Главная · Метеоризм · Метаболизм лекарственных средств. Метаболизм лекарственных веществ. Этап - всасывание

Метаболизм лекарственных средств. Метаболизм лекарственных веществ. Этап - всасывание

Фармакокинетика («человек – лекарство») - изучает влияние организма на лекарственное вещество, пути его поступления, распределения, биотрансформации и выведения лекарств из организма. Физиологические системы организма в зависимости от их врожденных и приобретенных свойств, а также способов и путей введения лекарственных пре­паратов будут в разной степени изменять судьбу лекарствен­ного вещества. Фармакокинетика лекарственного вещества зависит от пола, возраста и характера заболевания.

Основным интегральным показателем для суждения о судьбе лекарственных веществ в организме является опреде­ление концентрации этих веществ и их метаболитов в жидкостях, тканях, клетках и клеточных органеллах.

Длительность действия препаратов зависит от его фармакокинетических свойств. Период полувыведения - время, необходимое для очищения плазмы крови от лекарственного вещества на 50%.

Этапы (фазы) фармакокинетики. Движение лекарственного вещества и изменение его молекулы в организме представляет собой ряд последовательных процессов всасывания, рас­пределения, метаболизма и экскреции (выведения) лекарственных средств. Для всех этих процессов необходимым условием служит их про­никновение через клеточные оболочки.

Прохождение лекарственных веществ через клеточные оболочки.

Проникновение лекарственных веществ через оболочки клеток регулируется естественными процессами диффузии, фильтрации и активного транспорта.

Диффузия основана на естественном стремлении любого вещества двигаться из области высокой концентрации в направлении к области более низкой концентрации.

Фильтрация . Водные каналы в местах тесного соединения прилегающих эпителиальных клеток пропускают через поры толь­ко некоторые водорастворимые вещества. Нейтральные или не­заряженные (т. е. неполярные) молекулы проникают быстрее, так как поры обладают электрическим зарядом.

Активный транспорт - этот механизм регулирует движение некоторых лекарственных веществ в клетки или из них против концентрационного градиента. Для реализации этого процесса требуется энергия, и он происходит быстрее, чем перенос веществ путем диффузии. Молекулы со сходным строением конкурируют за молекулы-переносчики. Механизм активного транспорта вы­сокоспецифичен для определенных веществ.

Некоторые органные особенности клеточных мембран.

Мозг и спинномозговая жидкость. Капилляры в мозге отлича­ются от большинства капилляров других участков организма тем, что их эндотелиальные клетки не имеют пространств, через ко­торые вещества проникают во внеклеточную жидкость. Тесно примыкающие друг к другу эндотелиальные клетки капилляров, соединенные с базальной мембраной, а также тонкий слой отростков астроцитов препятствуют контакту крови с мозговой тканью. Этот гематоэнцефалический барьер предотвращает проникновение некоторых веществ из крови в мозг и спинномозговую жидкость (СМЖ). Жиронерастворимые вещества через этот барьер не проникают. Напротив, жирорастворимые вещества легко проникают через гематоэнцефалический барьер.


Плацента . Хорионические ворсины, состоящие из слоя трофобластов, т.е. клеток, окружающих капилляры плода, погру­жены в материнскую кровь. Кровоток беременной и плода разделены барьером, осо­бенности которого те же, что у всех липидных мембран организма, т.е. он проницаем только для жирорастворимых веществ и не­проницаем для веществ, растворимых в воде (особенно если их относительная молекулярная масса (ОММ) превышает 600). Кроме того, плацента содержит моноаминоксидазу, холинэстеразу и систему микросомальных фер­ментов (сходную с таковой в печени) способную метаболизировать лекарственные вещества и реагирующую на препараты, которые принимает беременная.

Всасывание - процесс поступления лекарства из места введения в кровеносное русло. Независимо от пути введения скорость всасывания препарата определяется тремя факторами: а) лекарственной формой (таб­летки, свечи, аэрозоли); б) растворимостью в тканях; в) крово­током в месте введения.

Существует ряд последовательных этапов всасывания лекарственных средств через биологические барьеры:

1) Пассивная диффузия . Таким путем проникают хорошо раство­римые в липоидах лекарственные вещества. Скорость всасывания определяется разностью его концентрации с внешней и внутренней стороны мембраны;

2) Активный транспорт . В этом случае перемещение веществ че­рез мембраны происходит с помощью транспортных систем, содер­жащихся в самих мембранах;

3) Фильтрация . Вследствие фильтрации лекарства проникают через поры, имеющиеся в мембранах (вода, некоторые ионы и мел­кие гидрофильные молекулы лекарственных веществ). Интенсив­ность фильтрации зависит от гидростатического и осмотического давления;

4) Пиноцитоз. Процесс транспорта осуществляется посредством образования из структур клеточных мембран специальных пузырьков, в которых заключены частицы лекарственного вещества. Пузырьки перемещаются к противоположной стороне мембраны и высвобождают свое содержимое.

Распределение. После введения в кровеносное русло лекарственное вещество распределяется по всем тканям организма. Распределение лекарственного ве­щества определяется его растворимостью в липидах, качеством свя­зи с белками плазмы крови, интенсивностью регионарного крово­тока и другими факторами.

Значительная часть лекарства в первое время после всасывания попадает в те органы и ткани, которые наи­более активно кровоснабжаются (сердце, печень, легкие, почки).

Многие естественные вещества циркулируют в плазме частично в свободном виде, а частично в связанном состоянии с белками плазмы . Ле­карственные средства также циркулируют как в связанном, так и в свободном состоянии. Важно, что фармакологически активна только свободная, несвязанная фракция препарата, а связанная с протеином представляет собой биологически неактивное со­единение. Соединение и распад комплекса препарата с белком плазмы происходят как правило быстро.

Метаболизм (биотрансформация ) - это комплекс физико-химических и биохими­ческих превращений, которым подвергаются лекарственные вещества в орга­низме. В результате образуются метаболиты (водорастворимые вещества), которые лег­ко выводятся из организма.

В результа­те биотрансформации вещества приобретают большой заряд (ста­новятся более полярными) и как следствие большую гидрофильность, т. е. растворимость в воде. Подобное изменение химической структуры влечет за собой изменение фармакологических свойств (как правило, уменьшение активности), скорости выделения из организма.

Это происходит по двум основным направлениям : а) снижение растворимости препаратов в жирах и б) сниже­ние их биологической активности.

Этапы метаболизма: Гидроксилирование. Диметилирование. Окисление. Образование сульфоксидов.

Выделяют два типа метаболизма лекар­ственных препаратов в организме:

Несинтетические реакции метаболизма лекарств, осуществляемые ферментами. К несинтетическим реакциям относится окисление, восстанов­ление и гидролиз. Они разделяют на катализируемые ферментами лизосом клеток (микросомальные) и катализируемые ферментами другой локализации (немикросомальные).

Синтетичес­кие реакции , которые реализуются с помощью эндогенных субстратов. В основе этих реакций лежит конъ­югация лекарственных препаратов с эндогенными субстратами (глюкуроновая кислота, глицин, сульфаты, вода и др.).

Биотрансформация препаратов происходит главным образом в печени , однако она осуществляется также в плазме крови и в других тканях . Интенсивные и многочис­ленные реакции метаболизма протекают уже в стенке кишечника.

На биотрансформацию влияют заболевания печени, характер питания, половые особенности, возраст и ряд других факторов. При поражении печени усиливается токсическое действие многих лекарственных веществ на централь­ную нервную систему и резко возрастает частота развития энцефа­лопатии. В зависимости от тяжести заболевания печени, некоторые лекарственные препараты применяются с осторожностью или они вовсе противопоказаны (барбитураты, наркотические анальгетики, фенотиазины, андрогенные стероиды и др.).

