Главная · Паразиты в организме · В каких продуктах встречаются канцерогены и их воздействие на организм человека. Химические канцерогенные факторы

В каких продуктах встречаются канцерогены и их воздействие на организм человека. Химические канцерогенные факторы

Онкологические заболевания и их связь с химическим загрязнением окружающей среды.

Реакции организма человека на дефицит или избыток в окружающей среде химических элементов обусловлены приспособительными механизмами, выработанными в процессе эволюции в условиях изменчивости биогеохимической среды как следствие этого существуют количественные показатели недостаточности и избыточности химических элементов для живых организмов. избыток, дефицит или дисбаланс микро- и макроэлементов во внешней среде, и соответственно в организме человека, могут привести к нарушению минерального обмена и развитию заболеваний биогеохимической природы (микроэлементозы).

Микроэлементозы должны рассматриваться как типовой патологический процесс, сопровождающий формирование любой патологии. В соответствии с рекомендациями ВОЗ среди индикаторных являются, так же, онкологические заболевания.

Онкология – это раздел медицины, который изучает механизмы возникновения, развития, профилактики и лечения опухолей различного происхождения (доброкачественных и злокачественных).

Опухолевые заболевания – это болезни различных органов, которые вызваны тем, что здоровые клетки тканей превращаются в опухолевые клетки, склонные к неконтролируемому разрастанию. Причинами опухолевых заболеваний являются различные воздействия на генетику клеток (химические вещества, вирусы, излучения).

Доброкачественные опухоли относительно медленно увеличиваются, они не проникают в другие органы и ткани. Злокачественные опухоли быстро растут, могут распространяться с током лимфы и крови, образуя тем самым вторичные очаги. Злокачественные опухоли врастают в другие органы и ткани, образуют метастазы в удаленных от места первичного образования органах.

Злокачественные новообразования являются второй по частоте и социальной значимости после сердечно-сосудистых заболеваний причиной смертности населения, формирующей отрицательный демографический баланс.

Химические канцерогенные факторы.

Канцерогенез - процесс зарождения и развития опухоли.

Химические факторы

Вещества ароматической природы (полициклические и гетероциклические ароматические углеводороды, ароматические амины), некоторые металлы и пластмассы обладают выраженным канцерогенным свойством благодаря их способности реагировать с ДНК клеток, нарушая ее структуру (мутагенная активность). Канцерогенные вещества в больших количествах содержатся в продуктах горения автомобильного и авиационного топлива, в табачных смолах. При длительном контакте организма человека с этими веществами могут возникнуть такие заболевания, какрак легкого,рак толстого кишечникаи др. Известны также эндогенные химическиеканцерогены(ароматические производные аминокислотытриптофана), вызывающие гормонально зависящие опухолиполовых органов.

Основные источники химического загрязнения и их влияние на здоровье человека:

1. тепловые электростанции (пыль, зола, ртуть, оксиды азота) вызывают отравления, заболевания органов дыхания

2. металлургическое производство (оксиды углерода, азота, сероводород, аммиак) вызывает поражения дыхательных путей, нервной системы, системы кроветворения, рак легких

3. автомобильный транспорт (свинец, оксиды углерода)- вызывает снижение иммунитета, поражение эндокринной и дыхательной систем, мозга

4. текстильное производство (хлопковая пыль) - вызывает бронхит, болезни легких

5. производство резины (сажа, органические растворители) - вызывает рак, аритмии, болезни нервной системы

6. нитраты - в организме человека они превращаются в ядовитые вещества - нитриты, в результате чего возникает болезнь метгемоглобинемия

7. Химическое загрязнение почвы- в фоновых районах, на территории РФ, ежегодно выпадает с атмосферными осадками 0,45- 5,10 мг/м2 свинца, 0,38- 4,30 мг/м2 кадмия и до 0,20мг/м2 ртути. Кроме этого в почву поступают ксенобиотики от использования различных химических средств и химикатов, особенно пестицидов, что приводит к росту заболеваемости населения. , .

Самые распространенные вещества, которые вызывают рак: 1. Ароматические углеводороды (бензпирен) 2. Химические красители (бензидин) 3. Нитрозосоединения 4. Афлотоксины и другие продукты жизнедеятельности грибов и растений 5. Прочие вещества – пластмассы, эпоксиды.

Рак легких.

Ежегодно в мире регистрируется 921 тыс. смертей от рака легкого (впервые выявляется около 10 млн больных РЛ). Абсолютное число умерших в России увеличилось за 20-летний период на 40%.

Этиология и факторы риска.

1. Роль курения в этиологии РЛ. Резкий рост рака легких наблюдается с 1880 г., когда заработала первая сигаретная фабрика (из 4 тысяч компонентов табачного дыма 40-60 являются канцерогенами). Большое значение имеет продолжительность курения, чем количество ежедневно выкуриваемых сигарет.

2. Профессиональные факторы . Производственные процессы, связанные с асбестом, мышьяком, хромом, никелем и их соединения, радоном и продуктами распада, горчичный газ, каменноугольные смолы, подземная добыча гематита, алюминиевая промышленность, производства, связанные с коксованием угля, выплавкой железа и стали, резиновая промышленность и др. Необходимо отметить, что курение и промышленные факторы синергически влияют на риск возникновения РЛ.

Экспериментальные исследования по экспериментальной индукции опухолей различными агентами у животных, начатые в начале XX в. К. Ямагива и К. Ичикави (K. Yamagiwa и К. Ichikawa, 1918), привели к открытию значительного количества химических соединений различной структуры, получивших общее название бластомогенные, или канцерогенные, вещества.

Одним из выдающихся исследователей этой проблемы был Э. Кэнневей (Е. Kennaway), выделивший в 1930-х гг. бенз(а)пирен - первый из ныне известных химических канцерогенов окружающей среды. В эти же годы Т. Йошида (T. Yoshida) и Р. Киносита (R. Kinosita) открыли группу канцерогенных аминоазосоединений, а У. Хеупер (W. Heuper) впервые показал канцерогенность ароматических аминов. В 1950-е гг. П. Мэйджи и Дж. Варне (P. Magee, J. Barnes), а следом за ними Г. Дракрей (H. Druckrey) и соавт. выявили группу канцерогенных N-нитрозосоединений. Тогда же была показана канцерогенность некоторых металлов, выявлены канцерогенные свойства отдельных природных соединений (афлатоксинов) и лекарственных препаратов. Эти экспериментальные исследования подтвердили результаты эпидемиологических наблюдений над возникновением опухолей у человека.

В настоящее время все известные химические канцерогены подразделяют на классы в соответствии с химическим строением.

  1. Полициклические ароматические углеводороды (ПАУ).
  2. Ароматические азосоединения.
  3. Ароматические аминосоединения.
  4. Нитрозосоединения и нитрамины.
  5. Металлы, металлоиды и неорганические соли.

В зависимости от характера действия на организм химические канцерогены подразделяют на три группы:

  1. канцерогены, вызывающие опухоли преимущественно на месте аппликации;
  2. канцерогены отдаленного избирательного действия, вызывающие опухоль в том или ином органе;
  3. канцерогены множественного действия, провоцирующие развитие опухолей разной морфологической структуры и в различных органах.

Международное агентство по изучению рака (г. Лион, Франция), которое является специализированным органом ВОЗ, провело обобщение и анализ сведений о канцерогенных факторах. Более 70 томов, изданных агентством, содержат данные, которые свидетельствуют о том, что примерно из 1 000 подозрительных в отношении канцерогенности агентов только для 75 веществ, производственных вредностей и других факторов доказано, что они могут быть причиной возникновения рака у человека. Самым надежным доказательством служат результаты многолетних эпидемиологических наблюдений за большими группами людей, проведенные во многих странах, которые показали, что контакт с веществами в производственных условиях вызывал образование злокачественных опухолей. Однако доказательства канцерогенности сотен других веществ в возникновении рака у человека носят не прямой, а косвенный характер. Например, такие химические вещества, как нитрозамины или бенз(а)пирен вызывают рак в опытах на многих видах животных. Под их влиянием культивируемые в искусственной среде нормальные клетки человека могут превратиться в злокачественные. Хотя эти доказательства не подкреплены статистически достоверным числом наблюдений над людьми, канцерогенная опасность таких соединений сомнений не вызывает.

Международное агентство по изучению рака составило подробную классификацию исследованных на канцерогенность факторов. В соответствии с этой классификацией все химические вещества подразделены на три категории. Первая категория - это вещества, канцерогенные для человека и животных (асбест, бензол, бензидин, хром, винилхлорид и др.). Вторая категория - вероятные канцерогены. Эта категория в свою очередь подразделена на подгруппу А (канцерогены высокой степени вероятности), представленную сотнями веществ, канцерогенных для животных двух или нескольких видов (афлатоксин, бенз(а)пирен, бериллий и др.), и подгруппу В (канцерогены низкой степени вероятности), характеризующуюся канцерогенными свойствами для животных одного вида (адриамицин, хлорфенолы, кадмий и др.). Третья категория - это канцерогены, вещества или группы соединений, которые невозможно классифицировать из-за недостатка данных.

Названный перечень веществ в настоящее время является наиболее убедительным международным документом, содержащим данные о канцерогенных агентах и степени доказанности их канцерогенной опасности для человека.

