Главная · Болезни желудка · С чем связаны генные мутации. Генные мутации. Понятие о генных болезнях

С чем связаны генные мутации. Генные мутации. Понятие о генных болезнях

Мутации на генном уровне являются молекулярными, не видимыми в световом микроскопе структурными изменениями ДНК. К ним относят любые трансформации дезоксирибонуклеиновой кислоты, вне зависимости от их влияния на жизнеспособность и локализации. Некоторые виды генных мутаций не оказывают никакого воздействия на функции и структуру соответствующего полипептида (белка). Однако большая часть таких трансформаций провоцирует синтез дефектного соединения, утратившего способность выполнять свои задачи. Далее рассмотрим генные и хромосомные мутации более подробно.

Характеристика трансформаций

Наиболее распространенными патологиями, которые провоцируют генные мутации человека, являются нейрофиброматоз, адрено-генитальный синдром, муковисцидоз, фенилкетонурия. В этот список можно также включить гемохроматоз, миопатии Дюшенна-Беккера и прочие. Это далеко не все примеры генных мутаций. Их клиническими признаками выступают обычно нарушения метаболизма (обменного процесса). Генные мутации могут состоять в:

  • Замене в кодоне основания. Такое явление именуют миссенс-мутацией. При этом в кодирующей части происходит замена нуклеотида, что, в свою очередь, приводит к смене аминокислоты в белке.
  • Изменении кодона таким образом, что приостанавливается считывание информации. Этот процесс называют нонсенсмутацией. При замене нуклеотида в данном случае происходит формирование стоп-кодона и прекращение трансляции.
  • Нарушении считывания, сдвиге рамки. Этот процесс именуют "фреймшифтом". При молекулярном изменении ДНК трансформируются триплеты в ходе трансляции полипептидной цепочки.

Классификация

В соответствии с типом молекулярной трансформации существуют следующие генные мутации:

  • Дупликация. В этом случае происходит повторное дублирование либо удвоение фрагмента ДНК от 1 нуклеотида до генов.
  • Делеция. В этом случае имеет место утрата фрагмента ДНК от нуклеотида до гена.
  • Инверсия. В этом случае отмечается поворот на 180 град. участка ДНК. Его размер может быть как в два нуклеотида, так и в целый фрагмент, состоящий из нескольких генов.
  • Инсерция. В этом случае происходит вставка участков ДНК от нуклеотида до гена.

Молекулярные трансформации, захватывающие от 1 до нескольких звеньев, рассматриваются как точечные изменения.

Отличительные черты

Генные мутации имеют ряд особенностей. В первую очередь следует отметить их способность переходить по наследству. Кроме того, мутации могут спровоцировать трансформацию генетических сведений. Некоторые из изменений могут быть отнесены к так называемым нейтральным. Такие генные мутации не провоцируют каких-либо нарушений в фенотипе. Так, благодаря врожденности кода одна и та же аминокислота может кодироваться двумя триплетами, имеющими отличия только по 1 основанию. Вместе с тем определенный ген может мутировать (трансформироваться) в несколько разных состояний. Именно такого рода изменения провоцируют большую часть наследственных патологий. Если приводить примеры генных мутаций, то можно обратиться к группам крови. Так, у элемента, контролирующего их системы АВ0, присутствует три аллеля: В, А и 0. Их сочетание определяют группы крови. Относящаяся к системе АВ0 считается классическим проявлением трансформации нормальных признаков у людей.

Геномные трансформации

Эти трансформации имеют свою классификацию. В категорию геномных мутаций относят изменения в плоидности не измененных структурно хромосом и анеуплоидии. Такие трансформации определяются специальными методами. Анеуплоидия представляет собой изменение (увеличение - трисомию, уменьшение - моносомию) количества хромосом диплоидного набора, некратное гаплоидному. При кратном увеличении числа говорят о полиплоидии. Они и большая часть анеуплоидий у людей считаются летальными изменениями. Среди наиболее распространенных геномных мутаций выделяют:

  • Моносомию. В этом случае присутствует только одна из 2 гомологичных хромосом. На фоне такой трансформации здоровое эмбриональное развитие невозможно по любой из аутосом. В качестве единственной совместимой с жизнью выступает моносомия по хромосоме Х. Она провоцирует синдром Шерешевского-Тернера.
  • Трисомия. В данном случае в кариотипе выявляется три гомологичных элемента. Примеры таких генных мутаций: синдромы Дауна, Эдвардса, Патау.

