Главная · Паразиты в организме · Строение сосудистой стенки. Типы кровеносных сосудов, особенности строения, значение

Строение сосудистой стенки. Типы кровеносных сосудов, особенности строения, значение

Кровеносные сосуды - эластичные трубки, по которым кровь транспортируется ко всем органам и тканям, а затем снова собирается к сердцу. Изучением кровеносных сосудов, наряду с лимфатическими, занимается раздел медицины - ангиология. Кровеносные сосуды образуют: а) макроциркуляторне русло - это артерии и вены, по которым кровь движется от сердца к органам и возвращается к сердцу; б) микроциркуяяторне русло - включает в себя капилляры, артериолы и венулы, расположенные в органах, которые обеспечивают обмен веществ между кровью и тканями.

Артерии - кровеносные сосуды, по которым кровь движется от сердца к органам и тканям. Стенки артерий имеют три слоя:

внешний слой построен из рыхлой соединительной ткани, в нем проходят нервы, регулирующие расширение и сужение сосудов;

средний слой состоит из гладкомышечной оболочки и эластичных волокон (благодаря сокращению или расслаблению мышц может меняться просвет сосудов, регулируя течение крови, а эластичные волокна придают сосудам упругости)

внутренний слой - образован особой соединительной тканью, клетки которой имеют очень гладкие оболочки, не препятствуют движению крови.

В зависимости от диаметра артерий, в них меняется и строение стенки, поэтому выделяют три типа артерий: эластичного (например, аорта, легочный ствол), мышечного (артерии органов) и смешанного, или мышечно-эластичного (например, сонная артерия) типа.

Капилляры - мельчайшие кровеносные сосуды, которые соединяют между собой артерии и вены и обеспечивают обмен веществ между кровью и тканевой жидкостью. Их диаметр - около 1 мкм, общая поверхность всех капилляров тела составляет 6300 м2. Стенки состоят из одного слоя плоских эпителиальных клеток - эндотелия. Эндотелий - это внутренний слой плоских, вытянутых в длину клеток с неровными волнистыми краями, которым выстланы капилляры, а также все другие сосуды и сердце. Эндотелиоциты производят ряд физиологически активных веществ. Среди них - оксид азота, вызывает расслабление гладких миоцитов, вызывая этим расширение сосудов. В органах капилляры обеспечивают микроциркуляцию крови и образуют сетку, но могут формировать и петли (например, в сосочках кожи), а также клубочки (например, в нефронах почек). Различные органы имеют разный уровень развития капиллярной сетки. Например, в коже на 1 мм2 есть 40 капилляров, а в мышцах - около 1000. Значительное развитие капиллярной сетки имеет серое вещество органов ЦНС, эндокринные железы, скелетные мышцы, сердце, жировая ткань.

Вены - кровеносные сосуды, по которым кровь движется от органов и тканей к сердцу. Они имеют такое же строение стенок, как и артерии, но тонкие и менее эластичные. В средних и некоторых крупных венах есть полулунные клапаны, обеспечивающие течение крови только в одном направлении. Вены являются мышечные (полые) и безмьязови (сетчатки глаза, костей). Движения крови по венам к сердцу способствуют всасывающая действие сердца, растяжение полых вен в грудной полости при вдыхании воздуха, наличие клапанного аппарата.

Сравнительная характеристика сосудов

признаки

артерии

капилляры

вены

строение

Толстые стенки из 3 слоев. отсутствие клапанов

Стенки из одного слоя плоских клеток

Тонкие стенки из 3 слоев Наличие клапанов

Движение крови от сердца

Обмен веществ между кровью и тканями

Движение крови к сердцу

скорость крови

Около 0,5 м / с

Около 0,5 мм / с

Около 0,2 м / с

давление крови

До 120 мм рт. ст.

До 20 мм рт. ст.

От 3-8 мм рт. ст. и ниже

Строение и свойства стенок сосудов зависят от функций, выполняемых сосудами в целостной сосудистой системе человека. В составе стенок сосудов выделяют внутреннюю (интима ), среднюю (медиа ) и наружную (адвентиция ) оболочки.

Все кровеносные сосуды и полости сердца изнутри выстланы слоем клеток эндотелия, составляющим часть интимы сосудов. Эндотелий в неповрежденных сосудах образует гладкую внутреннюю поверхность, что способствует снижению сопротивления кровотоку, предохраняет от повреждения и препятствует тромбообразованию. Эндотелиальные клетки участвуют в транспорте веществ через сосудистые стенки и реагируют на механические и другие воздействия синтезом и секрецией сосудоактивных и прочих сигнальных молекул.

В состав внутренней оболочки (интимы) сосудов входит также сеть эластических волокон, особенно сильно развитая в сосудах эластического типа — аорте и крупных артериальных сосудах.

В среднем слое циркулярно располагаются гладкомышечные волокна (клетки), способные сокращаться в ответ на различные воздействия. Таких волокон особенно много в сосудах мышечного типа — конечных мелких артериях и артериолах. При их сокращении происходит увеличение напряжения сосудистой стенки, уменьшение просвета сосудов и кровотока в более дистально расположенных сосудах вплоть до его остановки.

Наружный слой сосудистой стенки содержит коллагеновые волокна и жировые клетки. Коллагеновые волокна увеличивают устойчивость стенки артериальных сосудов к действию высокою давления крови и предохраняют их и венозные сосуды от чрезмерного растяжения и разрыва.

Рис. Строение стенок сосудов

Таблица. Структурно-функциональная организация стенки сосуда

Название

Характеристика

Эндотелий (интима)

Внутренняя, гладкая поверхность сосудов, состоящая преимущественно из одного слоя плоских клеток, основной мембраны и внутренней эластической пластинки

Состоит из нескольких взаимопроникающих мышечных слоев между внутренней и внешней эластичными пластинками

Эластические волокна

Расположены во внутренней, средней и наружной оболочках и образуют относительно густую сеть (особенно в интиме), легко могут быть растянуты в несколько раз и создают эластическое напряжение

Коллагеновые волокна

Расположены в средней и наружной оболочках, образуют сеть, оказывающую растяжению сосуда гораздо большее сопротивление, чем эластические волокна, но, имея складчатое строение, противодействуют кровотоку только в том случае, если сосуд растянут до определенной степени

Гладко-мышечные клетки

Образуют среднюю оболочку, соединены друг с другом и с эластическими и коллагеновымн волокнами, создают активное напряжение сосудистой стенки (сосудистый тонус)

Адвентиция

Является наружной оболочкой сосуда и состоит из рыхлой соединительной ткани (коллагеновых волокон), фибробластов. тучных клеток, нервных окончаний, а в крупных сосудах дополнительно включает мелкие кровеносные и лимфатические капилляры, в зависимости от типа сосудов имеет различную толщину, плотность и проницаемость


Функциональная классификация и виды сосудов

Деятельность сердца и сосудов обеспечивает непрерывное движение крови в организме, перераспределение ее между органами в зависимости от их функционального состояния. В сосудах создается разность давления крови; давление в крупных артериях значительно превышает давление в мелких артериях. Разность давления и обусловливает движение крови: кровь течет из тех сосудов, где давление более высокое, в те сосуды, где давление низкое, от артерий к капиллярам, венам, от вен к сердцу.

В зависимости от выполняемой функции сосуды большого и малого подразделяются на несколько групп:

  • амортизирующие (сосуды эластического типа);
  • резистивные (сосуды сопротивления);
  • сосуды-сфинктеры;
  • обменные сосуды;
  • емкостные сосуды;
  • шунтирующие сосуды (артериовенозные анастомозы).


Амортизирующие сосуды (магистральные, сосуды компрессионной камеры) — аорта, легочная артерия и все отходящие от них крупные артерии, артериальные сосуды эластического типа. Эти сосуды принимают кровь, изгоняемую желудочками под относительно высоким давлением (около 120 мм рт. ст. для левого и до 30 мм рт. ст. для правого желудочков). Эластичность магистральных сосудов создастся хорошо выраженным в них слоем эластических волокон, располагающихся между слоями эндотелия и мышц. Амортизирующие сосуды растягиваются, принимая кровь, изгоняемую под давлением желудочками. Это смягчает гидродинамический удар выбрасываемой крови о стенки сосудов, а их эластические волокна запасают потенциальную энергию, которая расходуется на поддержание артериального давления и продвижение крови на периферию во время диастолы желудочков сердца. Амортизирующие сосуды оказывают небольшое сопротивление кровотоку.