Вне зависимости от структуры и физико-химических свойств все химические канцерогены обладают рядом общих черт действия. Прежде всего для всех канцерогенов характерен длительный латентный период действия. Следует различать истинный, или биологический, и клинический латентный период. Малигнизация клеток не начинается с момента контакта их с канцерогеном. Химический канцерогены подвергается в организме процессам биотрансформации, в результате чего образуются канцерогенные метаболиты, которые, внедряясь в клетку, вызывают глубокие нарушения, закрепляющиеся в ее генетическом аппарате, обусловливая малигнизацию клетки.

Истинный, или биологический, латентный период - это период времени от образования в организме канцерогенных метаболитов до начала неконтролируемого размножения малигнизированных клеток. Обычно используют понятие клинического латентного периода, который значительно длиннее биологического. Он исчисляется временем от начала контакта с канцерогенным агентом до клинического обнаружения опухоли.

Второй существенной закономерностью действия канцерогенов является зависимость «доза - время - эффект»: чем выше разовая доза вещества, тем короче латентный период и тем выше частота возникновения опухолей.

Другой закономерностью, характерной для действия канцерогенов, является стадийность морфологических изменений, предшествующих развитию рака. Эти стадии включают диффузную неравномерную гиперплазию, очаговые пролифераты, доброкачественные и злокачественные опухоли.

Химические канцерогены подразделяют на две группы в зависимости от их природы. Подавляющее большинство канцерогенных химических соединений имеют антропогенное происхождение, их появление в окружающей среде связано с деятельностью человека. В настоящее время известны многие технологические операции, при которых могут образовываться, например, наиболее распространенные канцерогены - полициклические ароматические углеводороды. Это прежде всего процессы, связанные со сжиганием и термической переработкой топлива и других органических материалов.

Раньше предполагалось, что грибы, продуцирующие афлатоксины, распространены только в тропических и субтропических странах. Согласно современным представлениям потенциальная опасность появления этих грибов, а следовательно, и загрязнения пищевых продуктов афлатоксинами почти повсеместна, за исключением лишь стран с холодным климатом, таких как Север Европы и Канада.

Физические канцерогены

К ним относятся следующие канцерогены:

  • различные виды ионизирующей радиации (рентгеновские, гамма-лучи, элементарные частицы атома - протоны, нейтроны, альфа, бета-частицы и др.);
  • ультрафиолетовое излучение;
  • механические травмы тканей.

Следует отметить, что еще до открытия химических канцерогенов, в 1902 г. Э. Фрибен (Е. Frieben) описал рак кожи у человека, вызванный рентгеновскими лучами, а в 1910 г. Дж. Клунет (J. Clunet) впервые получил опухоли у животных с помощью рентгеновского облучения. В последующие годы усилиями многих радиобиологов и онкологов, в том числе и отечественных, было установлено, что опухолеродными эффектами обладают не только различные виды искусственно вызванного ионизирующего излучения, но и природные источники, включая ультрафиолетовое излучение солнца.

В современной литературе к физическим канцерогенным агентам окружающей среды принято относить лишь радиационные факторы - ионизирующее излучение всех видов и типов и ультрафиолетовое излучение солнца.

Рассматривая канцерогенез как многостадийный процесс, состоящий из инициации, промоции и прогрессии, установлено, что ионизирующее излучение является слабым мутагеном в активации протоонкогенов, это может иметь значение на ранних стадиях канцерогенеза. В то же время ионизирующее излучение высокоэффективно в дезактивации генов-супрессоров опухолевого роста, что имеет значение для прогрессии опухолей.

Биологические канцерогены

Вопрос о роли вирусов в этиологии опухолей возник в начале XX в. В 1910 г. П. Роус (P. Rous) впервые перевил бесклеточным фильтратом опухоль у птиц и объяснил это наличием опухолевого вируса, чем подтвердил положение А. Боррела (A. Borrel) и еще более ранних авторов о вирусах как причине рака.

В настоящее время известно, что 30 % всех онкологических заболеваний вызывают вирусы, в том числе вирусы папилломы человека. Вирус папилломы человека определяется в 75 - 95% наблюдений плоскоклеточного рака шейки матки. Несколько типов вируса папилломы человека обнаружены в опухоли при инвазивном раке полости рта, ротоглотки, гортани и полости носа. Вирусы папилломы человека 16-го и 18-го типов играют важную роль в канцерогенезе рака органов головы и шеи, особенно при раке ротоглотки (54 %) и гортани (38 %). Ученые изучают связь вируса герпеса с лимфомами, саркомой Капоши, вируса гепатита В и С с раком печени.

Однако заболеваемость раком на порядок ниже частоты вирусных инфекций. Это заставляет предположить, что для развития опухолевого процесса одного наличия вирусов недостаточно. Необходимо еще наличие каких-то клеточных изменений или изменений иммунной системы хозяина. Поэтому на современном этапе развития онкологии и онковирусологии следует думать, что с клинической точки зрения онкогенные вирусы не являются инфекционными. Вирусы, так же как химические и физические канцерогены, служат лишь экзогенными сигналами, влияющими на эндогенные онкогены - гены, контролирующие клеточное деление и дифференцировку. Молекулярный анализ вирусов, связанных с развитием рака, показал, что их функция, по крайней мере частично, связана с изменением кодирования белков-супрессоров, которые регулируют рост клетки и апоптоз.

С точки зрения онкогенности вирусы условно можно подразделить на «истинно онкогенные» и «потенциально онкогенные». Первые, независимо от условий взаимодействия с клеткой, вызывают превращение нормальных клеток в опухолевые, т.е. являются естественными, природными возбудителями злокачественных новообразований. К ним относятся РНК-содержащие онкогенные вирусы. Вторая группа, включающая ДНК-содержащие вирусы, способна вызывать трансформацию клеток и образование злокачественных опухолей лишь в лабораторных условиях и у животных, которые не являются естественными, природными носителями («хозяевами») этих вирусов.

К началу 1960-х гг. Л. А. Зильбер в окончательном виде сформулировал вирусогенетическую гипотезу, основным постулатом которой является мысль о физической интеграции геномов вируса и нормальной клетки, т.е. при попадании онкогенного вируса в зараженную клетку первый внедряет свой генетический материал в состав хромосомы клетки-хозяина, становясь ее интегральной частью - «геном» или «батареей генов», тем самым индуцируя превращение нормальной клетки в опухолевую.

Современная схема вирусного канцерогенеза заключается в следующем:

  1. вирус проникает в клетку; его генетический материал закрепляется в клетке путем физической интеграции с клеточной ДНК;
  2. в составе вирусного генома имеются специфические гены - онкогены, продукты которых непосредственно отвечают за превращение нормальной клетки в опухолевую; такие гены в составе интегрированного вирусного генома должны начать функционировать с образованием специфических РНК и онкобелков;
  3. онкобелки - продукты онкогенов - воздействуют на клетку таким образом, что она теряет чувствительность к влияниям, регулирующим ее деление, и становится опухолевой и по другим фенотипическим признакам (морфологическим, биохимическим и т.д.).

В 1775 году английский ученый Потт впервые отметил значительное увеличение числа заболеваний кожным раком у трубочистов.

Это было, по-видимому, первое наблюдение, указывающее на возникновение злокачественного новообразования под влиянием каких-то факторов внешней среды. Человечеству понадобилось, однако, более 140 лет, прежде чем замечательная догадка Потта о канцерогенности продуктов возгонки каменного угля была подтверждена экспериментально: в 1914 году японские ученые Ямагива и Ичикава, после многократного смазывания уха кролика каменноугольным дегтем, получили на месте обработки раковые опухоли.

Эти опыты были много раз повторены и подтверждены и естественным следующим шагом в изучении проблемы рака стали попытки выделить вещество, ответственное за возникновение рака в чистом виде. Работа увенчалась успехом. В 1930 году английские ученые Киннуэй и Хигер сообщили, что они выделили первые химически чистые канцерогенные вещества , вызывающие злокачественные опухоли у подопытных животных. С тех пор в лабораториях всего мира начались эксперименты по воспроизведению злокачественных опухолей всех органов с помощью химически чистых веществ.

Казалось, человечество приблизилось к разгадке многовековой тайны. Путь был ясен: нужно было выделить канцерогенные вещества в чистом виде, изучить механизм их действия, определить, где они находятся, и изолировать человека от соприкосновения с ними. Ученые начали поиски канцерогенных химических веществ. Оказалось, что канцерогенными свойствами обладают сложные углеводороды. Некоторые из них достаточно было ввести в дозе всего 0,001 миллиграмма, чтобы вызвать рак у мышей. Постепенно выяснилось, что канцерогенны и многие другие вещества.

Рак вызывали различные анилиновые красители, азосоединения, мышьяк, соляная кислота, концентрированный раствор поваренной соли, олеиновая кислота, различные хиноны, металлическое олово, стирил, порошок никеля, хлористый цинк, спирт, хром и кобальт, четыреххлористый углевод, танниновая кислота, уретан, концентрированные растворы глюкозы и других сахаров, целлофан, различные пластические вещества, стекло. Трудно себе представить, что все эти столь разнообразные химические вещества обладают единым механизмом действия! Более того, громадное число таких канцерогенных веществ, причем химически самых разнообразных, делало нереальным изоляцию от них человека.

Мы говорили пока только о химических веществах. Однако уже с 1910 года, когда французский исследователь Мари с сотрудниками получил злокачественные опухоли у крыс, облучая их рентгеновыми лучами, стало развиваться учение о физических канцерогенах.

Большие дозы солнечных лучей, травмы, ожоги и отмораживания, ультразвук, ультрафиолетовые лучи, ионизирующее излучение - все эти физические факторы оказались канцерогенными. Особое место среди них занимает ионизирующее излучение - радиоактивные вещества (рентгеновы лучи, радий, радиоактивные изотопы, атомные бомбы).

