Главная · Болезни желудка · Лейкоциты. Лейкоциты, их виды, количество. Лейкоциты и лейкопении. Лейкоцитарная формула. Функции различных видов лейкоцитов

Лейкоциты. Лейкоциты, их виды, количество. Лейкоциты и лейкопении. Лейкоцитарная формула. Функции различных видов лейкоцитов

Лейкоциты, строение, количество, виды, функции. Лейкоцитарная формула и ее клиническое значение.

Лейкоциты – это основа иммунитета, наши защитники от внешних воздействий: болезнетворных бактерий, вирусов, грибков и чужеродных тел,

попадающих в кровь. Некоторые виды лейкоцитов также препятствуют размножению незрелых опухолевых клеток. Как увеличение, так и уменьшение числа лейкоцитов является признаком заболевания.

Белые клетки крови их строение и виды

Белые клетки крови или лейкоциты – это клетки, выполняющие защитную функцию. Количество лейкоцитов в крови зависит как от скорости их образования, так и от мобилизации их из костного мозга, а также от их утилизации (распада и выведения из организма) и миграции в ткани в очаги воспаления. На эти процессы в свою очередь влияет ряд физиологических факторов, поэтому число лейкоцитов в крови здорового человека подвержено колебаниям: оно повышается к концу дня, при физической нагрузке, эмоциональном напряжении, приеме белковой пищи (например, мяса), резкой смене температуры окружающей среды. В норме их количество равно 4 – 9 тысяч в 1 мкл крови (4-9х109/л).

Лейкоциты делятся на зернистые или гранулоциты (их ядро имеет зернистую структуру) и незернистые (агранулоциты), ядро которых имеет незернистую структуру, эти виды лейкоцитов выполняют разные задачи.

Строение и функции гранулоцитов

Гранулоциты делятся на три группы: нейтрофилы, эозинофилы и базофилы.

Нейтрофилы могут быть незрелыми (юными) – их очень мало и в общем анализе крови может не быть, не полностью зрелые или палочкоядерными – они имеют ядро в виде палочек и зрелыми или сегментоядерными с ядрами, разделенными на 3-5 сегментов.

Нейтрофилы выполняют в организме функцию клеточного иммунитета или фагоцитоза: они поглощают и растворяют болезнетворные микроорганизмы. Чем моложе человек, тем выше фагоцитарная активность нейтрофилов, с возрастом она падает. Кроме того, нейтрофилы выделяют фермент лизоцим и противовирусное вещество интерферон, которые также помогают им справляться со своей задачей.

Эозинофилы имеют ядро, состоящее из двух сегментов и круглые или овальные гранулы, которые содержат кристаллы. Эозинофилы также способны к фагоцитозу, выполняют функцию защиты от аллергии, они поглощают чужеродные белки и медиаторы – биологически активные вещества, которые выделяются во время аллергической реакции, например, гистамин.

Структура базофилов изучена хуже, чем других лейкоцитов, так как эти клетки встречаются в крови редко. Основная функция базофилов – участие в иммунологических реакциях (в том числе и неадекватных, то есть аллергических) замедленного типа.

Агранулоциты

Агранулоциты или незернистые лейкоциты делятся на лимфоциты и моноциты.

Лимфоциты крови здоровых людей имеет большое ядро сферической формы, которое занимает почти всю клетку. Они являются основой гуморального иммунитета: при попадании в организм чужеродного белка болезнетворных микроорганизмов (антигенов) они вырабатывают антитела, которые, соединяясь с антигенами, образуют нерастворимые комплексы, легко удаляющиеся из организма.

Моноциты являются самыми крупными клетками крови с большим рыхлым ядром. Моноциты со временем превращаются в макрофаги – крупные клетки, которые участвуют в клеточном иммунитете (поглощают вирусы и бактерии) и вырабатывают факторы, влияющие на кроветворение.

В общем анализе крови все лейкоциты принято писать по порядку, слева направо: юные – палочкоядерные – сегментоядерные – лимфоциты – моноциты. При этом все число лейкоцитов берется за 100%, отдельные их виды выражаются также в процентах. При этом в анализе обращается внимание на то, каких зернистых лейкоцитов больше, а каких меньше, соответственно, говорят о нейтрофильном сдвиге влево или вправо

Ребят, формулу вставить не получается  посмотрите в инете сами.

Клиническое значение

В клинической практике лейкоцитарная формула имеет большое значение, так как при любых изменениях в организме процентное содержание одних видов клеток белой крови увеличивается или уменьшается за счёт увеличения или уменьшения в той или иной степени других. По данным лейкоцитарной формулы можно судить о ходе патологического процесса, появлении осложнений и прогнозировать исход болезни. Данные лейкоцитарной формулы необходимо сопоставлять с клиническим проявлением болезни.

Понятие о гемостазе. Сосудисто-тромбоцитарный и коагуляционный гемостаз. Факторы и фазы свертывания крови. Тромбоциты и их роль в гемокоагуляции. Взаимодействие свертывающей и противосвертывающей систем крови. Фибринолиз.

Свертывание крови (гемокоагуляция) является защитным механизмом организма, направленным на сохранение крови в сосудистой системе. В результате свертывания кровь из жидкого состояния переходит в желеобразный сгусток за счет превращения фибриногена (растворимого в воде белка плазмы) в фибрин (не растворимый в воде белок). Первые шаги по раскрытию механизма свертывания крови были открыты физиологом А.А. Шмидтом (1863-1864). Он обнаружил некоторые факторы свертывания, признал ферментативную природу реакций и их фазность. По современным представлениям в процессе свертывания крови принимают участие много факторов: плазменные, тромбоцитарные, сосудистого эндотелия и субэндотелия, а также форменные элементы.

В свертывании крови принимают участие много факторов

Они получили название – факторы свертывания крови.

По международной номенклатуре они обозначаются арабскими цифрами и

латинскими буквами (от слова пластинка). Важнейшими из них являются:

p1 – тромбоцитарный акцелератор-глобулин. Идентичен фактору V плазмы.

Относится к адсорбированным из плазмы факторам;

p2 – акцелератор тромбина. Ускоряет переход фибриногена в фибрин;

p3 – тромбопластический фактор, или фосфолипид. Сосредоточен в

мембранной фракции. Необходим для образования протромбиназы по

внутреннему пути;

p4 – антигепариновый фактор;

p5 – фибриноген тромбоцитов. Находится как на поверхности тромбоцитов,

так и внутриклеточно. Он играет важную роль в агрегации кровяных пластинок

(тромбоцитов);

р6 – тромбостенин – контрактильный белок, подобный мышечному

актомиозину. Обеспечивает движение тромбоцитов и образование

псевдоподий. Принимает участие в осуществлении ретракции, адгезии и

агрегации;

p7 – антифибринолитический фактор, связывает плазмин;

p8 – активатор фибринолиза, действие которого проявляется в присутствии

стрептокиназы;

p9 – фибринстабилизирующий фактор, напоминает по своему действию

фактор ХIII плазмы (фибриназу);

p10 – вазоконстрикторный фактор (серотонин). Вызывает спазм сосудов,

стимулирует агрегацию тромбоцитов;

p11 – АДФ – эндогенный фактор агрегации.