Клинические наблюдения показали, что эффективность и пере­носимость одних и тех же лекарственных веществ у различных боль­ных неодинакова. Эти отличия определяются генетическими фак­торами , детерминирующими процессы метаболизма, рецепции, иммунного ответа и др. Изучение генетических основ чувствитель­ности организма человека к лекарственным веществам составляет предмет фармакогенетики . Проявляется это чаще всего недостаточностью ферментов, катализирующих биотрансформацию препаратов. Атипичные реакции могут проявляться и при наслед­ственных нарушениях обмена веществ.

Синтез ферментов находится под строгим генетическим контролем. При мутации соответствующих генов возникают наследственные нарушения структуры и свойств ферментов - ферментопатии. В за­висимости от характера мутации гена изменяется скорость синтеза фермента или синтезируется атипичный фермент.

Среди наследственных дефектов ферментных систем часто встре­чается недостаточность глюкозо-6-фосфатдегидрогенезы (Г-6-ФДГ). Она проявляется массивным разрушением эритроцитов (гемолити­ческие кризы) при применении сульфаниламидов, фуразолидона и других препаратов. Кроме того, люди с недостаточностью Г-6-ФДР-чувствительны к пищевым продуктам, содержащим конские бобы, крыжовник, красную смородину. Существуют больные с недоста­точностью ацетилтрансферазы, каталазы и других ферментов в орга­низме. Атипичные реакции на лекарственные средства при наслед­ственных нарушениях обмена веществ встречаются при врожденной метгемоглобинемии, порфирии, наследственных негемолитических желтухах.

Элиминация . Различают несколько путей выведения (экскреции ) лекарствен­ных веществ и их метаболитов из организма: с калом, мочой, выдыхаемым воздухом, слюнными, потовыми, слезными и молочными железами .

Элиминация почками . Экскреция лекарственных веществ и их метаболитов почками происходит с участием нескольких фи­зиологических процессов:

Клубочковая фильтрация. Скорость, с которой вещество переходит в клубочковый фильтрат, зависит от его концентрации в плазме, ОММ и заряда. Вещества с ОММ более 50 000 не попадают в клубочковый фильтрат, а с ОММ менее 10 000 (т. е. практически большинство лекарственных веществ) фильтруются в почечных клубочках.

Экскреция в почечных канальцах . К важным механизмам экскреторной функции почек относится способность клеток проксимальных почечных канальцев активно переносить заряженные (катионы и анионы) молекулы из плазмы в канальцевую жидкость.

Почечная канальцевая реабсорбция . В клубочковом фильтрате концентрация лекарственных веществ та же, что и в плазме, но по мере продвижения по нефрону он кон­центрируется с увеличением концентрационного градиента, поэто­му концентрация препарата в фильтрате превышает его кон­центрацию в крови, проходящей через нефрон.

Элиминация через кишечник .

После приема препарата внутрь для системного действия часть его, не абсорбируясь, может экскретироваться с каловыми массами. Иногда внутрь принимают лекарственные средства, специально не предназначенные для аб­сорбции в кишечнике (например, неомицин). Под влиянием ферментов и бакте­риальной микрофлоры желудочно-кишечного тракта лекарствен­ные препараты могут превращаться в другие соединения, которые вновь могут доставляться в печень, где и проходит новый цикл.

К важнейшим механизмам, способствующим активному тран­спорту препарата в кишечник, относится билиарная экскреция (печенью). Из печени с помощью активных транспортных систем лекарствен­ные вещества в виде метаболитов или, не изменяясь, поступают в желчь, затем в кишечник, где и выводятся с калом .

Степень выведения лекарственных веществ печенью следует учитывать при лечении больных, страдающих болезнями печени и воспалительными заболеваниями желчных путей.

Элиминация через легкие . Легкие служат основным путем введения и элиминации летучих анестезирующих средств. В дру­гих случаях медикаментозной терапии их роль в элиминации невелика.

Элиминация лекарственных веществ грудным молоком . Лекарственные вещества, содержащиеся в плазме кормящих жен­щин, экскретируются с молоком; их количества в нем слишком малы для того, чтобы существенным образом влиять на их элими­нацию. Однако иногда лекарственные средства, попадающие в организм грудного ребенка, могут оказывать на него существенное воздействие (снотворные, анальгетики и др.).

Клиренс позволяет определить выведение лекарственного ве­щества из организма. Термином «почечный клиренс кре­атинина » определяют выведение эндогенного креатинина из плаз­мы. Большинство лекарственных веществ элиминируется либо че­рез почки, либо через печень. В связи с этим общий клиренс в организме представляет собой сумму печеночного и по­чечного клиренса, причем печеночный клиренс рассчитывают путем вычитания значения почечного клиренса из общего клиренса организма (снотворные, анальгетики и др.).

Органические вещества подвергаются в организме различным химическим превращениям (биотрансформации). Выделяют два вида превращений лекарственных веществ: метаболическую трансформацию и конъюгацию. Метаболическая трансформация – превращение веществ за счет окисления, восстановления и гидролиза. Конъюгация – биосинтетический процесс, сопровождающийся присоединением к лекарственному веществу или его метаболитам ряда химических группировок. (Рис.2)

ЭКСКРЕЦИЯ

Рис. 2 Пути биотрансформации ЛС в организме

Эти процессы влекут за собой инактивацию или разрушение лекарственных веществ (детоксикацию), образование менее активных соединений, гидрофильных и легко выводимых из организма.

Иногда в результате метаболизма некоторых веществ образуются более активные соединения – фармакологически активные метаболиты . В этом случае речь идет о «пролекарстве» .

Главная роль в биотрансформации принадлежит микросомальнымферментам печени , поэтому мы говорим о барьерной и обезвреживающей функции печени. При заболеваниях печени нарушаются процессы биотрансформации и несколько усиливается действие ЛС (за исключением «пролекарств»).

Выделение лекарственных веществ из организма (экскреция)

Лекарственные вещества через определенное время выводятся из организма в неизмененном виде или в виде метаболитов. Гидрофильны е (растворимые в воде) вещества выделяются почками. Таким способом выделяется большинство ЛС. Поэтому при отравлении для ускорения удаления яда из организма вводят диуретики (Рис.3).

Многие липофильны е (растворимые в жирах) лекарственные вещества и их метаболиты выводятся через печень в составе желчи, поступающей в кишечник. Выделившиеся в кишечник с желчью ЛС и их метаболиты могут выделиться с калом, всосаться обратно в кровь или подвергаться метаболизму ферментами желчи, кишечника. Таким образом, лекарственное средство долго задерживается в организме. Этот циклический процесс носит название кишечно-печеночной циркуляции (энтерогепатический кумуляции) – дигитоксин, дифенин. Это необходимо учитывать при назначении ЛС, обладающих токсическим действием на печень и больным с заболеванием печени.

МЕТАБОЛИЗМ

АБСОРБЦИЯПОЧЕЧНАЯ ЭКСКРЕЦИЯ

(гидрофильные)

ЛС

липофильное

(ацетилирование

окисление

восстановление

гидролиз

конъюгация

ЛС

гидрофильное

Рис. 3 Всасывание, метаболизм и выведение ЛС

Лекарственные вещества могут выводиться через потовые и сальные железы (йод, бром, салицилаты). Летучие лекарственные вещества выделяются через легкие с выдыхаемым воздухом. Молочные железы выделяют с молоком различные соединения (снотворные, спирт, антибиотики, сульфаниламиды), что следует учитывать при назначении лекарственного средства кормящим женщинам.

Процесс освобождения организма от лекарственного вещества в результате инактивации и выведения обозначается термином элиминация (от лат. – eliminare – изгонять).

Константа скорости экскреции – скорость выведения ЛС с мочой и другими путями.

Общий клиренс (от англ. сlearance – очистка) ЛС – объем плазмы крови, очищаемый от ЛС за единицу времени (мл/мин) за счет выведения почками, печенью и доугими путями.

Период полувыведения (Т 0,5) – время, в течение которого концентрация ЛС в плазме уменьшается наполовину от ее начальной величины.

