Главная · Диагностика · Что такое нейронные сети в медицине. Чему в россии обучают нейронные сети. Тип данных, единица измерения

Что такое нейронные сети в медицине. Чему в россии обучают нейронные сети. Тип данных, единица измерения

Но и решать более важные задачи - например, искать новые лекарства. The Village обратился к экспертам, чтобы узнать, в чем заключаются особенности технологии и как ее используют отечественные компании и университеты.

Что такое нейронные сети?

Чтобы понять, какое место нейронные сети занимают в мире искусственного интеллекта и как они связаны с другими технологиями создания интеллектуальных систем, начнем с определений.

Нейронные сети - один из методов машинного обучения, основы которого зародились в 1943 году, еще до появления термина «искусственный интеллект». Представляют собой математическую модель, отдаленно напоминающую работу нервной системы животных.

По словам старшего научного сотрудника университета Иннополис Станислава Протасова, наиболее близким аналогом человеческого мозга являются сверточные нейронные сети, придуманные математиком Яном Лекуном. «Они лежат в основе многих приложений, претендующих на звание искусственного интеллекта, - например, в FindFace или Prisma», - отмечает он.

Машинное обучение - подраздел искусственного интеллекта на пересечении математики и компьютерных наук. Он изучает методы построения моделей и алгоритмов, основанных на принципе обучения. Машина анализирует скормленные ей примеры, выделяет закономерности, обобщает их и строит правила, с помощью которых решаются разные задачи - например, предсказания дальнейшего развития событий или распознавания и генерации изображений, текста и речи. Помимо нейросетей, здесь также применяются методы линейной регрессии, деревья решений и другие подходы.

Искусственный интеллект - раздел компьютерной науки о создании технологических средств для выполнения машинами задач, которые раньше считались исключительно прерогативой человека, а также обозначение таких разработок. Направление официально оформилось в 1956 году.

Александр Крайнов

Что можно назвать искусственным интеллектом, а что нет - вопрос договоренностей. Человечество по большому счету так и не пришло к однозначной формулировке, что такое интеллект вообще, не говоря уже об искусственном. Но если обобщить происходящее, то можно говорить о том, что искусственный интеллект - это глубокие нейронные сети, решающие сложные задачи на уровне, близком к уровню человека, и в той или иной степени самообучающиеся. При этом под самообучением здесь понимается способность самостоятельно извлекать полезный сигнал из сырых данных.

В каком состоянии сейчас находится отрасль?

По оценкам аналитического агентства Gartner, машинное обучение сейчас находится на пике завышенных ожиданий. Характерный для этого этапа ажиотаж вокруг новой технологии приводит к излишнему энтузиазму, который оборачивается неудачными попытками ее повсеместного использования. Предполагается, что на избавление от иллюзий отрасли понадобится от двух до пяти лет. По мнению российских экспертов, в скором времени нейросетям придется пройти проверку на прочность.

Сергей Негодяев

управляющий портфелем Фонда развития интернет-инициатив

Хотя ученые занимаются формализацией и разработкой нейросетей уже 70 лет, можно выделить два переломных момента в развитии этой технологии. Первый - 2007 год, когда в Университете Торонто создали алгоритмы глубокого обучения многослойных нейронных сетей. Второй момент, спровоцировавший сегодняшний бум, - это 2012 год, когда исследователи из того же университета применили глубинные нейросети и выиграли конкурс ImageNet, научившись распознавать объекты на фото и видео с минимумом ошибок.

Сейчас компьютерных мощностей хватает для решения если не любых, то подавляющего большинства задач на базе нейросетей. Теперь главное препятствие - нехватка размеченных данных. Условно говоря, чтобы система научилась распознавать закат на видео или фотографиях, ей надо скормить миллион снимков заката, указав, где именно он находится в кадре. Например, когда вы загружаете в Facebook фотографию, ваши друзья распознают на ней котика в лучах закатного солнца, а социальная сеть видит в ней набор меток: «животное», «кот», «деревянный», «пол», «вечер», «оранжевый». У кого данных для обучения окажется больше, у того нейросеть и будет умнее.

Андрей Калинин

руководитель «Поиска Mail.Ru»

Развлекательные приложения на основе нейросетей - например, наши Artisto или Vinci - это только вершина айсберга, а заодно отличный способ продемонстрировать их возможности широкой аудитории. На самом деле нейросети способны решать целый ряд сложнейших задач. Наиболее «горячие» направления сейчас - это автопилоты, голосовые помощники, чат-боты и медицина.

Александр Крайнов

глава службы компьютерного зрения «Яндекса»

Можно сказать, что бум нейросетей уже настал, но на пик он еще не вышел. Дальше будет только интереснее. Самые перспективные направления сегодня - это, пожалуй, компьютерное зрение, диалоговые системы, анализ текстов, робототехника, беспилотный транспорт и генерация контента - текстов, изображений, музыки.

Перспективные сферы для внедрения нейросетей

Транспорт

Робототехника

Биотехнологии

Сельское хозяйство

Интернет вещей

Медиа и развлечения

Лингвистика

Безопасность

Влад Шершульский

директор программ технологического сотрудничества Microsoft в России

Сегодня уже случилась нейронная революция. Иногда даже трудно отличить фантастику от реальности. Представьте себе автоматизированный комбайн со множеством камер. Он делает по 5 тысяч снимков в минуту и через нейросеть анализирует, сорняк перед ним или зараженное вредителями растение, после чего решает, как поступить дальше. Фантастика? Уже не совсем.

Борис Вольфсон

директор по развитию HeadHunter

Вокруг нейросетей есть определенный хайп и, на мой взгляд, немного завышенные ожидания. Мы еще пройдем через этап разочарования, прежде чем научимся их эффективно использовать. Многие прорывные результаты исследований пока не очень применимы в бизнесе. На практике зачастую разумнее использовать другие методы машинного обучения - например, различные алгоритмы, основанные на деревьях решений. Наверное, это выглядит не так захватывающе и футуристично, но эти подходы очень распространены.

Чему учат нейронные сети в России?

Участники рынка согласны, что многие достижения нейронных сетей пока применимы лишь в академической сфере. За ее пределами технология используется преимущественно в развлекательных приложениях, которые и подогревают интерес к теме. Тем не менее российские разработчики учат нейросети и решению социально-значимых и бизнес-задач. Остановимся подробнее на некоторых направлениях.

Наука и медицина

Школа анализа данных «Яндекса» участвует в эксперименте CRAYFIS совместно с представителями «Сколково», МФТИ, ВШЭ и американских университетов UCI и NYU. Его суть состоит в поиске космических частиц сверхвысокой энергии с помощью смартфонов. Данные с камер передаются ускоренным нейросетям , способным зафиксировать следы слабо взаимодействующих частиц на снимках.