Провоцирующий фактор

Причиной, по которой развивается анеуплоидия, считается нерасхождение хромосом в процессе клеточного деления на фоне формирования половых клеток либо утрата элементов вследствие анафазного отставания, в то время как при движении к полюсу гомологичное звено может отстать от негомологичного. Понятие "нерасхождение" указывает на отсутствие разделения хроматид либо хромосом в митозе либо мейозе. Это нарушение может привести к мозаицизму. В этом случае одна клеточная линия будет нормальной, а другая - моносомной.

Нерасхождение при мейозе

Такое явление считается наиболее частым. Те хромосомы, которые должны в норме делиться при мейозе, остаются соединенными. В анафазе они отходят к одному клеточному полюсу. В результате формируется 2 гаметы. В одной из них присутствует добавочная хромосома, а в другой не достает элемента. В процессе оплодотворения нормальной клетки с лишним звеном развивается трисомия, гаметы с недостающим компонентом - моносомия. При формировании моносомной зиготы по какому-нибудь аутосомному элементу развитие прекращается на начальных этапах.

Хромосомные мутации

Эти трансформации представляют собой структурные изменения элементов. Как правило, они визуализируются в световой микроскоп. В хромосомные мутации обычно вовлекается от десятков до сотен генов. Это провоцирует изменения в нормальном диплоидном наборе. Как правило, такие аберрации не вызывают трансформации последовательности в ДНК. Однако при изменении количества генных копий развивается генетический дисбаланс из-за недостатка либо переизбытка материала. Существует две большие категории данных трансформаций. В частности, выделяют внутри- и межхромосомные мутации.

Влияние среды

Люди эволюционировали в качестве групп изолированных популяций. Они достаточно долго проживали в одинаковых условиях среды. Речь, в частности, идет о характере питания, климатогеографических характеристиках, культурных традициях, возбудителях патологий и прочем. Все это привело к закреплению специфических для каждой популяции сочетаний аллелей, являвшихся наиболее соответствующими для условий проживания. Однако вследствие интенсивного расширения ареала, миграций, переселения стали возникать ситуации, когда бывшие в одной среде полезные сочетания определенных генов в другой перестали обеспечивать нормальное функционирование ряда систем организма. В связи с этим часть наследственной изменчивости обуславливается неблагоприятным комплексом непатологических элементов. Таким образом, в качестве причины генных мутаций в данном случае выступают изменения внешней среды, условий проживания. Это, в свою очередь, стало основой для развития ряда наследственных заболеваний.

Естественный отбор

С течением времени эволюция протекала в более специфичных видах. Это также способствовало расширению наследственного разнообразия. Так, сохранялись те признаки, которые могли исчезать у животных, и наоборот, отметалось то, что оставалось у зверей. В ходе естественного отбора люди приобретали также и нежелательные признаки, которые имели прямое отношение к болезням. К примеру, у человека в процессе развития появились гены, способные определять чувствительность к полиомиелиту либо дифтерийному токсину. Став Homo sapiens, биологический вид людей в некотором роде "заплатил за свою разумность" накоплением и патологических трансформаций. Данное положение считается основой одной из базовых концепций учения о генных мутациях.

Мутациями называются спонтанные изменения в структуре ДНК живых организмов, ведущие к возникновению всевозможных отклонений в росте и развитии. Итак, рассмотрим, что такое мутация, причины ее возникновения и существующие в Стоит также обратить внимание на влияние изменений генотипа на природу.

