Нарушение структуры митохондрий приводит к существенному подавлению процесса дыхания в них и образования АТФ, а также к дисбалансу ионов внутри клетки.

    При патогенных воздействиях высвобождение и активация ферментов лизосом может привести к «самоперевариванию» (аутолизу) клетки.

    При действии повреждающих факторов наблюдается разрушение группировок субъединиц рибосом (полисом), уменьшение числа рибосом, отрыв органелл от внутриклеточных мембран. Эти изменения сопровождаются снижением интенсивности процесса синтеза белка в клетке.

    Повреждение эндоплазматической сети и аппарата Гольджи сопровождается расширением канальцев сети, вплоть до образования крупных вакуолей и цистерн вследствие накопления в них жидкости. Имеет место очаговая деструкция мембран канальцев сети, их фрагментация.

    Повреждение ядра сочетается с изменением его формы, конденсацией хроматина по периферии ядра (маргинация хроматина), нарушением двуконтурности или разрывами ядерной оболочки.

    Действие на клетку повреждающих факторов может обусловливать уменьшение или увеличение содержания в цитоплазме жидкости, протеолиз или коагуляцию белка, образование «включений», не встречающихся в норме. Изменение состояния цитоплазмы, в свою очередь, существенно влияет на процессы метаболизма, протекающие в ней, в связи с тем, что многие ферменты (например, гликолиза) находятся в клеточном матриксе, на функцию органелл, на процессы восприятия регулирующих и других влияний на клетку.

    Некроз и аутолиз . Некроз (гр. necros - мертвый) - гибель клеток и тканей, сопровождающаяся необратимым прекращением их жизнедеятельности. Некроз нередко является завершающим этапом дистрофий, дисплазий, а также следствием прямого действия повреждающих факторов значительной силы. Изменения, предшествующие некрозу, называют некробиозом или патобиозом. По И.В. Давыдовскому некробиоз - это процесс отмирания клеток. Примерами патобиоза могут служить процессы омертвления тканей при нейротрофических расстройствах в результате денервации тканей, вследствие длительной венозной гиперемии или ишемии. Некробиотические процессы протекают и в норме, являясь завершающим этапом жизненного цикла многих клеток. Большинство погибших клеток подвергаются аутолизу, т.е. саморазрушению структур. Основным механизмом аутолиза является гидролиз компонентов клеток и межклеточного вещества под влиянием ферментов лизосом. Этому способствует развитие ацидоза в поврежденных клетках.

    В процессе лизиса поврежденных клеток могут принимать участие и другие клетки - фагоциты, а также микроорганизмы. В отличие от аутолитического механизма последний называют гетеролитическим. Таким образом, лизис некротизированных клеток (некролиз) может обеспечиваться ауто- и гетеролитическими процессами, в которых принимают участие ферменты и другие факторы как погибших, так и контактирующих с ними живых клеток.

    Специфические и неспецифические изменения при повреждении клеток . Любое повреждение клетки вызывает в ней комплекс специфических и неспецифических изменений.

    Под специфическими понимают изменения свойств клеток, характерные для данного фактора при действии его на различные клетки, либо свойственные лишь данному виду клеток при воздействии на них повреждающих агентов различного характера. Так, действие на любую клетку механических факторов сопровождается нарушением целостности ее мембран. Под влиянием разобщителей процесса окисления и фосфорилирования снижается или блокируется сопряжение этих процессов. Высокая концентрация в крови одного из гормонов коры надпочечников - альдостерона обусловливает накопление в различных клетках избытка ионов натрия. С другой стороны, действие повреждающих агентов на определенные виды клеток вызывает специфические для них изменения. Например, влияние различных патогенных факторов на мышечные клетки сопровождается развитием контрактуры миофибрилл, на нейроны - формированием так называемого потенциала повреждения, на эритроциты - гемолизом и выходом из них гемоглобина.