Резистивные сосуды (сосуды сопротивления) — мелкие артерии, артериолы и метартериолы. Эти сосуды оказывают наибольшее сопротивление кровотоку, так как имеют малый диаметр и содержат в стенке толстый слой циркулярно расположенных гладкомышечных клеток. Гладкомышечные клетки, сокращающиеся под действием нейромедиаторов, гормонов и других сосудоактивных веществ, могут резко уменьшать просвет сосудов, увеличивать сопротивление току крови и снижать кровоток в органах или их отдельных участках. При расслаблении гладких миоцитов просвет сосудов и кровоток возрастают. Таким образом, резистивные сосуды выполняют функцию регуляции органного кровотока и влияют на величину артериального давления крови.

Обменные сосуды — капилляры, а также пре- и посткапиллярные сосуды, через которые совершается обмен водой, газами и органическими веществами между кровью и тканями. Стенка капилляров состоит из одного слоя эндотелиальных клеток и базальной мембраны. В стенке капилляров нет мышечных клеток, которые могли бы активно изменить их диаметр и сопротивление кровотоку. Поэтому число открытых капилляров, их просвет, скорость капиллярного кровотока и транскапиллярный обмен изменяются пассивно и зависят от состояния перицитов — гладкомышечных клеток, расположенных циркулярно вокруг прекапиллярных сосудов, и состояния артериол. При расширении артериол и расслаблении перицитов капиллярный кровоток возрастает, а при сужении артериол и сокращении перицитов замедляется. Замедление тока крови в капиллярах наблюдается также при сужении венул.

Емкостные сосуды представлены венами. Благодаря высокой растяжимости вены могут вмещать большие объемы крови и таким образом обеспечивают се своеобразное депонирование — замедление возврата к предсердиям. Особенно выраженными депонирующими свойствами обладают вены селезенки, печени, кожи и легких. Поперечный просвет вен в условиях низкого кровяного давления имеет овальную форму. Поэтому при увеличении притока крови вены, даже не растягиваясь, а лишь принимая более округлую форму, могут вмещать больше крови (депонировать ее). В стенках вен имеется выраженный мышечный слой, состоящий из циркулярно расположенных гладкомышечных клеток. При их сокращении диаметр вен уменьшается, количество депонированной крови снижается и увеличивается возврат крови к сердцу. Таким образом, вены участвуют в регуляции объема крови, возвращающегося к сердцу, влияя на его сокращения.

Шунтирующие сосуды — это анастомозы между артериальными и венозными сосудами. В стенке анастомозирующих сосудов имеется мышечный слой. При расслаблении гладких миоцитов этого слоя происходит открытие анастомозирующего сосуда и снижение в нем сопротивления кровотоку. Артериальная кровь по градиенту давления сбрасывается через анастомозирующий сосуд в вену, а кровоток через сосуды микроциркуляторного русла, включая капилляры, уменьшается (вплоть до прекращения). Это может сопровождаться снижением локального тока крови через орган или его часть и нарушением тканевого обмена. Особенно много шунтирующих сосудов в коже, где артериовенозные анастомозы включаются для снижения отдачи тепла, при угрозе снижения температуры тела.

Сосуды возврата крови в сердце представлены средними, крупными и полыми венами.

Таблица 1. Характеристика архитектоники и гемодинамики сосудистого русла

Кровеносные сосуды представляют замкнутую систему разветвленных трубок разного диаметра, входящих в состав большого и малого кругов кровообращения. В этой системе различают: артерии , по которым кровь течёт от сердца к органам и тканям, вены - по ним кровь возвращается в сердце, и комплекс сосудов микроциркуляторного русла, обеспечивающих наряду с транспортной функцией обмен веществ между кровью и окружающими тканями.

Кровеносные сосуды развиваются из мезенхимы. В эмбриогенезе наиболее ранний период характеризуется появлением многочисленных клеточных скоплений мезенхимы в стенке желточного мешка - кровяных островков. Внутри островка образуются кровяные клетки и формируется полость, а расположенные по периферии клетки становятся плоскими, соединяются между собой при помощи клеточных контактов и формируют эндотелиальную выстилку образующейся трубочки. Такие первичные кровеносные трубочки по мере образования соединяются между собой и формируют капиллярную сеть. Окружающие клетки мезенхимы превращаются в перициты, гладкие мышечные клетки и адвентициальные клетки. В теле зародыша кровеносные капил­ляры закладываются из клеток мезенхимы вокруг щелевидных пространств, заполненных тканевой жидкостью. Когда по сосудам усиливается кровоток, эти клетки становятся эндотелиальными, а из окружающей мезенхимы формируются элементы средней и наружной оболочки.

Сосудистая система обладает очень большой пластичностью . Прежде всего, отмечается значительная изменчивость густоты сосудистой сети, так как в зависимости от потребностей органа в питательных веществах и кислороде в широких пределах колеблется количество приносимой ему крови. Изменение скорости кровотока и кровяного давления ведет к образованию новых сосудов и перестройке имеющихся сосудов. Происходит превращение мелкого сосуда в более крупный с характерными особенностями строения его стенки. Наибольшие изменения возникают в сосудистой системе при развитии окольного, или коллатераль­ного, кровообращения.

Артерии и вены построены по единому плану - в их стенках различают три оболочки: внутреннюю (tunica intima), среднюю (tunica media) и наружную (tunica adventicia). Однако степень развития этих оболочек, их толщина и тканевый состав тесно связаны с функцией, выполняемой сосудом и гемодинамическими условиями (высотой кровяного давления и скоростью кровотока), которые в различных отделах сосудистого русла неодинаковы.

Артерии. По строению стенок различают артерии мышеч­ного, мышечно-эластического и эластического типов.

К артериям эластического типа относятся аорта и легочная артерия. В соответствии с высоким гидростатическим давлением (до 200 мм ртутного столба), создаваемым нагнетательной деятельностью желудочков сердца, и большой скоростью кровотока (0,5 - 1 м/с) у этих сосудов резко выражены упругие свойства, которые обеспечивают прочность стенки при ее растяжении и возвращении в исходное положение, а также способствуют превращению пульсирующего кровотока в постоянный непрерывный. Стенка артерий эластического типа отличается значительной толщиной и наличием большого количества эластических элементов в составе всех оболочек.

Внутренняя оболочка состоит из двух слоев - эндотелиального и подэндотелиального. Эндотелиальные клетки, формирующие сплошную внутреннюю выстилку, имеют различную величину и форму, содержат одно или несколько ядер. В их цитоплазме немногочисленные органеллы и много микрофиламентов. Под эндотелием находится базальная мембрана. Подэндотелиальный слой состоит из рыхлой тонковолокнистой соединительной ткани, в составе которой наряду с сетью эластических волокон присутствуют малодифференцированные клетки звездчатой формы, макрофаги, гладкие мышечные клетки. В аморфном веществе этого слоя, имеющем большое значение для питания стенки, со­держится значительное количество гликозаминогликанов. При повреждении стенки и развитии патологического процесса (атеросклерозе) в подэндотелиальном слое накапливаются липиды (холестерин и его эфиры). Клеточные элементы подэндотелиального слоя играют важную роль в регенерации стенки. На границе со средней оболочкой располагается густая сеть эластических волокон.

Средняя оболочка состоит из многочисленных эластических окончатых мембран, между которыми располагаются косо ориентированные пучки гладких мышечных клеток. Через окна (фенестры) мембран осуществляется внутристеночный транспорт веществ, необходимых для питания клеток стенки. Как мембраны, так и клетки гладкой мышечной ткани окружены сетью эластических волокон, формирующих вместе с волокнами внутренней и наружной оболочек единый каркас, обеспечивающий. высокую эластичность стенки.

Наружная оболочка образована соединительной тканью, в которой преобладают пучки коллагеновых волокон, ориентированных продольно. В этой оболочке расположены и ветвятся сосуды, обеспечивающие питание как наружной оболочки, так и наружных зон средней оболочки.

Артерии мышечного типа . К разным по калибру артериям этого типа относится большинство артерий, доставляющих и регулирующих приток крови к различным частям и органам организма (плечевая, бедренная, селезеночная и др.). При микроскопическом исследовании в стенке хорошо различимы элементы всех трех оболочек (рис. 5).

Внутренняя оболочка состоит из трех слоев: эндотелиального, подэндотелиального и внутренней эластической мембраны. Эндотелий имеет вид тонкой пластинки, состоящей из вытянутых вдоль сосуда клеток с овальными, выступающими в просвет ядрами. Подэндотелиальный слой более развит в круп­ных по диаметру артериях и состоит из клеток звездчатой или веретенообразной формы, тонких эластических волокон и аморфного вещества, содержащего гликозаминогликаны. На границе со средней оболочкой лежит внутренняя эластическая мембрана , хорошо заметная на препаратах в виде блестящей, окрашенной эозином в светло-розовый цвет волнистой полоски. Эта мембрана пронизана многочисленными отверстиями, имею­щими значение для транспорта веществ.