Ученые заявляют, что мутации существовали всегда и присутствуют в организмах абсолютно всех живых существ на планете, более того, их может наблюдаться до нескольких сотен в одном организме. Проявление же их и степень выраженности зависят от того, какими причинами они были спровоцированы и какая генетическая цепочка пострадала.

Причины мутаций

Причины мутаций могут быть самыми разнообразными, и возникнуть они могут не только естественным путем, но и искусственно, в лабораторных условиях. Ученые-генетики выделяют следующие факторы возникновения изменений:

2) генные мутации - изменения в последовательности построения нуклеотидов при образовании новых цепочек ДНК (фенилкетонурия).

Значение мутаций

В большинстве случаев они наносят вред всему организму, поскольку мешают его нормальному росту и развитию, и иногда приводят к смерти. Полезные мутации не встречаются никогда, даже если они наделяют сверхспособностями. Они становятся предпосылкой для активного действия и влияют на селекцию живых организмов, приводя к появлению новых видов или вырождению. Таким образом, отвечая на вопрос: «Что такое мутация?» - стоит отметить, что это малейшие изменения в структуре ДНК, нарушающие развитие и жизнедеятельность всего организма.

Человечество сталкивается с огромным количеством вопросов, многие из которых до сих пор остаются без ответа. И самые близкие человеку – связанные с его физиологией. Стойкое изменение наследственных свойств организма под влиянием внешней и внутренней среды – мутация. Так же данный фактор – важная часть естественного отбора, ведь это источник естественной изменчивости.

Достаточно часто к мутированию организмов прибегают селекционеры. Наука разделяет мутации на несколько видов: геномная, хромосомная и генная.

Генная — наиболее распространенная, и именно с ней приходится сталкиваться чаще всего. Она заключается в изменении первичной структуры , а следовательно и аминокислот, считываемых с иРНК. Последние выстраиваются комплементарно одной из цепей ДНК (биосинтез белка: транскрипция и трансляция).

Название мутации изначально имели любые скачкообразные изменения. Но современные представления об этом явлении сложились только к XX веку. Сам термин «мутация” был введен в 1901 году Хьюго Де Фрисом, голландским ботаником и генетиком, ученым, знания и наблюдения которого приоткрыли законы Менделя. Именно он сформулировал современное понятие мутации, а так же разработал мутационную теорию, но примерно в тот же период она была сформулирована нашим соотечественником – Сергеем Коржинским в 1899 году.

Проблема мутаций в современной генетике

Но современными учеными были сделаны уточнения относительно каждого пункта теории.
Как оказалось, имеют место особые изменения, которые накапливаются во время жизни поколений. Также стало известно, что существуют ликовые мутации, заключающиеся в незначительном искажении исходного продукта. Положение о повторном возникновении новых биологических признаков касается исключительно генных мутаций.

Важно понимать, что определение того, насколько она вредна или полезна, во многом зависит от генотипической среды. Многие факторы внешней среды способны нарушать упорядоченность генов, строго установленного процесса их самовоспроизведения.

В процессе и естественного отбора человек приобрел не только полезные особенности, но и не самые благоприятные, относящиеся к болезням. И человеческий вид расплачивается за полученное от природы за счет накопления патологических признаков.

Причины генных мутаций

Мутагенные факторы. Большинство мутаций губительно влияют на организм, нарушая отрегулированные естественным отбором признаки. Каждый организм предрасположен к мутации, но под воздействием мутагенных факторов их число резко увеличивается. К таким факторам относят: ионизирующее, ультрафиолетовое излучение, повышенную температуру, многие соединения химических веществ, а так же вирусы.

Антимутагенными факторами, то есть факторами защиты наследственного аппарата, смело можно отнести вырожденность генетического кода, удаление ненужных участков, не несущих генетическую информацию (интронов), а также двойная цепь ДНК молекулы.