Огромное значение в адгезии тромбоцитов играет фактор Виллебранда, содержащийся в плазме и α-гранулах

пластинок, а также фибронектин. Фибронектин обнаружен, как в сосудистой стенке, так и в α-гранулах тромбоцитов.

Необходимо отметить, что адгезия резко усиливается при реакции «освобождения» кровяных пластинок, когда

фибронектин и фактор Виллебранда покидают тромбоциты и поступают непосредственно в плазму крови.

Адгезия и агрегация тромбоцитов, как уже указывалось, зависит от соотношения тромбоксанов, выделяемых из

кровяных пластинок, и простациклина, синтезируемого преимущественно эндотелием сосудистой стенки (рис. 14).

Важная роль в агрегации кровяных пластинок принадлежит фактору, активирующему тромбоциты (ФАТ), который синтезируется лейкоцитами, мононуклеарами, макрофагами, тромбоцитами, сосудистой стенкой.

Таким образом, тромбоциты, осуществляя адгезию, агрегацию и реакция «освобождения» активно участвуют в

образовании и консолидации тромбоцитарной пробки, запускают процесс свертывания крови, чем способствуют

остановке кровотечения.

Плазменные факторы, или прокоагулянты находятся в плазме и обозначаются римскими цифрами. В настоящее время выделено 15 факторов: I – фибриноген; II- протромбин; III – тканевой тромбопластин; IV – ионы кальция; V – проакцелерин; VI – Ас-глобулин; VII – конвертин; VIII – антигемофильный глобулин А; IХ - антигемофильный глобулин В, или фактор Кристмасса; Х – фактор Стюарта-Прауэра; ХI – антигемофильный глобулин С, или плазменный предшественник протромбиназы; ХII – фактор Хагемана, или контакта; ХIII – фибринстабилизирующий фактор; ХIV – фактор Флетчера (прокалликреин); ХV – фактор Фитцжеральда-Фложе (кининоген).

Тромбоцитарные факторы обозначаются арабскими цифрами. В настоящее время известно 12

Одним из важных является

Фактор 3 – тромбоцитарный тромбопластин –

фосфолипид, находящийся в мембране кровяных

пластинок и их гранул. Освобождается после разрушения

тромбоцитов и используется в I фазе свертывания.

Фактор 4 – антигепариновый - связывает

гепарин и ускоряет процесс гемокоагуляции;

Фактор 5 – свертывающий фактор или

фибриноген определяет адгезию и агрегацию

тромбоцитов;

Фактор 6 – тромбостенин – обеспечивает

уплотнение и сокращение кровяного сгустка;

Фактор 10 – сосудосуживающий (серотонин,

который адсорбируется тромбоцитами из крови). Суживает

поврежденные сосуды, уменьшает кровопотерю;

Фактор 11 – фактор агрегации (является АДФ и

обеспечивает скучивание тромбоцитов в поврежденном

В ответ на повреждение сосуда развертываются два последовательных процесса – сосудисто-тромбоцитарный гемостаз и коагуляционный гемостаз (ферментативное свертывание).

Процесс свертывания крови и его значение. У здорового человека кровотечение из мелких сосудов при их ранении останавливается за 1-3 мин. Этот первичный гемостаз почти целиком обусловлен сужением сосудов и

механической закупоркой их агрегатами тромбоцитов и получил название сосудисто-тромбоцитарного

гемостаза, который складывается из ряда последовательных процессов:

Сосудисто-тромбоцитарный механизм гемостаза Остановка кровотечения за счет сосудисто-тромбоцитарного механизма гемостаза осуществляется следующим образом.

1) Рефлекторный спазм поврежденных сосудов. Обеспечивается сосудосуживающими веществами, освобожденными из тромбоцитов (серотонин, адреналин, норадреналин). Спазм приводит к временной остановке или уменьшению кровотечения.

2) Адгезия тромбоцитов (приклеивание к месту травмы). В месте повреждения стенка сосуда становится заряженной

положительно. Отрицательно заряженные тромбоциты прилипают к обнажившимся волокнам коллагена базальной

мембраны. Адгезия завершается за 3-10 сек.

3) Обратимая агрегация (скучивание) тромбоцитов. Стимулятором является «внешняя» АДФ, выделяющаяся из поврежденного сосуда и «внутренняя» АДФ, освобождающаяся из тромбоцитов и эритроцитов. Образуется рыхлая тромбоцитарная пробка, пропускающая через себя плазму крови.

Сосудисто-тромбоцитарные реакции обеспечивают гемостаз лишь в микроциркуляторных сосудах, однако тромбоцитарные тромбы не выдерживают высокого давления и вымываются. В таких сосудах гемостаз может быть достигнут путем образования фибринового тромба. Его образование осуществляется ферментативным коагуляционным механизмом, протекающим в 3 фазы.

Фаза I. Формирование протромбиназы.

Различают внешнюю (тканевую) и внутреннюю (кровяную) систему. Внешний путь запускается тканевым тромбопластином, который выделяется из стенок поврежденного сосуда и окружающих тканей. Во внутренней системе фосфолипиды и другие факторы поставляются самой кровью. Тканевая система (тканевая протромбиназа) образуется за 5-10 сек.

тромбоцитарная

5-10 мин. протромбиназы

эритроцитарная

Толчком для образования тканевой протромбиназы служит повреждение стенок сосудов с выделением из них в кровь тканевого тромбопластина. В формировании тканевой протромбиназы участвуют плазменные факторы VII, V, X, и Ca++.

Кровяная протромбиназа образуется медленнее. Инициатором ее образования являются обнажающиеся при

повреждении сосуда волокна коллагена. Начальной реакцией является активация фактора Хагемана при контакте с данными волокнами. После этого он с помощью активированного им калликреина и кинина активирует фактор XI, образуя с ним комплекс- продукт контактной активации. К этому времени происходит разрушение эритроцитов и тромбоцитов, на фосфолипидах, которых завершается образование комплекса фактор XII + фактор XI.

Эта реакция самая продолжительная, на нее уходит 5-7 мин. из 5-10 мин. всего времени свертывания. Под влиянием

фактора XI активизируется фактор IX, который реагирует с фактором VIII и Ca. Образующийся кальциевый комплекс, адсорбируется на фосфолипидах, образуя последний комплекс фактор X +фактор V + Ca++ и завершение образования кровяной протромбиназы.

Фаза II. Появление протромбиназы свидетельствует о начале II фазы свертывания крови – образование тромбина (2-5 сек.)

Протромбиназа адсорбирует протромбин и превращает его в тромбин при участии факторов V, X и Ca++.