Этот показатель отражает связь между объемом распределения и клиренсом вещества. Известно, что при введении постоянной поддерживающей дозы ЛС через одинаковые временные интервалы, в среднем через 4-5 Т 0,5 в плазме крови создается его равновесная концентрация (см. ниже). Поэтому через этот период чаще всего оценивается эффективность лечения.

Чем короче Т 0,5, тем быстрее наступает и прекращается лечебное действие ЛС, тем более выражены колебания его равновесной концентрации. Поэтому для уменьшения резких колебаний равновесной концентрации при длительной терапии используют ретардные формы ЛС.

Глава 2.2 Вопросы фармакодинамики

Фармакодинамика (от греч. рharmakon – лекарство, dinamis – cила) – раздел общей фармакологии, рассматривающий механизмы и локализацию действия лекарственных средств, изменения в органах и тканях под действием лекарственных веществ, т.е. фармакологические эффекты.

Механизм действия ЛС

Лекарственные вещества, воздействуя на организм, вызывают изменения в деятельности определенных органов, тканей и систем (усиливают работу сердца, устраняют спазм бронхов, понижают или повышают артериальное давление и т.д.). Подобные изменения называются фармакологическими эффектами. Для каждого ЛС характерны определенные фармакологические эффекты. Совокупность эффектов ЛС характеризует спектр его действия .

Все эффекты являются результатом взаимодействия ЛС с клетками и внутриклеточными образованиями тканей и органов или внеклеточными образованиями (например, ферментами). Под механизмом действия ЛС понимают характер взаимодействия его с клетками, обуславливающий специфические для данного вещества фармакологические эффекты.

1 - Чаще всего лекарственные вещества взаимодействуют со специфическими рецепторами клеточных мембран, через которые осуществляется регуляция деятельности органов и систем. Рецепторы – это активные группировки макромолекул, с которыми специфически взаимодействуют медиаторы или гормоны.

Лекарственные вещества, стимулирующие (возбуждающие) эти рецепторы и вызывающие такие эффекты, как и эндогенные вещества (медиаторы), получили название миметиков (от греч. – mimesis – подражание) или стимуляторов или агонистов (от греч. agonistes – соперник, agon - борьба). Агонисты благодаря сходству с естественными медиаторами стимулируют рецепторы, но действуют более продолжительно в связи с их большей устойчивостью к разрушению.

Вещества, угнетающие (блокирующие) рецепторы и препятствующие действию эндогенных веществ называются блокаторами или ингибиторами или антагонистами . Антагонисты, занимая рецептор, не вызывают их активацию и не позволяют естественному агонисту активировать рецепторы. (Рис.4).

Нервное окончание


Рис. 4 Принципы действия лекарственных веществ в области синапса

2 - Во многих случаях действие ЛС связано с их влияниями на ферментные системы или отдельные ферменты ;

3 - Иногда лекарственные средства угнетают транспорт ионов через клеточные мембраны или стабилизируют клеточные мембраны

4 - Ряд веществ влияют на метаболические процессы внутри клетки, а также проявляют другие механизмы действия, которые будут рассмотрены в соответствующих разделах частной фармакологии.

При взаимодействии с соответствующими частями клеток и внеклеточных образований лекарственные вещества вступают в химические связи: ионные, ковалентные, ван-дер-ваальсовы и др.

Действие ЛС может быть специфическим и неспецифическим . К ЛС, обладающим специфическим действием, относятся ЛС, действующие на определенные воспринимающие субстанции (рецепторы, каналы и др.) и вызывающие четко обозначенный фармакологический эффект. Ярким примером может служить действие ЛС, блокирующих или возбуждающих симпатическую или парасимпатическую нервную систему. К неспецифическим относятся вызываемые ЛС разнообразные эффекты, ни один из которых невозможно обозначить как основной фармакологический эффект. К таким ЛС относятся витамины, микроэлементы, адаптогены и др.

Селективность действия ЛС – это способность оказывать определенный желаемый эффект и не вызывать другие нежелательные эффекты благодаря действию на отдельные типы или подтипы рецепторов, каналов, ферментов и др.

Фармакологическая активность ЛС – способность вещества или комбинации нескольких веществ изменять состояние и функции живого организма.

Эффективность ЛС – характеристика степени положительного влияния ЛС на течение или продолжительность заболевания, предотвращение беременности, реабилитацию больных путем внутреннего или внешнего применения.

Показателем проницаемости ПБ для каждого вещест­ва может служить время, необходимое для установления равновесия между концентрацией его в крови мате­ри в плода. Большинство лекарственных веществ в организме плода не подвергаются химическим превраще­ниям вообще или метаболизируются в небольших коли­чествах. Поэтому после снижения их концентрации в крови матери (за счет метаболизма или экскреции) они могут через плаценту поступить обратно в организм женщины. Если препарат введен незадолго до родов, то он может остаться в организме плода и оказать отри­цательное действие на состояние новорожденного.

При токсикозе беременности, гипоксии, кровотечениях, эндокринных расстройствах проницаемость плаценты воз­растает. В этих случаях через нее могут проникать та­кие вещества.которые в обычных условиях через плаценту не проходят.

Метаболизм лекарственных веществ в организме

Метаболизм (от греч. metabole - превращение, изме­нение) лекарственных веществ в организме - это их биотрансформация, изменение химической структуры. Комплекс вещество - циторецептор через некоторое время распадается, и вещество под влиянием ферментативных систем организма подвергается биотрансформа­ции, т. е. претерпевает ряд химических превращений, исчерпывает свою биохимическую активность и в виде метаболитов выводится из организма. В некоторых слу­чаях высокой активностью обладают не сами вещества, а их метаболиты.

Смыслом биотрансформации является дезактивация лекарственного вещества как чужеродного соединения. Главный детоксицирующий орган у высших млекопита­ющих - печень. Именно здесь и происходит основной объем дезактивации, хотя биотрансформация лекарст­венных веществ может протекать и в других органах почках, легких, крови и др.).

Биотрансформация лекарств в печени происходит обычно в несколько этапов. Прежде всего, вещество должно быть активно захвачено из крови клеткой пече­ни, поэтому в ней оно может быть в значительно боль­шей концентрации (в 50 и больше раз), чем в плазме.

В клетках печени обнаружено 4 типа цитозольных белков - лигандов, связывающих анионы, желчные кислоты, органические катионы и нейтральные соедине­ния.

Извлеченные печенью вещества могут пройти после­довательно два этапа химических превращений: мета­болическую трансформацию и конъюгацию.

Первый этап биотрансформации (метаболическая трансформация) - это превращение вещества за счет окисления, восстановления и гидролиза) происходит под влиянием ферментов монооксигеназной системы, главны­ми из которых являются цитохром Р-450 и никотина адениндинуклеотид фосфорилированный и восстановлен­ный (НАДФ. Н.). Цитохром Р-450 - большая группа изоферментов, взаимодействующих с разнообразными химическими веещствами, подвергая их окислительному деалкплированию, дезаминированию, декарбоксилиро-ванию и пр.

Окислению подвергаются имизин, эфедрин, аминазин, гистамин, фенацетин, кодеин.

Процесс восстановления важен для метаболической трансформации хлоралгидрата, левомицетина, нитразе-пама и др. Процесс восстановления происходит под вли­янием системы нитро- и азоредуктаз и др. ферментов. Сложные эфиры (новокаин, атропин, ацетилхолин, ди-тилин, кислота ацетилсалициловая) и амиды (иовокаинамид, салициламид) гидролизуются при участии эстераз, карбоксилэстераз, амидаз, фосфатаз и др.

Второй этап биотрансформации (конъюгация - это биосинтетический процесс, сопровождающийся присоеди­нением к лекарственному веществу или его метаболитам ряда химических группировок или молекул биогенных соединений) заключается в образовании парных эфиров с гиалуроновой, серной, уксусной кислотами и конъюгатов с глутатионом, глицином и другими аминокислотами.