Классификация мутаций

1. Дупликация . При этом происходит копирование от одного нуклеотида в цепи до фрагмента цепи ДНК и самих генов.
2. Делеция . В таком случае происходит утрата части генетического материала.
3. Инверсия . При таком изменении определенный участок поворачивается на 180 градусов.
4. Инсерция . Наблюдается вставка от одного нуклеотида до частей ДНК и гена.

В современном мире мы все чаще сталкиваемся с проявлением изменения различных признаков как у животного, так и у человека. Зачастую мутации будоражат видавших виды ученых.

Примеры генных мутаций у людей

1. Прогерия . Прогерией принято считать одним из самых редких генетических дефектов. Проявляется данная мутация в преждевременном старении организма. Большая часть больных погибает, не достигнув тринадцатилетнего возраста, и немногим удается сохранить жизнь до двадцати лет. Данная болезнь развивает инсульты и болезни сердца, и именно поэтому, чаще всего, причиной смерти является сердечный приступ или инсульт.
2. Синдром на Юнера Тана (СЮТ) . Данный синдром специфичен тем, что подверженные ему передвигаются на четвереньках. Обычно люди СЮТ используют самую простую, примитивную речь и страдают врожденной мозговой недостаточностью.
3. Гипертрихоз . Так же имеет название “синдром оборотня” или же — ”синдром Абрамса”. Данное явление прослеживается и документируется со времен Средневековья. Люди, подверженные гипертрихозу отличаются количеством , превышающим нормы, особенно это распространяется на лицо, уши и плечи.
4. Тяжелый комбинированный иммунодефицит . Подверженные данному заболеванию уже при рождении лишены эффективной иммунной системы, которой обладает среднестатистический человек. Дэвид Веттер, благодаря которому в 1976 году данная болезнь получила известность, скончался в возрасте тринадцати лет, после неудачной попытки хирургического вмешательства с целью укрепления иммунитета.
5. Синдром Марфана . Заболевание встречается довольно часто, и сопровождается непропорциональному развитию конечностей, чрезмерной подвижностью суставов. Гораздо реже встречается отклонение выраженное срастанием ребер, следствием чего является или выпирание, или западание грудной клетки. Частой проблемой подверженных донному синдрому является искривление позвоночника.

Мутации, возникающие под влиянием специальных воздействий - ионизирующей радиации, химических веществ, температурных факторов и т. п. - называются индуцированными, В свою очередь спонтанными называют мутации» возникшие без преднамеренного воздействия, под влиянием факторов внешней среды или вследствие биохимических и физиологических изменений в организме.

Термин «мутация» был введен в 1901 г. Г. де Фризом, описавшим спонтанные мутации у одного из видов растений» Различные гены у одного вида мутируют с разной частотой, неодинакова частота мутирования и сходных генов в разных генотипах. Частота споитаавото. мутирования генов невелика и исчисляется обычно единицами, реже десятками и совсем редка сотнями случаев на 1 млн. гамет (у кукурузы частота спонтанного мутирования разных генов составляет от 0 до 492 на 10 6 гамет).

Классификация мутаций. В зависимости от характера изменений, возникающих в генетическом аппарате организма, мутации делятся на генные (точечные), хромосомные и геномные.

Генные мутации. Генные мутации составляют наиболее важную и большую по объему долю мутаций. Они представляют собой стойкие изменения отдельных генов и возникают в результате замены одного или нескольких азотистых оснований в структуре ДНК на другие, выпадения иле добавления новых оснований, что ведет к нарушению порядка считывания информации, В итоге происходит изменение в синтезе белков, что в свою очередь обусловливает появление новых или измененных признаков. Генные мутации вызывают изменение признака в разных направлениях, приводя к сильным или слабым изменениям морфологических, биохимических и физиологических свойств.

У бактерий, например, генные мутации чаще всего затрагивают такие признаки, как форму и. цвет колоний, темп их деления, способность сбраживать различные сахара, устойчивость к антибиотикам, сульфаниламидам и другим лекарственным препаратам, реакцию на температурные воздействия, восприимчивость к заражению бактериофагами, ряд биохимических признаков.