Фаза III. Превращение фибриногена в фибрин в 3 этапа.

1). Фибриноген → фибрин-мономер

2). Фибрин-мономер → полимеризация и образование фибрин - полимера (растворимый фибрин «S»).

3). Образуется окончательный нерастворимый фибрин «1» при участии фактора XIII и фибриназы тканей, тромбоцитов и эритроцитов. Завершается образование кровяного тромба.

Таким образом, свертывание крови представляет собой цепной ферментативный процесс, в котором на матрице фосфолипидов последовательно активируются факторы свертывания и образуются их комплексы. Фосфолипиды клеточных мембран выступают как катализаторы взаимодействия и активации факторов свертывания, ускоряя

течение гемокоагуляции.

Коагуляционный механизм гемостаза Процесс свертывания крови (гемокоагуляция) заключается в переходе

растворимого белка плазмы крови фибриногена в нерастворимое состояние –фибрин. В результате процесса

свертывания кровь из жидкого состояния переходит в студнеобразное, образуется сгусток, который закрывает просвет

поврежденного сосуда.

Противосвертывающие механизмы

Физиологические антикоагулянты поддерживают кровь в жидком состоянии и ограничивают процесс тромбообразования.

К ним относятся: антитромбин III,

Гепарин,

Протеины С и S,

Альфа-2-макроглобулин,

Нити фибрина.

Антитромбин III (L-2-глобулин). На его долю приходится 75% всей антикоагулянтной активности крови. Является основным плазменным кофактором гепарина, ингибирует активность тромбина, факторов Xa, IXa, VIIa, XIIa. Концентрация в плазме 240мг/мл.

Гепарин – сульфатированный полисахарид. Образует комплекс с антитромбином III, трансформируя его в антикоагулянт немедленного действия, активирует неферментный фибринолиз.

Протеины С и S синтезируются в печени при участии витамина К. Протеин «С» инактивирует активированные факторы VIII и V. Протеин S резко снижает способность протромбина активировать факторы VIII и V.

В результате свертывания крови образуется сгусток. Он состоит из нитей фибрина и осевших в них форменных элементов крови, главным образом, эритроцитов.

Кровяной сгусток закрывает просвет поврежденного сосуда. Сгусток, прикрепленный к стенке сосуда, называется тромбом. Тромб или сгусток в дальнейшем подвергается двум процессам:

1) ретракции (сокращению) и

2) фибринолизу (растворению).

Ускорение процесса свертывания крови называется гиперкоагуляцией, замедление этого процесса – ипокоагуляцией.

Фибринолиз

Ретракция обеспечивает уплотнение и закрепление тромба в поврежденном сосуде, что возможно лишь при достаточном количестве тромбоцитов за счет их сократительного белка тромбостенина. Сгусток сжимается до 25-50% своего объема. Ретракция заканчивается в течение 2-3 часов после образования сгустка.

Одновременно, но с меньшей скоростью начинается фибринолиз – расщепление фибрина, составляющего основу тромба. Главная функция -реканализация закупоренного сгустка сосуда. Система фибринолиза имеет внутренний и внешний механизмы активации. Внутренний механизм осуществляется ферментами самой крови, а

внешний – тканевыми активаторами. Расщепление фибрина осуществляется протеолитическим ферментом плазмином, который находится в плазме в виде профермента плазминогена. В плазме крови находится кровяной проактиватор плазминогена, требующий активации кровяной лизокиназой, которой является фактор Хагемана. Активация происходит как в месте повреждения сосуда, так и в кровотоке под влиянием адреналина.

Нити фибрина обладают антитромбинным действием, благодаря адсорбции на них до 85-95% тромбина крови, что помогает сконцентрировать тромбин в формирующемся сгустке и предотвратить его распространение по току крови. Эндотелиальные клетки неповрежденной сосудистой стенки препятствуют адгезии тромбоцитов на ней.

Фибринолиз протекает в 3 фазы. В I фазу образуется кровяной активатор плазминогена. Во II фазе плазминоген переходит в плазмин. В III фазе плазмин расщепляет фибрин до пептидов и аминокислот. Естественным стимулятором фибринолиза.

является внутрисосудистое свертывание или ускорение этого процесса. У здоровых людей активация фибринолиза вторична, в ответ на усиление гемокоагуляции.

Кровь - это важная составная часть иммунной системы организма человека. К защитной системе принадлежат клетки и вещества, распознающие и нейтрализующие инородные для организма тела. Эту функцию выполняют лейкоциты - бесцветные клетки крови, имеющие ядро. В крови их в 800 раз меньше, чем эритроцитов , однако лейкоциты превосходят их по размеру. В среднем в 1 мл крови содержится 4500-8000 лейкоцитов.

По зернистости цитоплазмы лейкоциты делятся на гранулоциты и агранулоциты. У первых в цитоплазме содержатся мелкие зерна (гранулы), окрашивающиеся разными красителями в синий, красный или фиолетовый цвет. У незернистых форм таких гранул нет. Агранулоциты подразделяются на лимфоциты и моноциты, а гранулоциты - на эозинофилы, базофилы и нейтрофилы. При проведении исследования для распознания зернышек клеток применяются разные методы окраски, например, эозинофилы воспринимают в основном кислые красители, а базофилы - щелочные.

Лейкоциты вырабатываются в костном мозге, лимфатических узлах и селезенке. Примерно 1/4 или 1/3 часть от общего числа лейкоцитов приходится на лимфоциты - относительно небольшие клетки, которые содержатся не только в крови, но и в лимфатической системе. К самой немногочисленной группе лейкоцитов относятся моноциты - довольно крупные клетки, образующиеся в костном мозге и в лимфатической системе.

Функции

Основная функция лейкоцитов - защита организма от микроорганизмов и инородных тел, проникающих в кровь или ткани. Лейкоциты могут самостоятельно передвигаться. По пути своего следования они захватывают и подвергают внутриклеточному перевариванию микробов и другие инородные тела. Поглощение и переваривание лейкоцитами различных микробов и чужеродных веществ, попадающих в организм, называют фагоцитозом. Если инородное тело по своим размерам превышает лейкоцит, то вокруг него накапливаются группы таких клеток. Переваривая инородное тело, эти кровяные клетки гибнут. В результате вокруг образуется гнойник.

Лимфоциты и эозинофилы действуют по принципу реакции антитело-антиген. Как только они распознают инородное тело или клетку, то сразу же к нему присоединяются. В их мембране имеется белковое вещество-рецептор, которое, как магнит, притягивает к себе инородное для организма вещество. То есть структура этих молекул совместима, они подходят друг к другу, как ключ к замку.