Это не единственный международный эксперимент, в котором задействованы российские специалисты. Ученые университета Иннополис Мануэль Маццара и Леонард Йохард участвуют в проекте BioDynaMo . Заручившись поддержкой Intel и ЦЕРН, они хотят создать опытный образец, способный воспроизвести полномасштабную симуляцию мозговой коры. С его помощью планируется повысить эффективность и экономичность экспериментов, в которых требуется наличие живого человеческого мозга.

Профессор Иннополиса Ярослав Холодов участвовал в разработке компьютерной модели, способной в десятки раз быстрее предсказать образование белковых связей. С помощью этого алгоритма можно ускорить разработку вакцин и лекарств. В этой же сфере отметились разработчики из Mail.Ru Group, Insilico Medicine и МФТИ. Они использовали генеративные состязательные сети , обученные придумывать молекулярные структуры, для поиска веществ, которые могут оказаться полезными при различных болезнях - от онкологии до сердечно-сосудистых заболеваний.

Красота и здоровье

В 2015 году российская компания Youth Laboratories запустила первый международный конкурс красоты Beauty.AI . Фотографии участников в нем оценивались нейросетями. При определении победителей они учитывали пол, возраст, национальность, цвет кожи, симметричность лица и наличие или отсутствие у пользователей морщин. Последний фактор также подтолкнул организаторов к созданию сервиса RYNKL , позволяющего отследить, как старение влияет на кожу и как с ним борются различные препараты.

Также нейросети применяются в телемедицине. Российская компания «Мобильные медицинские технологии », управляющая проектами «Онлайн Доктор » и «Педиатр 24/7 », тестирует бота-диагноста, который будет полезен как пациентам, так и врачам. Первым он подскажет, к какому специалисту обратиться при тех или иных симптомах, а вторым поможет определить, чем именно болен пришедший.

Оптимизация бизнес-процессов и рекламы

Российский стартап Leadza сумел применить нейросети для более эффективного распределения бюджета на рекламу в Facebook и Instagram. Алгоритм анализирует результаты прошедших кампаний, строит прогноз ключевых метрик и на их основе автоматически перераспределяет расходы таким образом, чтобы интернет-магазины смогли получить больше клиентов за меньшую стоимость.

Команда GuaranaCam задействовала технологии машинного обучения для оценки эффективности размещения товаров и рекламных материалов в офлайне. Система работает на базе облака Microsoft Azure и анализирует покупательское поведение по камерам видеонаблюдения. Владельцы бизнеса получают отчет о состоянии торговли в режиме реального времени. Проект уже применяется в торговом центре «Мега Белая Дача».

На этом успешные отечественные примеры использования нейросетей в бизнесе не заканчиваются. Компания LogistiX , экспериментирующая с технологиями создания искусственного интеллекта с 2006 года, разработала систему оптимизации работы склада . В ее основе лежит обучающаяся нейронная сеть, которая анализирует полученные с фитнес-трекеров данные о работниках и перераспределяет между ними нагрузку. Теперь команда учит нейросети различать брак.

Холдинг «Белфингрупп » пошел еще дальше. Его «дочка» BFG-soft создала облачную платформу BFG-IS, позволяющую управлять предприятием с помощью его виртуальной модели. Последняя строится автоматически на основании собранных системой данных о производстве и не только показывает, как лучше организовать процессы с учетом заданных целей, но и прогнозирует последствия любых изменений - от замены оборудования до введения дополнительных смен. В конце 2016 года Фонд развития интернет-инициатив решил вложить в компанию 125 миллионов рублей.

Рекрутинг и управление персоналом

Российский агрегатор рекрутеров Stafory заканчивает обучение рекуррентной нейронной сети , способной не только давать односложные ответы на вопросы кандидатов, но и вести с ними полноценный разговор о заинтересовавшей вакансии. А команда портала SuperJob тестирует сервис, который предсказывает, какие из сотен однотипных резюме окажутся востребованы конкретным работодателем.

Транспорт

Российский разработчик интеллектуальных систем Cognitive Technologies применяет нейронные сети для распознавания транспортных средств, пешеходов, дорожных знаков, светофоров и других объектов, попадающих в кадр. Также компания собирает данные для обучения нейросети для беспилотного автомобиля . Речь идет о десятках тысяч эпизодов, описывающих реакцию водителей на те или иные критические ситуации на дорогах. В итоге система должна сформулировать оптимальные сценарии поведения авторобота. Такие же технологии применяются и для создания умного сельскохозяйственного транспорта.

Кроме того, нейронные сети могут использоваться в сфере транспорта и другим образом. Летом 2016 года «Яндекс» добавил в принадлежащую ему доску объявлений «Авто.ру » функцию автоматического определения модели машины по ее фото. На тот момент система знала 100 марок.

Психология и безопасность

Российский стартап NTechLab , обошедший Google в международном конкурсе алгоритмов распознавания лиц The MegaFace Benchmark , использовал технологии машинного обучения в приложении FindFace . Оно позволяет найти человека в социальных сетях по фотографии. Зачастую пользователи обращаются к сервису для выявления фейков, но он может быть полезен и правоохранителям. С его помощью уже установили личность нескольких преступников, в том числе захватчика Ситибанка в Москве. Бизнес-версия FindFace.Pro предоставляется компаниям, заинтересованным в идентификации клиентов. Сейчас систему доучивают определять пол, возраст и эмоции окружающих, что может быть полезно не только при общении с клиентами, но и при управлении персоналом.

Аналогичным образом нейросети применяются и еще одной российской компанией - VisionLabs . Она использует технологии распознавания лиц для обеспечения безопасности в банках и формирования специальных предложений для наиболее лояльных клиентов различных розничных точек.

В схожем направлении работает стартап «Эмотиан ». Он дорабатывает систему определения эмоционального состояния городов. Пока нейросеть вычисляет наиболее счастливые районы по публикациям в социальных сетях, однако в дальнейшем компания собирается учитывать и биометрические данные с камер.

Медиа и творчество

Одним из основных игроков на российском рынке нейронных сетей является «Яндекс». Компания использует машинное обучение не только в своих поисковых сервисах, но и в других продуктах. В 2015 году она запустила рекомендательную систему «Дзен », которая формирует ленту из новостей, статей, фотографий и видео, основываясь на интересах конкретного пользователя. Чем чаще он обращается к отобранным алгоритмом материалам, тем точнее нейросеть определяет, что еще ему может понравиться.

Кроме того, «Яндекс» экспериментирует и с творчеством. Сотрудники компании уже успели применить нейросетевой подход к поэзии , а затем и

Студенты Башкирского государственного медицинского университета решили применить нейросети для предсказания некоторых заболеваний. Молодые медики надеются, что их исследование принесет существенную пользу республиканской медицине. Подробностями авторы делятся с «Электрогазетой».