    Повреждение всегда сопровождается комплексом и неспецифических , стереотипных изменений в клетках. Они наблюдаются в различных видах клеток при действии на них разнообразных агентов. К числу часто встречающихся неспецифических проявлений альтераций клеток относятся ацидоз, чрезмерная активация свободно-радикальных и перекисных реакций, денатурация молекул белка, повышение проницаемости клеточных мембран, повышение сорбционных свойств клеток.

    Выявление комплекса специфических и неспецифических изменений в клетках органов и тканей дает возможность судить о характере и силе действия патогенного фактора, о степени повреждения, а также об эффективности применяемых с целью лечения медикаментозных и немедикаментозных средств.

    Механизмы компенсации при повреждении

    Действие на клетку патогенных факторов и развитие повреждения сопровождается активацией или включением реакций, направленных на устранение либо уменьшение степени повреждения и его последствий. Комплекс этих реакций обеспечивает приспособление клетки к изменившимся условиям ее жизнедеятельности. К числу основных приспособительных механизмов относят реакции компенсации, восстановления и замещения утраченных или поврежденных структур и нарушенных функций, защиты клеток от действия патогенных агентов, а также регуляторное снижение их функциональной активности. Весь комплекс таких реакций условно можно разделить на две группы: внутриклеточные и внеклеточные (межклеточные).

    К числу основных внутриклеточных механизмов компенсации при повреждении можно отнести следующие.

    Компенсация нарушений процесса энергетического обеспечения клеток . Одним из способов компенсации нарушений энергетического обмена вследствие поражения митохондрий является интенсификация процесса гликолиза. Определенный вклад в компенсацию нарушений энергообеспечения внутриклеточных процессов при повреждении вносит активация ферментов транспорта и утилизация энергии АТФ (адениннуклеотидтрансферазы, креатинфосфокиназы, АТФ-аз), а также снижение функциональной активности клетки. Последнее способствует уменьшению расхода АТФ.

    Защита мембран и ферментов клеток . Одним из механизмов защиты мембран и ферментов клеток является ограничение свободно-радикальных реакций и процессов перекисного окисления липидов ферментами антиоксидантной защиты (супероксиддисмутазой, каталазой, глютатионпероксидазой). Другим механизмом защиты мембран и энзимов от повреждающего действия, в частности, ферментов лизосом, может быть активация буферных систем клетки. Это обусловливает уменьшение степени внутриклеточного ацидоза и, как следствие, избыточной гидролитической активности лизосомальных энзимов. Важную роль в защите мембран и ферментов клеток от повреждения играют ферменты микросом, обеспечивающие физико-химическую трансформацию патогенных агентов путем их окисления, восстановления, деметилирования и т.д.

    Компенсация дисбаланса ионов и жидкости . Компенсация дисбаланса содержания ионов в клетке может быть достигнута путем активации механизмов энергетического обеспечения ионных «насосов», а также защиты мембран и ферментов, принимающих участие в транспорте ионов. Определенную роль в снижении степени ионного дисбаланса имеет действие буферных систем. Активация внутриклеточных буферных систем (карбонатной, фосфатной, белковой) может способствовать восстановлению оптимальных соотношений ионов К + , Na + и Са ++ . Снижение степени дисбаланса ионов в свою очередь, может сопровождаться нормализацией содержания внутриклеточной жидкости.

    Устранение нарушений в генетической программе клеток . Повреждения участка ДНК могут быть обнаружены и устранены с участием ферментов репаративного синтеза ДНК. Эти ферменты обнаруживают и удаляют измененный участок ДНК (эндонуклеазы и рестриктазы), синтезируют нормальный фрагмент нуклеиновой кислоты взамен удаленного (ДНК-полимеразы) и встраивают этот вновь синтезированный фрагмент на место удаленного (лигазы). Помимо этих сложных ферментных систем репарации ДНК в клетке имеются энзимы, устраняющие «мелкомасштабные» биохимические изменения в геноме. К их числу относятся деметилазы, удаляющие метильные группы, лигазы, устраняющие разрывы в цепях ДНК, возникающие под действием ионизирующего излучения или свободных радикалов.