Еще в 1902 году Фрибен (Австрия) впервые описал опухоль кожи у рентгенотехника, который 4 года просвечивал свои руки рентгеновскими лучами для испытания рентгеновских трубок. С тех пор много ветеранов первых лет медицинской рентгенологии погибло от рака. И лишь в последующие годы благодаря применению защитных приспособлений страшное заболевание - «рак рентгенологов» - совершенно исчезло.

Не надо думать, конечно, что всякое рентгеновское просвечивание приводит к раку. Нет, все дело в дозах. При обычных диагностических и лечебных дозах рентгеновского излучения рак не возникает.

К раку, возникшему от радиоактивных веществ, относят сейчас и опухоли легких, которые появлялись у горнорабочих Шнееберга (Саксония) и Иоахимсталя (Чехия). В воздухе этих рудников были обнаружены радиоактивные вещества.

Да, человечество знало все эти факты, и тем не менее в 1945 году были взорваны атомные бомбы в Нагасаки и Хиросиме. Люди, пережившие эти взрывы, до сих пор подвергаются тщательному исследованию. Эксперты многих стран мира проделали большую работу, опубликованы сотни докладов. Приведем лишь некоторые факты. За 8 лет, с 1947 по 1954 год, среди людей, находившихся в Нагасаки или Хиросиме во время атомных взрывов, смертность от лейкозов - рака крови, или белокровия, - более чем в 4 раза превышает смертность от этого же заболевания среди японцев, не подвергшихся облучению. Это лишь общие числа. Разница будет значительно большей, если рассматривать группы людей, получивших большие дозы облучения.

Все эти факты многократно подтверждались громадным, поистине неисчислимым материалом, полученным в опытах на самых различных животных. Отметим только замечательное достижение советской медицины: старейший онколог, лауреат Ленинской премии Н. Н. Петров и его сотрудники впервые в мире вызвали у обезьян опухоли при введении им радиоактивных веществ. Обезьяна - самый близкий человеку вид животных, и получение у них раковых опухолей и изучение механизма их возникновения представляет громадный интерес для ученых.

Ионизирующими излучениями не кончается рассказ о химических и физических канцерогенах. Все канцерогены, которые мы до сих пор упоминали, имели одно общее свойство - они были агентами внешней среды, действию которой мы подвергаемся.

В 1937 году советский ученый Л. М. Шабад положил начало новому направлению в исследованиях канцерогенных веществ. Он показал, что если подопытным животным ввести бензольные экстракты печени раковых больных, то у них возникнут опухоли.

Оказалось, что в этих экстрактах содержатся вещества, близкие по своей химической природе некоторым химическим канцерогенам. Впоследствии подобные вещества выделили не только из печени, но из мочи и других органов раковых больных. Более того, были случаи, когда опухоли возникли при использовании бензольных экстрактов нормальных органов! Напрашивается вопрос: а не могут ли в организме человека при каких-то изменениях обмена веществ возникнуть канцерогенные химические вещества?

Однако природа раскрыла человеку еще более удивительные факты. Выяснилось, что некоторые гормоны - активные вещества, вырабатываемые железами внутренней секреции, также канцерогенны (правда, в больших дозах).

Сейчас известно около 400 канцерогенов.

Итак, вы видите, что фруктовый сахар и лучи Рентгена, метилхолантрен и цинк, ожоги и соли никеля, отморожения и солнечные лучи, гормоны и ультразвук - все они способны превращать нормальную клетку в опухолевую. Не правда ли, это очень трудно себе представить? Все эти вещества различаются не только химическими и физическими свойствами, но и механизмом канцерогенного действия. Одни из них вызывают опухоли на месте введения, другие - лишь в определенных органах, вне зависимости от места введения.

Более того, уже первые работы по получению рака каменноугольным дегтем показали, что действие канцерогенных веществ зависит от вида животного. Например, получить опухоли у морских свинок удается с большим трудом, а у мышей они возникают очень часто. Но и у одного вида животных чувствительность к заболеванию раком различна.

Животные одного вида могут отличаться и по возникновению у них спонтанных опухолей. Так называют опухоли, появление которых не удается связать с каким-либо известным канцерогеном. Например, у людей большинство опухолей спонтанные.

Ученым удалось вывести разные линии мышей; у мышей одних линий частота возникновения спонтанных опухолей не превышала одного процента, в то время как у мышей других линий она достигала ста. Мыши этих линий отличались и своей чувствительностью к действию канцерогена.

Кроме того, было выяснено, что в возникновении опухоли важную роль играет не только химическая природа вещества, но и его физическое состояние. Так, результаты опыта часто зависят от формы пластмассовых пластинок, использованных для получения опухолей у крыс. Наибольший процент опухолей вызвали гладкие пластинки, реже - перфорированные, а это же вещество в виде порошка почти не канцерогенно!

Итак, различные канцерогены могут вызывать сходные опухоли, а разнообразные опухоли могут возникать под действием одного и того же канцерогена. Как все эти факты уложить в одну стройную теорию?

Канцерогенные факторы

Канцерогены - вещества, вызывающие раковые заболевания.

Канцерогенные вещества весьма разнообразны - от простых, как четырёххлористый углерод, до весьма сложных.

Найти единственную причину рака до сих пор не удалось, и, по всей вероятности, развитие злокачественных опухолей определяется многими факторами. Последние могут быть эндогенными, т.е. возникающими в самом организме, и экзогенными, т.е. исходящими из окружающей среды. Большинство вызывающих рак факторов (канцерогенов), как правило, оказывает своё влияние лишь в том случае, если действует в течение длительного времени. Да и сами опухоли образуются не мгновенно, а в течение нескольких лет, нередко от 10 до 25 лет и более.

На данный момент известно большое количество канцерогенных факторов.

Курение и алкоголь

Курение является наиболее значимой причиной рака. Сегодня потребление табака - ведущая причина смерти в мире, которую можно предотвратить. Среди вызываемых курением видов рака наибольшее значение имеет рак лёгких - примерно 9 из 10 случаев смерти. Однако курение увеличивает смертность и от многих других видов рака, в том числе рака ротовой полости, пищевода, гортани, поджелудочной железы и мочевого пузыря. Почти все связанные с табаком виды рака обусловлены активным курением или прямым воздействием табака. Недавние исследования показали, что и пассивное курение, когда некурящие подвергаются действию дыма от горящего табака или дыма, выдыхаемого курильщиками, тоже несколько увеличивает риск развития рака лёгких и, возможно, иных его видов.

Риск возникновения рака увеличивается в зависимости от количества выкуриваемых сигарет и от того, в каком возрасте человек начал курить. Сигареты с фильтром и низким содержанием смол могут незначительно снизить риск заболевания раком, но он по-прежнему остаётся очень высок.

Как правило, рак лёгких чаще встречается у мужчин. Однако, в последнее время процент как курящих женщин, так и женщин с раком лёгких значительно увеличился.

Если человек бросает курить, вероятность того, что у него появится рак лёгких, снижется практически сразу, а через примерно 15 лет его шансы приравниваются к шансам некурящих.

Другим хорошо известным фактором, способствующим развитию рака, является алкоголь . Он повышает риск рака слизистой рта, гортани, печени и пищевода. Крепкие спиртные напитки, пиво и вино примерно одинаково увеличивают опасность появления рака. Риск заболевания этими видами рака умножается у тех, кто и пьёт, и курит.

Риск развития рака: у курящего - 5; у пьющего крепкие напитки - 8; у курящего и пьющего - 40.

Чрезмерное потребление алкогольных напитков повышает риск развития рака полости рта, глотки, гортани, пищевода, желудка, печени, поджелудочной железы, ободочной и прямой кишки и молочной железы. На основании анализа имеющихся научных данных, рабочая группа Международного агентства по изучению рака (МИАР) пришла к заключению, что алкогольные напитки являются канцерогенными для человека.

Аналитические эпидемиологические исследования, как проспективные, так и ретроспективные, подтвердили роль потребления алкогольных напитков в канцерогенезе у человека.

Совет 1. Отказ от курения, пребывания в прокуренных помещениях и ограничение потребления алкогольных напитков является важным направлением профилактики рака.

Питание.

Питание играет важную роль в развитии раковых опухолей желудочно-кишечного тракта - желудка, толстой и прямой кишки. По меньшей мере, одна треть всех злокачественных опухолей связана с питанием.

Характер питания человека совсем недавно и резко по историческим меркам изменился. Наши предки на протяжении тысячелетий жили в чистой окружающей среде, ели натуральную полноценную пищу: растительные продукты, выращенные на чистой богатой почве или на почве, обогащенной естественными удобрениями, дикорастущие растения из леса; мясо, яйца, молоко от животных, выращенных на натуральных кормах, дичь из чистой природы, рыба из чистых водоёмов.

Издержки цивилизации приводят к тому, что пища загрязняется различными вредными веществами окружающей среды и химикалиями сельского хозяйства, в том числе канцерогенами.

Общепризнанно, что в развитии - играют роль факторы питания. Частота рака желудка во всём мире снижается, вероятно, вследствие того, что сейчас реже сохраняют продукты путём засолки и маринования и больше потребляют свежие фрукты и овощи.

Во многих исследованиях была обнаружена прямая связь между потреблением больших количеств острых и солёных продуктов и высоким риском рака желудка.