В процессах конъюгации участвуют многие ферменты: глюкуронилтрансфераза, сульфотрансфераза, трансса-лицилаза, метилтрансфсраза, глутатионил-5-трансфераза и др. В процессе конъюгации могут происходить мети-лирование веществ (гистамин, катехоламины) или их ацетилирование (сульфаниламиды), взаимодействие с глюкуроновоя кислотой (морфин, оксазепам), сульфата­ми (левомицетин, фенол), глутатионом (парацетамол) и т. д.

Образовавшиеся эфиры и конъюгаты характеризуются высокой растворимостью в воде, способствующей быст­рому их удалению из организма почками, и отсутствием (в подавляющем большинстве случаев) фармакологи­ческой активности.

Скорость и интенсивность этих биосинтетических про­цессов для разных веществ неодинакова. При патоло­гии печени они происходят значительно медленнее, тог­да вещество дольше остается в неизменном виде в ор­ганизме, вызывая более продолжительное действие. При повторных введениях такое вещество может накапли­ваться в организме - кумулироваться.

Биотрансформация лекарственных веществ в печени детей младшего возраста, особенно первых месяцев жиз­ни, отличается от таковой у взрослых в качественном и количественном отношении.

Активность глюкуронидазной системы, приводящей к образованию глюкуронидов "И, тем самым, к оконча­тельной детоксикации лекарств, развита недостаточно не только у грудных детей, но и у детей дошкольного и школьного возраста. Глюкуронидазная система, как уже было отмечено, состоит из четырех ферментов: нуклеотиддифоефокиназы, уридинтрансферазы, дегидро-геназы уридиндифосфоглюказгы и глкжуронилтранефера-зы. Два последних фермента у новорожденных функцио­нируют еще весьма слабо. Естественно, что это задер­живает и инактивацию значительного ряда лекарств, и их выведение из организма. Значительно медленнее про­исходит «нактивация левомицетина, подвергающегося на первом этапе восстановлению, а затем глкжурониза-ции. Медленнее биотрансформируются индометацин, бу-тамид, амидопирин, сибазон, канамицин, гентамицин, оксазепам, фенобарбитал, дифенин, теофпллнн, кофеин и др.

В печени плода п новорожденного могут образовы­ваться необычные метаболиты лекарств, в норме не вы­явленные у взрослого человека. У новорожденных парааминобензойная кислота (ПАБК.) превращается в ацетил-ПАБК, а у старших детей соединяется с глицином и превращается в парааминогиппуровую кислоту.

Образование же сульфатов (парацетамола и др.) у новорожденных происходит достаточно, но в процессе постнатальной жизни глюкуронизация становится пре­обладающей (по крайней мере для некоторых веществ).

При некоторых патологических состояниях конъюгационная функция печени нарушается, например, при функциональной гипербилирубинемии, хроническом ге­патите. Некоторые лекарственные вещества, например, антибиотики группы тетрациклинов, левомицетин, могут ухудшать эту функцию. В то же время глюкокортико-иды, инсулин стимулируют обезвреживающую функцию печени, что используют при лечении острых отравлений у детей. Но этот же эффект гдюкокортикоидов может иметь и нежелательные последствия, т. к. ускоряет инак­тивацию ряда лекарств в организме, снижает их эффек­тивность.

Выявлен ряд негормональных лекарств, которые спо­собны усиливать синтез ферментов в печени и повышать ее активность. Так, прием фенобарбитала в течение 2-3 дней приводит, к более интенсивному захватыванию из крови и удержанию печенью химических веществ, их глюкуронизации и экскреции с желчью. У новорожден­ных этот стимулирующий эффект сохраняется 3-4 не­дели, а у взрослых - только 5-7 дней.

Аналогичное стимулирующее действие на печень спо­собны оказывать дифенин, бутадиен, и в несколько мень­шей степени - кордиамин, камфора, кофеин, теофиллин, рифамшицин и др.

По интенсивности метаболизма лекарств органы мож­но условно расположить друг за другом в убывающем порядке: печень > желудок > кишечник > почки > легкие > кожа > мозг. Однако, некоторые вещества в легких и др. органах могут мстаболизироваться ско­рее, чем в печени.

Выведение лекарственных веществ из организма

Лекарственные вещества выделяются из организма различными органами и тканями: почками, печенью, мо­лочными железами, слизистой оболочкой.пищевого ка­нала, слезными железами, легкими. Из всех выделяющих органов только почки и печень обладают наиболее вы­раженной способностью к активному транспорту экскретируемых веществ.

Выведение почками лекарств) и их метаболитов может" осуществляться путем фильтрации в клубочках и актив­ной экскреции (секреции) в канальцах.

В клубочках почек фильтруются жидкая часть плаз­мы крови п растворенные в ней химические вещества, как ионизированные, так и неионизированные. Не про­ходят через стенку почечных капилляров только лекар­ственные вещества, связанные с белками плазмы, или крупные молекулы с молекулярной массой больше 5000 - 10000 (например, полиглюкип). Интенсивность клубочковой фильтрации находится в прямой зависимо­сти от величин свободной фракции лекарственного ве­щества и гидростатического давления в сосудах почек, (определяемого работой сердца, общим периферическим сопротивлением сосудов н резнстентностью сосудов клубочка почек), составляющего примерно 60% от ар­териального давления.

Касаясь печени, как органа выведения лекарственных веществ, следует помнить, что мембраны гепатоцитов обладают высокой пропускной способностью и проница­емы для большинства молекул и ионов, имеющих мень­шие размеры, чем молекулы белка. Поэтому многие ве­щества содержатся в желчи примерно в тон же концент­рации, что и в крови. Но высокополярные соединения (такие,как конъюгаты) выделяются в желчь путем ак­тивного чрезмембранного транспорта. Кроме того, в желчь, выделяется и ряд неизменяемых лекарственных веществ.

ПОНЯТИЕ О ЛЕКАРСТВЕ И ЯДЕ

Продукты растительного, животного и минерального происхождения применялись в качестве лекарственных средств с древних времен н применяются в настоящее время.

Материалистическая философия как метод познания открыла новые перспективы в оценке эффективности ле­карственных средств, в понимании их природы и меха­низма действия на организм животных и человека. Боль­шое значение имело введение в научную практику как основу познания эксперимента, позволяющего отделить заблуждение от истины.

Краеугольный камень учения о лекарстве - положе­ние материалистической биологии о единстве организма и среды, которое гласит, что каждый организм для сво­его нормального развития и жизнедеятельности требует определенного комплекса факторов, которые его поро­дили и которые необходимы для построения тела и об-ме"на веществ. Изменение взаимосвязи между организ­мом и условиями окружающей его среды сопровожда­ется различными нарушениями жизнедеятельности ор­ганизма. Общее представление о принципах нарушения Жизнедеятельности организма создает объективные методологические предпосылки для понимания сущнос­ти о лекарстве и яде.

Если, болезнь возникает вследствие выпадения из комплекса необходимых условий одного или нескольких компонентов, а в роли лекарственного вещества высту­пают эти же компоненты, то назначение этих компо­нентов будет приводить к компенсации. Например, од­ним из компонентов комплекса необходимых условий является йод в количестве 400-500 мкг в сутки. Если содержание йода в пище или в воде уменьшается, а тем более если он вовсе отсутствует, развивается эндемиче­ский зоб. Следовательно, в этих эндемических участках в качестве эффективного средства профилактики и лече­ния данного заболевания будет являться йод, добавля­емый в соль или в воду. В данном случае это вещество, как один из факторов внешней среды, после специальной обработки выступает уже в новом качестве - ста­новится лекарством. Подобными веществами среды яв­ляются и витамины.

Различные нарушения жизнедеятельности организма возможны не только при расстройстве его взаимосвязи с условиями внешней среды, но и при изменениях внут­ренней среды организма.

Нормальная жизнедеятельность организма возможна только при относительном постоянстве условий внутрен­ней среды - гомеостазе. При недостатке или выпаде­нии одного из его компонентов также могут возникать различные формы патологии. В таких случаях необхо­димо компенсировать недостаток этих компонентов ис­кусственным введением нх в организм, но уже, в качест­ве лекарственных средств.