    Компенсация расстройств внутриклеточных метаболических процессов, вызванных нарушением регуляторных функций клеток . Сюда относят: изменение числа рецепторов гормонов, нейромедиаторов и других физиологически активных веществ на поверхности клетки, а также чувствительности рецепторов к этим веществам. Количество рецепторов может меняться благодаря тому, что молекулы их способны погружаться в мембрану или цитоплазму клетки и подниматься на ее поверхность. От числа и чувствительности рецепторов, воспринимающих регулирующие стимулы, в значительной мере зависит характер и выраженность ответа на них.

    Избыток или недостаток гормонов и нейромедиаторов или их эффектов может быть скомпенсирован также на уровне вторых посредников - циклических нуклеотидов. Известно, что соотношение цАМФ и цГМФ изменяется не только в результате действия внеклеточных регуляторных стимулов, но и внутриклеточных факторов, в частности, фосфодиэстераз и ионов кальция. Нарушение реализации регулирующих влияний на клетку может компенсироваться и на уровне внутриклеточных метаболических процессов, поскольку многие из них протекают на основе регуляции интенсивности обмена веществ количеством продукта ферментной реакции (принцип положительной или отрицательной обратной связи).

    Снижение функциональной активности клеток . В результате снижения функциональной активности клеток обеспечивается уменьшение расходования энергии и субстратов, необходимых для осуществления пластических процессов. В результате этого степень и масштаб повреждения клеток при действии патогенного фактора существенно снижаются, а после прекращения его действия отмечается более интенсивное и полное восстановление клеточных структур и их функции. К числу главных механизмов, обеспечивающих временное понижение функции клеток, можно отнести уменьшение эфферентной импульсации от нервных центров, снижение числа или чувствительности рецепторов на поверхности клетки, внутриклеточное регуляторное подавление метаболических реакций.

    Приспособление клеток в условиях повреждения происходит не только на метаболическом и функциональном уровнях. Длительное повторное или значительное повреждение обусловливает существенные структурные перестройки в клетке, имеющие приспособительное значение. Они достигаются за счет процессов регенерации, гипертрофии, гиперплазии, гипотрофии (см. раздел «Структурные основы компенсации»).

    Регенерация (regeneratio - возрождение; восстановление) означает возмещение клеток и/или ее отдельных структурных элементов взамен погибших, поврежденных или закончивших свой жизненный цикл. Регенерация структур сопровождается восстановлением их функций. Выделяют так называемую клеточную и внутриклеточную формы регенерации. Первая характеризуется размножением клеток путем митоза или амитоза. Внутриклеточная регенерация проявляется восстановлением органелл - митохондрий, ядра, эндоплазматической сети и других вместо
    поврежденных или погибших.

    Гипертрофия (hyper - чрезмерно, увеличение; trophe - питаю) представляет собой увеличение объема и массы структурных элементов, в частности, клеток. Гипертрофия неповрежденных органелл клетки компенсирует нарушение или недостаточность функций ее поврежденных элементов.

    Гиперплазия (hyper - чрезмерно; plaseo - образую) характеризуется увеличением числа структурных элементов, в частности, органелл в клетке. Нередко в одной и той же клетке наблюдаются признаки и гиперплазии и гипертрофии. Оба процесса обеспечивают не только компенсацию структурного дефекта, но и возможность повышенного функционирования клетки.

    Межклеточные (внеклеточные) механизмы взаимодействия и приспособления клеток при их повреждении. В пределах тканей и органов клетки не разобщены. Они взаимодействуют друг с другом путем обмена метаболитами, физиологически активными веществами, ионами. В свою очередь взаимодействие клеток тканей и органов в организме в целом обеспечивается функционированием систем лимфо- и кровообращения, эндокринными, нервными и иммунными влияниями.

    Характерной чертой межклеточных (внеклеточных) механизмов адаптации является то, что они реализуются, в основном, при участии клеток, которые не подвергались непосредственному действию патогенного фактора (например, гиперфункция кардиомиоцитов за пределами зоны некроза при инфаркте миокарда).