Нейросеть - это особое программное обеспечение, программный код, у которого есть определенные возможности и «умения». Нейронная сеть, как интеллектуальная система, способна выявлять сложные зависимости между входными и выходными данными, а также выполнять обобщения. По сути, такая программа (если ее эффективно обучить) может предсказывать болезни, - рассказывает студент третьего курса БГМУ Григорий Гололобов. - Начать исследования в данной области мы решили с язвенной болезни желудка и двенадцатиперстной кишки.

Почему именно это заболевание? Дело в том, что язва очень опасна своими осложнениями - перфорация желудка или кровотечение. Неожиданно возникшее осложнение может сильно ослабить больного и задержать выздоровление, а также может привести к летальному исходу. Нейронная сеть нужна, чтобы узнать - какова вероятность кровотечения у того или иного пациента. Если будет известно, что эта вероятность 50-60 процентов и выше, хирург сможет особенно внимательно следить за пациентом и заранее подготовиться к любым форс-мажорам. Особенно это актуально для молодых неопытных хирургов.

В своей работе мы использовали бесплатное программное обеспечение.

Итак, способна ли нейронная сеть предсказать язву и ее осложнения, и насколько достоверным будет диагноз? Первым этапом стало обучение нейронной сети. С целью тренировки в программу были загружены данные 200 реальных пациентов уфимских больниц. При этом входной информацией выступили жалобы пациентов, то есть так называемый анамнез (наличие болей, их локализация и интенсивность, уровень артериального давления, курит ли человек и т.д.), - целая совокупность параметров. А на выходе нейронная сеть должна была выдать диагноз - есть ли язва у человека, и какова вероятность осложнений. Стоит отметить, что выборка пациентов была поделена на две части. 70 процентов выборки мы использовали для обучения (тренировки) программы, а 30 процентов - для проверки.

Какими оказались промежуточные результаты? На сегодня точность предсказания составила в среднем 87 процентов. Наша нейронная сеть предсказывает язву и ее последствия у человека с очень высокой степенью достоверности. В дальнейшем мы планируем улучшить качество прогноза, и получить реально работающий инструмент для практикующих врачей. Для этого нужно больше пациентов и больше анамнеза. На текущем этапе нейросеть хорошо предсказывает саму язвенную болезнь. Но нужно научить программу более эффективно предсказывать осложнения. Этим мы будем заниматься на втором этапе.

Как пояснил собеседник «Электрогазеты», проект реализуется под руководством д.м.н., профессора БГМУ Марата Нуртдинова. Работа ведется в сотрудничестве с кафедрой вычислительной техники УГНТУ.

Наши московские и новосибирские коллеги уже активно используют нейронные сети для прогнозирования заболеваний и постановки диагнозов. Но в Башкирии мы являемся «первопроходцами», - добавляет Григорий Гололобов. - Единственный пока пример - аппараты ЭКГ с соответствующей программной «начинкой», которые на основе снятой кардиограммы выдают предварительный диагноз. Полагаю, что в ближайшие несколько лет нейросети прочно войдут в медицину. Нейросеть - весьма эффективная технология, которая может оказать существенную поддержку врачу. Ведь такое программное обеспечение, по сути, является интеллектуальной системой. Опять же, в дальнейшем можно будет внедрить нейронные программные комплексы не только в области диагностики язвенной болезни, но и других заболеваний.

17.04.1997 Александр Ежов, Владимир Чечеткин

Острая боль в груди. Скорая помощь доставляет больного в приемный покой, где дежурный врач должен поставить диагноз и определить, действительно ли это инфаркт миокарда. Опыт показывает, что доля пациентов, перенесших инфаркт среди поступивших с аналогичными симптомами, невеликa. Точных методов диагностики, тем не менее, до сих пор нет. Электрокардиограмма иногда не содержит явных признаков недуга. А сколько всего параметров состояния больного могут так или иначе помочь поcтавить в данном случае правильный диагноз? Более сорока. Может ли врач в приемном покое быстро проанализировать все эти показатели вместе с взаимосвязями, чтобы принять решение о направлении больного в кардиологическое отделение? В какой-то мере эту задачу помогают решать нейросетевые технологии. Нейронные сети для задач диагностики Конкретные системы Возможности применения нейросетей Борьба с раком Нейросистемы, генетика и молекулы Нейросети шагают по планете Вместо заключения Острая боль в груди. Скорая помощь доставляет

Острая боль в груди. Скорая помощь доставляет больного в приемный покой, где дежурный врач должен поставить диагноз и определить, действительно ли это инфаркт миокарда. Опыт показывает, что доля пациентов, перенесших инфаркт среди поступивших с аналогичными симптомами, невеликa. Точных методов диагностики, тем не менее, до сих пор нет. Электрокардиограмма иногда не содержит явных признаков недуга. А сколько всего параметров состояния больного могут так или иначе помочь поcтавить в данном случае правильный диагноз? Более сорока. Может ли врач в приемном покое быстро проанализировать все эти показатели вместе с взаимосвязями, чтобы принять решение о направлении больного в кардиологическое отделение? В какой-то мере эту задачу помогают решать нейросетевые технологии.

Статистика такова: врач правильно диагностирует инфаркт миокарда у 88% больных и ошибочно ставит этот диагноз в 29% случаев. Ложных тревог (гипердиагностики) чересчур много. История применения различных методов обработки данных для повышения качества диагностики насчитывает десятилетия, однако лучший из них помог сократить число случаев гипердиагностики лишь на 3%.

В 1990 году Вильям Бакст из Калифорнийского университета в Сан-Диего использовал нейронную сеть - многослойный персептрон - для распознавания инфаркта миокарда у пациентов, поступающих в приемный покой с острой болью в груди. Его целью было создание инструмента, способного помочь врачам, которые не в силах справиться с потоком данных, характеризующих состояние поступившего больного. Другой целью может быть совершенствование диагностики. Свою задачу исследователь усложнил, поскольку анализировал данные только тех пациентов, кого уже направили в кардиологическое отделение. Бакст использовал лишь 20 параметров, среди которых были возраст, пол, локализация боли, реакция на нитроглицерин, тошнота и рвота, потение, обмороки, частота дыхания, учащенность сердцебиения, предыдущие инфаркты, диабет, гипертония, вздутие шейной вены, ряд особенностей ЭКГ и наличие значительных ишемических изменений.