Одной из разновидностей, генных мутаций является множественный аллелизм, при котором возникают не две формы одного гена (доминантная и рецессивная), а целая серия мутаций этого гена, вызывающая разные изменения контролируемого данным геном признака. Например, у дрозофилы известна серии из 12 аллелей, возникающих при мутации одного и того же гена, обусловливающего окраску глаз. Серией множественных аллелей представлены гены, определяющие окраску шерсти у кроликов, различие групп крови у человека и др.

Хромосомные мутации. Мутации этого типа, называемые также хромосомными перестройками, или аберрациями, возникают в результате значительных изменений в структуре хромосом. Механизмом возникновения хромосомных перестроек являются образовавшиеся при мутагенном воздействии разрывы хромосом, последующая утрата некоторых фрагментов и воссоединение оставшихся частей хромосомы в ином порядке по сравнению с нормальной хромосомой. Хромосомные перестройки могут быть обнаружены с помощью светового микроскопа. Главные из них: нехватки, делении, дупликации, инверсии, транслокации и транспозиции.

Нехватками называют перестройки хромосом за счет утери концевого фрагмента. Хромосома при этом становится укороченной» лишается части генов, заключенных в утраченном фрагменте. Потерянный участок хромосомы удаляется за пределы ядра в ходе мейоза,

Делеция - тоже потеря участка хромосомы, но не концевого фрагмента, а средней ее части. Если утерянный участок очень мал и не несёт генов, сильно влияющих на жизнеспособность организма, делеция вызовет лишь изменение фенотипа, в ряде случаев она может обусловить летальный исход или серьезную наследственную патологию. Делеции легко обнаруживаются при микроскопическом исследовании, поскольку в мейозе при конъюгации участок нормальной хромосомы, лишенный гомологичного участка в хромосоме с делецией, образует характерную петлю (рис. 89).

При дупликации происходит удвоение какого-нибудь участка хромосомы. Обозначив условно последовательность каких-либо участков хромосомы как ABC , при дупликации мы можем наблюдать такое расположение этих участков: AA ВС, АВВС или АВСС. При дупликации всего выбранного нами участка он будет выглядеть как АВСАВС, т. е. дуплицируется целый блок генов. Возможно многократное повторение одного участка (АВВВС или АВСАВСАВС), дупликацияне только в соседних, но и более удаленных частях одной итой же хромосомы. У дрозофилы, например, описано, восьмикратное повторение одного из участков хромосом. Добавление лишних генов влияет на организм меньше, чем их утрата, поэтому дупликации влияют на фенотип в меньшей степени, чем нехватки и делеции.

При инверсии изменяется порядок расположения генов в хромосоме. Инверсии возникают в результате двух разрывов хромосомы, при этом образовавшийся

фрагмент, встраивается на свое прежнее место, предварительно перевернувшись на 180°. Схематически инверсию можно представить так. В участке хромосомы, несущем геном ABCDEFG , происходят разрывы между генами А и В, Е и F ; образовавшийся фрагмент BCDE переворачивается и встраивается на свое прежнее место. В итоге рассматриваемый участок будет иметь структуру AEDCBFG . Число генов при инверсиях не меняется, поэтому они мало влияют на фенотип организма. Цитологически инверсии легко обнаруживаются по характерному расположению их в мейозе в момент конъюгации гомологичных хромосом.

Транслокации связаны с обменом участками между негомологичными хромосомами или прикреплением участка одной хромосомы к хромосоме негомологичной пары. Обнаруживаются транслокации по генетическим последствиям, которые они вызывают.

Транспозицией называют открытое в последнее время явление вставки небольшого фрагмента хромосомы, несущего несколько генов в какой-нибудь другой участок хромосомы, т. е. перенесение части генов в другое место генома. Механизм возникновения транспозиций еще мало изучен, но есть данные, что он отличается от механизма остальных хромосомных перестроек.