Средняя оболочка построена преимущественно из гладкой мышечной ткани, пучки клеток которой идут по спирали, однако при изменении положения артериальной стенки (растяжении) расположение мышечных клеток может изменяться. Сокращение мышечной ткани средней оболочки имеет значение в регулировании притока крови к органам и тканям в соответствии с их потребностями и поддержании кровяного давления. Между пучками клеток мышечной ткани расположена сеть эластических волокон, которые вместе с эластическими волокнами подэндотелиального слоя и наружной оболочки формируют единый эластический каркас, придающий стенке упругость при ее сдавливании. На границе с наружной оболочкой в крупных артериях мышечного типа имеется наружная эластическая мем­брана, состоящая из плотного сплетения продольно ориентированных эластических волокон. В более мелких артериях эта мембрана не выражена.

Наружная оболочка состоит из соединительной ткани, в которой коллагеновые волокна и сети эластических волокон вытянуты в продольном направлении. Между волокнами располагаются клетки, преимущественно фиброциты. В наружной оболочке находятся нервные волокна и мелкие кровеносные сосуды, питающие наружные слои стенки артерии.

Рис. 5. Схема строения стенки артерии (А) и вены (Б) мышечного типа:

1 - внутренняя оболочка; 2 - средняя оболочка; 3 - наружная оболочка; а - эндотелий; б - внутренняя эластическая мембрана; в - ядра клеток гладкой мышечной ткани в средней оболочке; г - ядра клеток соединительной ткани адвентиции; д - сосуды сосудов.

Артерии мышечно-эластического типа по строению стенки занимают промежуточное положение между артериями эластического и мышечного типа. В средней оболочке в равном количестве развиты спирально ориентированная гладкая мышечная ткань, эластические пластины и сеть эластических волокон.

Сосуды микроциркуляторного русла. На месте перехода артериального русла в венозное в органах и тканях сформирована густая сеть мелких прекапиллярных, капиллярных и посткапиллярных сосудов. Этот комплекс мел­ких сосудов, обеспечивающий кровенаполнение органов, транссосудистый обмен и тканевый гомеостаз, объединяют термином микроциркуляторное русло. В его состав входят различные артериолы, капилляры, венулы и артериоло-венулярные анастомозы (рис. 6).

Р
ис.6. Схема сосудов микроциркуляторного русла:

1 - артериола; 2 - венула; 3 - капиллярная сеть; 4 - артериоло-венулярный анастомоз

Артериолы. По мере уменьшения диаметра в артериях мы­шечного типа истончаются все оболочки и они переходят в артериолы - сосуды диаметром менее 100 мкм. Внутренняя оболочка их состоит из эндотелия, расположенного на базальной мембране, и отдельных клеток подэндотелиального слоя. В некоторых артериолах может быть очень тонкая внутренняя эластическая мембрана. В средней оболочке сохраняется один ряд спирально расположенных клеток гладкой мышечной ткани. В стенке конечных артериол, от которых ответвляются капилляры, гладкомышечные клетки не образуют сплошного ряда, а расположены разрозненно. Это прекапиллярные артериолы . Однако в месте ответвления от артериолы капилляр окружен значительным количеством гладкомышечных клеток, которые образуют своеобразный прекапиллярный сфинктер . Вследствие изменения тонуса таких сфинктеров регулируется кровоток в ка­пиллярах соответствующего участка ткани или органа. Между мышечными клетками имеются эластические волокна. Наружная оболочка содержит отдельные адвентициальные клетки и коллагеновые волокна.

Капилляры - важнейшие элементы микроциркуляторного русла, в которых осуществляется обмен газами и различными веществами между кровью и окружающими тканями. В большинстве органов между артериолами и венулами образуются ветвящиеся капиллярные сети , расположенные в рыхлой соединительной ткани. Плотность капиллярной сети в разных органах может быть различной. Чем интенсивнее обмен веществ в органе, тем гуще сеть его капилляров. Наиболее развита сеть капилляров в сером веществе органов нервной системы, в органах внутрен­ней секреции, миокарде сердца, вокруг легочных альвеол. В ске­летных мышцах, сухожилиях, нервных стволах капиллярные сети ориентированы продольно.

Капиллярная сеть постоянно находится в состоянии пере­стройки. В органах и тканях значительное количество капилляров не функционирует. В их сильно уменьшенной полости циркулирует только плазма крови (плазменные капилляры ). Количество открытых капилляров увеличивается при интенсифи­кации работы органа.

Капиллярные сети встречаются и между одноименными сосудами, например венозные капиллярные сети в дольках печени, аденогипофизе, артериальные - в почечных клубочках. Кроме образования разветвленных сетей, капилляры могут иметь форму капиллярной петли (в сосочковом слое дермы) или формировать клубочки (сосудистые клубочки почек).

Капилляры - наиболее узкие сосудистые трубочки. Их калибр в среднем соответствует диаметру эритроцита (7-8 мкм), однако в зависимости от функционального состояния и органной специализации диаметр капилляров может быть различным Узкие капилляры (диаметром 4 – 5 мкм) в миокарде. Особые синусоидные капилляры с широким просветом (30 мкм и более) в дольках печени, селезенке, красном костном мозге, органах внутренней секреции.

Стенка кровеносных капилляров состоит из нескольких струк­турных элементов. Внутреннюю выстилку формирует слой эндотелиальных клеток, расположенных на базальной мембране, в последней содержатся клетки - перициты. Вокруг базальной мембраны располагаются адвентициальные клетки и ретикулярные волокна (рис. 7).

Рис.7. Схема ультраструктурной организации стенки кровеносного капил­ляра с непрерывной эндотелиальной выстилкой:

1 - эндотелиоцит: 2 - базальная мембрана; 3 - перицит; 4 - пиноцитозные микропузырьки; 5 - зона контакта между эндотелиальными клетками (рис. Козлова).

Плоские эндотелиальные клетки вытянуты по длине капилляра и имеют очень тонкие (менее 0,1 мкм) периферические безъядерные участки. Поэтому при световой микроскопии поперечного среза сосуда различима только область расположения ядра толщиной 3-5 мкм. Ядра эндотелиоцитов чаще овальной формы, содержат конденсированный хроматин, сосредоточенный около ядерной оболочки, которая, как правило, имеет неровные контуры. В цитоплазме основная масса органелл расположена в околоядерной области. Внутренняя поверхность эндотелиальных клеток неровная, плазмолемма образует различные по форме а высоте микроворсинки, выступы и клапанообразные структуры. Последние особенно характерны для венозного отдела капилляров. Вдоль внутренней и наружной поверхностей эндотелиоцитов располагаются многочисленные пиноцитозные пузырьки , свидетельствующие об интенсивном поглощении и переносе веществ через цитоплазму этих клеток. Эндотелиальные клетки благодаря способности быстро набухать и затем, отдавая жидкость, уменьшаться по высоте могут изменять величину просвета капилляра, что, в свою очередь, влияет на прохождение через него форменных элементов крови. Кроме того, при электронной микроскопии в цитоплазме выявлены микрофиламенты, обусловливающие сократительные свойства эндотелиоцитов.

Базальная мембрана , расположенная под эндотелием, выявляется при электронной микроскопии и представляет пла­стинку толщиной 30-35 нм, состоящую из сети тонких фибрилл, содержащих коллаген IV типа и аморфного компонента. В последнем наряду с белками содержится гиалуроновая кислота, полимеризованное или деполимеризованное состояние которой обусловливает избирательную проницаемость капилляров. Базальная мембрана обеспечивает также эластичность и прочность капилляров. В расщеплениях базальной мембраны встречаются особые отросчатые клетки - перициты. Они своими отростками охватывают капилляр и, проникая через базальную мембрану, формируют контакты с эндотелиоцитами.