Таким образом, в крови на каждое инородное тело имеется клетка защитной системы, которая к нему приспосабливается. Однако когда в организме не происходит никаких патологических процессов, в крови циркулирует лишь небольшое количество лейкоцитов. Их число резко увеличивается, как только в этом возникает необходимость. Кроме того, в течение некоторого времени иммунная система организма «помнит» инородную клетку. Во время фагоцитоза «захватчик» распознается по аналогичному принципу, и к нему присоединяется соответствующий лейкоцит. Клеточная стенка истончается, и он сначала захватывает, а затем поглощает инородное тело.

Где вырабатываются?

Большая часть лейкоцитов вырабатывается в красном костном мозге. Они образуются из специальных стволовых клеток. Стволовые клетки (незрелые) остаются в костном мозге, а развившиеся из них бесцветные кровяные клетки поступают в кровеносную систему. С этого момента их наличие подтверждает анализ крови (во время специального исследования их можно достаточно точно подсчитать). Между тем лимфоциты и большая часть моноцитов образуются в лимфатической системе, оттуда некоторое их количество поступает в кровь.

Патологический процесс отмирания стволовых клеток приводит к лейкозу. В этом случае вырабатывается очень большое количество лейкоцитов, которые, в силу своей незрелости, не способны выполнять свои функции.

  • Предыдущая
  • 1 of 3
  • Следующая

В этой части речь идет о видах лейкоцитов и их количестве, о строении и функциях различных видов лейкоцитов: нейтрофилы, эозинофилы, базофилы, лимфоциты, моноциты

Лейкоциты.

Виды лейкоцитов, их количество.

Лейкоцитами называют белые кровяные тельца . Их делят на две большие группы: зернистые лейкоциты , или гранулоциты , и незернистые , агранулоциты . Зернистые лейкоциты получили свое называние из-за наличия в их цитоплазме характерной зернистости.

В зависимости от способности воспринимать те или иные красители, гранулоциты делят на нейтрофилы, эозинофилы и базофилы . Нейтрофилы составляют 60-70% от вех белых кровяных телец, эозинофилы - 1-4%, базофилы - 0-0,5%.

Агранулоциты представлены лимфоцитами и моноцитами . Лимфоциты составляют 25-30% от всех лейкоцитов, моноциты - 6-8%. Всего в 1 мм 3 крови содержится 6000-8000 лейкоцитов. Увеличение их числа в крови называют лейкоцитозом . Он отмечается при острых инфекционных заболеваниях, воспалительных процессах, при различных интоксикациях, после приема пищи. Уменьшение количества лейкоцитов называют лейкопенией . Она может наблюдаться при угнетении функции костного мозга.

Строение и функции различных видов лейкоцитов.

Нейтрофилы имеют округлую форму, диаметр их 12 мкм. Цитоплазма в окрашенном препарате розового цвета, гранулы ее окрашиваются в синевато-розовый цвет. В состав зернистости входят самые различные ферменты, обеспечивающие синтез и расщепление веществ, аминокислоты, гликоген, липиды, РНК. Ядро, как правило, состоит из 3-4 сегментов. Ядра имеют отростки - ядерные придатки.

Нейтрофилы обладают ярко выраженной способностью к фагоцитозу . Фагоцитозом называют способность клетки захватывать и переваривать самые различные вещества (микробов, краску, обломки клеток и т.д.).

Явление фагоцитоза было открыто И.И.Мечниковым, который показал, что подвижные клетки - лейкоциты - способны к захвату и перевариванию твердых частиц, благодаря чему они выполняют в организме защитную функцию. Клетки, способные к захватыванию и перевариванию чужеродных веществ, были названы им фагоцитами , что означает "пожиратели клеток".

Мечниковым были выделены основные фазы фагоцитоза: сближение фагоцита с объектом, аттракция , под которой понимают поглощение и переваривание . Сближение фагоцитов с объектом возможно потому, что они способны к передвижению. Для нейтрофилов характерно амебоидное перемещение. На конце клетки, противоположной направлению движения, появляется псевдоподия. Она увеличивается в размерах, и в нее перемещается цитоплазма. Скорость движения нейтрофилов человека составляет в среднем 28 мкм/мин. Скорость движения зависит от температуры среды. Максимальная скорость отмечается при температуре 38-39 градусов. Скорость зависит также от различных веществ, содержащихся в плазме и тканях, подвергающихся повреждающему воздействию. Для осуществления двигательной активности необходима энергия, которую доставляет АТФ. В нейтрофилах ресинтез АТФ может происходить и в бескислородной среде, т.е. в анаэробных условиях, за счет того, что процесс расщепления глюкозы, дающий энергию для этого ресинтеза, может происходить в них анаэробное. Мечниковым была развита теория воспаления, согласно которой воспаление следует рассматривать как защитную реакцию организма, направленную на борьбу с вредоносным агентом. Лейкоциты-фагоциты, скапливаясь в очаге воспаления, способствуют его ликвидации. Один лейкоцит может захватить 15-20 микробов. При этом большое количество лейкоцитов погибает в очаге воспаления. Эта теория Мечникова была в дальнейшем подтверждена. Сейчас известно, что интенсивность фагоцитоза зависит от активности антител и пропердиновой системы, от наличия витаминов, от влияний нервных и гуморальных факторов. Тормозят фагоцитоз ацетилхолин, глюкокортикоиды.

Нейтрофилы недолговечны: продолжительность их жизни 8-12 суток. Помимо фагоцитарной нейтрофилы выполняют и транспортную функцию. Они переносят антитела, адсорбируя их на своей поверхности. Нейтрофилы усиливают также миотическую активность, способствуя восстановлению - регенерации - поврежденных тканей.

Эозинофилы имеют диаметр 12-15 мкм. В их цитоплазме содержатся гранулы сферической или овальной формы, окрашивающиеся в желто-розовый цвет. Остальная цитоплазма окрашивается в голубой цвет. Гранулы содержат ферменты, но в них отсутствует гликоген.

Ядро состоит из двух сегментов. Эозинофилы обладают слабой фагоцитарной активностью. Основная их функция заключается в инактивировании гистамина, который особенно в больших количествах образуется при заболеваниях, связанных с повышенной чувствительностью к чужеродным элементам. Эозинофилы содержат фермент, расщепляющий гистамин. Кроме того, адсорбируя последний, они переносят его к легким и кишечнику, где и происходит его выделение. Понятно, что в случае повышенного образования гистамина в организме увеличивается число эозинофилов.

Базофилы - клетки диаметром 10 мкм. Гранулы их цитоплазмы окрашиваются в темно-фиолетовый цвет. Они содержат РНК, гликоген, ферменты, гепарин, гистамин. Цитоплазма окрашивается в розовый цвет. Ядро лапчатой формы. Основная функция базофилов заключается в синтезе гистамина, гепарина. Половина гистамина крови находится в базофилах.

Лимфоциты в зависимости от их размеров делят на три группы: большие (15-18 мкм), средние (10-14 мкм) и малые (6-9 мкм). Больше всего в крови малых лимфоцитов. Форма лимфоцитов - круглая или овальная. Ядро их окрашивается в темно-синий цвет. Оно занимает почти всю клетку.