Однако нарушение жизнедеятельности организма возможно не только в случае дефицита того или иного фактора в комплексе необходимых условий, но и при чрезмерном воздействии на организм адекватных усло­вий или же чужеродных агентов, которые не являются необходимыми для нормальной жизнедеятельности. В этих случаях используют самые разнообразные вещест­ва.

Таким образом, лекарством можно назвать любое ве­щество минерального, растительного, животного, синте­тического или полусинтетичеокого происхождения, кото­рое может быть использовано для целенаправленного воздействия на организм человека или животного с целью профилактики заболеваний и лечения больных.

При оценке фармакологических свойств лекарствен­ных веществ нужно иметь в виду, что характер их био­логической активности в каждом конкретном случае оп­ределяется не только качеством, но и дозой, т. е. пере­ходом количества в качество. Материалистическая диа­лектика, в отличие от метафизики, учит, что нечто, при определенных условиях, может переходить в свою про­тивоположность и наоборот.

Однако, одно и то же лекарственное вещество в за­висимости от дозы может оказывать как благотворное, так и вредное влияние, т. е. может становиться ядом. Этому закону подчиняются все лекарственные средства, применяемые в практической медицине с древнейших времен. Выдающийся древнеиндийский врач Сушрута, касаясь источника и природы лекарственных веществ, писал: «Мы живем в мире лекарств. В руках невежды лекарство - яд и по своему действию может быть срав­нимо с огнем, в руках же людей сведущих оно уподобля­ется напитку бессмертия». Например, южноамерикан­ские индейцы давно подметили свойство кураре при по­падании в кровь вызывать обездвиживание животного и даже смерть. Они изготовляли из кураре мазь, кото­рой намазывали кончики стрел, используемые на охоте. Отсюда название этого вещества - «стрельный яд». Небольшие дозы кураре, а чаще всего его искусствен­ные аналоги и заменители (диплацин, дитилин и др.) широко применяются в современной медицине при ком­бинированном наркозе с целью временного расслабле­ния скелетной мускулатуры. Таким образом, правиль­ное представление о фармакологическом действии лекар­ственного средства можно составить только при диалек-тико-материалистическом подходе к оценке взаимодей­ствия организма и окружающей среды.

ФАРМАКОДИНАМИКА

Главная цель фармакологии - изучение первичной фармакологической реакции, т. е. изучение явлений, ко­торые отражают самые начальные этапы взаимодейст­вия лекарственного вещества и организма. Современ­ная фармакология изучает качественные и количественные сдвиги в деятельности организма на молекулярном, клеточном, органном и системном уровнях при введе­нии лекарств.

Так фармакодинамика - это фармакологический эф­фект, возникающий при действии лекарственного веще­ства на организм. Первичная фармакологическая реак­ция, возникающая на месте взаимодействия лекарства с рецептором, является только пусковым звеном в дейст­вии лекарственного вещества. Оно перерастает в слож­ный многокомпонентный и многоступенчатый процесс на. системном уровне, уровне организма. Изучение вот это­го комплекса возникающих реакций во всей совокупно­сти и динамике определяет содержание понятия, «фар­макодинамика». Фармакодинамика включает в себя вопросы о видах и характере действия лекарств, меха­низмах их действия и факторах, влияющих на фармако­логический эффект. (Виды, характер и механизмы дей­ствия лекарственных веществ на организм: изменение чувствительности организма на лекарственные вещества при их повторном введении; комбинированное действие лекарственных веществ; виды синергизма и антагонизма необходимо изучить самостоятельно по учебнику «Фар­макология» под ред. А. Д. Харкевича, 1987. стр. 46 - 63).

Однако, значение физико-химических свойств и хими­ческой структуры для действия лекарственных веществ на организм нам необходимо рассмотреть сейчас.

Возможность первичной фармакологической реакции в клетке определяется двумя обстоятельствами. Во-пер­вых, молекулы лекарственного вещества должны ока­заться в непосредственной близости к циторецепторам. "Во-вторых, возможность взаимодействия молекул лекарственного вещества и циторецепторов определяется воз­можностью образования между взаимодействующими молекулами химических связей определенного типа (вандерваальсовых, водородных, диполь-дипольных, ионных).

Рассматривая зависимость действия лекарственного вещества от его физических свойств следует помнить и это надо знать, что «тела не действуют (не активны), если они не растворены или не растворимы», т. е. лекар­ственные вещества могут проявлять свою биологическую активность только в растворенном состоянии. Раствори­мость вещества зависит, с одной стороны - от его хи­мического соединения, с другой стороны - от природы растворителя. Известно, что неполярные соединения хо­рошо растворяются в неполярных или малополярных растворителях (эфире, хлороформе, этиловом спирте, жирах) и плохо растворяются в воде, являющейся по­лярным соединением.

Напротив, полярные соединения хорошо растворимы в воде. Если в организме неполярные соединения превра­щаются в полярные, например путем образования в его молекуле ОН- или СООН-групп, оно приобретает хоро­шую растворимость в воде.

Растворимость в воде улучшается также при иониза­ции вещества в кислой среде желудка (алкалоиды), в щелочной среде кишок (барбитураты) или при физиоло­гическом РЬ крови (многие алкалоиды).

Фармакологическая активность полярных и неполяр­ных соединений различна. Неполярные соединения легко растворяются в липоидах и поэтому свободно проника­ют через биологические барьеры: кожу, слизистую обо­лочку, ГЭБ, богатую липидами цитоплазматическую мембрану, плацентарный барьер и др.

Полярные соединения, а тем более ионизированные, плохо проникают через физиологические барьеры. Они могут вообще не попадать в кровь, например, через ко­жу или слизистые оболочки, а будучи введенными (Не­посредственно в кровь, - плохо или вообще не посту­пать в некоторые ткани, например в ЦНС. При введе­нии таких веществ эффект действия окажется незначи­тельным.

Таким образом, физические свойства вещества (агре­гатное состояние, молекулярная масса, растворимость) определяют характер, силу и скорость действия лекарст­венного вещества не только прямо, но и косвенно, по­скольку именно от физических свойств вещества зави­сит лекарственная форма, пути введения, способность всасывания, распределения в организме, скорость био­трансформации и выведения введенного вещества или его метаболитов из организма.

ЗАВИСИМОСТЬ ДЕЙСТВИЯ ЛЕКАРСТВЕННОГО ВЕЩЕСТВА ОТ ЕГО ХИМИЧЕСКОГО СТРОЕНИЯ

Всасывание, распределение, метаболизм, фармаколо­гический эффект и выведение лекарственного вещества из организма зависит от его химического строения, от характера и последовательности атомов в молекуле.

Замена одного атома в молекуле фармакологически ак­тивного вещества другим может сопровождаться су­щественным изменением активности.

Так, адреналина гидротартрат в своей химической структуре имеет три гидроксильные (ОН-) группы, рас-положеные у бензольного кольца и боковой цепочки, а эфедрина гидрохлорид имеет лишь только одну гидрок-сильную группу, и это уже сказывается на способности препаратов проникать через ГЭБ. Эфедрина гидрохло-1

рид проникает через ГЭБ быстрее, и, кроме того, оказы­вает

наиболее выраженное центральное фармакологическое действие. Другой пример:

Теофиллин

Кофеин, в своей химической структуре, имея три ме-тильных (СНз) группы, оказывает преимущественно центральное действие, в то время как теофиллин (так­же относящийся к ксантинам) при наличии двух метиль-ных групп действует преимущественно на периферичес­кие ткани и органы организма животного и человека.

Фармакологическая активность вещества зависит не только от характера и последовательности атомоз, но и от пространственного положения в молекуле относитель­но друг друга, т. е. от пространственной изомерии (сте-реоизомерии) молекул: оптической, геометрической, конформационной.