В соответствии с особенностями строения эндотелиальной выстилки и базальной мембраны различают три типа капилляров. Большинство капилляров в органах и тканях принадлежит к первому типу (капилляры общего типа ). Они характеризуются наличием непрерывных эндотелиальной выстилки и базальной мембраны. В этом сплошном слое плазмолеммы соседних эндотелиальных клеток максимально сближены и образуют соединения по типу плотного контакта, который непроницаем для макромолекул. Встречаются и другие виды контактов, когда края соседних клеток налегают друг на друга наподобие черепицы или соединяются зубчатыми поверхностями. По длине капилляров выделяют более узкую (5 - 7 мкм) проксимальную (артериолярную) и более широкую (8 - 10 мкм) дистальную (венулярную) части. В полости проксимальной части гидростатическое давление больше коллоидно-осмотического, создаваемого находящимися в крови белками. В результате жидкость фильтруется за стенку. В дистальной части гидростатическое давление становится меньше коллоидно-осмотического, что обусловливает переход во­ды и растворенных в ней веществ из окружающей тканевой жид­кости в кровь. Однако выходной поток жидкости больше входного, и избыточная жидкость в качестве составной части тканевой жидкости соединительной ткани поступает в лимфатическую систему.

В некоторых органах, в которых интенсивно происходят процессы всасывания и выделения жидкости, а также быстрый транспорт в кровь макромолекулярных веществ, эндотелий капилляров имеет округлые субмикроскопические отверстия диаметром 60- 80 нм или округлые участки, затянутые тонкой диафрагмой (почки, органы внутренней секреции). Это капилляры с фенестрами (лат. fenestrae - окна).

Капилляры третьего типа - синусоидные , характеризуются большим диаметром своего просвета, наличием между эндотелиальными клетками широких щелей и прерывистой базальной мембраной. Капилляры этого типа обнаружены в селезенке, красном костном мозге. Через их стенки проникают не только макромолекулы, но и клетки крови.

Венулы - отводящий отдел микропиркуляторного русла и начальное звено венозного отдела сосудистой системы. В них со­бирается кровь из капиллярного русла. Диаметр их просвета бо­лее широкий, чем в капиллярах (15-50 мкм). В стенке венул, так же как и у капилляров, имеется слой эндотелиальных кле­ток, расположенных на базальной мембране, а также более выраженная наружная соединительнотканная оболочка. В стенках венул, переходящих в мелкие вены, находятся отдельные гладкие мышечные клетки. В посткапиллярных венулах тимуса , лимфатических узлов элдотелиальная выстилка представлена высокими эндотелиальными клетками, способствующими избирательной миграции лимфоцитов при их рециркуляции. В венулах вследствие тонкости их стенки, медленного кровотока я низкого кровяного давления может депонироваться значительное количество крови.

Артериоло-венулярные анастомозы. Во всех органах обнаружены трубочки, по которым кровь из артериол может направляться непосредственно в венулы, минуя капиллярную сеть. Особенно много анастомозов в дерме кожи, в ушной раковине, гребне птиц, где играют определенную роль в терморегуляции.

По строению истинные артериоло-венулярные анастомозы (шунты) характеризуются наличием в стенке значительного количества продольно ориентированных пучков из гладких мышечных клеток, расположенных или в подэндотелиальном слое интимы (рис. 8), или во внутренней зоне средней оболочки. В некоторых анастомозах эти клетки приобретают эпителиоподобный вид. Продольно расположенные мышечные клетки находятся и в наружной оболочке. Встречаются не только простые анастомозы в виде единичных трубочек, но и сложные, состоящие из нескольких ветвей, отходящих от одной артериолы и окруженных общей соединительнотканной капсулой.

Рис.8. Артериоло-венулярный анастомоз:

1 - эндотелий; 2 - продольно расположенные эпителиоидно-мышечные клетки; 3 - циркулярно расположенные мышечные клетки средней оболочки; 4 - наружная оболочка.

При помощи сократительных механизмов анастомозы могут уменьшить или полностью закрыть свой просвет, в результате чего течение крови через них прекращается и кровь поступает в капиллярную сеть. Благодаря этому органы получают кровь в зависимости от потребности, связанной с их работой. Кроме того, высокое давление артериальной крови через анастомозы передается в венозное русло, способствуя этим лучшему пере движению крови в венах. Значительна роль анастомозов в обогащении венозной крови кислородом, а также в регуляции кровообращения при развитии патологических процессов в органах.

Вены - кровеносные сосуды, по которым кровь из органов и тканей течет к сердцу, в правое предсердие. Исключение составляют легочные вены, направляющие кровь, богатую кислородом, из легких в левое предсердие.

Стенка вен, так же как и стенка артерий, состоит из трех оболочек: внутренней, средней и наружной. Однако конкретное гистологическое строение этих оболочек в различных венах очень разнообразно, что связано с различием их функционирования и местными (в соответствии с локализацией вены) условиями кровообращения. Большинство вен одинакового диаметра с одноименными артериями имеет более тонкую стенку и более широкий просвет.

В соответствии с гемодинамическими условиями - низким кровяным давлением (15-20 мм рт. ст.) и незначительной скоростью кровотока (около 10 мм/с) - в стенке вен сравнительно слабо развиты эластические элементы и меньшее количество мышечной ткани в средней оболочке. Эти признаки обусловливают возможность изменения конфигурации вен: при малом кровена­полнении стенки вен становятся спавшимися, а при затруднении оттока крови (например, вследствие закупорки) легко происхо­дят растяжение стенки и расширение вен.

Существенное значение в гемодинамике венозных сосудов имеют клапаны, расположенные таким образом, что, пропуская кровь по направлению к сердцу, они преграждают путь ее обратному течению. Число клапанов больше в тех венах, в которых кровь течет в направлении, обратном действию силы тяжести (например, в венах конечностей).

По степени развития в стенке мышечных элементов различают вены безмышечного и мышечного типов.

Вены безмышечного типа. К характерным венам данного типа относят вены костей, центральные вены печеночных долек и трабекулярные вены селезенки. Стенка этих вен состоит только из слоя эндотелиальных клеток, расположенных на базальной мембране, и наружного тонкого слоя волокнистой соединительной ткани С участием последней стенка плотно срастается с окружающими тканями, вследствие чего эти вены пассивны в продвижении по ним крови и не спадаются. Безмышечные вены мозговых оболочек и сетчатки глаза, наполняясь кровью, способ­ны легко растягиваться, но в то же время кровь под действием собственной силы тяжести легко оттекает в более крупные венозные стволы.

Вены мышечного типа. Стенка этих вен, подобно стенке артерий, состоит из трех оболочек, однако границы между ними ме­нее отчетливы. Толщина мышечной оболочки в стенке вен разной локализации неодинаковая, что зависит от того, движется кровь в них под действием силы тяжести или против нее. На основании этого вены мышечного типа подразделяют на вены со слабым, средним и сильным развитием мышечных элементов. К венам первой разновидности относят горизонтально расположенные вены верхней части туловища организма и вены пищеваритель­ного тракта. Стенки таких вен тонкие, в их средней оболочке гладкая мышечная ткань не образует сплошного слоя, а расположена пучками, между которыми имеются прослойки рыхлой соединительной ткани.

К венам с сильным развитием мышечных элементов относят крупные вены конечностей животных, по которым кровь течет вверх, против силы тяжести (бедренная, плечевая и др.). Для них характерны продольно расположенные небольшие пучки клеток гладкой мышечной ткани в подэндотелиальном слое интимы и хорошо развитые пучки этой ткани в наружной оболочке. Сокращение гладкой мышечной ткани наружной и внутренней оболо­чек приводит к образованию поперечных складок стенки вен, что препятствует обратному кровотоку.

В средней оболочке содержатся циркулярно расположенные пучки клеток гладкой мышечной ткани, сокращения которых способствуют продвижению крови к сердцу. В венах конечностей имеются клапаны, представляющие собой тонкие складки, обра­зованные эндотелием и подэндотелиальным слоем. Основу клапана составляет волокнистая соединительная ткань, которая в основании створок клапана может содержать некоторое количе­ство клеток гладкой мышечной ткани. Клапаны также препятствуют обратному току венозной крови. Для движения крови в венах существенное значение имеют присасывающее действие грудной клетки во время вдоха и сокращение скелетной мышечной ткани, окружающей венозные сосуды.

Васкуляризация и иннервация кровеносных сосудов. Питание стенки крупных и средних артериальных сосудов осуществляется как извне - через сосуды сосудов (vasa vasorum), так и изнутри - за счет крови, протекающей внутри сосуда. Сосуды сосудов - это ветви тонких околососудистых артерий, проходящих в окружающей соединительной ткани. В наружной оболочке стенки сосуда ветвятся артериальные веточки, в среднюю проникают капилляры, кровь из которых собирается в венозные сосуды сосудов. Интима и внутренняя зона средней оболочки артерий не имеют капилляров и питаются со стороны просвета сосудов. В связи со значительно меньшей силой пульсовой волны, меньшей толщиной средней оболочки, отсутствием внутренней эластической мембраны механизм питания вены со стороны полости не имеет особого значения. В венах сосуды со­судов снабжают артериальной кровью все три оболочки.