Ряд компонентов питания влияет и на риск развития рака толстой и прямой кишки. Потребление животных продуктов (особенно красного мяса) увеличивает этот риск, тогда как клетчатка (содержащаяся в овощах, фруктах и зерновых) уменьшает его.

Изучение связи между особенностями питания и заболеваемостью злокачественными опухолями выявило, что потребление жиров (особенно животных жиров, мяса, молока на душу населения) и количество потребляемых калорий влияет на частоту рака толстой кишки, молочной железы, матки и предстательной железы. Наблюдения за некоторыми религиозными группами, придерживающимися особой диеты, не включающей мясных продуктов, показало, что у них заболеваемость этими злокачественными опухолями ниже, чем у остального населения, проживающего рядом.

Гипотеза о защитной роли клетчатки была предложена на основании наблюдений в Африке, где заболеваемость раком толстой кишки низка, а потребление продуктов питания с высоким содержанием клетчатки высоко. Предполагается, что у людей, потребляющих много клетчатки, увеличен объём каловых масс, что ведёт к снижению концентрации в кале канцерогенных веществ (вторичных жирных кислот).

Защитное влияние потребления овощей и фруктов против развития злокачественных опухолей у человека доказано для рака полости рта, глотки, пищевода, лёгкого, желудка и толстой кишки. Выраженным защитным эффектом обладают лук и чеснок.

В исследовании, проведённом в Москве, было показано, что потребление чеснока значительно снижает риск рака желудка, что можно объяснить бактерицидными свойствами, в частности в отношении хеликобактер Пилори - инфекции, которая является известным фактором риска рака желудка.

Овощи и фрукты содержат активные вещества, которые подавляют развитие опухолей. К таким веществам в первую очередь относятся витамины С и Е, а также бета-каротин, селен, обладающие антиоксидантными свойствами, витамин А, фолиевая кислота, а также фитоэстрогены (изофлавинолы), флавоноиды, такие как кверцитин, индолы и т.д.

Программа "Европа против рака" и Противораковое общество России рекомендуют "ежедневно потреблять до 5 раз различные овощи и фрукты (не менее 400 г). Ограничить потребление жиров животного происхождения."

В солёных, копчёных и консервированных продуктах могут содержаться различные канцерогенные вещества. Есть основания предполагать, что нитрозоамины, а также их предшественники (нитраты, нитриты) в пище связаны с повышенным риском рака пищевода и желудка. Повышенный риск рака желудка наблюдается среди людей, потребляющих много соли.

Совет 2. Питайтесь здоровой и разнообразной пищей.

Старайтесь максимально разнообразить свой рацион пищей растительного происхождения. Каждый день съедайте пять или более порций фруктов и овощей.

Ограничьте потребление жиров. Ешьте лёгкую и постную пищу, особенно избегайте жирной пищи животного происхождения.

Ограничение потребления копчёной и нитрит-содержащей пищи.

Здоровая пища не исключает вероятность заболеть раком, однако она может значительно сократить риск заболевания.

Ионизирующая радиация.

Умеренная дозированная солнечная радиация вызывает отложение пигмента меланина (загар), благоприятно влияет на функциональное состояние нервной системы, повышает устойчивость к действию солнечной радиации, улучает обменные процессы. Всё это совершенствует деятельность внутренних органов, повышает работоспособность мышц, усиливает сопротивляемость организма заболеваниям.

Однако в стремлении лучше загореть многие остаются на солнце недопустимо долго, что приводит к перегреву, ожогам кожи и тепловым ударам. Следует помнить, что злоупотребление солнечными ваннами может вызвать серьёзные нарушения в организме.

Вот почему, начиная принимать солнечные закаливающие процедуры, необходимо строго соблюдать постепенность и последовательность в наращивании дозировок облучения, учитывая при этом состояние здоровья, возраст, физическое развитие, климатические и радиационные условия солнцестояния и другие факторы.

Неумеренное солнечное облучение, особенно с 11 до 16 ч., обостряет такие хронические заболевания, как туберкулёз, заболевания женских половых органов, вызывает стремительное старение кожи и способствует возникновению онкологических заболеваний, преимущественно рака кожи.

Количество нарушений ещё более увеличивается в годы так называемого активного солнца, а также на территориях с утончённым озоновым слоем над ними.

Данные экспериментальных и эпидемиологических исследований показали, что ультрафиолетовое излучение является канцерогенным для человека и приводит к развитию базалиомы, плоскоклеточного рака и меланомы кожи.

Основным компонентом атмосферы, который защищает нас от чрезмерной ультрафиолетовой радиации, является озон, который поглощает биологически активное солнечное ультрафиолетовое излучение. Исчезновение озона может привести к увеличению количества ультрафиолетовой В радиации, достигающей поверхности земли, и, как следствие, к увеличению частоты рака кожи.

Совет 3. Для профилактики всех форм злокачественных опухолей кожи, необходимо избегать длительного нахождения на солнце, особенно между 11 и 16 часами, когда активность наиболее опасного, с точки зрения канцерогенеза, спектра солнечных лучей наиболее высока, а если всё же это необходимо, старайтесь держаться в тени.

Закрывайте открытые части тела. Носите просторную одежду светлого цвета, она защищает от солнечных лучей.

Используйте кремы широкого спектра, имеющие солнцезащитный фактор не менее 15.

Рентгеновские лучи и радиоактивные вещества в определенных условиях оказывают канцерогенное действие и, пока это не выяснилось, многие рентгенологи заболевали раком. Такая связь была выявлена только в 1930-х годах, когда обнаружилась высокая частота рака костей (остеосаркомы) среди рабочих, покрывавших циферблаты часов радием.

Позднее было показано, что среди тех, кто пережил атомные бомбардировки в Японии возросла частота лейкозов и других видов рака (в том числе рака щитовидной, молочных и слюнных желёз). Риск развития рака щитовидной железы в молодые годы возрастает и у тех, кто перенёс в детстве облучение тимуса и нижней части шеи.

После аварии Чернобыльской АЭС отмечено резкое увеличение заболеваемости раком щитовидной железы у людей, проживающих в зараженной зоне.

Учёные установили, что мобильная связь, как и любой другой источник вредного электромагнитного излучения (компьютер, телевизор, микроволновая печь или радиотелефон), является биологически активной, т.е. влияет на здоровье человека. Причём, по мнению медиков, это влияние имеет “отрицательную направленность”. Исследования, проведённые учёными Норвегии и Дании показали, что пользователи сотовой связи чаще других жалуются на головные боли, сонливость, становятся раздражительными. Все эти признаки характерны для вегето-сосудистой дистонии. Кроме того, под воздействием вредных электромагнитных полей, которые генерирует мобильный телефон, в организме возникает так называемая реакция напряжения иммунной системы. По словам врачей, от этого может снизиться сопротивляемость организма болезням и прочим вредным внешним воздействиям. Если вы пользуетесь мобильным телефоном как обычным домашним телефоном, то есть неограниченное время, ваш иммунитет находится под серьёзной угрозой. В Америке в начале 90-х годов был выигран весьма необычный процесс. Адвокатам удалось доказать, что причиной смерти женщины, страдавшей от опухоли головного мозга, был именно вред мобильного телефона.

В отличие от других приборов, мобильный телефон в момент работы находится в непосредственной близости от мозга и глаз. Кроме того, среди технических средств (например, компьютер, телевизор или радиотелефон) нет таких, которые могли бы сравниться с вредом мобильного телефона по уровню воздействующего на человека электромагнитного излучения.

Радиочастотные электромагнитные поля (в том числе от сотовых телефонов) «вероятно канцерогенные для человека» - таков точный вывод международной группы экспертов, проанализировавшей и обобщившей результаты сотен научных исследований в данной области.

Совет 4. А пока эксперты ВОЗ советуют по возможности сокращать степень воздействия сотового телефона на мозг - применять гарнитуру hands-free, заменять разговор набором SMS, просто меньше болтать.

Другой источник вредного электромагнитного излучения, широко используемый в настоящее время в быту, - микроволновая печь.

Более 90% современных домов имеют микроволновые печи. Приготовление пищи в них очень удобно, быстро, они экономичны с точки зрения потребления энергии. Большинство людей даже не задумываются о безопасности пищи, приготовленной в микроволновой печи для здоровья человека.

Кому выгодно, пишут, что они полезны, кому не очень - пишут наоборот.

Сейчас появились исследования, которые доказывают, что приготовление пищи в микроволновых печах не естественно, не полезно, не здорово и намного опаснее, чем мы можем себе представить.

Микроволны «бомбят» молекулы воды в пище, заставляя их вращаться с частотой в миллионы раз в секунду, создавая молекулярное трение, которое и нагревает еду. Это трение наносит значительный ущерб молекулам пищи, разрывая или деформируя их.

С медицинской точки зрения, считается, что введение в человеческий организм молекул подвергшихся воздействию микроволн, имеет гораздо больше шансов причинить вред, чем пользу.

Проведённое краткосрочное исследование показало, что у людей, употреблявших приготовленные в микроволновой печи молоко и овощи, изменился состав крови, понизился гемоглобин и лимфоциты, повысился холестерин, тогда как у людей, употреблявших ту же пищу, но приготовленную традиционным способом, состояние организма не менялось.

Микроволновка разрушает живую структуру пищи, делая её по вкусу подобной натуральной, но по свойствам мертвой, совершенно бесполезной, а если говорить ещё более точно, то просто вредной, потому что бесполезная для организма пища является просто шлаком, токсином отравляющим организм.