Сеть продемонстрировала точность 92% при обнаружении инфаркта миокарда и дала только 4% случаев сигналов ложной тревоги, ошибочно подтверждая направление пациентов без инфаркта в кардиологическое отделение. Итак, налицо факт успешного применения искусственных нейронных сетей в диагностике заболевания. Теперь необходимо пояснить, в каких параметрах оценивается качество диагноза в общем случае. Предположим, что из десяти человек, у которых инфаркт действительно есть, диагностический метод позволяет обнаружить заболевание у восьми. Тогда чувствительность метода составит 80%. Если же мы возьмем десять человек, у которых инфаркта нет, а метод диагностики заподозрит его у трех человек, то доля ложных тревог составит 30%, при этом дополнительная к нему характеристика - специфичность метода - будет равна 70%.

Идеальный метод диагностики должен иметь стопроцентные чувствительность и специфичность - во-первых, не пропускать ни одного действительно больного человека и, во-вторых, не пугать здоровых людей. Чтобы застраховаться, можно и нужно стараться прежде всего обеспечить стопроцентную чувствительность метода - нельзя пропускать заболевание. Но в это оборачивается, как правило, низкой специфичностью метода - у многих людей врачи подозревают заболевания, которыми на самом деле пациенты не страдают.

Нейронные сети для задач диагностики

Нейронные сети представляют собой нелинейные системы, позволяющие гораздо лучше классифицировать данные, чем обычно используемые линейные методы. В приложении к медицинской диагностике они дают возможность значительно повысить специфичность метода, не снижая его чувствительности.

Вспомним, что нейронная сеть, диагностирующая инфаркт, работала с большим набором параметров, влияние которых на постановку диагноза человеку невозможно оценить. Тем не менее нейросети оказались способными принимать решения, основываясь на выявляемых ими скрытых закономерностях в многомерных данных. Отличительное свойство нейросетей состоит в том, что они не программируются - не используют никаких правил вывода для постановки диагноза, а обучаются делать это на примерах. В этом смысле нейросети совсем не похожи на экспертные системы, разработка которых в 70-е годы происходила после временной "победы" Искусственного Интеллекта над тем подходом к моделированию памяти, распознавания образов и обобщения, который основывался на изучении нейронной организации мозга.

Одной из наиболее известных из разработанных экспертных систем, действие которых основывалось на знаниях, извлеченных у экспертов, и на реализации процедур вывода, была система MYCIN. Данную систему разработали в Стэнфорде в начале 70-х годов для диагностики септического шока. Половина больных умирала от него в течение суток, а врачи могли обнаруживать сепсис лишь в 50% случаев. MYCIN, казалось, была подлинным триумфом технологии экспертных систем - ведь она позволяла обнаружить сепсис в 100% случаев. Однако после более внимательного знакомства с этой экспертной системой врачи значительно усовершенствовали традиционные методы диагностики, и MYCIN потерял свое значение, превратившись в учебную систему. Экспертные системы "пошли" только в кардиологии - для анализа электрокардиограмм. Сложные правила, которые составляют главное содержание книг по клиническому анализу ЭКГ, использовались соответствующими системами для выдачи диагностического заключения.

Диагностика является частным случаем классификации событий, причем наибольшую ценность представляет классификация тех событий, которые отсутствуют в обучающем нейросеть наборе. Здесь проявляется преимущество нейросетевых технологий - они способны осуществлять такую классификацию, обобщая прежний опыт и применяя его в новых случаях.

Конкретные системы

Примером программы диагностики служит пакет кардиодиагностики, разработанный фирмой RES Informatica совместно с Центром кардиологических исследований в Милане. Программа позволяет осуществлять неинвазивную кардиодиагностику на основе распознавания спектров тахограмм. Тахограмма представляет собой гистограмму интервалов между последовательными сердцебиениями, и ее спектр отражает баланс активностей симпатической и парасимпатической нервной системы человека, специфично изменяющейся при различных заболеваниях.

Так или иначе, уже сейчас можно констатировать, что нейронные сети превращаются в инструмент кардиодиагностики - в Англии, например, они используются в четырех госпиталях для предупреждения инфаркта миокарда.

В медицине находит применение и другая особенность нейросетей - их способность предсказывать временные последовательности. Уже отмечалось, что экспертные системы преуспели в анализе ЭКГ. Нейросети здесь тоже приносят пользу. Ки Чженху, Ю Хену и Виллис Томпкинс из университета штата Висконсин разработали нейросетевую систему фильтрации электрокардиограмм, позволяющую подавлять нелинейный и нестационарный шум значительно лучше, чем ранее использовавшиеся методы. Дело в том, что нейросеть хорошо предсказывала шум по его значениям в предыдущие моменты времени. А то, что нейросети очень эффективны для предсказания временных последовательностей (таких, например, как курс валют или котировки акций), убедительно продемонстрировали результаты соревнования предсказательных программ, проводимых университетом в Санта Фе - нейросети заняли первое место и доминировали среди лучших методов.

Возможности применения нейросетей

ЭКГ - это частное, хотя и исключительно важное приложение. Однако сегодня существует и много других примеров использования нейросетей для медицинских прогнозов. Известно, что длинные очереди в кардиохирургические отделения (от недель до месяцев) вызваны нехваткой реанимационных палат. Увеличить их число не удается из-за высокой стоимости реанимационной помощи (70% средств американцы тратят в последние 2 недели жизни именно в этом отделении).

Выход только в более эффективном использовании имеющихся средств. Предположим, что состояние прооперированных в некоторый день больных настолько тяжелое, что им необходимо их длительное пребывание в реанимационной палате (более двух суток). Все это время хирурги будут простаивать, поскольку вновь прооперированных больных некуда класть. Тяжелых больных разумнее оперировать перед выходными или праздниками - операционные все равно закрыты в эти дни, хирурги будут отдыхать, а больные восстанавливаться в реанимации. А вот в начале рабочей недели лучше прооперировать тех пациентов, которым нужно будет находиться в реанимационной палате только один-два дня. Тогда койки в реанимации будут освобождаться быстрее и принимать новых, прооперированных во вторник и среду больных.

Вопрос в том, как угадать, кому придется надолго задержаться в блоке интенсивной терапии после операции, а кому - нет. Джек Ту и Майкл Гуэрир из госпиталя Святого Михаила университета в Торонто использовали нейронные сети для такого предсказания. В качестве исходных данных они взяли только те сведения о пациенте, которые известны в предоперационный период. Заметим, что в предшествующих работах, не использующих нейронные сети, в качестве факторов повышенного риска пребывания в реанимации применялись также важные послеоперационные сведения - различные осложнения, возникшие в ходе хирургического вмешательства.

Ту и Гуэрир обучили двухслойный персептрон разделять больных на три группы риска, учитывая их возраст, пол, функциональное состояние левого желудочка, степень сложности предстоящей операции и наличие сопутствующих заболеваний. Из тех пациентов, которых сеть отнесла к группе малого риска задержки в реанимации, только 16,3% действительно провели в ней более двух дней. В то же время свыше 60% из тех, кого сеть отнесла в группу повышенного риска, оправдали неблагоприятный прогноз.