Сужение и расширение кровеносных сосудов, поддержание сосудистого тонуса происходят главным образом под влиянием импульсов, поступающих из сосудодвигательного центра. Импульсы от центра передаются к клеткам боковых рогов спинного мозга, откуда к сосудам поступают по симпатическим нервным волокнам. Конечные разветвления симпатических волокон, в составе которых находятся аксоны нервных клеток симпатических ганглиев, образуют на клетках гладкой мышечной ткани двигательные нервные окончания. Эфферентная симпатическая иннерва­ция сосудистой стенки обусловливает основной сосудосуживающий эффект. Вопрос о природе вазодилататоров окончательно не решен.

Установлено, что сосудорасширяющими в отношении сосудов головы являются парасимпатические нервные волокна.

Во всех трех оболочках стенки сосудов концевые разветвле­ния дендритов нервных клеток, преимущественно спинальных ганглиев, образуют многочисленные чувствительные нервные окончания. В адвентиции и околососудистой рыхлой соединитель­ной ткани среди многообразных по форме свободных окончаний встречаются и инкапсулированные тельца. Особенно важное физиологическое значение имеют специализированные интерорецепторы, воспринимающие изменения давления крови и ее химического состава, сосредоточенные в стенке дуги аорты и в области разветвления сонной артерии на внутреннюю и наружную - аортальная и каротидная рефлексогенные зоны. Установлено, что помимо этих зон существует достаточное количество других сосудистых территорий, чувствительных к изменению давления и химического состава крови (баро- и хеморецепторы). От рецепторов всех специализированных территорий импульсы по центростремительным нервам достигают сосудодвигательного центра продолговатого мозга, вызывая соответствующую компенсаторную нервнорефлекторную реакцию.

Сосуды – трубковидные образования, которые простилаются по всему телу человека и по которым движется кровь. Давление в системе кровообращения очень велико, поскольку система замкнута. По такой системе кровь достаточно быстро циркулирует.

По истечении многих лет на сосудах образуются препятствия для передвижения крови – бляшки. Это образования с внутренней стороны сосудов. Таким образом, сердце должно интенсивнее качать кровь, чтобы преодолеть преграды в сосудах, что нарушает работу сердца. В этот момент сердце уже не может доставлять кровь к органам тела и не справляется с работой. Но на этой стадии ещё можно вылечиться. Сосуды очищаются от солей и холестериновых наслоений.(Читайте также: Очищение сосудов)

При очищении сосудов возвращается их эластичность и гибкость. Уходят многие болезни, связанные с сосудами. К таковым относят склероз, боли в голове, склонность к инфаркту, паралич. Восстанавливается слух и зрение, уменьшается варикозное расширение вен. Приходит в норму состояние носоглотки.

Кровь циркулирует по сосудам, которые составляют большой и малый круг кровообращения.

Все кровеносные сосуды состоят из трех слоев:

    Внутренний слой сосудистой стенки образуют клетки эндотелия, поверхность сосудов внутри гладкая, что облегчает продвижение крови по ним.

    Средний слой стенок обеспечивает прочность кровеносных сосудов, состоит их мышечных волокон, эластина и коллагена.

    Верхний слой сосудистых стенок составляют соединительные ткани, он отделяет сосуды от близлежащих тканей.

Артерии

Стенки артерий более прочные и толстые, чем у вен, так как кровь продвигается по ним с большим давлением. Артерии разносят кровь, насыщенную кислородом, от сердца к внутренним органам. У мертвецов артерии пустые, что обнаруживается при вскрытии, поэтому раньше считалось, что артерии – это воздухоносные трубки. Это отразилось и на названии: слово «артерия» состоит из двух частей, в переводе с латыни первая часть аеr означает воздух, а tereo – содержать.

В зависимости от строения стенок различают две группы артерий:

    Эластический тип артерий – это сосуды, расположенные ближе к сердцу, к ним относится аорта и её крупные разветвления. Эластический каркас артерий должен быть настолько прочным, чтобы выдерживать давление, с которым кровь выбрасывается в сосуд от сердечных сокращений. Противостоять механическому воздействию и растяжению помогает волокна эластина и коллагена, составляющие каркас средней стенки сосуда.

    Благодаря упругости и прочности стенок эластических артерий кровь непрерывно поступает в сосуды и обеспечивается постоянная её циркуляция для питания органов и тканей, снабжения их кислородом. Левый желудочек сердца сокращается и с силой выбрасывает большой объем крови в аорту, её стенки растягиваются, вмещая в себя содержимое желудочка. После расслабления левого желудочка кровь в аорту не поступает, давление ослабляется, и кровь из аорты поступает в другие артерии, на которые она разветвляется. Стенки аорты обретают прежнюю форму, так как эластино-коллагеновый каркас обеспечивает их упругость и сопротивление растяжению. Кровь продвигается по сосудам непрерывно, поступая небольшими порциями из аорты после каждого сердечного сокращения.

    Упругие свойства артерий также обеспечивают передачу колебаний по стенкам сосудов – это свойство любой упругой системы при механических воздействиях, в роли которого выступает сердечный толчок. Кровь ударяется в упругие стенки аорты, а они передают колебания по стенкам всех сосудов тела. Там, где сосуды подходят близко к коже, эти колебания можно ощутить, как слабую пульсацию. На основе этого явления основаны методы измерения пульса.

    Артерии мышечного типа в среднем слое стенок содержат большое количество волокон гладкой мускулатуры. Это необходимо для обеспечения циркуляции крови и непрерывности её движения по сосудам. Сосуды мышечного типа расположены дальше от сердца, чем артерии эластического типа, поэтом сила сердечного толчка в них ослабевает, чтобы обеспечить дальнейшее продвижение крови необходимо сокращение мышечных волокон. При сокращении гладкой мускулатуры внутреннего слоя артерий, они сужаются, а при их расслаблении – расширяются. В результате кровь продвигается по сосудам с постоянной скоростью и своевременно поступает в органы и ткани, обеспечивая их питание.

Еще одна классификация артерий определяет их расположение по отношению к органу, кровоснабжение которого они обеспечивают. Артерии, которые проходят внутри органа, образуя разветвляющуюся сеть, называются интраорганными. Сосуды, расположенные вокруг органа, до вхождения в него называются экстраорганными. Боковые ветки, которые отходят от одного или разных артериальных стволов, могут снова соединяться или разветвляться на капилляры. В месте их соединения до начала ветвления на капилляры эти сосуды называют анастомозом или соустьем.

Артерии, которые не имеют анастомоза с соседними сосудистыми стволами, называют конечными. К таким, например, относятся артерии селезенки. Артерии, которые образуют соустья, называют анастомизирующими, к этому типу относится большинство артерий. У конечных артерий больше риск закупорки тромбом и высокая предрасположенность к инфаркту, в результате которого может омертветь часть органа.

В последних разветвлениях артерии очень истончаются, такие сосуды называют артериолами, а артериолы уже переходят непосредственно в капилляры. В артериолах есть мышечные волокна, которые выполняют сократительную функцию и регулируют поступление крови в капилляры. Слой гладкомышечных волокон в стенках артериол очень тонкий, в сравнении с артерией. Место разветвления артериолы на капилляры называется прекапилляром, тут мышечные волокна не составляют сплошной слой, а расположены диффузно. Ещё одно отличие прекапилляра от артериолы – отсутствие венулы. Прекапилляр даёт начало многочисленным ветвлениям на мельчайшие сосуды – капилляры.

Капилляры

Капилляры – мельчайшие сосуды, диаметр которых варьируется от 5 до 10 мкм, они имеются во всех тканях, являясь продолжением артерий. Капилляры обеспечивают тканевой обмен и питание, снабжая все структуры организма кислородом. Для того, чтобы обеспечивать передачу кислорода с питательными веществами из крови в ткани, стенка капилляров настолько тонкая, что состоит всего из одного слоя клеток эндотелия. Эти клетки обладают высокой проницаемостью, поэтому сквозь них растворенные в жидкости вещества поступают в ткани, а продукты метаболизма возвращаются в кровь.

Количество работающих капилляров в разных участках тела различается – в большом количестве они сконцентрированы в работающих мышцах, которые нуждаются в постоянном кровоснабжении. Например, в миокарде (мышечном слое сердца) на одном квадратном миллиметре обнаруживается до двух тысяч открытых капилляров, а в скелетных мышцах на ту же площадь приходится несколько сотен капилляров. Не все капилляры функционируют одновременно – многие из них находятся в резерве, в закрытом состоянии, чтобы начать работать при необходимости (например, при стрессе или увеличении физических нагрузок).