Особенно должны быть осторожны молодые мамы и папы. Питание, которое они дают малышам: детские формулы, отцеженное грудное молоко, которое мамы оставляют в холодильнике, нельзя (!) подогревать в микроволновой печи.

Некоторые из аминокислот L-пролина, входящие в состав молока матери, а также в молочные смеси для детей, под воздействием микроволн преобразуются в d-изомеры, которые, считаются нейротоксичными (деформируют нервную систему) и нефротоксичными (ядовитыми для почек). Это беда, что многих детей вскармливают на искусственных заменителях молока (детское питание), которые становятся ещё более токсичными с помощью микроволновых печей.

Очень опасно когда через микроволновую печь проходит пища в пакетах, как например пицца, жареный замороженный картофель, popcorn, рыбное филе в сухаря и другие продукты, потому что токсичные молекулы пластиковых пакетов при этом входят в пищу.

Кроме того, размораживание замороженных фруктов в микроволновой печи превращает их глюкозиды и галактозиды в частицы, содержащие канцерогенные элементы. Даже очень короткое облучение в микроволновой печи сырых овощей превращает их алкалоиды в канцерогены; уменьшается ценность пищи от 60% до90%.

И ещё, омега3 жирные кислоты, содержащиеся в рыбе, морепродуктах и некоторых растениях, после микроволновки уже такими не являются!

Исчезает биологическая активность витамина В, витаминов С и Е, многих минералов.

Совет 5. Выбирайте сами - либо здоровье на долгие годы, либо болезни, полученные по большому счёту, просто из-за собственной лени и невнимательности в отношении к самому себе!

Вирусы

В 1910 было доказано, что некоторые виды рака у животных вызываются вирусами, но роль вирусов как причины рака у человека была подтверждена лишь в начале 1980-х годов. Этот рак в США встречается относительно редко, но в мире (особенно в ряде стран Африки и Азии) им ежегодно заболевает четверть миллиона человек. Причиной ряда лимфом и саркомы Капоши (одного из видов кожного рака) является вирус иммунодефицита человека (ВИЧ, возбудитель СПИДа). Рост инфицированности этим вирусом приводит к увеличению частоты таких видов рака.

В настоящий момент доказано, что некоторые инфекции могут влиять на развитие злокачественных заболеваний:

Главной причиной рака печени во всем мире является хроническая инфекция вирусом гепатита В;

Папилломавирус человека может вызвать рак шейки матки;

Вирус Эпштейна-Барра - лимфому Беркитта;

Хеликобактер Пилори - рак желудка;

Шистосома - рак матки, яичек, мочевого пузыря;

Описторхис - рак печени, желчного пузыря, поджелудочной железы.

Однако эти возбудители вызывают злокачественные изменения только при определённых условиях.

Хеликобактер Пилори живёт в желудках 90% людей, но только у единиц существует угроза рака.

Например, рак шейки матки развивается только под влиянием некоторых серотипов папилломавируса, на фоне ослабленного иммунитета и хронических инфекций.

Методом эффективной профилактики заболеваний, вызываемых вируса папилломы человека (ВПЧ), а значит, предотвращения онкологических заболеваний репродуктивной сферы, является вакцинация. По заявлению экспертов Международной ассоциации против рака (IARC): «Вакцина против ВПЧ является вакциной против рака».

В настоящее время зарегистрированы две вакцины против ВПЧ - квадривалентная Гардасил и бивалентная Церварикс (обе вакцины импортные). Клинические исследования показали, что вакцины высокоэффективны.

Вакцинация против ВПЧ включена в программу профилактики онкологической заболеваний во многих странах Европейского Союза и Северной Америки. К сожалению, в России можно получить прививку только в очень немногих центрах.

В России прививка от ВПЧ в Национальный календарь прививок не входит, но в некоторых регионах запущены программы бесплатной вакцинации девочек 12-13 лет за счёт средств федерального бюджета. Бесплатно сделать прививку от ВПЧ можно в некоторых медицинских учреждениях Москвы и ряда областей.

Для профилактики инфицирования вирусом гепатита В применяют вакцины от гепатита В (Энджерикс В, Комбиотех, Эувакс и др.).

Совет 6. Посоветуйтесь с врачом и сделайте прививки.

Наследственные факторы

Ряд опухолей чаще встречается в определенных семьях, но наследование чётко установлено лишь для очень небольшого числа видов рака. Эти раковые заболевания относятся к довольно редким; среди них наиболее распространён множественный полипоз толстого кишечника, при котором происходит постепенное злокачественное перерождение многочисленных полипов. Рак молочных желёз часто встречается среди ближайших родственников больной (сестёр, матери, дочерей). Явно наследственный характер имеет медуллярный рак щитовидной железы. Наследственный фактор вносит значительный вклад в общую распространенность таких детских опухолей, как ретинобластома и опухоль Вильмса (злокачественная опухоль почки).

Прочие факторы

Известно, что рак может вызываться некоторыми профессиональными вредностями, но с ними связано менее 5% общего числа раковых заболеваний. Асбестоз вызывает рак лёгких и мезотелиому - опухоль, развивающуюся из мезотелия, локализующуюся в большинстве случаев на плевре, реже брюшине, перикарде.

К другим канцерогенным веществам, загрязняющим воздух, относятся полициклические ароматические углеводороды (ПАУ), хром, мышьяк, бериллий, бензин, ароматические амины, бензол, формальдегид, и т.д. В качестве индикатора загрязнения воздуха ПАУ принят бенз(а)пирен (БП). Основными источниками загрязнения атмосферного воздуха являются предприятия металлургической, коксохимической, нефтеперерабатывающей и алюминиевой промышленности, а также ТЭЦ и автомобильный транспорт.

Каждый работник предприятия, а также лица, вновь поступающие на работу, которые могут подвергнуться воздействию производственного канцерогенного фактора подлежат предварительным (при поступлении на работу), а также периодическим медицинским осмотрам.

| Полиомиелит – угроза для детей!
  • 08.07.2013 | Памятка для населения по профилактике энтеровирусной инфекции
  • 27.06.2013 | Лихорадка Западного Нила
  • 20.06.2013 | О вступлении в силу технического регламента Таможенного союза «О безопасности пищевой продукции»
  • 15.05.2013 | Всемирный день без табака 31 мая 2013 г.
  • 08.05.2013 | Вакцинация против полиомиелита – единственная эффективная мера профилактики
  • 29.04.2013 |
  • Канцерогенные вещества – химические соединения, способные при воздействии на организм человека вызывать рак и др. заболевания (злокачественные опухоли), а также доброкачественные новообразования.

    В настоящее время под канцерогенными подразумеваются химические, физические и биологические агенты природного и антропогенного происхождения, которые способны при определенных условиях индуцировать рак у животных и человека. Наиболее широко распространены канцерогенные вещества химической природы, действующие в виде однородных соединений или в составе более или менее сложных химических продуктов. По своему происхождению, химической структуре, длительности периода воздействия на человека и распространенности они очень разнообразны. Соединения, относящиеся категории «природных» канцерогенов, хотя и многочисленны, но имеют ограниченное распространение (например, эндемические районы с высоким содержанием мышьяка в почве и воде) и, в основном, относительно низкие уровни содержания в окружающей среде.

    Общую онкогенную «нагрузку» на живые организмы определяет фоновый уровень канцерогенов. Фоновое содержание канцерогенов слагается из естественного (природного) их содержания, связанного с жизнедеятельностью организмов, абиогенных и антропогенных загрязнений. Фон — понятие региональное, его колебания, в первую очередь, зависят от близости к источникам загрязнения среды, связанным с хозяйственной деятельностью человека. Оценить все формирующие фон слагающие вряд ли возможно.

    Канцерогенность - свойства некоторых химических, физических и биологических факторов самостоятельно или в комплексе с др. факторами вызывать или содействовать развитию злокачественных новообразований. Подобные факторы называются канцерогенными, а процесс возникновения опухолей в результате их воздействия - канцерогенезом. Различаются канцерогенные факторы прямого действия, которые при определенном дозо-экспозиционном воздействии вызывают развитие злокачественных новообразований, и так называемые модифицирующие факторы, которые не обладают собственной канцерогенной активностью, но способны усиливать или ослаблять канцерогенез. Количество модифицирующих факторов существенно превышает число прямых канцерогенных агентов, их воздействие на организм человека может различаться по величине и направленности.

    Канцерогенные факторы, воздействие которых связано с профессиональной деятельностью, называются производственными канцерогенами или канцерогенными производственными факторами (КПФ). Впервые роль производственных канцерогенов была описана англ. исследователем П. Поттом (Pott; 1714-1788) в 1775 г. на примере развития рака половых органов среди лондонских трубочистов в результате воздействия на кожу сажи и высоких температур в процессе работы. В 1890 г. в Германии были зарегистрированы онкологические заболевания мочевого пузыря среди работников красильной фабрики. В дальнейшем было изучено и определено канцерогенное воздействие нескольких десятков химических, физических и биологических производственных факторов на организм работника. Выявление КПФ основано на проведении эпидемиологических, клинических, экспериментальных и иных исследований.

    Международным агентством по изучению рака (МАИР) разработан ряд критериев по степени доказательности уровня канцерогенности различных факторов или агентов, что позволило разделить все канцерогены, включая производственные, на классификационные группы.

    Агент, комплекс агентов или факторы внешнего воздействия:

    группа 1 являются канцерогенными для людей;

    группа 2а являются вероятно канцерогенными для людей;

    группа 2 являются возможно канцерогенными для людей;

    группа 3 не классифицируются как канцерогенные для людей;

    группа 4 являются вероятно не канцерогенными для людей.