Таким образом, выяснение зависимости между химической структурой веществ и их биологической активно­стью является одним из наиболее важных направлений в создании новых препаратов. Кроме того, сопоставле­ние оптимальных структур для разных групп соедине­ний с одинаковым типом действия позволяет составить определенное представление об организации тех рецеп­торов, с которыми взаимодействуют данные лекарствен­ные средства.

ДОЗИРОВАНИЕ ЛЕКАРСТВЕННЫХ ВЕЩЕСТВ

Прямое резорбтивное действие любого лекарственно­го вещества зависит от его концентрации в крови и тка­нях организма. Концентрация вещества в крови возрас­тает с увеличением дозы. Как уже отмечалось раньше, лекарственные вещества распределяются, разрушаются (метабодизируются), связываются с составными частя­ми крови, с рецепторами организма и выводятся из него. Поэтому не все количество введенного вещества дости­гает места своего прямого специфического действия. Доза определяет концентрацию лекарственного вещест­ва, входящую в соприкосновение и во взаимодействие с живым веществом, и тем самым обусловливает интен­сивность процесса, составляющего содержание первич­ной фармакологической реакции, т.е. «силу» действия лекарства. От дозы лекарственного вещества зависит не только интенсивность, но и характер его действия. По­вышая количество введенного в организм лекарства, можно достигать не только количественного нарастания фармакологического эффекта, но и качественного его изменения.

При введении весьма малых доз лекарственного ве­щества действие его может вовсе не обнаруживаться и не сказываться на течении физиологических процессов. Действие лекарства начинает проявляться только при достижении какой-то «пороговой» дозы. Эту дозу на­зывают минимальной действующей.

Дозы лекарственного вещества, превышающие мини­мальную действующую, которые могут служить для ле­чебных целей и в которых лекарственное вещество не вызывает патологических отклонений в жизнедеятель­ности организма, называют лечебными или терапевтиче­скими дозами (средние терапевтические, максимальные терапевтические дозы). Более высокие дозы, при кото­рых могут проявляться патологические изменения, но­сят название токсических доз. В свою очередь токсиче­ские дозы можно подразделить на два вида доз - ми­нимальную токсическую, вызывающую незначительные патофизиологические изменения, и максимальную токсическую ЛД50, ЛД100. вызывающую летальный исход.

Таким образом, одно и то же вещество, в зависимости от того, в какой дозе оно введено, может быть и лекар­ственным веществом, и ядом.

Совершенно очевидно, что в лечебной практике могут быть использованы лишь те дозы лекарственного веще­ства, которые лежат в диапазоне между минимальной действующей и минимальной токсической дозами. Этот) диапазон называют широтой терапевтического действия лекарственного вещества или это соответствует терапев­тическому индексу, представляющему собой отношение минимальной смертельной дозы к минимальной терапев­тической.

Поэтому в экспериментальной фармакологии для ко­личественной оценки фармакологической активности и токсичности определяют на основании экспериментов. Терапевтический индекс равен:

где ЛД5о соответствует 50% гибели животных при вве­дении средней смертельной дозы лекарственного вещест­ва; ЕД5о - у 50% экспериментальных животных про­явился первичный фармакологический эффект при введе­нии средней эффективной дозы. Однако эти параметры, вычисленные на основании опытов на животных, не мо­гут быть перенесены на человека. Ориентировочные дан­ные об эффективных и токсических дозах фармакологи­ческих веществ применительно к человеку могут быть получены только из клинических наблюдений.

Кроме этих доз следует выделить еще несколько: выс­шую разовую дозу, высшую суточную, ударную, курсо­вую. Последнюю особенно следует учитывать при при­менении химиотерапевтических средств. Высшие тера­певтические дозы (разовые и суточные) ядовитых и сильнодействущих веществ приведены в Государствен­ной фармакопее СССР.

Фармакокинетика («человек – лекарство») - изучает влияние организма на лекарственное вещество, пути его поступления, распределения, биотрансформации и выведения лекарств из организма. Физиологические системы организма в зависимости от их врожденных и приобретенных свойств, а также способов и путей введения лекарственных препаратов будут в разной степени изменять судьбу лекарственного вещества. Фармакокинетика лекарственного вещества зависит от пола, возраста и характера заболевания.

Основным интегральным показателем для суждения о судьбе лекарственных веществ в организме является определение концентрации этих веществ и их метаболитов в жидкостях, тканях, клетках и клеточных органеллах.

Длительность действия препаратов зависит от его фармакокинетических свойств. Период полувыведения - время, необходимое для очищения плазмы крови от лекарственного вещества на 50%.

Этапы (фазы) фармакокинетики. Движение лекарственного вещества и изменение его молекулы в организме представляет собой ряд последовательных процессов всасывания, распределения, метаболизма и экскреции (выведения) лекарственных средств. Для всех этих процессов необходимым условием служит их проникновение через клеточные оболочки.

Прохождение лекарственных веществ через клеточные оболочки.

Проникновение лекарственных веществ через оболочки клеток регулируется естественными процессами диффузии, фильтрации и активного транспорта.

Диффузия основана на естественном стремлении любого вещества двигаться из области высокой концентрации в направлении к области более низкой концентрации.

Фильтрация. Водные каналы в местах тесного соединения прилегающих эпителиальных клеток пропускают через поры только некоторые водорастворимые вещества. Нейтральные или незаряженные (т. е. неполярные) молекулы проникают быстрее, так как поры обладают электрическим зарядом.

Активный транспорт - этот механизм регулирует движение некоторых лекарственных веществ в клетки или из них против концентрационного градиента. Для реализации этого процесса требуется энергия, и он происходит быстрее, чем перенос веществ путем диффузии. Молекулы со сходным строением конкурируют за молекулы-переносчики. Механизм активного транспорта высокоспецифичен для определенных веществ.

Некоторые органные особенности клеточных мембран.

Мозг и спинномозговая жидкость. Капилляры в мозге отличаются от большинства капилляров других участков организма тем, что их эндотелиальные клетки не имеют пространств, через которые вещества проникают во внеклеточную жидкость. Тесно примыкающие друг к другу эндотелиальные клетки капилляров, соединенные с базальной мембраной, а также тонкий слой отростков астроцитов препятствуют контакту крови с мозговой тканью. Этот гематоэнцефалический барьер предотвращает проникновение некоторых веществ из крови в мозг и спинномозговую жидкость (СМЖ). Жиронерастворимые вещества через этот барьер не проникают. Напротив, жирорастворимые вещества легко проникают через гематоэнцефалический барьер.

Плацента. Хорионические ворсины, состоящие из слоя трофобластов, т.е. клеток, окружающих капилляры плода, погружены в материнскую кровь. Кровоток беременной и плода разделены барьером, особенности которого те же, что у всех липидных мембран организма, т.е. он проницаем только для жирорастворимых веществ и непроницаем для веществ, растворимых в воде (особенно если их относительная молекулярная масса (ОММ) превышает 600). Кроме того, плацента содержит моноаминоксидазу, холинэстеразу и систему микросомальных ферментов (сходную с таковой в печени) способную метаболизировать лекарственные вещества и реагирующую на препараты, которые принимает беременная.

Всасывание - процесс поступления лекарства из места введения в кровеносное русло. Независимо от пути введения скорость всасывания препарата определяется тремя факторами: а) лекарственной формой (таблетки, свечи, аэрозоли); б) растворимостью в тканях; в) кровотоком в месте введения.

Существует ряд последовательных этапов всасывания лекарственных средств через биологические барьеры:

1) Пассивная диффузия. Таким путем проникают хорошо растворимые в липоидах лекарственные вещества. Скорость всасывания определяется разностью его концентрации с внешней и внутренней стороны мембраны;

2) Активный транспорт. В этом случае перемещение веществ через мембраны происходит с помощью транспортных систем, содержащихся в самих мембранах;

3) Фильтрация. Вследствие фильтрации лекарства проникают через поры, имеющиеся в мембранах (вода, некоторые ионы и мелкие гидрофильные молекулы лекарственных веществ). Интенсивность фильтрации зависит от гидростатического и осмотического давления;

4) Пиноцитоз. Процесс транспорта осуществляется посредством образования из структур клеточных мембран специальных пузырьков, в которых заключены частицы лекарственного вещества. Пузырьки перемещаются к противоположной стороне мембраны и высвобождают свое содержимое.