Капилляры анастомизируют и, разветвляясь, составляют сложную сеть, основными звеньями которой являются:

    Артериолы – разветвляются на прекапилляры;

    Прекапилляры – переходные сосуды между артериолами и собственно капиллярами;

    Истинные капилляры;

    Посткапилляры;

    Венулы – места перехода капилляр в вены.

В каждом типе сосудов, составляющих эту сеть, действует собственный механизм передачи питательных веществ и метаболитов между содержащейся в них кровью и близлежащими тканями. За продвижение крови и её поступление в мельчайшие сосуды отвечает мускулатура более крупных артерий и артериол. Кроме того, регуляция кровотока осуществляется также мышечными сфинктерами пре- и посткапилляров. Функция этих сосудов в основном распределительная, тогда как истинные капилляры выполняют трофическую (питательную) функцию.

Вены – это другая группа сосудов, функция которой, в отличие от артерий, заключается не в доставке крови к тканям и органам, а в обеспечении её поступления в сердце. Для этого движение крови по венам происходит в обратном направлении – от тканей и органов к сердечной мышце. Ввиду различия функций, строение вен несколько отличается от строения артерий. Фактор сильного давления, которое кровь оказывает на стенки сосудов, в венах проявляется гораздо меньше, чем в артериях, поэтому эластино-коллагеновый каркас в стенках этих сосудов слабее, в меньшем количестве представлены и мышечные волокна. Именно поэтому вены, в которых не поступает кровь, спадаются.

Аналогично с артериями, вены широко разветвляются, образуя сети. Множество микроскопических вен сливаются в единые венозные стволы, которые ведут к самым крупным сосудам, впадающим в сердце.

Продвижение крови по венам возможно благодаря действию на нее отрицательного давления в грудной полости. Кровь продвигается по направлению присасывающей силы в сердце и грудную полость, кроме того, её своевременный отток обеспечивает гладкомышечный слой в стенках сосудов. Движение крови от нижних конечностей вверх затруднено, поэтому в сосудах нижней части тела мускулатура стенок развита сильнее.

Чтобы кровь продвигалась к сердцу, а не в обратном направлении, в стенках венозных сосудов расположены клапаны, представленные складкой эндотелия с соединительнотканным слоем. Свободный конец клапана беспрепятственно направляет кровь в направлении сердца, а отток обратно перегораживается.

Большинство вен проходят рядом с одной или несколькими артериями: возле небольших артерий обычно расположено две вены, а рядом с более крупными – одна. Вены, которые не сопровождают какие-либо артерии, встречаются в соединительной ткани под кожей.

Питание стенок более крупных сосудов обеспечивают артерии и вены меньших размеров, отходящие от того же ствола или от соседних сосудистых стволов. Весь комплекс расположен в окружающем сосуд соединительнотканном слое. Эта структура называется сосудистым влагалищем.

Венозные и артериальные стенки хорошо иннервированы, содержат разнообразные рецепторы и эффекторы, хорошо связанные с руководящими нервными центрами, благодаря чему осуществляется автоматическая регуляция кровообращения. Благодаря работе рефлексогенных участков кровеносных сосудов обеспечивается нервная и гуморальная регуляция метаболизма в тканях.

Функциональные группы сосудов

Всю кровеносную систему по функциональной нагрузке разделяют на шесть разных групп сосудов. Таким образом, в анатомии человека можно выделить амортизирующие, обменные, резистивные, емкостные, шунтирующие и сфинктерные сосуды.

Амортизирующие сосуды

К этой группе, в основном, относятся артерии, в которых хорошо представлен слой эластиновых и коллагеновых волокон. В нее входят самые крупные сосуды – аорта и легочная артерия, а также прилегающие к этим артериям участки. Эластичность и упругость их стенок обеспечивает необходимые амортизирующие свойства, благодаря которым сглаживаются систолические волны, возникающие при сердечных сокращениях.

Рассматриваемый эффект амортизации также называют Windkessel-эффектом, что на немецком языке означает «эффект компрессионной камеры».

Для наглядной демонстрации этого эффекта используют следующий опыт. К ёмкости, которая наполнена водой, присоединяют две трубки, одна из эластичного материала (резина), а другая из стекла. Из твердой стеклянной трубки вода выплескивается резкими прерывистыми толчками, а из мягкой резиновой – вытекает равномерно и постоянно. Этот эффект объясняется физическими свойствами материалов трубки. Стенки эластичной трубки под действием давления жидкости растягиваются, что приводит к возникновению так называемой энергии эластического напряжения. Таким образом, кинетическая энергия, появляющаяся вследствие давления, превращается в потенциальную энергию, повышающую напряжение.

Кинетическая энергия сердечного сокращения действует на стенки аорты и крупных сосудов, которые от нее отходят, вызывая их растяжение. Эти сосуды образуют компрессионную камеру: кровь, поступающая в них под давлением систолы сердца, растягивает их стенки, кинетическая энергия преобразуется в энергию эластического напряжения, что способствует равномерному продвижению крови по сосудам в период диастолы.

Артерии, расположенные дальше от сердца, относятся к мышечному типу, их эластичный слой выражен меньше, в них больше мышечных волокон. Переход от одного типа сосуда к другому происходит постепенно. Дальнейший ток крови обеспечивается сокращением гладкой мускулатуры мышечных артерий. В тоже время, гладкомышечный слой крупных артерий эластического типа практически не влияет на диаметр сосуда, что обеспечивает стабильность гидродинамических свойств.

Резистивные сосуды

Резистивные свойства обнаруживаются у артериол и концевых артерий. Эти же свойства, но в меньшей мере, характерны для венул и капилляров. Резистентность сосудов зависит от площади их поперечного сечения, а у концевых артерий хорошо развит мышечный слой, регулирующий просвет сосудов. Сосуды с небольшим просветом и толстыми прочными стенками оказывают механическое сопротивление току крови. Развитая гладкая мускулатура резистивных сосудов обеспечивает регуляцию объемной скорости крови, контролирует кровоснабжение органов и систем за счет сердечного выброса.

Сосуды-сфинктеры

Сфинктеры расположены в концевых отделах прекапилляров, при их сужении или расширении происходит изменение количества работающих капилляров, обеспечивающих трофику тканей. При расширении сфинктера капилляр переходит в функционирующее состояние, у неработающих капилляров сфинктеры сужены.

Обменные сосуды

Капилляры – это сосуды, выполняющие обменную функцию, осуществляющие диффузию, фильтрацию и трофику тканей. Капилляры не могут самостоятельно регулировать свой диаметр, изменения просвета сосудов происходит в ответ на изменения в сфинктерах прекапилляров. Процессы диффузии и фильтрации происходят не только в капиллярах, но и в венулах, так что эта группа сосудов также относится к обменным.

Емкостные сосуды

Сосуды, которые выступают в качестве резервуаров для больших объемов крови. Чаще всего к емкостным сосудам относятся вены – особенности их строения позволяют вмещать больше 1000 мл крови и выбрасывать её по мере необходимости, обеспечивая стабильность кровообращения, равномерный ток крови и полноценное кровоснабжение органов и тканей.

У человека, в отличие от большинства других теплокровных животных, нет специальных резервуаров для депонирования крови, из которых она могла бы выбрасываться по мере необходимости (у собак, например, эту функцию выполняет селезенка). Накапливать кровь для регуляции перераспределения её объемов по организму могут вены, чему способствует их форма. Уплощенные вены вмещают в себя большие объемы крови, при этом не растягиваясь, но приобретая овальную форму просвета.

К емкостным сосудам относятся крупные вены в области чрева, вены в подсосочковом сплетении кожи, вены печени. Функцию депонирования больших объемов крови могут также выполнять легочные вены.

Шунтирующие сосуды

    Шунтирующие сосуды представляют собой анастомоз из артерий и вен, когда они находятся в открытом состоянии, кровообращение в капиллярах существенно уменьшается. Шунтирующие сосуды разделяют на несколько групп согласно их функции и особенностям строения:

    Присердечные сосуды – к ним относятся артерии эластического типа, полые вены, легочный артериальный ствол и легочная вена. Ими начинаются и заканчиваются большой и малый круг кровообращения.

    Магистральные сосуды – крупные и средние сосуды, вены и артерии мышечного типа, расположенные вне органов. С их помощью происходит распределение крови по всем участкам организмы.

    Органные сосуды – интраорганные артерии, вены, капилляры, обеспечивающие трофику тканей внутренних органов.