    В настоящее время в качестве химических профессиональных канцерогенов в соответствии с указанной классификацией установлены 22 химических вещества (не включая пестициды и некоторые лекарственные средства, обладающие канцерогенными свойствами) и ряд производств, их применяющих, которые входят в 1-ю классификационную группу. К ним относятся 4-аминобифенил, асбест, бензол, бензидин, бериллий, дихлорметиловый эфир, кадмий, хром, никель и их компоненты, угольная смола, этиленоксид, минеральные масла, древесная пыль и др. Эти вещества применяют в резиновом и деревообрабатывающем производстве, а также в производстве стекла, металлов, пестицидов, изоляционных и фильтрующих материалов, текстиля, растворителей, топлива, красок, лабораторных реактивов, строительных и смазочных материалов и др.

    К группе вероятно канцерогенных для человека (2а) относятся 20 производственных химических агентов, в т. ч. акрилнитрил, красители на основе бензидина, 1,3-бутадиен, креозот, диэтил- и диметилсульфат, формальдегид, кристаллический кремний, стиреноксид, три- и тетрахлорэтилен, винилбромид и винилхлорид, а также связанные с их использованием производства. К группе возможно канцерогенных производственных химических агентов (2б), канцерогенность которых доказана в основном путем экспериментальных исследований на животных, относится большое число веществ, включающих ацетальдегид, дихлорметан, неорганические соединения свинца, хлороформ, четыреххлористый углерод, керамические волокна и др.

    К физическим КПФ относятся радиоактивное, ультрафиолетовое, электрическое и магнитное излучение; к биологическим КПФ - некоторые вирусы (напр., вирусы гепатитов А и С), возбудители инфекционных заболеваний желудочно-кишечного тракта, микотоксины, особенно афлотоксины.

    Между воздействием КПФ и проявлениями онкологического заболевания может пройти 5-10 лет или даже 20-30 лет, в течение которых не исключается воздействие иных канцерогенных факторов, включая экологические, генетические, конституциональные и др. По данным ряда исследователей, доля онкологических заболеваний, на развитие которых основное влияние оказали производственные канцерогены, в общей структуре онкологической заболеваемости колеблется от 4% до 40%. Общепринятым уровнем профессионально обусловленной онкологической заболеваемости в развитых странах считается 2-8% от всех зарегистрированных онкологических заболеваний.

    При условиях работы, включающих воздействие любых КПФ групп 1, 2а и 2б, необходимо проведение профилактики онкологических заболеваний среди работников по нескольким направлениям: снижение воздействия КПФ путем модернизации производства, разработки и реализации дополнительных коллективных и индивидуальных мер защиты; введение системы ограничений допуска к работе с КПФ, сроков работы на данном производстве; проведение постоянного мониторинга состояния здоровья работников канцерогенно опасных работ и производств; принятие мер по оздоровлению работников и своевременное освобождение их от работ с КПФ.

    Происходящий в настоящее время рост заболеваемости злокачественными новообразованиями многие исследователи связывают с повышением уровня загрязнения внешней среды различными химическими и физическими агентам, обладающими канцерогенными свойствами. Принято считать, что до 90% всех случаев рака обусловлено воздействием канцерогенов окружающей среды. Из них 70-80% связывают с воздействием химических и 10% радиационных факторов. Загрязнение окружающей среды канцерогенными веществами носит глобальный характер. Канцерогены обнаруживают не только вблизи мест выбросов, но и далеко за их пределами. Повсеместное присутствие канцерогенов вызывает сомнение в практической возможности изоляции человека от них.

    С ростом индустриализации наблюдается значительное увеличение загрязнения окружающей среды такими канцерогенами, как полициклические ароматические углеводороды (ПАУ), которые образуются в результате повсеместного распространения процессов сжигания и пиролитической переработки топлива и становятся постоянными компонентами атмосферного воздуха, воды и почвы. Эта группа весьма многочисленна. Наиболее известными представителями ее является бенз(а)пирен, 7-12 диметилбенз(а)-антрацен, дибенз(а,Н)антрацен; 3,4-бензфлуоретан, обладающие высокой канцерогенной активностью. Бенз(а)пирен (БП) — одно из самых активных и распространенных в окружающей среде соединений, что дало основание рассматривать его в качестве индикатора группы ПАУ. Возрос и уровень содержания в окружающей среде канцерогенных веществ неорганической природы в связи с широким развитием горнодобывающей промышленности и цветной металлургии, использованием некоторых из них, например, мышьяка, в качестве пестицидов и т.д.

    Таким образом, опасность для здоровья населения от воздействия канцерогенных нитрозосоединений может возникнуть также, как и при других химических канцерогенах, вследствие загрязнения окружающей среды. Однако до сего времени не ясно, могут ли обнаруженные в окружающей среде количества НС вызывать у человека злокачественные новообразования. Высказывается предположение, что канцерогенный эффект может проявляться после многолетнего воздействия малых доз, если одновременно оказывали влияние другие сопутствующие факторы (проматоры).

    Канцерогенные вещества могут осуществлять свое влияние непосредственно на органы и ткани (первично) или путем образования в организме продуктов их превращения (вторично). Несмотря на разнообразие опухолевых реакций, которые могут вызываться канцерогенами у экспериментальных животных и человека (в условиях профессиональной вредности) можно отметить общие особенности, характерные для их действия.

    Во-первых, при воздействии канцерогенных веществ развитие опухоли наблюдается не сразу, а спустя более или менее длительный период после начала действия агента и, следовательно, относится к категории отдаленных эффектов. Продолжительность латентного периода зависит от вида животных и пропорционально общей продолжительности жизни. Например, при применении активных канцерогенов латентный период у грызунов (мышей, крыс) может составлять несколько месяцев, у собак — несколько лет, обезьян — 5-10 лет. Он не является величиной постоянной для одного вида животных: увеличение активности канцерогена ведет к его сокращению, а уменьшение дозы — к удлинению. Рак может развиваться также спустя длительное время после прекращения действия канцерогена, например, в условиях профессиональной вредности через 20-40 лет после контакта с ним.

    Другая особенность действия канцерогенов связана с частотой проявления эффекта. Опыт экспериментальной онкологии показывает, что лишь не многие высокоактивные канцерогенные соединения могут индуцировать новообразования почти у 100% животных. Но даже при таких условиях находятся индивидуумы, нечувствительные к их действию. У человека высока степень поражения может наблюдаться в случаях продолжительного непрерывного контакта с такими сильными профессиональными канцерогенами, как каменноугольный пек, ароматические амины. В большинстве случаев, опухолевая реакция проявляется не у всех, а лишь у некоторых представителей подвергаемой воздействию популяции и носит в известной степени вероятностный характер.

    Среди множества химических соединений, загрязняющих окружающую среду, выделено несколько сот веществ, проявивших в эксперименте на животных канцерогенные свойства. Существует, примерно, два десятка химических соединений, канцерогенность которых доказана для человека.

    В связи с тем, что одним из главных источников образования канцерогенных веществ является производственная сфера, значительное количество исследований посвящено изучению заболеваемости раком в определенных отраслях промышленности и среди различных профессиональных групп.

    К настоящему времени накопилась обширная информация о канцерогенности для человека ряда агентов производственной среды, о степени риска развития рака, обусловленного контактом с ними, а также о приблизительной величине скрытого периода такого развития. В производственных условиях человек контактирует с самыми разнообразными канцерогенными веществами. Среди профессиональных канцерогенов выделяют агенты органической (ароматические углеводороды, алкилирующие агенты и др.) и неорганической (металлы, волокна) природы, а также физические факторы (ионизирующая радиация).

    2. СОСТОЯНИЕ АТМОСФЕРЫ И ТРАНСПОРТ

    Среди всех видов транспорта автомобильный наносит наибольший ущерб окружающей среде. В России в местах повышенного загрязнения воздуха проживает около 64 млн. человек, среднегодовые концентрации загрязнителей воздуха превышают предельно допустимые более чем в 600 городах России.

    Угарный газ и окислы азота, столь интенсивно выделяемые на первый взгляд невинным голубоватым дымком глушителя автомобиля – вот одна из основных причин головных болей, усталости, немотивированного раздражения, низкой трудоспособности. Сернистый газ способен воздействовать на генетический аппарат, способствуя бесплодию и врожденным уродствам, а все вместе эти факторы ведут к стрессам, нервным проявлениям, стремлению к уединению, безразличию к самым близким людям. В больших городах также более широко распространены заболевания органов кровообращения и дыхания, инфаркты, гипертония и новообразования. По расчетам специалистов, «вклад» автомобильного транспорта в атмосферу составляет до 90% по окиси углерода и 70% по окиси азота. Автомобиль также добавляет в почву и воздух тяжелые металлы и другие вредные вещества.

    Основными источниками загрязнения воздушной среды автомобилей являются отработавшие газы ДВС, картерные газы, топливные испарения.

    Двигатель внутреннего сгорания – это тепловой двигатель, в котором химическая энергия топлива преобразуется в механическую работу. По виду применяемого топлива ДВС подразделяют на двигатели, работающие на бензине, газе и дизельном топливе. По способу воспламенения горючие смеси ДВС бывают с воспламенением от сжатия (дизели) и с воспламенением от искровой свечи зажигания.