Распределение. После введения в кровеносное русло лекарственное вещество распределяется по всем тканям организма. Распределение лекарственного вещества определяется его растворимостью в липидах, качеством связи с белками плазмы крови, интенсивностью регионарного кровотока и другими факторами.

Значительная часть лекарства в первое время после всасывания попадает в те органы и ткани, которые наиболее активно кровоснабжаются (сердце, печень, легкие, почки).

Многие естественные вещества циркулируют в плазме частично в свободном виде, а частично в связанном состоянии с белками плазмы. Лекарственные средства также циркулируют как в связанном, так и в свободном состоянии. Важно, что фармакологически активна только свободная, несвязанная фракция препарата, а связанная с протеином представляет собой биологически неактивное соединение. Соединение и распад комплекса препарата с белком плазмы происходят как правило быстро.

Метаболизм (биотрансформация) - это комплекс физико-химических и биохимических превращений, которым подвергаются лекарственные вещества в организме. В результате образуются метаболиты (водорастворимые вещества), которые легко выводятся из организма.

В результате биотрансформации вещества приобретают большой заряд (становятся более полярными) и как следствие большую гидрофильность, т. е. растворимость в воде. Подобное изменение химической структуры влечет за собой изменение фармакологических свойств (как правило, уменьшение активности), скорости выделения из организма.

Это происходит по двум основным направлениям: а) снижение растворимости препаратов в жирах и б) снижение их биологической активности.

Этапы метаболизма: Гидроксилирование. Диметилирование. Окисление. Образование сульфоксидов.

Выделяют два типа метаболизма лекарственных препаратов в организме:

Несинтетические реакции метаболизма лекарств, осуществляемые ферментами. К несинтетическим реакциям относится окисление, восстановление и гидролиз. Они разделяют на катализируемые ферментами лизосом клеток (микросомальные) и катализируемые ферментами другой локализации (немикросомальные).

Синтетические реакции, которые реализуются с помощью эндогенных субстратов. В основе этих реакций лежит конъюгация лекарственных препаратов с эндогенными субстратами (глюкуроновая кислота, глицин, сульфаты, вода и др.).

Биотрансформация препаратов происходит главным образом в печени, однако она осуществляется также в плазме крови и в других тканях. Интенсивные и многочисленные реакции метаболизма протекают уже в стенке кишечника.

На биотрансформацию влияют заболевания печени, характер питания, половые особенности, возраст и ряд других факторов. При поражении печени усиливается токсическое действие многих лекарственных веществ на центральную нервную систему и резко возрастает частота развития энцефалопатии. В зависимости от тяжести заболевания печени, некоторые лекарственные препараты применяются с осторожностью или они вовсе противопоказаны (барбитураты, наркотические анальгетики, фенотиазины, андрогенные стероиды и др.).

Клинические наблюдения показали, что эффективность и переносимость одних и тех же лекарственных веществ у различных больных неодинакова. Эти отличия определяются генетическими факторами, детерминирующими процессы метаболизма, рецепции, иммунного ответа и др. Изучение генетических основ чувствительности организма человека к лекарственным веществам составляет предмет фармакогенетики. Проявляется это чаще всего недостаточностью ферментов, катализирующих биотрансформацию препаратов. Атипичные реакции могут проявляться и при наследственных нарушениях обмена веществ.

Синтез ферментов находится под строгим генетическим контролем. При мутации соответствующих генов возникают наследственные нарушения структуры и свойств ферментов - ферментопатии. В зависимости от характера мутации гена изменяется скорость синтеза фермента или синтезируется атипичный фермент.

Среди наследственных дефектов ферментных систем часто встречается недостаточность глюкозо-6-фосфатдегидрогенезы (Г-6-ФДГ). Она проявляется массивным разрушением эритроцитов (гемолитические кризы) при применении сульфаниламидов, фуразолидона и других препаратов. Кроме того, люди с недостаточностью Г-6-ФДР-чувствительны к пищевым продуктам, содержащим конские бобы, крыжовник, красную смородину. Существуют больные с недостаточностью ацетилтрансферазы, каталазы и других ферментов в организме. Атипичные реакции на лекарственные средства при наследственных нарушениях обмена веществ встречаются при врожденной метгемоглобинемии, порфирии, наследственных негемолитических желтухах.

Элиминация. Различают несколько путей выведения (экскреции) лекарственных веществ и их метаболитов из организма: с калом, мочой, выдыхаемым воздухом, слюнными, потовыми, слезными и молочными железами.

Элиминация почками. Экскреция лекарственных веществ и их метаболитов почками происходит с участием нескольких физиологических процессов:

Клубочковая фильтрация. Скорость, с которой вещество переходит в клубочковый фильтрат, зависит от его концентрации в плазме, ОММ и заряда. Вещества с ОММ более 50 000 не попадают в клубочковый фильтрат, а с ОММ менее 10 000 (т. е. практически большинство лекарственных веществ) фильтруются в почечных клубочках.

Экскреция в почечных канальцах. К важным механизмам экскреторной функции почек относится способность клеток проксимальных почечных канальцев активно переносить заряженные (катионы и анионы) молекулы из плазмы в канальцевую жидкость.

Почечная канальцевая реабсорбция. В клубочковом фильтрате концентрация лекарственных веществ та же, что и в плазме, но по мере продвижения по нефрону он концентрируется с увеличением концентрационного градиента, поэтому концентрация препарата в фильтрате превышает его концентрацию в крови, проходящей через нефрон.

Элиминация через кишечник.

После приема препарата внутрь для системного действия часть его, не абсорбируясь, может экскретироваться с каловыми массами. Иногда внутрь принимают лекарственные средства, специально не предназначенные для абсорбции в кишечнике (например, неомицин). Под влиянием ферментов и бактериальной микрофлоры желудочно-кишечного тракта лекарственные препараты могут превращаться в другие соединения, которые вновь могут доставляться в печень, где и проходит новый цикл.

К важнейшим механизмам, способствующим активному транспорту препарата в кишечник, относится билиарная экскреция (печенью). Из печени с помощью активных транспортных систем лекарственные вещества в виде метаболитов или, не изменяясь, поступают в желчь, затем в кишечник, где и выводятся с калом.

Степень выведения лекарственных веществ печенью следует учитывать при лечении больных, страдающих болезнями печени и воспалительными заболеваниями желчных путей.

Элиминация через легкие. Легкие служат основным путем введения и элиминации летучих анестезирующих средств. В других случаях медикаментозной терапии их роль в элиминации невелика.

Элиминация лекарственных веществ грудным молоком. Лекарственные вещества, содержащиеся в плазме кормящих женщин, экскретируются с молоком; их количества в нем слишком малы для того, чтобы существенным образом влиять на их элиминацию. Однако иногда лекарственные средства, попадающие в организм грудного ребенка, могут оказывать на него существенное воздействие (снотворные, анальгетики и др.).

Клиренс позволяет определить выведение лекарственного вещества из организма. Термином «почечный клиренс креатинина» определяют выведение эндогенного креатинина из плазмы. Большинство лекарственных веществ элиминируется либо через почки, либо через печень. В связи с этим общий клиренс в организме представляет собой сумму печеночного и почечного клиренса, причем печеночный клиренс рассчитывают путем вычитания значения почечного клиренса из общего клиренса организма (снотворные, анальгетики и др.).

  • 1) Введение лекарственного средства в организм;
  • 2) Высвобождение лекарственного вещества из лекарственной формы;
  • 3) Действие и проникновение лекарственного вещества через биологические мембраны в сосудистое русло и ткани;
  • 4) Распределение лекарственного вещества в биологических жидкостях органов и тканей;
  • 5) Биодоступность;
  • 6) Биотрансформация;
  • 7) Выведение лекарственного вещества и метаболитов.