    Наиболее опасные заболевания сосудов, представляющие угрозу для жизни: аневризма брюшной и грудной аорты, артериальная гипертензия, ишемическая болезнь, инсульт, заболевания почечных сосудов, атеросклероз сонных артерий.

    Заболевания сосудов ног – группа заболеваний, которые приводят к нарушению циркуляции крови по сосудам, патологиям клапанов вен, нарушению свертываемости крови.

    Атеросклероз нижних конечностей – патологический процесс затрагивает крупные и средние сосуды (аорта, подвздошные, подколенные, бедренные артерии), вызывая их сужение. В результате кровоснабжение конечностей нарушается, появляются сильные боли, нарушается работоспособность пациента.

    Варикозное расширение вен – заболевание, в результате которого наступает расширение и удлинение вен верхних и нижних конечностей, истончение их стенок, образование варикозных узлов. Изменения, происходящие при этом в сосудах обычно стойкие и необратимые. Варикоз чаще встречается у женщин — у 30% женщин после 40 и всего у 10% мужчин того же возраста. (Читайте также: Варикоз — причины, симптомы и осложнения)

К какому врачу обращаться с сосудами?

Заболеваниями сосудов, их консервативным и хирургическим лечением и профилактикой занимаются врачи-флебологи и ангиохирурги. После всех необходимых диагностических процедур, врач составляет курс лечения, где совмещают консервативные методы и оперативное вмешательство. Медикаментозная терапия заболеваний сосудов направлена на улучшение реологии крови, липидного обмена с целью профилактики атеросклероза и других заболеваний сосудов, вызванных повышенным уровнем холестерина крови. (Читайте также: Повышенный холестерин в крови – что это значит? Каковы причины?) Врач может назначить сосудорасширяющие препараты, лекарственные средства для борьбы с сопутствующими заболеваниями, например, гипертонией. Кроме того, пациенту прописывают витаминные и минеральные комплексы, антиоксиданты.

Курс лечения может включать процедуры физиотерапии – баротерапия нижних конечностей, магнито- и озонотерапия.

Распространение крови по всему организму человека осуществляется за счет работы сердечно-сосудистой системы. Ее основным органом является сердце. Каждый его удар способствует тому, что кровь двигается и питает все органы и ткани.

Структура системы

В организме выделяют различные виды кровеносных сосудов. У каждого из них свое предназначение. Так, в систему входят артерии, вены и лимфатические сосуды. Первые из них предназначены для того, чтобы кровь, обогащенная питательными веществами, поступала к тканям и органам. Она насыщается углекислым газом и различными продуктами, выделенными в процессе жизнедеятельности клеток, и по венам возвращается обратно к сердцу. Но прежде чем поступить в этот мышечный орган, кровь фильтруется в лимфатических сосудах.

Общая длина системы, состоящей из кровеносных и лимфатических сосудов, в организме взрослого человека составляет порядка 100 тыс. км. А отвечает за ее нормальное функционирование сердце. Именно оно перекачивает каждые сутки около 9,5 тыс. литров крови.

Принцип работы

Кровеносная система предназначена для жизнеобеспечения всего организма. Если нет проблем, то функционирует она следующим образом. Из левой части сердца через крупнейшие артерии выходит обогащенная кислородом кровь. Она разносится по организму ко всем клеточкам через широкие сосуды и мельчайшие капилляры, которые можно разглядеть лишь под микроскопом. Именно кровь она поступает в ткани и органы.

Место, где соединяется артериальная и венозная системы, называется «капиллярное русло». Стенки кровеносных сосудов в нем тонкие, а сами они очень мелкие. Это позволяет в полной мере выделять через них кислород и различные питательные элементы. Отработанная кровь поступает в вены и возвращается по ним к правой стороне сердца. Оттуда она попадает в легкие, где и обогащается вновь кислородом. Проходя через лимфатическую систему, кровь очищается.

Вены разделяются на поверхностные и глубокие. Первые находятся близко к поверхности кожи. По ним кровь поступает в глубокие вены, которые возвращают ее к сердцу.

Регуляция кровеносных сосудов, работы сердца и общего кровотока осуществляется центральной нервной системой и выделяемыми в тканях местными химическими веществами. Это помогает контролировать поток крови через артерии и вены, увеличивая или уменьшая его интенсивность в зависимости от процессов, проходящих в организме. Например, он увеличивается при физических нагрузках и уменьшается при травмах.

Как происходит кровоток

Отработанная «обедненная» кровь по венам поступает в правое предсердие, откуда перетекает в правый желудочек сердца. Мощными движениями эта мышца выталкивает поступившую жидкость в легочный ствол. Он разделяется на две части. Кровеносные сосуды легких предназначены для обогащения крови кислородом и возвращению их в левый желудочек сердца. У каждого человека эта его часть более развита. Ведь именно левый желудочек отвечает за то, как весь организм будет снабжаться кровью. Подсчитано, что нагрузка, которая приходится на него, в 6 раз больше, чем та, которой подвергается правый желудочек.

Кровеносная система включает в себя два круга: малый и большой. Первый из них предназначен для того, чтобы насытить кровь кислородом, а второй - для ее транспортировки по всему оргазму, доставки до каждой клеточки.

Требования к системе кровообращения

Чтобы организм человека нормально функционировал, необходимо соблюдение ряда условий. В первую очередь внимание уделяется состоянию сердечной мышцы. Ведь именно она является тем насосом, который гонит по артериям необходимую биологическую жидкость. Если работа сердца и кровеносных сосудов нарушена, мышца ослаблена, то это может стать причиной периферических отеков.

Немаловажно, чтобы соблюдался перепад областей низкого и высокого давления. Это необходимо для нормального кровотока. Так, например, в области сердца давление ниже, чем на уровне капиллярного русла. Это позволяет соблюдать законы физики. Кровь двигается из зоны более высокого давления в ту область, где оно ниже. Если возникает ряд заболеваний, из-за которых установленный баланс нарушается, то это чревато застоями в венах, отеками.

Выброс крови из нижних конечностей осуществляется благодаря так называемым мышечно-венозным помпам. Так именуют икроножные мышцы. При каждом шаге они сокращаются и выталкивают кровь против природной силы притяжения в сторону правого предсердия. Если это функционирование нарушается, например, в результате травмы и временного обездвиживания ног, то возникает отек, обусловленный уменьшением венозного возврата.

Еще одним важным звеном, отвечающим за то, чтобы кровеносные сосуды человека функционировали нормально, являются венозные клапаны. Они предназначены для того, чтобы поддерживать идущую по ним жидкость до тех пор, пока она не попадет в правое предсердие. Если этот механизм нарушается, а это возможно в результате травм или в связи с износом клапанов, будет наблюдаться патологический сбор крови. В результате это приводит к повышению давления в венах и выдавливанию жидкой части крови в ткани, находящиеся вокруг. Ярким примером нарушения этой функции является варикозное расширение вен на ногах.

Классификация сосудов

Чтобы разобраться, как работает кровеносная система, необходимо понять, как функционирует каждая из ее составляющих. Так, легочные и полые вены, легочный ствол и аорта - это основные пути перемещения необходимой биологической жидкости. А все остальные способны регулировать интенсивность притока и оттока крови к тканям благодаря возможности менять свой просвет.

Все сосуды в организме разделяются на артерии, артериолы, капилляры, венулы, вены. Все они образуют замкнутую соединяющуюся систему и служат единой цели. При этом каждый кровеносный сосуд имеет свое предназначение.

Артерии

Участки, по которым перемещается кровь, разделяют в зависимости от того, в каком направлении она в них движется. Так, все артерии предназначены для переноса крови от сердца по организму. Они бывают эластичного, мышечного и мышечно-эластичного типа.

К первому виду относятся те сосуды, которые непосредственно связаны с сердцем и выходят из его желудочков. Это легочный ствол, легочная и сонная артерии, аорта.

Все указанные сосуды кровеносной системы состоят из эластичных волокон, которые растягиваются. Это происходит при каждом ударе сердца. Как только сокращение желудочка прошло, стенки возвращаются в первоначальный вид. За счет этого поддерживается нормальное давление на протяжении периода, пока сердце опять не заполнится кровью.

Ко всем тканям организма кровь поступает через артерии, которые отходят от аорты и легочного ствола. При этом различные органы нуждаются в разном количестве крови. Значит, артерии должны уметь сужать или расширять свой просвет для того, чтобы жидкость через них проходила лишь в необходимых дозах. Это достигается благодаря тому, что в них работают гладкие мышечные клетки. Такие кровеносные сосуды человека называются распределительными. Их просвет регулируется симпатической нервной системой. К мышечным артериям относят артерию мозга, лучевую, плечевую, подколенную, позвоночную и прочие.