Борьба с раком

Мы уделяли особое внимание сердечно-сосудистым заболеваниям, поскольку именно они удерживают печальное лидерство в списке причин смертности. На втором месте находятся онкологические заболевания. Одно из главных направлений, в котором сейчас идут работы по использованию нейронных сетей, - диагностика рака молочной железы. Этот недуг - причина смерти каждой девятой женщины.

Обнаружение опухоли осуществляется в ходе первичного рентгенографического анализа молочной железы (маммографии) и последующего анализа кусочка ткани новообразования (биопсии). Несмотря на существование общих правил дифференцирования доброкачественных и злокачественных новообразований, по данным маммографии, только от 10 до 20% результатов последующей хирургической биопсии действительно подтверждают наличие рака молочной железы. Опять мы имеем дело со случаем крайне низкой специфичности метода.

Исследователи из университета Дьюка обучили нейронную сеть распознавать маммограммы злокачественной ткани на основе восьми особенностей, с которыми обычно имеют дело радиологи. Оказалось, что сеть способна решать поставленную задачу с чувствительностью около 100% и специфичностью 59% (сравните с 10-20% у радиологов). Сколько женщин с доброкачественными опухолями можно не подвергать стрессу, связанному с проведением биопсии, если использовать эту нейронную сеть! В клинике Майо (Миннесота) нейросеть анализировала результаты ультразвукового исследования молочной железы и обеспечила специфичность 40%, в то время как для тех же женщин специфичность заключения радиологов оказалась нулевой. Не правда ли, успех использования нейросетевых технологий выглядит совсем не случайным?

После лечения рака молочной железы возможны рецидивы возникновения опухоли. Нейросети уже помогают эффективно их предсказывать. Подобные исследования проводятся на медицинском факультете Техасского университета. Обученные сети показали свои способности выявлять и учитывать очень сложные связи прогностических переменных, в частности, их тройные связи для улучшения предсказательной способности.

Разнообразны возможности применения нейросетей в медицине, и разнообразна их архитектура. На основе прогноза отдаленных результатов лечения заболевания тем или иным методом можно предпочесть один из них. Значительного результата в прогнозе лечения рака яичника (болезнь каждой семидесятой женщины) добился известный голландский специалист Герберт Каппен из университета в Нимегене (он использует в своей работе не многослойные персептроны, а так называемые Машины Больцмана - нейросети для оценки вероятностей).

А вот пример другого онкологического заболевания. Исследователи из медицинской школы в Кагаве (Япония) обучили нейросеть, которая практически безошибочно прогнозировала по предоперационным данным результаты резекции печени у больных печеночно-клеточной карциномой.

В Троицком институте инновационных и термоядерных исследований (ТРИНИТИ) в рамках реализуемого Министерством науки проекта создания нейросетевых консультационных систем была разработана нейросетевая программа, которая выбирает метод лечения базальноклеточного рака кожи (базалиомы) на основе долгосрочного прогноза развития рецидива. Число заболеваний базалиомой - онкологическим недугом белокожих людей с тонкой кожей - составляет треть всех онкологических заболеваний.

Диагностика одной из форм меланомы - опухоли, которую иногда непросто отличить от пигментной формы базалиомы, была реализована с помощью нейросетевого симулятора Multineuron, разработанного в ВЦ СОАН в Красноярске под руководством А.Н.Горбаня.

Нейросети можно использовать и для прогноза действия различных разрабатываемых средств лечения. Они уже успешно применяются в химии для прогноза свойств соединений на основе их молекулярной структуры. Исследователи из Национального института рака в США использовали нейросети для предсказания механизма действия препаратов, применяемых при химиотерапии злокачественных опухолей. Заметим, что существуют миллионы различных молекул, которые необходимо исследовать на предмет их антираковой активности. Специалисты Института рака разбили известные онкологические препараты на шесть групп в соответствии с механизмом их действия на раковые клетки и обучили многослойные сети классифицировать новые вещества и распознавать их действие. В качестве исходных данных использовались результаты экспериментов по подавлению роста клеток из различных опухолей. Нейросетевая классификация позволяет определить, какие из сотен ежедневно апробируемых молекул стоит изучать далее в весьма дорогих экспериментах in vitro и in vivo. Для решения аналогичной задачи использовались и сети Кохонена. Эти обучаемые без учителя самоорганизующиеся нейросети разбивали вещества на заранее неизвестное число кластеров и поэтому дали исследователям возможность идентифицировать вещества, обладающие новыми цитотоксическими механизмами воздействия.

Нейросистемы, генетика и молекулы

Диагностика и лечение онкологических заболеваний, а также разработка новых медикаментозных средств несомненно представляют собой важнейшую область применения нейросетевых технологий. Однако в последнее время среди исследователей и врачей растет осознание того факта, что будущие успехи должны быть тесно связаны с изучением молекулярных и генетических причин развития заболеваний.

Не случайно в апреле 1997 года эксперты Национального института здоровья (США) выступили с рекомендациями по усилению исследований, связанных с выявлением причин, вызывающих рак, и разработок, направленных на предупреждение болезней. Нейросети уже довольно давно активно применяются в анализе геномных последовательностей ДНК, в частности для распознавания промоторов - участков, предшествующих генам и связываемых с белком РНК-полимераза, который инициирует транскрипцию. Их используют для дифференциации кодирующих и некодирующих участков ДНК (экзонов и интронов) и предсказания структуры белков.

В 1996 году было сделано сенсационное открытие, связавшее фундаментальные исследования в молекулярной генетике с проблемой патогенеза и лечения самого распространенного онкологического заболевания - базальноклеточного рака кожи. Исследователи обнаружили в девятой хромосоме человека ген (PTC), мутации в котором, в отличие от гена p53, вызваны воздействием ультрафиолета и являются причиной развития опухоли. Ключом к открытию стало изучение так называемого заплаточного гена, изменения в котором стимулировали дефекты развития плодовой мушки и тот факт, что у детей, также страдающих дефектами развития костной ткани (базальный невусный синдром), часто имеются множественные базалиомы.

Теперь генетики и врачи преисполнены надежд найти медикаментозное средство лечения базалиомы или использовать методы генной хирургии, и заменить ими такие нещадящие методы лечения, как обычная лазерная, рентгеновская и криохирургия. Могут ли нейронные сети оказаться полезными для этих исследований? В частности, нельзя ли с их помощью оценить возможное влияние определенной мутации на изменение свойств соответствующих белков или оценить ее прогностическое значение, скажем, для развития рецидива рака молочной железы?