Цитоплазма красится основными красками. В ней содержатся ферменты, нуклеиновые кислоты, АТФ. Гликоген имеется не во всех лимфоцитах. Функция лимфоцитов связана с выработкой бета- и гамма-глобулинов. Чем больше цитоплазма содержит РНК, тем сильнее выражена ее способность к выработке антител. Так же как и нейтрофилы, лимфоциты могут адсорбировать антитела и транспортировать их к очагу воспаления. Лимфоциты нейтрализуют различные токсины.

Моноциты - самые крупные клетки крови. Их диаметр достигает 13-25 мкм. Ядро неправильной, овальной или бобовидной формы, с вдавлениями и вытягиваниями. Цитоплазма окрашивается в голубовато-серый или серо-синий цвет. В цитоплазме содержатся РНК, полисахариды и ферменты. Моноциты обладают большей способностью к амебоидному движению, чем лимфоциты, в связи с чем для них характерна фагоцитарная функция. Она осуществляется, в отличие от нейтрофилов, и в кислой среде. Поэтому моноциты активно участвуют в борьбе в инфекцией в очагах воспаления.

Тромбоцит состоит из:

1) Гиаломера - представляет основу тромбоцита;

2) Грануломера - зернышек, образующих скопление в центре или разбросанных по периферии.

Существуют два типа гранул:

а) плотные, темные (- гранулы)

б) серотониновые гранулы (δ- гранулы)

в) лизосомы и микропероксисомы (λ-гранулы).

Грануломер содержит также зерна гликогена и митохондрий.

    Гиаломер содержит циркулярно расположенные пучки, состоящие из 10 - 15 микротрубочек которые помогают поддерживать форму тромбоцита, а также актиновые и миозиновые микрофилламенты.

Тромбоциты образуют большое количество отростков различного размера и толщины (усики), которые участвуют в агрегации тромбоцитов и образовании тромба.

При окрашивании по методу Романовского - Гимза, обнаруживается 5 видов тромбоцитов:

а) юные с базофильным гиаломером и единичными азурофильными гранулами;

б) зрелые , со слабооксифильным гиаломером и выраженной азурофильной зернистостью;

в) старые - темные; сине - фиолетового оттенка с темно - фиолетовой зернистостью;

г) дегенеративные с серовато - синеватым гиаломером и синевато - фиолетовой зернистостью;

д) гигантские формы (формы раздражения), размер которых в 2 - 3 раза превышает нормальные размеры. Имеют розовато - сиреневый гиаломер с фиолетовой зернистостью.

Продолжительность жизни тромбоцита 5-8 дней.

¨Функция - участие в свертывании крови. Тромбоциты выделяют фермент тромбопластин, который способствует превращению растворимого фибриногена в нерастворимый фибрин. Агрегированные тромбоциты формируют каркас тромба, на котором оседают нити фибрина.

Тромбоцитопения ведет к пониженной свертываемости крови и сопровождается спонтанными кровотечениями.

Лейкоциты - белые, шаровидные, содержащие ядро и все цитоплазматические органеллы клетки крови, которые способны выходить за пределы сосудов и активно передвигаться путем образования псевдоподий.

У взрослого человека количества лейкоцитов в 1 литре крови составляет 3,8 х 10 9 - 9х10 9 .

Увеличение количества лейкоцитов - лейкоцитоз ; уменьшение - лейкопения ;

Класификация

Все лейкоциты, в зависимости от наличия зернистости или отсутствия таковой, делятся на:

1. Гранулоциты - зернистые;

2. Агранулоциты - не содержащие зернистость;

В зависимости от окраски зернистости гранулоциты делятся на:

1) нейтрофильные: а) юные; б) палочкоядерные в) сегментоядерные

2) оксифильные (ацидофильные, эозинофильные),

3) базофильные.

Агранулоциты делятся на: 1) лимфоциты; 2) моноциты;

Строение лейкоцитов

I Гранулоциты. Нейтрофильные

¨Количество 65-70% от общего числа лейкоцитов; диаметр в свежей капле крови 7-9 мкм, в мазке 10-12 мкм.

¨Цитоплазма нейтрофилов содержит мелкую зернистость. Количество гранул в каждой клетке может быть от 50 до 200. Зернистость занимает не всю цитоплазму - поверхностный слой в виде узкой каемки остается гомогенным и содержит тонкие филаменты. Этот слой играет главную роль при амебовидном движении клетки, участвуя в образовании псевдоподий.

¨В зависимости от строения и химического состава различают два основных типа гранул:

1) азурофильные - неспецифические;

2) нейтрофильные - специфические;

Азурофильные гранулы - появляются в процессе развития нейтрофила раньше и поэтому их называют первичными. Их больше в малоспециализированных клетках и в процессе специализации (дифференциации) их число уменьшается, и в зрелых клетках составляет 10-20%. Размеры от 0,4 до 0, 8 мкм. Эти гранулы представляют разновидность лизосом, о чем свидетельствует наличие в них типичных для лизосом гидролитических ферментов (кислая фосфотаза), имеют круглую или овальную форму.

Нейтрофильные гранулы - появляются в процессе развития нейтрофила их называют вторичными , их количество возрастает в процессе специализации клетки. В зрелом нейтрофиле они составляют 80-90% от всего числа гранул. Зрелые нейтрофильные гранулы имеют диаметр 0,1-0,3 мкм, округлой или овальной формы, иногда нитевидной. Зрелые гранулы имеют большой размер (0,2-0,4) мкм. Они содержат щелочную фосфатазу, основные катионные белки, фагоцитины, лактоферрин, лизоцим, аминопептидазы.

¨В цитоплазме слабо развиты органеллы, немного митохондрий, небольшой комплекс Гольджи, иногда встречаются редуцированные элементы эндоплазматической сети; характерны включения гликогена, липидов и др. При окраске по Романовскому-Гимзе - зернистость розово-фиолетового цвета.

¨Ядра нейтрофильных лейкоцитов содержат плотный хроматин, особенно по переферии, в котором трудно различить ядрышки. Форма ядер неодинакова, поэтому их называют также полиморфноядерными, зрелые имеют сегментированные ядра, состоящие из 2-3 и более долек, связанных очень тонкими, иногда незаметными, перемычками. Это сегментоядерные нейтрофилы . Их подавляющее количество 49-72%.

Меньше содержится палочкоядерных 1-6% ядра этих клеток имеют вид буквы S или подковы.

Юные нейтрофильные гранулоциты встречаются еще реже 0-0,5% с бобовидными ядрами.

Нейтрофильные гранулоциты подвижные клетки, они могут мигрировать из кровеносных сосудов и передвигаться к источнику раздражения и обладают высокой способностью к фагоцитозу .