    По уровню и масштабу такие реакции при повреждении клеток можно разделить на органно-тканевые, внутрисистемные, межсистемные. Примером приспособительной реакции органно-тканевого уровня может служить активация функции неповрежденных клеток печени или почки при повреждении клеток части органа. Это снижает нагрузку на клетки, подвергшиеся патогенному воздействию, и способствует уменьшению степени их повреждения. К числу внутрисистемных реакций относится сужение артериол при снижении работы сердца (например, при инфаркте миокарда), что обеспечивает и предотвращает (или уменьшает степень) повреждения их клеток.

    Вовлечение в приспособительные реакции нескольких физиологических систем наблюдается, например, при общей гипоксии. При этом активируется работа систем дыхания, кровообращения, крови и тканевого метаболизма, что снижает недостаток кислорода и субстратов метаболизма в тканях, повышает их утилизацию и уменьшает благодаря этому степень повреждения их клеток (смотри раздел «Гипоксия»).

    Активация внутриклеточных и межклеточных механизмов приспособления при повреждении, как правило, предотвращает гибель клеток, обеспечивает выполнение ими функций и способствует ликвидации последствий действия патогенного фактора. В этом случае говорят об обратимых изменениях в клетках. Если сила патогенного агента велика и/или защитно-приспособительные недостаточны, развивается необратимое повреждение клеток, и они погибают.