Также выделяют и другие виды кровеносных сосудов. К ним относят мышечно-эластичные или смешанные артерии. Они могут очень хорошо сокращаться, но при этом обладают высокой эластичностью. К такому виду относятся подключичная, бедренная, подвздошная, брыжеечная артерии, чревный ствол. В них присутствуют как эластичные волокна, так и мышечные клетки.

Артериолы и капилляры

По мере движения крови вдоль артерий их просвет уменьшается, а стенки становятся тоньше. Постепенно они переходят в наименьшие капилляры. Участок, где заканчиваются артерии, называют артериолами. Стенки их состоят из трех слоев, но они слабо выражены.

Наиболее тонкими сосудами являются капилляры. В совокупности они представляют собой самую протяженную часть всей системы кровоснабжения. Именно они соединяют между собой венозное и артериальное русла.

Истинным капилляром называют кровеносный сосуд, который образуется в результате разветвления артериол. Они могут образовывать собой петли, сети, которые располагаются в коже или синовиальных сумках, или сосудистые клубочки, находящиеся в почках. Величина их просвета, скорость кровотока в них и форма образуемых сетей зависят от тканей и органов, в которых они находятся. Так, например, в скелетных мышцах, легких и оболочках нервов расположены самые тонкие сосуды - их толщина не превышает 6 мкм. Они образуют лишь плоские сети. В слизистых оболочках и коже они могут достигать 11 мкм. В них сосуды формируют трехмерную сеть. Самые широкие капилляры находятся в кроветворных органах, железах внутренней секреции. Их диаметр в них достигает 30 мкм.

Плотность их размещения также неодинакова. Наибольшая концентрация капилляров отмечается в миокарде и головном мозге, на каждый 1 мм 3 их насчитывается до 3 000. При этом в скелетной мышце их всего лишь до 1000, а в костной ткани и того меньше. Также важно знать, что в активном состоянии в нормальных условиях кровь циркулирует не по всем капиллярам. Около 50% их находятся в неактивном состоянии, их просвет сжат до минимума, по ним проходит лишь плазма.

Венулы и вены

Капилляры, кровь в которые поступает из артериол, объединяются и образуют более крупные сосуды. Их называют посткапиллярные венулы. Диаметр каждого такого сосуда не превышает 30 мкм. В местах перехода образуются складки, которые выполняют те же функции, что и клапаны в венах. Через их стенки могут проходить элементы крови и плазма. Посткапиллярные венулы объединяются и впадают в собирательные. Их толщина составляет до 50 мкм. В их стенках начинают появляться гладкомышечные клетки, но часто они даже не окружают просвет сосуда, зато их наружная оболочка уже четко выражена. Собирательные венулы переходят в мышечные. Диаметр последних часто достигает и 100 мкм. У них уже есть до 2 слоев мышечных клеток.

Кровеносная система устроена таким образом, что число сосудов, отводящих кровь, обычно в два раза превышает количество тех, по которым она поступает в капиллярное русло. При этом жидкость распределена так. В артериях находится до 15% от всего количества крови в организме, в капиллярах до 12%, а в венозной системе 70-80%.

Кстати, жидкость может перетекать из артериол в венулы, не попадая в капиллярное русло через специальные анастомозы, в стенки которых входят мышечные клетки. Они находятся практически во всех органах и предназначены для того, чтобы кровь могла сбрасываться в венозное русло. С их помощью контролируется давление, регулируется переход тканевой жидкости и кровоток через орган.

Вены образуются после слияния венул. Их структура напрямую зависит от месторасположения и диаметра. На количество мышечных клеток влияет место их локализации и то, под влиянием каких факторов в них перемещается жидкость. Вены разделяются на мышечные и волокнистые. К последним можно отнести сосуды сетчатки глаза, селезенки, костей, плаценты, мягких и твердых оболочек мозга. Кровь, циркулирующая в верхней части туловища, передвигается в основном под силой тяжести, а также под влиянием присасывающего действия во время вдоха полости груди.

Вены нижних конечностей отличаются. Каждый кровеносный сосуд ног должен противостоять давлению, который создается столбом жидкости. И если глубокие вены способны поддерживать свою структуру благодаря давлению окружающих мышц, то поверхностным приходится сложнее. У них хорошо развит мышечный слой, а их стенки существенно толще.

Также характерным отличием вен является наличие клапанов, которые препятствуют обратному оттоку крови под влиянием силы тяжести. Правда, их нет в тех сосудах, которые находятся в голове, мозгу, шее и внутренних органах. Также они отсутствуют в полых и мелких венах.

Функции кровеносных сосудов различаются в зависимости от их предназначения. Так, вены, например, служат не только для перемещения жидкости в область сердца. Они также предназначены для резервирования ее в отдельных участках. Вены задействуется в случае, когда организм напряженно трудится и нуждается в увеличении объема циркулирующей крови.

Структура стенок артерий

Каждый кровеносный сосуд состоит из нескольких слоев. Их толщина и плотность зависят исключительно от того, к какому виду вен или артерий они относятся. Также это влияет на их состав.

Так, например, эластичные артерии содержат большое количество волокон, которые обеспечивают растяжение и упругость стенок. Внутренняя оболочка каждого такого кровеносного сосуда, которую называют интимой, составляет около 20% от общей толщины. Она выстлана эндотелием, а под ним находится рыхлая соединительная ткань, межклеточное вещество, макрофаги, мышечные клетки. Наружный слой интимы ограничен внутренней эластичной мембраной.

Средний слой таких артерий состоит из эластических мембран, с возрастом они утолщаются, их количество увеличивается. Между ними находятся гладкомышечные клетки, которые продуцируют межклеточное вещество, коллаген, эластин.

Наружная оболочка эластических артерий образована волокнистой и рыхлой соединительной тканью, продольно в ней расположены эластические и коллагеновые волокна. В ней же находятся мелкие сосуды и нервные стволы. Они отвечают за питание внешней и средней оболочек. Именно наружная часть предохраняет артерии от разрывов и перерастяжений.

Ненамного отличается строение кровеносных сосудов, которые называют мышечными артериями. Они также состоят из трех слоев. Внутренняя оболочка выстлана эндотелием, в ней находится внутренняя мембрана и соединительная рыхлая ткань. В мелких артериях этот слой развит слабо. Соединительная ткань содержит эластичные и коллагеновые волокна, они в ней расположены продольно.

Средний слой образован гладкомышечными клетками. Именно они отвечают за сокращение всего сосуда и за проталкивание крови в капилляры. Гладкомышечные клетки соединяются с межклеточным веществом и эластичными волокнами. Слой окружен своеобразной эластической мембраной. Волокна, расположенные в мышечном слое, соединяются с наружной и внутренней оболочками слоя. Они как бы образуют эластичный каркас, который не дает артерии слипаться. А мышечные клетки отвечают за регуляцию толщины просвета сосуда.

Наружный слой состоит из рыхлой соединительной ткани, в которой находятся коллагеновые и эластичные волокна, они в ней расположены косо и продольно. В нем же проходят нервы, лимфатические и кровеносные сосуды.

Строение кровеносных сосудов смешанного типа является промежуточным звеном между мышечными и эластичными артериями.

Артериолы также состоят из трех слоев. Но выражены они достаточно слабо. Внутренняя оболочка - это эндотелий, прослойка соединительной ткани и эластичной мембраны. Средний слой состоит из 1 или 2 слоев мышечных клеток, которые расположены спирально.

Структура вен

Для того чтобы сердце и кровеносные сосуды, называемые артериями, функционировали, необходимо, чтобы кровь могла обратно подниматься наверх, минуя силу притяжения. Для этих целей предназначены венулы и вены, имеющие особое строение. Состоят эти сосуды из трех слоев, также как и артерии, хотя они намного тоньше.

Внутренняя оболочка вен содержит эндотелий, в ней также есть слабо развитая эластическая мембрана и соединительная ткань. Средний слой является мышечным, он развит слабо, эластичные волокна в нем практически отсутствуют. Кстати, именно из-за этого, разрезанная вена всегда спадается. Самой толстой является наружная оболочка. Она состоит из соединительной ткани, в ней находится большое количество коллагеновых клеток. Также в некоторых венах в ней находятся гладкомышечные клетки. Именно они способствуют проталкиванию крови в сторону сердца и препятствуют ее обратному току. Во внешнем слое также содержатся лимфатические капилляры.