Нейтрофилы вырабатывают кейлоны - специфические вещества, подавляющие синтез ДНК в клетках гранулоцитарного ряда и оказывающие регулирующее действие на процессы пролиферации и дифференциации лейкоцитов. Продолжительность жизни около 8 суток, в кровяном русле они находятся 8-12 часов, и далее выходят в соединительную ткань, где проявляется их максимальная функциональная активность.

II Эозинофильные (ацидофильные, оксифильные) гранулоциты . Эозинофилы.

¨Диаметр их в капле свежей крови от 9 до 1 мкм, а в мазке 12-14 мкм. Количество 1-5% от общего числа лейкоцитов.

¨Цитоплазма содержит два типа гранул:

1) первый тип (оксифильные) - овальной или полигональной формы, размером около 0,5-1,5 мкм. Оксифильность обусловлена содержанием в них основного белка, багатого на аминокислоту - аргинин . В гранулах содержится большинство гидролитических ферментов.

2) второй тип гранул меньших размеров 0,1-0,5 мкм, округлой формы, гомогенной или зернистой ультраструктуры. Содержат кислую фосфатазу и арилсульфатазу.

¨Различают три разновидности эозинофилов:

а) сегментоядерные; б) палочкоядерные; в) юные;

Ядро сегментоядерных эозинофилов, как правило, состоит из двух сегментов (реже из трех), соединенных между собой тонкими перемычками. Изредка встречаются палочкоядерные и юные формы, сходные с нейтрофилами соответствующих стадий. Ядра эозинофилов имеют в своем составе в основном гетерохроматин, ядрышки не видны. Они менее подвижны, чем нейтрофилы.

Функции. Эозинофилы участвуют в защитных реакциях организма на чужеродный белок, в аллергических и анафилактических реакциях. Они способны фагоцитировать и инактивировать гистамин с помощью фермента гистаминазы, а также адсорбировать его на своей поверхности. Количество эозинофилов в периферической крови увеличивается при гельминтозах, аллергических реакциях.

Эозинофилы способны к фагоцитозу, однако их активность ниже, чем у нейтрофилов.

III. Базофильные имеют диаметр около 9 мкм в капле свежей крови и около 11-12 мкм в мазке. В крови человека они составляют 0,5-1% от общего количества лейкоцитов.

¨Цитоплазма содержит крупные, округлой или полигональной формы, базофильные гранулы, диаметр которых варьирует от 0,5 до 1,2 мкм.

Гранулы обладают метахромазией , которая обусловлена наличием в них кислого гликозаминогликана-гепарина . Метахромазия- свойство изменять первоначальную окраску красителя. Помимо гепарина гранулы содержат гистамин.

Гранулы неоднородны по плотности, что отражает разную степень их зрелости и функциональное состояние. Помимо специфических базофильных гранул, в базофилах содержатся и азурофильные неспецифические гранулы, которые представляют собой лизосомы. В цитоплазме есть все виды органелл.

¨Ядро базофилов чаще слабододольчатое, реже - сферическое, окрашивается гораздо менее интенсивно, чем ядра нейтрофилов или эозинофилов.

¨Функции базофилов определяются их способностью к метаболизму гистамина и гепарина. Они участвуют в регуляции процессов свертывания крови (гепарин - антикоагулянт) и проницаемости сосудов (гистамин). Участвуют в иммунологических реакциях организма, в частности аллергического характера. Благодаря наличию на их поверхности рецепторов к антителам (IgE) они способны реагировать на комплекс антиген - антитело, что приводит к выбросу гистамина. Гистамин, обладая способностью расширять сосуды, повышать проницаемость сосудистой стенки и межклеточного вещества, раздражать нервные окончания, вызывает комплекс симптомов аллергической реакции (гиперемию, отек, зуд и т.д.). Кроме того, гистамин вызывает спазм гладкомышечных клеток бронхов, участвуя в патогенезе бронхиальной астмы. Одновременно с гистамином базофилы выделяют фактор привлечения эозинофилов. Последние участвуют в инактивации гистамина, тем самым, купируя аллергические проявления.

Фагоцитарная активность базофилов незначительна.

Лимфоциты – составляют 19-37% от общего количества лейкоцитов, размеры значительно варьируют от 4,5 до 10 мкм, а поэтому различают:

а) малые-диаметром 4,5- 6,0 мкм;

б) средние - диаметром 7-10 мкм;

в) большие - диаметром 10 мкм и более;

Лимфоциты имеют интенсивно окрашенное ядро округлой или бобовидной формы и относительно небольшой ободок базофильной цитоплазмы. Цитоплазма некоторых лимфоцитов имеет небольшое количество азурофильных гранул(лизосом).

Электронно - микроскопически у взрослых людей обнаружено и выделено 4 типа клеток: 1) малые светлые; 2) малые темные; 3) средние; 4) плазмоциты (лимфоплазмоциты);

Малые светлые лимфоциты - диаметр около 7 мкм, ядерно - цитоплазмотическое равновесие сдвинуто в сторону ядра. Ядро округлой формы, хроматин конденсирован по периферии.

Цитоплазма содержит небольшое количество рибосом и полисом, слабо выражены элементы гранулярной эндоплазматической сети, центросомы, комплекс Гольджи, митохондрии, много вакуолей и мультивезикулярных телец, встречаются лизосомы. Органеллы обычно располагаются около ядра. Количество этих лимфоцитов 70-75% всего количества.

Малые темные лимфоциты - диаметр 6-7 мкм. Ядерно - цитоплазматическое отношение еще более сдвинуто в пользу ядра. Хроматин выглядит плотным, ядрышко крупное.

Цитоплазма окружает ядро узким ободком, имеет высокую плотность(темная), содержит большое количество рибосом, немного митохондрий и их светлый матрикс выделяется на темном фоне цитоплазмы. Другие органеллы встречаются редко. Количество около 12-13% всех лимфоцитов.

Средние лимфоциты - диаметр около 10 мкм. Ядро - бобовидной формы или округлое, часто видны пальцевидные впячивания ядерной оболочки. Хроматин в ядре более рыхлый, участки конденсированного хроматина видны около ядерной оболочки, ядрышко хорошо выражено.

Цитоплазма содержит удлиненные канальцы гранулярной эндоплазматической сети, свободные рибосомы и полисомы. Центросома и комплекс Гольджи обычно располагаются рядом с областью инвагинации ядерной мембраны, митохондрий меньше. Лизосомы встречаются в небольшом количестве. Количество 10-12% от всех лимфоцитов.

Плазмоциты (лимфоплазмоциты). Характерным признаком этих клеток является концентрическое расположение вокруг ядра канальцев гранулярной эндоплазматической сети. Количество их 1-2%.

Среди лимфоцитов по путям развития и дифференциации, роли их в защитных реакциях выделены два основных вида:

1. Т - лимфоциты; 2. В - лимфоциты;

Т - лимфоциты (тимус зависимые) - образуются из стволовых клеток костного мозга в тимусе и обеспечивают реакции клеточного иммуннитета и регуляцию гуморального иммунитета. Это лимфоциты - долгожители, могут жить несколько (даже несколько десятков) лет. Они в периферической крови составляют 80% всех лимфоцитов.