Всасывание - процесс поступления лекарства из места введения в кровеносное русло. Независимо от пути введения скорость всасывания препарата определяется тремя факторами:

  • а) лекарственной формой (таблетки, свечи, аэрозоли);
  • б) растворимостью в тканях;
  • в) кровотоком в месте введения.

Существует ряд последовательных этапов всасывания лекарственных средств через биологические барьеры:

  • 1) Пассивная диффузия. Таким путем проникают хорошо растворимые в липоидах лекарственные вещества. Скорость всасывания определяется разностью его концентрации с внешней и внутренней стороны мембраны;
  • 2) Активный транспорт. В этом случае перемещение веществ через мембраны происходит с помощью транспортных систем, содержащихся в самих мембранах;
  • 3) Фильтрация. Вследствие фильтрации лекарства проникают через поры, имеющиеся в мембранах (вода, некоторые ионы и мелкие гидрофильные молекулы лекарственных веществ). Интенсивность фильтрации зависит от гидростатического и осмотического давления;
  • 4) Пиноцитоз. Процесс транспорта осуществляется посредством образования из структур клеточных мембран специальных пузырьков, в которых заключены частицы лекарственного вещества. Пузырьки перемещаются к противоположной стороне мембраны и высвобождают своё содержимое.

Распределение. После введения в кровеносное русло лекарственное вещество распределяется по всем тканям организма. Распределение лекарственного вещества определяется его растворимостью в липидах, качеством связи с белками плазмы крови, интенсивностью регионарного кровотока и другими факторами.

Значительная часть лекарства в первое время после всасывания попадает в те органы и ткани, которые наиболее активно кровоснабжаются (сердце, печень, лёгкие, почки).

Многие естественные вещества циркулируют в плазме частично в свободном виде, а частично в связанном состоянии с белками плазмы. Лекарственные средства также циркулируют как в связанном, так и в свободном состоянии. Важно, что фармакологически активна только свободная, несвязанная фракция препарата, а связанная с протеином представляет собой биологически неактивное соединение. Соединение и распад комплекса препарата с белком плазмы происходят как правило быстро.

Метаболизм (биотрансформация) - это комплекс физико-химических и биохимических превращений, которым подвергаются лекарственные вещества в организме. В результате образуются метаболиты (водорастворимые вещества), которые легко выводятся из организма.

В результате биотрансформации вещества приобретают большой заряд (становятся более полярными) и как следствие большую гидрофильность, т. е. растворимость в воде. Подобное изменение химической структуры влечёт за собой изменение фармакологических свойств (как правило, уменьшение активности), скорости выделения из организма.

Это происходит по двум основным направлениям:

  • а) снижение растворимости препаратов в жирах и
  • б) снижение их биологической активности.

Этапы метаболизма:

  • 1. Гидроксилирование.
  • 2. Диметилирование.
  • 3. Окисление.
  • 4. Образование сульфоксидов.

Выделяют два типа метаболизма лекарственных препаратов в организме:

Несинтетические реакции метаболизма лекарств, осуществляемые ферментами. К несинтетическим реакциям относится окисление, восстановление и гидролиз. Они разделяют на катализируемые ферментами лизосом клеток (микросомальные) и катализируемые ферментами другой локализации (немикросомальные).

Синтетические реакции, которые реализуются с помощью эндогенных субстратов. В основе этих реакций лежит конъюгация лекарственных препаратов с эндогенными субстратами (глюкуроновая кислота, глицин, сульфаты, вода и др.).

Биотрансформация препаратов происходит главным образом в печени, однако она осуществляется также в плазме крови и в других тканях. Интенсивные и многочис­ленные реакции метаболизма протекают уже в стенке кишечника.

На биотрансформацию влияют заболевания печени, характер питания, половые особенности, возраст и ряд других факторов. При поражении печени усиливается токсическое действие многих лекарственных веществ на центральную нервную систему и резко возрастает частота развития энцефалопатии. В зависимости от тяжести заболевания печени, некоторые лекарственные препараты применяются с осторожностью или они вовсе противопоказаны (барбитураты, наркотические анальгетики, фенотиазины, андрогенные стероиды и др.).

Клинические наблюдения показали, что эффективность и переносимость одних и тех же лекарственных веществ у различных животных неодинакова. Эти отличия определяются генетическими факторами, детерминирующими процессы метаболизма, рецепции, иммунного ответа и др. Изучение генетических основ чувствительности организма к лекарственным веществам составляет предмет фармакогенетики. Проявляется это чаще всего недостаточностью ферментов, катализирующих биотрансформацию препаратов. Атипичные реакции могут проявляться и при наследственных нарушениях обмена веществ.

Синтез ферментов находится под строгим генетическим контролем. При мутации соответствующих генов возникают наследственные нарушения структуры и свойств ферментов - ферментопатии. В зависимости от характера мутации гена изменяется скорость синтеза фермента или синтезируется атипичный фермент.

Элиминация. Различают несколько путей выведения (экскреции) лекарственных веществ и их метаболитов из организма: с калом, мочой, выдыхаемым воздухом, слюнными, потовыми, слёзными и молочными железами.

Элиминация почками. Экскреция лекарственных веществ и их метаболитов почками происходит с участием нескольких фи­зиологических процессов:

Клубочковая фильтрация. Скорость, с которой вещество переходит в клубочковый фильтрат, зависит от его концентрации в плазме, ОММ и заряда. Вещества с ОММ более 50 000 не попадают в клубочковый фильтрат, а с ОММ менее 10 000 (т. е. практически большинство лекарственных веществ) фильтруются в почечных клубочках.

Экскреция в почечных канальцах. К важным механизмам экскреторной функции почек относится способность клеток проксимальных почечных канальцев активно переносить заряженные (катионы и анионы) молекулы из плазмы в канальцевую жидкость.

Почечная канальцевая реабсорбция. В клубочковом фильтрате концентрация лекарственных веществ та же, что и в плазме, но по мере продвижения по нефрону он концентрируется с увеличением концентрационного градиента, поэто­му концентрация препарата в фильтрате превышает его кон­центрацию в крови, проходящей через нефрон.

Элиминация через кишечник.

После приёма препарата внутрь для системного действия часть его, не абсорбируясь, может экскретироваться с каловыми массами. Иногда внутрь принимают лекарственные средства, специально не предназначенные для абсорбции в кишечнике (например, неомицин). Под влиянием ферментов и бактериальной микрофлоры желудочно-кишечного тракта лекарственные препараты могут превращаться в другие соединения, которые вновь могут доставляться в печень, где и проходит новый цикл.

К важнейшим механизмам, способствующим активному транспорту препарата в кишечник, относится билиарная экскреция (печенью). Из печени с помощью активных транспортных систем лекарственные вещества в виде метаболитов или, не изменяясь, поступают в желчь, затем в кишечник, где и выводятся с калом.

Степень выведения лекарственных веществ печенью следует учитывать при лечении больных, страдающих болезнями печени и воспалительными заболеваниями желчных путей.

Элиминация через лёгкие. Легкие служат основным путем введения и элиминации летучих анестезирующих средств. В дру­гих случаях медикаментозной терапии их роль в элиминации невелика.

Элиминация лекарственных веществ молоком. Лекарственные вещества, содержащиеся в плазме лактирующих животных, экскретируются с молоком; их количества в нем слишком малы для того, чтобы существенным образом влиять на их элиминацию. Однако иногда лекарственные средства, попадающие в организм детеныша, могут оказывать на него существенное воздействие (снотворные, анальгетики и др.).

Клиренс позволяет определить выведение лекарственного вещества из организма. Термином «почечный клиренс креатинина» определяют выведение эндогенного креатинина из плазмы. Большинство лекарственных веществ элиминируется либо через почки, либо через печень. В связи с этим общий клиренс в организме представляет собой сумму печеночного и почечного клиренса, причём печёночный клиренс рассчитывают путем вычитания значения почечного клиренса из общего клиренса организма (снотворные, анальгетики и др.).