Если бы это можно было сделать, то нейросети значительно уменьшили бы область поиска для молекулярных биологов, часто "на ощупь" проводящих очень дорогостоящие эксперименты по оценке роли мутаций в молекуле ДНК. Напомним, что к развитию злокачественных опухолей приводит неконтролируемый рост и деление клеток. Геном человека, в котором записана информация о всех производимых в организме белках, насчитывает около трех миллиардов нуклеотидов. Но только 2-3% из них действительно кодируют белки - остальные нужны самой ДНК для поддержания правильной структуры, репликации и прочего.

В геномных последовательностях ДНК можно приближенно выделить три составляющие: в первой содержатся многочисленные копии одинаковых фрагментов (сателлитная ДНК); во второй находятся умеренно повторяющиеся последовательности, рассеянные по геному; а в третьей _уникальная ДНК. В сателлитной ДНК различные копии представлены неодинаково - их численность варьируется от сотен до миллионов. Поэтому они обычно еще подразделяются на мини- и микросателлитов.

Замечательно, что распределение микросателлитов по геному столь специфично, что может использоваться в качестве аналога отпечатков пальцев для человека. Полагают также, что это распределение может быть использовано и для диагностики различных заболеваний.

В скрытом виде повторы нуклеотидных последовательностей играют важную роль и в уникальных последовательностях ДНК. Согласно гипотезе Фрэнсиса Крика, эволюция ДНК начинается от квазипериодических структур, и если мы сможем найти скрытые повторы, то узнаем, где произошли мутации, определившие эволюцию, а значит, найдем и древнейшие, и важнейшие участки, мутации в которых наиболее опасны. Распределение скрытых повторов также тесно связано со структурой и функцией белков, кодируемых соответствующей последовательностью.

В ТРИНИТИ была разработана система, в которой для поиска скрытых повторов и оценки роли мутаций в последовательностях ДНК используются модификации нейросетей Хопфилда. Есть надежда, что этот подход можно будет использовать для обобщенного спектрального анализа последовательностей данных весьма общего вида, например, для анализа электрокардиограмм.

Нейросети шагают по планете

География исследовательских групп, применяющих нейросети для разработки медицинских приложений, очень широка. О США нечего и говорить - в университете каждого штата ведутся подобные исследования, причем главное их направление - рак молочной железы. Да что там университеты - военные академии этим тоже занимаются. В Чехии Иржи Шима разработал теорию обучения нейронных сетей, способных эффективно работать с так называемыми интервальными данными (когда известны не значения параметра, а интервал его изменения), и использует их в различных медицинских приложениях. В Китае сотрудники Института атомной энергии обучили нейросеть отличать больных с легкими и тяжелыми заболеваниями эпителия пищевода от тех, кто страдает раком пищевода, на основе элементного анализа ногтей.

В России в НИИЯФ МГУ нейросети применяются для анализа заболеваний органов слуха.

Наконец, в Австралии Джордж Христос использовал теорию нейронных сетей для построения первой гипотезы о причинах загадочного синдрома внезапной смерти новорожденных.

***

Разумеется, в статье приведен далеко не полный перечень примеров использования технологий искусственных нейронных сетей в медицине. В стороне осталась психиатрия, травматология и другие разделы, в которых нейросети пробуются на роль помощника диагноста и клинициста. Не все, конечно, выглядит безоблачным в союзе новой компьютерной технологии и здравоохранения. Нейросетевые программы подчас крайне дороги для широкого внедрения в клинике (от тысяч до десятков тысяч долларов), а врачи довольно скептически относятся к любым компьютерным инновациям. Заключение, выданное с помощью нейронной сети, должно сопровождаться приемлемыми объяснениями или комментариями.

Но основания для оптимизма все-таки есть. Освоить и применять технологии нейронных сетей значительно проще, чем изучать математическую статистику или нечеткую логику. Для создания нейросетевой медицинской системы требуются не годы, а месяцы. Да и параметры очень обнадеживают - вспомним еще раз высокую специфичность диагностики.

И еще одна надежда на сотрудничество - само слово "нейрон". Все-таки оно так хорошо знакомо медикам...

Александр Ежов, Владимир Чечеткин -- Институт инновационных и термоядерных исследований (Троицк).

Количество публикаций по применению нейротехнологии в медицине трудно оценить точно. Однако если в 1988-89 годах их были единицы, то с 1995 года ежегодно появляются сотни. Могут оказаться полезными следующие адреса:



7 июля 2017 в 22:30

Нейросети диагностируют проблемы с сердцем более точно, чем врачи

  • Медгаджеты ,
  • Здоровье гика ,

Человеческий фактор часто становится причиной возникновения проблем. Это касается производства, бытовых ситуаций, вождения и, конечно же, медицины. Ошибка врача может означать потерю здоровья или даже жизни пациентом, а врачи ошибаются не так уж и редко. Даже профессионал высшей пробы может делать ошибки - ведь специалист может быть уставшим, раздраженным, концентрируясь на проблеме хуже, чем обычно.

В этом случае на помощь могут прийти машины. Та же когнитивная система IBM Watson, например, вполне неплохо управляется с работой в медицинской сфере (онкология, чтение рентгеновских снимков и т.п.). Но есть и другие решения, предложенные независимыми исследователями. Одно из таких решений было создано учеными из Стэнфорда во главе с Эндрю Энджи, достаточно известным в своей сфере специалистом по искусственному интеллекту.

Он с коллегами разработал систему, которая способна диагностировать аритмию сердца по кардиограмме, причем компьютер делает это лучше, чем эксперт. Речь идет о нейросети, которая после обучения способна диагностировать аритмию с высокой степенью точности. При этом компьютер работает не только надежнее, но и быстрее нейросеть, так что задачу анализа медицинских снимков и результатов ЭКГ можно переложить на компьютер после окончательной «доводки» системы. Врачу же остается лишь проверять работу программно-аппаратной платформы, о которой идет речь и действовать в соответствии с окончательным диагнозом.

Этот проект показывает, насколько сильно компьютер может изменить медицину, улучшив различные аспекты этой сферы. Нейросети уже помогают врачам диагностировать рак кожи, рак груди, заболевания глаз. Теперь настала очередь и кардиологии.

«Мне очень нравится то, насколько быстро люди принимают идею, что глубокое обучение может помочь улучшить точность постановки диагноза врачом», - говорит Энджи. Он также считает, что на этом возможности компьютерных систем не исчерпываются, их можно применять и во многих других сферах.

Команда Стэнфорда потратила немало времени для обучения нейросети, с тем, чтобы система могла идентифицировать отклонения от нормы на данных ЭКГ. При этом аритмия весьма опасное заболевание, она может привести к внезапной смерти от остановки сердца. Проблема в том, что обнаружить аритмию не так легко, поэтому пациентам с подозрением на нее приходится иногда носить на себе ЭКГ датчик в течение нескольких недель. И даже после этого данных для диагностики отклонений может оказаться недостаточно.