В популяции Т - лимфоцитов различают:

1. Цитотоксические Т - лимфоциты (киллеры);

    Оказывающие регулирующее действие на В- лимфоциты

а) Т - хелперы

б) Т - супресоры

Т - киллеры являются эффекторными клетками клеточного иммунитета, специфический цитотоксический эффект, которых обеспечивает противоопухолевый и трансплантационный иммунитет.

Т - хелперы (помощники ) способны специфически распознавать антиген и усиливать образование антител.

Т - супрессоры (угнетающие) способны подавлять возможность В-лимфоцитов участвовать в выработке антител В-лимфоцитами. Это действие осуществляется с помощью особых растворимых веществ - лимфокинов , которые вырабатываются при действии антигенов.

В-лимфоциты образуются из стволовых клеток костного мозга в фабрициевой сумке (bursa Fabricius) у птиц, у человека в эмбриональный период в печени, у взрослого - в костном мозге.

Четких морфологических различий между Т- и В-лимфоцитами не выявлен. В В-лимфоцитах более выражена и развита гранулярная эндоплазматическая сеть, а в Т-лимфоцитах - более многочисленны лизосомы. Т-лимфоциты имеют меньшие размеры и меньшие размеры ядер, большее содержание гетерохроматина.

Мембраны В-лимфоцитов имеют разнообразные поверхностные рецепторы на антиген, которые определяют гетерогенность популяций В-клеток. Каждый лимфоцит отличается спецификой и классом своего поверхностного иммуноглобулина.

¨Функция - обеспечение гуморального иммунитета путем выработки антител (иммуноглобулинов).

Эффекторной клеткой является плазмоцит.

Моноциты. В капле свежей крови размер моноцитов равен 9-12 мкм, в мазке крови 18-20 мкм. Моноциты относятся к макрофагической системе организма, к так называемой мононуклеарной фагоцитарной системе - клетки которой происходят из промоноцитов костного мозга и в циркулирующей крови представляют собой пул относительно незрелых клеток, находящихся на пути из костного мозга в ткань (время в крови от 36 до 104 часов).

¨Цитоплазма менее базофильна, чем цитоплазма лимфоцитов. При окраске по Романовскому-Гимзе имеет бледно-голубой цвет, по периферии окрашивается несколько темнее, чем около ядра, содержит различное количество очень мелких азурофильных зерен (лизосом). Имеет пальцеобразные выросты, фагоцитарные вакуоли, многочисленные пиноцитозные везикулы, короткие канальцы гранулярной эндоплазматической сети, а также небольшие по размеру митохондрии.

¨Ядра моноцитов разнообразной формы: бобовидные, подковообразные, реже- дольчатые, с многочисленными выступами и углублениями. Хроматин в виде мелких зерен расположен по всему ядру. Имеет одно или несколько ядрышек.

Количество моноцитов в крови колеблется в пределах 3-11%.

Функция. Выйдя из сосудистого русла в ткань, моноцит дифференцируется в макрофаг и осуществляет специфические функции.

Лимфа (лат.limpha- влага) - желтоватая жидкость, белковой природы, протекающая в лимфатических сосудах. Состоит из лимфоплазмы и форменных элементов.

Лимфоплазма по своему составу близка к плазме крови, но содержит меньше белка. Количество альбуминов больше, чем глобулинов. Часть белка это ферменты: диастаза, липаза и гликолитические ферменты. Содержит нейтральные жиры, простые сахара, NaCl, Na 2 CO 3 , а также соединения, в состав которых входят кальций, магний, железо.

Форменные элементы - это главным образом лимфоциты (98%), а также моноциты.

Различают:

1. Периферическую лимфу - от тканей до лимфатических узлов;

2. Промежуточную - после прохождения лимфатических узлов;

3. Центральную - лимфа грудного и правого лимфатического протоков.

Лимфа образуется в лимфатических капиллярах тканей и органов, куда под влиянием различных факторов, в частности осмотического и гидростатического давления из тканей постоянно поступают различные компоненты лимфоплазмы.

Кровь – важнейшая ткань человеческого организма, выполняющая важные функции: транспортную, метаболическую, защитную. Последняя, защитная функция крови обеспечивается специальными клетками – лейкоцитами. В зависимости от строения и специального предназначения они подразделяются на отдельные типы.

Классификация лейкоцитов:

  1. Гранулоцитарные:
  • нейтрофилы;
  • базофилы;
  • эозинофилы.
  1. Агранулоцитарные:
  • моноциты;
  • лимфоциты.

Белые кровяные клетки принято разделять, прежде всего, по структуре. Одни содержат внутри гранулы, поэтому называются гранулоцитами, в других такие образования отсутствуют – агранулоциты.

В свою очередь, гранулоциты классифицируются по способности воспринимать определенные красители на нейтрофилы, базофилы, эозинофилы. Клетки, не имеющие гранул в своей цитоплазме, – моноциты и лимфоциты.

Виды лейкоцитов

Нейтрофилы

Одни из самых многочисленных популяций лейкоцитов у взрослых. Своё название получили в связи со способностью окрашиваться красителями с нейтральной pH. В результате гранулы внутри цитоплазмы приобретают цвет от фиолетового до коричневого. Что же представляют собой эти гранулы? Это своеобразные резервуары для биологически активных веществ, действие которых направлено на уничтожение генетически чужеродных объектов, поддержание и регуляцию жизнедеятельности самой иммунной клетки.

Дифференцируются нейтрофилы в костном мозге из стволовых клеток. В процессе созревания они претерпевают структурные изменения. В основном это касается изменения размера ядра, оно приобретает характерную сегментацию, соответственно, уменьшаясь в размерах. Этот процесс протекает в шесть стадий – от юных до взрослых форм: миелобласт, промиелоцит, миелоцит, метамиелоцит, палочкоядерный, а затем сегментоядерный нейтрофил.

Наблюдая нейтрофилы различной зрелости в микроскоп, можно увидеть, что ядро у миелоцита круглое, а у метамиелоцита – овальной формы. Палочкоядерный обладает вытянутым ядром, а сегментоядерный – из 3-5 сегментов с перетяжками.


Нейтрофилы

Нейтрофилы живут и зреют в костном мозге порядка 4-5 дней, а затем выходят в сосудистое русло, где находятся около 8 часов. Циркулируя в плазме крови, они сканируют ткани организма и, при обнаружении «проблемных зон», проникают туда и борются с инфекцией. В зависимости от интенсивности воспалительного процесса, продолжительность их жизни в тканях колеблется от нескольких часов до трех дней. После этого нейтрофилы, доблестно выполнив их функции, разрушаются в селезенке и печени. В целом нейтрофилы живут порядка двух недель.