    Дизельное топливо представляет собой смесь углеводородов нефти с температурами кипения от 200 до 350 0 С. Дизельное топливо должно иметь определенную вязкость и самовоспламеняемость, быть химически стабильным, при сгорании иметь минимальную дымность и токсичность. Для улучшения этих свойств в топлива вводят присадки, антидымные или многофункциональные.

    Образование токсичных веществ – продуктов неполного сгорания и окислов азота в цилиндре двигателя в процессе сгорания происходит принципиально различными путями. Первая группа токсичных веществ связана с химическими реакциями окисления топлива, протекающими как в предпламенный период, так и в процессе сгорания – расширения. Вторая группа токсичных веществ образуется при соединении азота и избыточного кислорода в продуктах сгорания. Реакция образования окислов азота носит термический характер и не связана непосредственно с реакциями окисления топлива. Поэтому рассмотрение механизма образования данных токсичных веществ целесообразно вести раздельно.

    К основным токсичным выбросам автомобиля относятся: отработавшие газы (ОГ), картерные газы и топливные испарения. Отработавшие газы, выбрасываемые двигателем, содержат окись углерода (СО), углеводороды (С Х H Y), окислы азота (NO X), бенз(а)пирен, альдегиды и сажу. Картерные газы – это смесь части отработавших газов, проникшей через неплотности поршневых колец в картер двигателя, с парами моторного масла. Топливные испарения поступают в окружающую среду из системы питания двигателя: стыков, шлангов и т.д. Распределение основных компонентов выбросов у карбюраторного двигателя следующее: отработавшие газы содержат 95% СО, 55% С Х H Y и 98% NO X , картерные газы по – 5% С Х H Y , 2% NO X , а топливные испарения – до 40% С Х H Y .

    В общем случае в составе отработавших газов двигателей могут содержаться следующие нетоксичные и токсичные компоненты: О, О 2 , О 3 , С, СО, СО 2 , СН 4 , C n H m , C n H m О, NO, NO 2 , N, N 2 , NH 3 , HNO 3 , HCN, H, H 2 , OH, H 2 O.

    Основными токсичными веществами – продуктами неполного сгорания являются сажа, окись углерода, углеводороды, альдегиды.

    Таблица 1 – Содержание токсичных выбросов в отработавших газах двигателей

    Компоненты

    Доля токсичного компонента в ОГ ДВС

    Карбюраторные

    Дизельные

    В %

    на 1000л топлива, кг

    в %

    на 1000л топлива, кг

    0,5-12,0

    до 200

    0,01-0,5

    до 25

    NO X

    до 0,8

    до 0,5

    С Х H Y

    0,2 – 3,0

    0,009-0,5

    Бенз(а)пирен

    до 10 мкг/м 3

    Альдегиды

    до 0,2мг/л

    0,001-0,09мг/л

    Сажа

    до 0,04 г/м 3

    0,01-1,1г/м 3

    Вредные токсичные выбросы можно разделить на регламентированные и нерегламентированные. Они действуют на организм человека по-разному. Вредные токсичные выбросы: СО, NO X , C X H Y , R X CHO, SO 2 , сажа, дым.

    СО (оксид углерода) – этот газ без цвета и запаха, более легкий, чем воздух. Образуется на поверхности поршня и на стенке цилиндра, в котором активация не происходит вследствие интенсивного теплоотвода стенки, плохого распыления топлива и диссоциации СО 2 на СО и О 2 при высоких температурах.

    Во время работы дизеля концентрация СО незначительна (0,1…0,2%). У карбюраторных двигателей при работе на холостом ходу и малых нагрузках содержание СО достигает 5…8% из-за работы на обогащенных смесях. Это достигается для того, чтобы при плохих условиях смесеобразование обеспечить требуемое для воспламенения и сгорания число испарившихся молекул.

    NO X (оксиды азота) – самый токсичный газ из ОГ.

    N – инертный газ при нормальных условиях. Активно реагирует с кислородом при высоких температурах.

    Выброс с ОГ зависит от температуры среды. Чем больше нагрузка двигателя, тем выше температура в камере сгорания, и соответственно увеличивается выброс оксидов азота.

    Кроме того, температура в зоне горения (камера сгорания) во многом зависит от состава смеси. Слишком обедненная или обогащенная смесь при горении выделяет меньшее количество теплоты, процесс сгорания замедляется и сопровождается большими потерями теплоты в стенке, т.е. в таких условиях выделяется меньшее количество NO x , а выбросы растут, когда состав смеси близок к стехиометрическому (1 кг топлива к 15 кг воздуха). Для дизельных двигателей состав NO x зависит от угла опережения впрыска топлива и периода задержки воспламенения топлива. С увеличением угла опережения впрыска топлива удлиняется период задержки воспламенения, улучшается однородность топливовоздушной смеси, большее количество топлива испаряется, и при сгорании резко (в 3 раза) увеличивается температура, т.е. увеличивается количество NO x .

    Кроме того, с уменьшением угла опережения впрыска топлива можно существенно снизить выделение оксидов азота, но при этом значительно ухудшаются мощностные и экономические показатели.

    Гидроводороды (С x Н y) — этан, метан, бензол, ацетилен и др. токсичные элементы. ОГ содержат около 200 разных гидроводородов.

    В дизельных двигателях С x Н y образуются в камере сгорания из-за гетерогенной смеси, т.е. пламя гаснет в очень богатой смеси, где не хватает воздуха за счет неправильной турбулентности, низкой температуры, плохого распыления. ДВС выбрасывает большее количество С x Н y , когда работает в режиме холостого хода, за счет плохой турбулентности и уменьшения скорости сгорания.

    Дым — непрозрачный газ. Дым может быть белым, синим, черным. Цвет зависит от состояния ОГ.

    Белый и синий дым — это смесь капли топлива с микроскопическим количеством пара; образуется из-за неполного сгорания и последующей конденсации.

    Белый дым образуется, когда двигатель находится в холодном состоянии, а потом исчезает из-за нагрева. Отличие белого дыма от синего определяется размером капли: если диаметр капли больше длины волны синего цвета, то глаз воспринимает дым как белый.

    К факторам, определяющим возникновение белого и синего дыма, а также его запах в ОГ, относятся температура двигателя, метод образования смеси, топливные характеристики (цвет капли зависит от температуры ее образования: при увеличении температуры топлива дым приобретает синий цвет, т.е. уменьшается размер капли).

    Кроме того, бывает синий дым от масла.

    Наличие дыма показывает, что температура недостаточна для полного сгорания топлива.

    Черный дым состоит из сажи.

    Дым отрицательно влияет на организм человека, животных и растительность.

    Сажа — представляет собой бесформенное тело без кристаллической решетки; в ОГ дизельного двигателя сажа состоит из неопределенных частице с размерами 0,3… 100 мкм.

    Причина образования сажи заключается в том, что энергетические условия в цилиндре дизельного двигателя оказываются достаточными, чтобы молекула топлива разрушилась полностью. Более легкие атомы водорода диффундируют в богатый кислородом слой, вступают с ним в реакцию и как бы изолируют углеводородные атомы от контакта с кислородом.

    Образование сажи зависит от температуры, давления в камере сгорания, типа топлива, отношения топливо-воздух.

    Количество сажи зависит от температуры в зоне сгорания.

    Существуют другие факторы образования сажи — зоны обогащенной смеси и зоны контакта топлива с холодной стенкой, а также неправильная турбуленция смеси.

    Скорость сжигания сажи зависит от размера частиц, например, сажа сжигается полностью при размере частиц меньше 0,01 мкм.

    SO 2 (оксид серы) — образуется во время работы двигателя из топлива, получаемого из сернистой нефти (особенно в дизелях); эти выбросы раздражают глаза, органы дыхания.

    SO 2 ,H 2 S — очень опасны для растительности.

    Главным загрязнителем атмосферного воздуха свинцом в Российской Федерации в настоящее время является автотранспорт, использующий этилированный бензин: от 70 до 87 % общей эмиссии свинца по различным оценкам. РЬО (оксиды свинца) — возникают в ОГ карбюраторных двигателей, когда используется этилированный бензин, чтобы увеличить октановое число для уменьшения детонации (это очень быстрое, взрывное сгорание отдельных участков рабочей смеси в цилиндрах двигателя со скоростью распространения пламени до 3000 м/с, сопровождающееся значительным повышением давления газов). При сжигании одной тонны этилированного бензина в атмосферу выбрасывается приблизительно 0,5… 0,85 кг оксидов свинца. По предварительным данным, проблема загрязнения окружающей среды свинцом от выбросов автотранспорта становится значимой в городах с населением свыше 100 000 человек и для локальных участков вдоль автотрасс с интенсивным движением. Радикальный метод борьбы с загрязнением окружающей среды свинцом выбросами автомобильного транспорта — отказ от использования этилированных бензинов. По данным 1995г. 9 из 25 нефтеперерабатывающих заводов России перешли на выпуск неэтилированных бензинов. В 1997 году доля неэтилированного бензина в общем объеме производства составила 68%. Однако, из-за финансовых и организационных трудностей полный отказ от производства этилированных бензинов в стране задерживается.

    Альдегиды (R x CHO) — образуются, когда топливо сжигается при низких температурах или смесь очень бедная, а также из-за окисления тонкого слоя масла в стенке цилиндра.

    При сжигании топлива при высоких температурах эти альдегиды исчезают.

    Загрязнение воздуха идет по трем каналам: 1)ОГ, выбрасываемые через выхлопную трубу (65%); 2)картерные газы (20%); 3)углеводороды в результате испарения топлива из бака, карбюратора и трубопроводов (15%).