Как уже говорилось выше, нейросеть пришлось обучать, причем на примере реальных показателей пациентов больниц. Самостоятельно набрать несколько десятков тысяч результатов измерений ЭКГ специалисты Стэнфорда были не в состоянии, поэтому они пригласили к партнерству iRhythm , компанию, которая производит портативные ЭКГ-гаджеты. Компания предоставила 30000 30-секундных записей результатов измерений работы сердечной мышцы пациентов, страдающих от разных форм аритмии. Для того, чтобы увеличить точность работы алгоритма, а также сравнить результаты работы компьютера с результатами диагностики врачей, использовались еще 300 записей. Их одновременно анализировали и машина, и врачи. Затем результаты оценивались специальным жюри, в которое вошли 3 кардиолога экстра-класса.

Глубокое обучение нейросети началось со «скармливания» огромного количества данных. Затем использовалась уже тонкая настройка для повышения точности диагностики.

Кроме специалистов, о которых уже говорилось выше, машинное обучение для создания систем, способных диагностировать аритмию, используют и другие группы. Например, Эрик Горовиц, управляющий директор Microsoft Research (сам он - медик) с коллегами работают примерно в том же направлении, что и специалисты из Стэнфорда. По их мнению, нейросети действительно способны улучшить качество медицинского обслуживания пациентов, помогая врачам тратить меньше времени на рутину и больше - на поиск эффективных методов лечения своих подопечных.


Правда, о масштабном внедрении нейросетей в больницы всего мира речь пока не идет. Это направление находится в зачаточном состоянии, но развивается все быстрее. Больницы США, Европы и других стран берут на вооружение новые технологии, работают с новыми методами диагностики заболеваний. Главная проблема в плане распространения упомянутых технологий - то, что нейросети представляют своего рода «черный ящик». Специалисты вводят данные и получают определенный результат. Но то, как этот результат был получен, какие алгоритмы и в какой последовательности задействованы могут не до конца понимать сами создатели таких систем. Если бы нейросети удалось сделать более прозрачными, а принцип их работы можно было бы легко объяснить практикующим медикам, тогда и темпы распространения этой технологии были бы куда выше.

Теги:

  • нейросети
  • врачи
  • медицина
Добавить метки Правильная ссылка на статью:

Мустафаев А.Г. — Применение искусственных нейронных сетей для ранней диагностики заболевания сахарным диабетом // Кибернетика и программирование. - 2016. - № 2. - С. 1 - 7. DOI: 10.7256/2306-4196.2016.2.17904 URL: https://nbpublish.com/library_read_article.php?id=17904

Применение искусственных нейронных сетей для ранней диагностики заболевания сахарным диабетом

Другие публикации этого автора

Аннотация.

Сахарный диабет - хроническое заболевание, в патогенезе которого лежит недостаток инсулина в организме человека, вызывающий нарушение обмена веществ и патологические изменения в различных органах и тканях, зачастую приводящие к высокому риску инфаркта и почечной недостаточности. Сделана попытка разработать систему ранней диагностики сахарного диабета обследуемого пациента использующая аппарат искусственных нейронных сетей. Разработана модель нейронной сети на основе многослойного персептрона обученная на основе алгоритма обратного распространения ошибки. Для проектирования нейронной сети был использован пакет Neural Network Toolbox из MATLAB 8.6 (R2015b) являющийся мощным и гибким инструментом работы с нейронными сетями. Результаты обучения и проверки работоспособности спроектированной нейронной сети показывают её успешное применение для решения поставленных задач и способность находить сложные закономерности и взаимосвязи между различными характеристиками объекта. Чувствительность разработанной нейросетевой модели составила 89.5%, специфичность 87.2%. После того как сеть обучена, она становится надежным и недорогим диагностическим инструментом.


Ключевые слова: сахарный диабет, искусственная нейронная сеть, компьютерная диагностика, специфичность, чувствительность, классификация данных, многослойный персептрон, обратное распространение ошибки, сеть прямого распространения, обучение с учителем

10.7256/2306-4196.2016.2.17904


Дата направления в редакцию:

11-02-2016

Дата рецензирования:

12-02-2016

Дата публикации:

03-03-2016

Abstract.

Diabetes is a chronic disease, in the pathogenesis of which is a lack of insulin in the human body causing a metabolic disorder and pathological changes in various organs and tissues, often leading to a high risk of heart attack and kidney failure. The author makes an attempt to create a system for early diagnosis of diabetes patients using the device of artificial neural networks. The article presents a model of neural network based on multilayer perceptron trained by back-propagation algorithm. For the design of the neural network the author used Neural Network Toolbox из MATLAB 8.6 (R2015b) which is a powerful and flexible tool for working with neural networks. The results of training and performance tests of the neural network designed show its successful application for the task and the ability to find patterns and complex relationships between the different characteristics of the object. The sensitivity of the developed neural network model is 89.5%, specificity of 87.2%. Once the network is trained it becomes a reliable and inexpensive diagnostic tool.

Keywords:

Diabetes, artificial neural network, computer diagnostics, specificity, sensitivity, data classification, multilayer perceptron, back propagation of error, direct distribution network, training with teacher

На сегодняшний день в мире диабет считается одним из наиболее распространенных заболеваний. Согласно данных Всемирной организации здравоохранения, около 350 млн. человек всех возрастов и рас страдают разными формами диабета . Сахарный диабет не является следствием патологии какого-то конкретного органа, он возникает из-за общего сбоя в обмене веществ. Его признаки появляются со стороны органов и систем органов, наиболее чувствительных к этому процессу. Клинические признаки диабета зависят от типа заболевания, пола, возраста, уровня инсулина, артериального давления и других факторов. В работе рассматривается система ранней диагностики сахарного диабета обследуемого пациента использующая аппарат искусственных нейронных сетей.

Нейросетевые технологии призваны решать трудноформализуемые задачи, к которым, в частности, сводятся многие проблемы медицины. Это связано с тем, что исследователю часто предоставлено большое количество разнородного фактического материала, для которого еще не создана математическая модель. Хороший результаты показали модели искусственных нейронных сетей для диагностики психических расстройств , болезни Паркинсона и Хантингтона . Модели многослойных персептронов применяются для прогнозирования риска возникновения остеопороза . Логический вывод и обобщенная регрессия использованы для диагностирования гепатита B .