Геномные мутации. Полиплоидия. Каждому из существующих видов живых организмов присущ характерный набор хромосом. Он постоянен по числу, все хромосомы набора различны и представлены один раз. Такой основной гаплоидный набор хромосом организма, содержащийся в его половых клетках, обозначают символом х ; соматические клетки в норме содержат два гаплоидных набора (2х) и являются диплоидными. Если хромосомы диплоидного организма, удвоившиеся в числе в ходе митоза, не, расходятся в две дочерние клетки и остаются в том же ядре, происходит явление кратного увеличения числа хромосом, называемое полиплоидией.

Аутополиплоидия. Полиплоидные формы могут иметь 3 основных набора хромосом (триплоид), 4 (тетраплоид), 5 (пентаплоид), 6 (гексаплоид) и более хромосомных наборов. Полиплоиды с многократным повторением одного и того же основного набора хромосом называются аутополиплоидными. Возникают аутополиплоиды либо как результат деления хромосом без последующего деления клетки, либо за счет участия в оплодотворении половых клеток с нередуцированным числом хромосом, либо при слиянии соматических клеток или их ядер. В эксперименте эффект полиплоидизации достигается действием температурных шоков (высокая или низкая температура) или воздействием ряда химических веществ, среди которых наиболее эффективны алкалоид колхицин, аценафтен, наркотики. В обоих случаях происходит блокада митотического веретена и, как результат,- нерасхождение удвоившихся в ходе митоза хромосом в две новые клетки и объединение их в одном ядре.

Полиплоидные ряды. Основное число хромосом х у разных родов растений разное, но в пределах одного рода виды часто имеют число хромосом, кратное х, образуют так называемые полиплоидные ряды. У пшеницы, например, где х = 7, известны виды, имеющие 2х, 4х и 6х число хромосом. У розы, где основное число также равно 7, существует полиплоидный ряд, разные виды которого содержат 2х, 3 x , 4 x , 5х, 6х, 8х. Полиплоидный ряд картофеля представлен видами с 12, 24, 36, 48, 60, 72, 96, 108 и 144 хромосомами (х = 12).

Аутополиплоидия распространена в основном у растений, поскольку у животных она вызывает нарушение механизма хромосомного определения пола.

Распространение в природе. Вследствие присущей им более широкой нормы реакции полиплоидные растения легче приспосабливаются к неблагоприятным условиям среды, легче переносят колебания температуры и засуху, что дает преимущества в заселении высокогорных и северных районов. Так, в северных широтах они составляют до 80 % всех распространенных там видов. Резко изменяется число полиплоидных видов при переходе от высокогорных районов Памира с его исключительно суровым климатом к более благоприятным условиям Алтая и альпийских Лугов Кавказа. Среди исследованных злаков доля полиплоидных видов на Памире составляет 90%, на Алтае - 72%, на Кавказе - только 50 %.

Особенности биологии и генетики. Для полиплоидных растений характерно увеличение размеров клеток, в результате чего все их органы - листья, стебли, цветки, плоды, корнеплоды имеют более крупные размеры. В силу специфики механизма расхождения хромосом у полиплоидов при скрещивании расщепление по фенотипу в F 2 составляет 35: 1.

В результате отдаленной гибридизации и последующего удвоения числа хромосом у гибридов возникают полиплоидные формы, содержащие два или более повторения разных наборов хромосом и называемые аллополиплоидами.

В ряде случаев полиплоидные растения имеют сниженную плодовитость, что связано с их происхождением и особенностями мейоза. У полиплоидов с четным числом геномов гомологичные хромосомы в ходе мейоза конъюгируют чаще парами, либо по нескольку пар вместе, не нарушая хода мейоза. Если одна или несколько хромосом не находят себе пары в мейозе и не принимают участия в конъюгации, образуются гаметы с несбалансированным числом хромосом, что ведет к их гибели и резкому снижению плодовитости полиплоидов. Еще большие нарушения возникают в мейозе у полиплоидов с нечетным числом наборов. У аллополиплоидов, возникших при гибридизации двух видов и имеющих по два родительских генома, при конъюгации каждая хромосома находит себе партнера среди хромосом своего вида, Полиплоидия играет большую роль в эволюции растений и находит применение в селекционной практике.