    Нарушение жизнедеятельности организма человека при заболева­ниях всегда так или иначе связано с изменением функционирования кле­ток. В свою очередь, нарушение функционирования клетки, вызванные действием неблагоприятных факторов, например недостатком кислоро­да или действием токсичных соединений, может вначале и не привести к повреждению клетки: как только окружающие условия восстановятся до нормы, состояние клетки вновь будет близким к исходному.
    Повреждением называется изменение функционирования клетки, которое сохраняется после удаления повреждающего агента. Серьезное повреждение клетки может сопровождаться процессами, приводящими к ее гибели. Часто это связано с включением специального механизма апоптоза (запрограммированная смерть клетки).
    Следует различать прямое действие неблагоприятного фактора на данную клетку и косвенное его влияние, опосредованное воздействием на другие клетки, органы, ткани и организм в целом.
    К прямому действию относится повреждающее влияние ядов, на­правленное непосредственно на клетку, например цианистого калия, ко­торый угнетает клеточное дыхание, ингибируя фермент цитохромоксидазу. Прямое нарушение жизнедеятельности клетки и ее повреждение могут быть вызваны отсутствием кислорода, чрезмерно низким значени­ем рН, низким осмотическим давлением в окружающей среде, недостат­ком ионов кальция, действием ультрафиолетовой или ионизирующей ра­диации и др.
    В условиях целостного организма первичное действие повреждаю­щего фактора на клетки-мишени (т.е. клетки, повреждаемые непосред­ственно) сопровождается изменениями и в других клетках. Эти изменения опосредованы нарушением функционирования клеток-мишеней и поэто­му могут быть названы вторичными. Следовательно, обнаружив измене­ния в функционировании клеток того или иного органа при неблагоприят­ном воздействии, нельзя еще говорить о том, что данное воздействие само по себе вызвало наблюдаемые изменения в клетках. Одной из задач пато­логической физиологии является анализ последовательности событий - от момента воздействия повреждающего фактора до реализации этого повреждения на всех уровнях - клеточном, тканевом, органном.
    Первичное специфическое действие повреждающих факторов на клетки. Повреждение клетки выражается в определенном нарушении ее структуры и функций. При этом различные повреждающие факторы вызывают неодинаковые специфические первичные нарушения в клеточ­ных структурах. При механическом повреждении происходит в первую очередь повреждение клеточных мембран и межклеточных контактов. Термическое повреждение может быть связано с активацией ферментов и индукцией синтеза определенных белков, а также нарушением внутри­клеточной регуляции. При действии ионизирующей и ультрафиолетовой радиации первичным является разрушение молекул, поглотивших энер­гию, с образованием свободных радикалов, что приводит к поражению внутриклеточных структур. При химическом повреждении может проис­ходить ингибирование отдельных ферментов, например подавление ак­тивности цитохромоксидазы цианидами. В то же время яды змей, скор­пионов, пчел и других жалящих животных содержат ферменты (главным образом различные фосфолипазы), которые гидролизуют фосфолипиды и повреждают мембраны, вызывая гемолиз эритроцитов, поражение не­рвных клеток и т.д.
    Развитие повреждения клетки после первичного, специфичес­кого воздействия. Первичное, специфическое воздействие поврежда­ющего фактора направлено на конкретные молекулярные структуры клет­ки. Химический состав клеточных структур определяется в основном нуклеиновыми кислотами, белками, липидами и полисахаридами; все эти соединения могут быть мишенью для повреждающего действия факто­ров окружающей клетку среды. Нарушение клеточных структур вызывает каскад процессов, заканчивающихся общим ответом клетки как целого на внешнее неблагоприятное воздействие. При этом можно различить несколько стадий такого ответа в зависимости от Силы и продолжитель­ности воздействия. При слабых повреждающих воздействиях развивает­ся обратимое повреждение клеток {стадия паранекроза). В этих случаях после прекращения действия повреждающего фактора клетка восстанав­ливает свою жизнедеятельность. Практически у всех клеток при действии на них повреждающих агентов резко увеличивается проницаемость кле­точных мембран для ионов, в частности для ионов кальция, с последую­щей активацией различных внутриклеточных систем: протеинкиназ, фос­фолипаз, систем биосинтеза белков, фосфодиэстеразы, циклических нуклеотидов, аденилатциклазы, сократительного аппарата клетки и др. Эта первая обратимая стадия в определенной степени направлена на ком­пенсацию нарушений, вызываемых повреждающим фактором, будь то компенсация на уровне одной клетки или на уровне целого организма. Внешне паранекроз проявляется в помутнении цитоплазмы, вакуолиза­ции, возникновении грубодисперсных осадков, увеличении проникнове­ния в клетку различных красителей.
    Замечательной особенностью развития патологических изменений в клетках в ответ на самые различные неблагоприятные воздействия яв­ляется их идентичность, которая позволила Д.Н. Насонову и В.Я. Александрову выдвинуть в 1940 г. теорию о неспецифической реакции клеток на повреждение. Каким бы ни был повреждающий агент и на какие бы клетки он ни действовал, ответ клеток по ряду показателей остается одинако­вым. К числу таких показателей относятся:
    1) уменьшение дисперсности коллоидов цитоплазмы и ядра;
    2) увеличение вязкости цитоплазмы, которому иногда предшествует
    некоторое уменьшение вязкости;
    3) увеличение сродства цитоплазмы и ядра к ряду красителей.
    Во многих случаях наблюдаются также увеличение клеточной проницаемости, появление флюоресценции, повышение кислотности цитоплаз­мы, нарушение многих клеточных функций и т.д. Причины такого стерео­типа изменений в морфологии клеток при их повреждении заключаются в том, что сами молекуклярно-клеточные механизмы повреждения клеток сходны, даже если причины, вызвавшие повреждение, различны.
    При более сильном или более длительном воздействии повреждаю­щего фактора в клетках наступают необратимые изменения. Эта стадия получила название некробиоза (от греч. necrosis - мертвый и bios - жизнь), состояние как бы «между жизнью и смертью». Она заканчивается некрозом клеток и их аутолизом или же включением механизмов апоптоза.
    Этапы изучения механизма действия неблагоприятных факто­ров. Выяснение патогенеза различных заболеваний требует использо­вания различных методических приемов.
    Первым этапом изучения механизмов нарушений, возникающих в клетке, служат клинические наблюдения.
    На втором этапе исследуются изменения, происходящие в различ­ных структурах клеток после воздействия на организм животного повреж­дающего агента.
    Полученные данные позволяют приступить к третьему этапу иссле­дования: изучению механизма действия повреждающего фактора на экпериментальных моделях. Это дает возможность составить гипотетичес­кую схему последовательности событий при действии повреждающего агента (например, четыреххлористого углерода на клетки печени).