    Каждый автомобиль выбрасывает в атмосферу с отработавшими газами около 200 различных компонентов. Самая большая группа соединений — углеводороды. Эффект падения концентраций атмосферных загрязнений, то есть приближение к нормальному состоянию, связан не только с разбавлением выхлопных газов воздухом, но и со способностью самоочищения атмосферы. В основе самоочищения лежат различные физические, физико-химические и химические процессы. Выпадение тяжелых взвешенных частиц (седиментация) быстро освобождает атмосферу только от Грубых частиц. Процессы нейтрализации и связывания газов в атмосфере проходят гораздо медленнее. Значительную роль в этом играет зеленая растительность, поскольку между растениями идет интенсивный газообмен. Скорость газообмена между растительным миром в 25 — 30 раз превышает скорость газообмена между человеком и ОС в расчете на единицу массы активно функционирующих органов. Количество атмосферных осадков оказывает сильное влияние на процесс восстановления. Они растворяют газы, соли, адсорбируют и осаждают на земную поверхность пылевидные частицы.

    Автомобильные выбросы распространяются и трансформируются в атмосфере по определенным закономерностям.

    Так, твердые частицы размером более 0,1 мм оседают на подстилающих поверхностях в основном из-за действия гравитационных сил.

    Частицы, размер которых менее 0,1 мм, a также газовые примеси в виде CO, С Х Н У, NO X , SO X распространяются в атмосфере под воздействием процессов диффузии. Они вступают в процессы физико-химического взаимодействия между собой и с компонентами атмосферы, и их действие проявляется на локальных территориях в пределах определенных регионов.

    В этом случае рассеивание примесей в атмосфере является неотъемлемой частью процесса загрязнения и зависит от многих факторов.

    Степень загрязнения атмосферного воздуха выбросами объектов АТК зависит от возможности переноса рассматриваемых загрязняющих веществ на значительные расстояния, уровня их химической активности, метеорологических условий распространения.

    Компоненты вредных выбросов с повышенной реакционной способностью, попадая в свободную атмосферу, взаимодействуют между собой и компонентами атмосферного воздуха. При этом различают физическое, химическое и фотохимическое взаимодействия.

    Примеры физического реагирования: конденсация паров кислот во влажном воздухе с образованием аэрозоля, уменьшение размеров капель жидкости в результате испарения в сухом теплом воздухе. Жидкие и твердые частицы могут объединяться, адсорбировать или растворять газообразные вещества.

    Реакции синтеза и распада, окисления и восстановления осуществляются между газообразными компонентами загрязняющих веществ и атмосферным воздухом. Некоторые процессы химических преобразований начинаются непосредственно с момента поступления выбросов в атмо-сферу, другие — при появлении для этого благоприятных условий — необходимых реагентов, солнечного излучения, других факторов.

    При выполнении транспортной работы существенным является выброс соединений углерода в виде CO и С Х Н У.

    Моноксид углерода в атмосфере быстро диффундирует и обычно не создает высокой концентрации. Его интенсивно поглощают почвенные микроорганизмы; в атмосфере он может окисляться до СО 2 при наличии примесей — сильных окислителей (О,Оз), перекисных соединений и свободных радикалов.

    Углеводороды в атмосфере подвергаются различным превращениям (окислению, полимеризации), взаимодействуя с другими атмосферными загрязнениями, прежде всего под действием солнечной радиации. В результате этих реакций образуются перекиси, свободные радикалы, соединения с оксидами азота и серы.

    В свободной атмосфере сернистый газ (SО2) через некоторое время окисляется до сернистого ангидрида (SОз) или вступает во взаимодействие с другими соединениями, в частности углеводородами. Окисление сернистого ангидрида в серный происходит в свободной атмосфере при фотохимических и каталитических реакциях. В обоих случаях конечным продуктом является аэрозоль или раствор серной кислоты в дождевой воде.

    B сухом воздухе окисление сернистого газа происходит крайне медленно. В темноте окисления SO 2 не наблюдается. При наличии в воздухе оксидов азота скорость окисления сернистого ангидрида увеличивается независимо от влажности воздуха.

    Сероводород и сероуглерод при взаимодействии с другими загрязнителями подвергаются в свободной атмосфере медленному окислению до серного ангидрида. Сернистый ангидрид может адсорбироваться на поверхности твердых частиц из окислов металлов, гидрооксидов или карбонатов и окисляться до сульфата.

    Соединения азота, поступающие в атмосферу от объектов АТК, представлены в основном NO и NO 2 . Выделяемый в атмосферу моноксид азота под воздействием солнечного света интенсивно окисляется атмосферным кислородом до диоксида азота. Кинетика дальнейших превращений диоксида азота определяется его способностью поглощать ультрафиолетовые лучи и диссоциировать на моноксид азота и атомарный кислород в процессах фотохимического смога.

    Фотохимический смог — это комплексная смесь, образующаяся при воздействии солнечного света из двух основных компонентов выбросов автомобильных двигателей — NO и углеводородных соединений. Другие вещества (SO 2), твердые частицы также могут участвовать в смоге, но не являются основными носителями высокого уровня окислительной активности, характерной для смога. Стабильные метеорологические условия благоприятствуют развитию смога:

    – городские эмиссии удерживаются в атмосфере в результате инверсии;

    – служащей своеобразной крышкой на сосуде с реактивами;

    – увеличивая продолжительность контакта и реакции,

    – препятствуя рассеиванию (новые эмиссии и реакции добавляются к первоначальным).


    Рис. 1. Образование фотохимического смога

    Формирование смога и образование оксиданта обычно останавливается при прекращении солнечной радиации в темное время суток и дисперсии реагентов и продуктов реакции.

    В Москве при обычных условиях концентрация тропосферного озона, который является предвестником образования фотохимического смога, достаточно низкая. Оценки показывают, что генерация озона из оксидов азота и углеводородных соединений вследствие переноса воздушных масс и повышение его концентрации, и следовательно, неблагоприятное воздействие происходит на расстоянии 300-500 км от Москвы (в районе Нижнего Новгорода).

    Помимо метеорологических факторов самоочищения атмосферы некоторые компоненты вредных выбросов автомобильного транспорта участвуют в процессах взаимодействия с компонентами воздушной среды, результатом которых является возникновение новых вредных веществ (вторичные атмосферные загрязнители). Загрязнители вступают с компонентами атмосферного воздуха в физическое, химическое и фотохимическое взаимодействия.

    Многообразие продуктов выхлопов автомобильных двигателей может быть классифицировано по группам, сходным по характеру воздействия на организмы или химической структуре и свойствам:

      нетоксичные вещества: азот, кислород, водород, водяной пар и углекислый газ, содержание которых в атмосфере в обычных условиях не достигает уровня, вредного для человека;

      2) моноксид углерода, наличие которого характерно для выхлопов бензиновых двигателей;

      3) оксиды азота (~ 98% NО,~ 2% NO 2), которые по мере пребывания в атмосфере соединяются с кислородом;

      4) углеводороды (алкаин, алкены, алкадиены, цикланы, ароматические соединения);

      5) альдегиды;

      6) сажа;

      7) соединения свинца.

      8) серистый ангидрид.

      Чувствительность населения к действию загрязнения атмосферы зависит от большого числа факторов, в том числе от возраста, пола, общего состояния здоровья, питания, температуры и влажности и т.д. Лица пожилого возраста, дети, больные, курильщики, страдающие хроническим бронхитом, коронарной недостаточностью, астмой, являются более уязвимыми.

      Общая схема реакции организма на воздействие загрязнителей ОС по данным Всемирной организации здравоохранения (ВОЗ) имеет следующий вид (рисунок 2)


      Проблема состава атмосферного воздуха и его загрязнения от выбросов автотранспорта становится все более актуальной.

      Среди факторов прямого действия (все, кроме загрязнения окружающей среды) загрязнение воздуха занимает, безусловно, первое место, поскольку воздух – продукт непрерывного потребления организма.

      Дыхательная система человека имеет ряд механизмов, помогающих защитить организм от воздействия загрязнителей воздуха. Волоски в носу отфильтровывают крупные частицы. Липкая слизистая оболочка в верхней части дыхательного тракта захватывает мелкие частицы и растворяет некоторые газовые загрязнители. Механизм непроизвольного чихания и кашля удаляет загрязненные воздух и слизь при раздражении дыхательной системы.

      Тонкие частицы представляют наибольшую опасность для здоровья человека, так как способны пройти через естественную защитную оболочку в легкие. Вдыхание озона вызывает кашель, одышку, повреждает легочные ткани и ослабляет иммунную систему.

      3. ЗАДАНИЕ

      Экологические факторы, оказывающие наибольшее влияние на численность современных пресмыкающихся:
      ОСНОВНЫЕ РЕШЕНИЯ, ПРИНЯТЫЕ НА КОНФЕРЕНЦИИ ООН ПО ОКРУЖАЮЩЕЙ СРЕДЕ, СОСТОЯЩЕЙ В ИЮНЕ 1992 ГОДА В РИО-ДЕ-ЖАНЕЙРО ПЕРЕЧИСЛИТЕ ОСНОВНЫЕ ПРИНЦИПЫ ОХРАНЫ ОКРУЖАЮЩЕЙ СРЕДЫ ТЕХНОГЕННЫЕ СИСТЕМЫ И ИХ ВЗАИМОДЕЙСТВИЕ С ОКРУЖАЮЩЕЙ СРЕДОЙ