Итак, как же действует нейтрофил, обнаружив болезнетворный агент или клетку с измененным генетическим материалом? Цитоплазма белых клеток крови пластична, способна растягиваться в любом направлении. Приблизившись к вирусу или бактерии, нейтрофил захватывает его и поглощает. Внутри подключаются те самые гранулы, из которых выделяются ферменты, направленные на уничтожение чужеродного объекта. Помимо этого, параллельно нейтрофил способен передавать информацию другим клеткам, запуская процесс иммунного ответа.

Базофилы

По структуре очень напоминают нейтрофилы, но только гранулы этих клеток чувствительны к основным красителям с более щелочной рН. После окрашивания зернистость базофилов приобретает характерный темно-фиолетовый, почти черный цвет.

Созревают базофилы тоже в костном мозге и проходят те же стадии развития от миелобласта до зрелых клеток. Затем они выходят в кровь, циркулируют там порядка двух дней и проникают в ткани.

На эти клетки возложена ответственность за формирование воспалительной реакции, привлечения иммунных клеток в ткани и передачи информации между ними. Интересна роль базофилов и в развитии реакций анафилактического типа. Биологически активные вещества, выделяющиеся из гранул, привлекают эозинофилы, от количества которых зависит интенсивность аллергических проявлений.


Базофилы

Эозинофилы

Чтобы в мазке крови найти эти клетки потребуется краситель с кислой рН. В практике чаще всего используют эозин, собственно, отсюда эти клетки и получили свое название. После окрашивания они становятся ярко-оранжевыми. Характерной отличительной чертой является размер гранул – они гораздо больше по размеру, чем у нейтрофилов или базофилов.

Развитие эозинофилов кардинально не отличается от такового у других гранулоцитов, оно тоже происходит в костном мозге. Однако после выхода в сосудистое русло эозинофилы устремляются основной массой в слизистые оболочки. Они способны поглощать болезнетворные агенты, как и нейтрофилы, только работают в слизистых, к примеру, пищеварительного тракта, трахеи и бронхов.

Вместе с этим эозинофилы выполняют огромную роль в развитии аллергических реакций. Большое количество биологически активных веществ, выделяющихся при разрыве гранул эозинофила, обуславливают симптомы, характерные для людей, страдающих атопическим дерматитом, бронхиальной астмой, крапивницей, аллергическим ринитом.


Эозинофил

Моноциты

Это агранулоцитарные клетки могут быть различной формы: с палочковидным, овальным или сегментированным ядром.

Образуются в костном мозге из монобласта и практически сразу выходят в кровь, где циркулируют 2-4 дня. Главная функция моноцитов – регуляция иммунного ответа посредством выброса из гранул различных регуляторных веществ, которые усиливают или ослабляют воспаление. Кроме того, моноциты способствуют регенерации тканей, заживлению кожи, восстановлению нервных волокон.

Макрофаги

Это все те же моноциты, но перекочевавшие в ткани из сосудистого русла. При окрашивании зрелая клетка приобретает голубоватую окраску. В её цитоплазме находится большое количество вакуолей, поэтому макрофаги по-другому называют «пенистыми клетками». В тканях они живут на протяжении нескольких месяцев. Особенностью является то, что некоторые из них могут быть «блуждающими» и циркулировать по разным тканям, а некоторые «стационарными». Такие клетки в определенных тканях имеют разные названия, к примеру, макрофаги печени – купферовские клетки, мозга – клетки микроглии, а обеспечивающие обновление костей – остеокласты. Обеспечивают фагоцитоз болезнетворных объектов.

Лимфоциты

Клетки округлой формы с относительно большим ядром. Образуются лимфоциты в костном мозге из клетки-предшественницы – лимфобласта, проходят несколько стадий. Причем в костном мозге происходит первичная дифференцировка, а вторичная – в селезенке, лимфатических узлах, Пейеровых бляшках и, главным образом, в тимусе.

Лимфоциты, прошедшие дополнительное дозревание в тимусе, называют Т-лимфоцитами, а в остальных иммунных органах – В-лимфоцитами. Такая двойная подготовка крайне необходима, ведь это самые главные иммунокомпетентные клетки, обеспечивающие защиту организма. Они циркулируют в крови на протяжении трех месяцев и при необходимости проникают в ткани, выполняя свои функции.

Т-лимфоциты обеспечивают неспецифический иммунитет, борясь со всеми объектами, несущими чужеродные гены: бактериями, вирусами, опухолевыми клетками. Кроме того, Т-клетки подразделяются на разновидности, в зависимости от выполняемой функции.

  • Т-киллеры – это клетки первой линии обороны, они обеспечивают сверхбыстрые реакции клеточного иммунитета, уничтожают зараженные вирусом или опухолевоизменные клетки.
  • Т-хелперы – клетки, помогающие передавать информацию о чужеродном материале, кооперирующие работу других иммунных клеток. В результате такого влияния ответ развивается интенсивнее и быстрее.
  • Т-супрессоры – клетки, в обязанности которых входит регуляция работы Т-килеров и Т-хелперов. Они предотвращают чрезмерно активную реакцию иммунитета на различные антигены. Если функция Т-супрессоров нарушена и снижена, то развиваются аутоиммунные заболевания, бесплодие.

В-лимфоциты создают специфический иммунитет, обладая способностью к образованию антител против определенных агентов. Причем Т-лимфоциты активны большей частью против вирусов, а В-лимфоциты – против бактерий.

В-клетки обеспечивают формирование иммунных клеток памяти. Встретившись однажды с чужеродным агентом, организм формирует иммунитет и устойчивость к определенным бактериям и вирусам. По такому же принципу работает и вакцинация. Только в препаратах для прививок бактерии и вирусы находятся в убитом или ослабленном состоянии, в отличие от тех, с которыми можно встретиться в обычной среде обитания. Одни клетки памяти особо устойчивы и обеспечивают пожизненный иммунитет, другие погибают через время, поэтому для профилактики особо опасных инфекций проводят ревакцинацию.


Лимфоциты

Количество лейкоцитов в норме и при патологии

Грамотно расшифровать клинический анализ крови может, конечно же, только врач. Ведь количество лейкоцитов даже у полностью здорового человека непостоянно, на это может повлиять прием пищи, физические нагрузки, беременность. Для углубленного изучения иммунного статуса требуется консультация врача-иммунолога и иммуннограмма, в которой подробно отображается количество основных видов лейкоцитов, популяций и субпопуляций иммунных клеток.

Таблица нормальных показателей лейкоцитов у разных групп людей

Изменения лейкоцитарной формулы носят специфический характер. Разобраться самостоятельно в сложных лабораторных показателях сложно, это под силу только лишь врачам. Ориентируясь на анализы и клиническую картину заболевания, они могут вовремя и правильно поставить диагноз. Поэтому не занимайтесь самодиагностикой и самолечением, обращайтесь за квалифицированной медицинской помощью и будьте здоровы!