Мутация (от латинского слова "mutatio" - изменение) - это стойкое изменение генотипа, которое произошло под влиянием внутренних или внешних факторов. Различают хромосомные, генные и геномные мутации.

Каковы причины мутаций?

  • Неблагоприятные условия окружающей среды, условия, созданные экспериментально. Такие мутации называют индуцированными.
  • Некоторые процессы, происходящие в живой клетке организма. Например: нарушение репарации ДНК, репликация ДНК, генетическая рекомбинация.

Мутагены - факторы, вызывающие мутации. Делятся на:

  • Физические - распад радиоактивный, и ультрафиолетовое, слишком высокая температура или слишком низкая.
  • Химические - восстановители и окислители, алкалоиды, агенты алкилирующие, нитропроизводные мочевины, пестициды, растворители органические, некоторые медикаменты.
  • Биологические - некоторые вирусы, продукты метаболизма (обмена веществ), антигены различных микроорганизмов.

Основные свойства мутаций

  • Передаются по наследству.
  • Вызываются разнообразными внутренними и внешними факторами.
  • Возникают скачкообразно и внезапно, иногда повторно.
  • Может мутировать любой ген.

Какие они бывают?

  • Геномные мутации - это изменения, которые характеризуются утратой или добавлением одной хромосомы (или нескольких) или же полного гаплоидного набора. Различают два вида таких мутаций - полиплоидию и гетероплоидию.

Полиплоидия - это изменение количества хромосом, которое кратно гаплоидному набору. Крайне редко встречается у животных. У человека возможны два вида полиплоидии: триплоидия и тетраплоидия. Дети, рождённые с такими мутациями, живут обычно не более месяца, а чаще погибают в стадии эмбрионального развития.

Гетероплоидия (или анеуплоидия) - это изменение количества хромосом, которое некратно галоидному набору. В результате этой мутации на свет появляются особи с аномальным количеством хромосом - полисомики и моносомики. Около 20-30 процентов моносомиков погибают в первые дни внутриутробного развития. Среди родившихся встречаются особи с синдромом Шерешевского-Тернера. Геномные мутации в растительном и животном мире также разнообразны.

  • - это такие изменения, которые возникают при перестройке структуры хромосом. При этом наблюдается перенос, потеря или удвоение части генетического материала нескольких хромосом или одной, а также изменение ориентации хромосомных сегментов в отдельно взятых хромосомах. В редких случаях возможна то есть объединение хромосом.
  • Генные мутации. В результате таких мутаций происходят вставки, делеции или замены нескольких или одного нуклеотидов, а также инверсия или дупликация разных частей гена. Эффекты мутаций генного типа разнообразны. Большая часть из них рецессивны, то есть никак не проявляются.

Также мутации делятся на соматические и генеративные

  • - в любых клетках организма, кроме гамет. Например, при мутации клетки растения, из которой впоследствии должна развиться почка, а затем и побег, все его клетки будут мутантными. Так, на кусте красной смородины может возникнуть ветка с чёрными или белыми ягодами.
  • Генеративные мутации - это изменения в первичных половых клетках или в гаметах, которые из них образовались. Их свойства передаются следующему поколению.

По характеру воздействия на мутации бывают:

  • Летальные - обладатели таких изменений погибают либо в стадии либо через достаточно короткое время после рождения. Это практически все геномные мутации.
  • Полулетальные (например, гемофилия) - характеризуются резким ухудшением работы каких-либо систем в организме. В большинстве случаев полулетальные мутации тоже вскоре приводят к смерти.
  • Полезные мутации - это основа эволюции, они приводят к появлению признаков, нужных организму. Закрепляясь, эти признаки могут стать причиной образования нового подвида или вида.