Одним из наиболее удобных инструментов для решения подобных задач являются искусственные нейронные сети - мощный и одновременно гибкий метод имитации процессов и явлений. Современные искусственные нейронные сети представляют собой программно-аппаратные средства создания специализированных моделей и устройств и позволяют решать широкий круг задач диагностики на основе применения алгоритмов теории распознавания образов. Отличительное свойство нейронных сетей состоит в их способности обучаться на основе экспериментальных данных предметной области. Применительно к медицинской тематике экспериментальные данные представляются в виде множества исходных признаков или параметров объекта и поставленного на основе них диагноза. Обучение нейронной сети представляет собой интерактивный процесс, в ходе которого нейронная сеть находит скрытые нелинейные зависимости между исходными параметрами и конечным диагнозом, а также оптимальную комбинацию весовых коэффициентов нейронов, соединяющих соседние слои, при которой погрешность определения класса образа стремится к минимуму . К достоинствам нейронных сетей следует отнести их относительную простоту, нелинейность, работу с нечеткой информацией, не критичность к исходным данным, способность обучаться на материале конкретных примеров. В процессе обучения на вход нейронной сети подается последовательность исходных параметров наряду с диагнозами, которые эти параметры характеризуют.

Для обучения нейронной сети необходимо иметь достаточное количество примеров для настройки адаптивной системы с заданной степенью достоверности. Если примеры относятся к разным диагностическим группам, то обученная таким образом искусственная нейронная сеть позволяет в последующем диагностировать и дифференцировать любой новый случай, представленный набором показателей, аналогичных тем на которых проводилось обучение нейронной сети. Несомненным достоинством нейронной модели является то, что при ее создании не нужно представлять весь набор сложных закономерностей описания диагностируемого феномена.

Вместе с тем, с применением нейронных сетей в практических задачах связан ряд трудностей. Одной из главных проблем применения нейросетевых технологий является заранее неизвестная степень сложности проектируемой нейронной сети, которой будет достаточно для достоверной постановки диагноза. Эта сложность может оказаться недопустимо высокой, что потребует усложнения архитектуры сетей. Простейшие однослойные нейронные сети способны решать только линейно разделяемые задачи . Это ограничение преодолимо при использовании многослойных нейронных сетей.

В данной работе использовалась модель многослойного персептрона (нейронная сеть прямого распространения) обученная на основе алгоритма обратного распространения ошибки. В качестве активационной функции в работе, использовалась логистическая активационная функция (рис. 1):

`F=1/(1+exp(-alphaY)`

где ` alpha` - параметр наклона логистической функции.

Рис. 1. Логистическая функция активации

Многослойный персептрон обладает высокой степенью связности, реализуемой посредством синаптических соединений. Изменение уровня связности сети требует изменения множества синаптических соединений или их весовых коэффициентов. Комбинация всех этих свойств наряду со способностью к обучению на собственном опыте обеспечивает вычислительную мощность многослойного персептрона.

Искусственная нейронная сеть содержала входной слой, один скрытый слой и выходной слой. Входной слой, нейронной сети, имеет 12 нейронов, выходной слой имеет два нейрона (рис. 2).

Рис. 2. Архитектура нейронной сети

Таблица 1. Параметры входного слоя нейронной сети

Параметр

Тип данных, единица измерения

Число (лет)

Физические нагрузки

Логический (да/ нет)

Логический (М / Ж)

Число беременностей

Наличие диабета у близких родственников

Логический (да/ нет)

Индекс массы тела

Число (кг/м 2)

Толщина кожи

Число (мм)

Уровень холестерина

Число, мг/дл

Диастолическое давление

Число, мм. рт. ст.

2-х часовой сывороточный инсулин

Число, мкЕд/мл

Наличие стресса, депрессии

Логический (да/ нет)

Уровень глюкозы в плазме крови

Число, мг/дл

Для проектирования нейронной сети был использован пакет Neural Network Toolbox из MATLAB 8.6 (R2015b). Пакет представляет набор функций и структур данных описывающих функции активации, алгоритмы обучения, установку синаптических весов и др.

Рис. 3. Схема работы алгоритма обратного распространения ошибки

Алгоритм обратного распространения ошибки (рис. 3) предполагает вычисление ошибки, как выходного слоя, так и каждого нейрона обучаемой сети, а также коррекцию весов нейронов в соответствии с их текущими значениями. На первом шаге данного алгоритма веса всех межнейронных связей инициализируются небольшими случайными значениями (от 0 до 1). После инициализации весов в процессе обучения нейронной сети выполняются следующие шаги:

  • прямое распространение сигнала;
  • вычисление ошибки нейронов последнего слоя;
  • обратное распространение ошибки.

Прямое распространение сигнала производится послойно, начиная со входного слоя, при этом рассчитывается сумма входных сигналов для каждого нейрона и при помощи функции активации генерируется отклик нейрона, который распространяется в следующий слой с учетом веса межнейронной связи согласно. В результате выполнения данного этапа мы получаем вектор выходных значений нейронной сети. Следующий этап обучения - вычисление ошибки нейронной сети как разницы между ожидаемым и действительным выходными значениями.

Полученные значения ошибок распространяются от последнего, выходного слоя нейронной сети, к первому. При этом вычисляются величины коррекции весов нейронов в зависимости от текущего значения веса связи, скорости обучения и ошибки, внесенной данным нейроном. После завершения данного этапа шаги описанного алгоритма повторяются до тех пор, пока ошибка выходного слоя не достигнет требуемого значения.

База обучающих и тестовых данных содержала 486 записей о пациентах, 243 из которых имели клинически установленный диагноз «сахарный диабет», другая часть пациентов была здорова.

Нейронная сеть была обучена на 240 выборках и протестирована на 146 выборках. Чувствительность разработанной нейросетевой модели составила 89.5%, специфичность 87.2%. Некоторая сложность теоретического обеспечения использования, трудоемкость и временные затраты по моделированию и обучению нейронных сетей компенсируется простотой их применения конечным пользователем. Если задача создания конкретной нейронной сети адекватной поставленной задаче и ее оптимальное обучение доступна лишь специалисту, то ее практическое применение конечным пользователем требует только навыков владения компьютером. Сложность интерпретации системы знаний обученной нейросетевой модели, является ненужной пользователю нейронной сети, так как для большинства конечных пользователей важно не понимание сущности работы нейронной сети, а ее результативность, информативность, безошибочность и быстродействие.

Библиография

.

фактов о диабете. [Электронный ресурс] Официальный сайт Всемирной организации здравоохранения http://www.who.int/features/factfiles/diabetes/ru/ (дата обращения: 13.01.2016)

.

Беребин М.A., Пашков С.В. Опыт применения искусственных нейронных сетей для целей дифференциальной диагностики и прогноза нарушений психической адаптации. Вестник Южно-Уральского государственного университета, 2006, №14, с.41-45.

.

Gil D., Johnsson M. Diagnosing Parkinson by using artificial neural networks and support vector machines. Global Journal of Computer Science and Technology, 2009, №9(4). pp.63-71.

.

Singh M., Singh M., Singh P. Artificial Neural Network based classification of Neuro-Degenerative diseases using Gait features. International Journal of Information Technology and Knowledge Management, 2013, Vol. 7, №1, pp. 27-30.

.