Главная · Диагностика · Лечение ивл. Искусственная вентиляция легких. Показания к ИВЛ. Виды ИВЛ. Особенности проведения при инсульте

Лечение ивл. Искусственная вентиляция легких. Показания к ИВЛ. Виды ИВЛ. Особенности проведения при инсульте

Проводящие пути

Нос - первые изменения поступающего воздуха происходят в носу, где он очищается, согревается и увлажняется. Этому способствует волосяной фильтр, преддверие и раковины носа. Интенсивное кровоснабжение слизистой оболочки и пещеристых сплетений раковин обеспечивает быстрое согревание или охлаждение воздуха до температуры тела. Испаряющаяся со слизистой оболочки вода увлажняет воздух на 75-80%. Длительное вдыхание воздуха пониженной влажности приводит к высыханию слизистой оболочки, попаданию сухого воздуха в легкие, развитию ателектазов, пневмонии и повышению сопротивления в воздухоносных путях.


Глотка отделяет пищу от воздуха, регулирует давление в области среднего уха.


Гортань обеспечивает голосовую функцию, с помощью надгортанника предотвращая аспирацию, а смыкание голосовых связок является одним из основных компонентов кашля.

Трахея — основной воздуховод, в ней согревается и увлажняется воздух. Клетки слизистой оболочки захватывают инородные вещества, а реснички продвигают слизь вверх по трахее.

Бронхи (долевые и сегментарные) заканчиваются концевыми бронхиолами.


Гортань, трахея и бронхи также участвуют в очищении, согревании и увлажнении воздуха.


Строение стенки проводящих воздухоносных путей (ВП) отличается от структуры дыхательных путей газообменной зоны. Стенка проводящих воздухоносных путей состоит из слизистой оболочки, слоя гладких мышц, подслизистой соединительной и хрящевой оболочек. Эпителиальные клетки воздухоносных путей снабжены ресничками, которые, ритмично колеблясь, продвигают защитный слой слизи в направлении носоглотки. Слизистая оболочка ВП и легочная ткань содержат макрофаги, фагоцитирующие и переваривающие минеральные и бактериальные частицы. В норме слизь из дыхательных путей и альвеол постоянно удаляется. Слизистая оболочка ВП представлена реснитчатым псевдомногослойным эпителием, а также секреторными клетками, выделяющими слизь, иммуноглобулины, комплемент, лизоцим, ингибиторы, интерферон и другие вещества. В ресничках содержится много митохондрий, обеспечивающих энергией их высокую двигательную активность (около 1000 движений в 1 мин.), что позволяет транспортировать мокроту со скоростью до 1 см/мин в бронхах и до 3 см/мин в трахее. За сутки из трахеи и бронхов в норме эвакуируется около 100 мл мокроты, а при патологических состояниях до 100 мл/час.


Реснички функционируют в двойном слое слизи. В нижнем находятся биологически активные вещества, ферменты, иммуноглобулины, концентрация которых в 10 раз больше, чем в крови. Это обуславливает биологическую защитную функцию слизи. Верхний слой ее механически защищает реснички от повреждений. Утолщение или уменьшение верхнего слоя слизи при воспалении или токсическом воздействии неизбежно нарушает дренажную функцию реснитчатого эпителия, раздражает дыхательные пути и рефлекторно вызывает кашель. Чихание и кашель защищают легкие от проникновения минеральных и бактериальных частиц.


Альвеолы


В альвеолах происходит газообмен между кровью легочных капилляров и воздухом. Общее число альвеол равно примерно 300 млн., а суммарная площадь их поверхности - примерно 80 м 2 . Диаметр альвеол составляет 0,2-0,3 мм. Газообмен между альвеолярным воздухом и кровью осуществляется путем диффузии. Кровь легочных капилляров отделена от альвеолярного пространства лишь тонким слоем ткани - так называемой альвеолярно-капиллярной мембраной, образованной альвеолярным эпителием, узким интерстициальным пространством и эндотелием капилляра. Общая толщина этой мембраны не превышает 1 мкм. Вся альвеолярная поверхность легких покрыта тонкой пленкой, называемой сурфактантом.

Сурфактант уменьшает поверхностное натяжение на границе между жидкостью и воздухом в конце выдоха, когда объем легкого минимален, увеличивает эластичность легких и играет роль противоотечного фактора (не пропускает пары воды из альвеолярного воздуха), в результате чего альвеолы остаются сухими. Он снижает поверхностное натяжение при уменьшении объема альвеолы во время выдоха и предупреждает её спадение; уменьшает шунтирование, что улучшает оксигенацию артериальной крови при более низком давлении и минимальном содержании О 2 во вдыхаемой смеси.


Сурфактантный слой состоит из:

1) собственно сурфактанта (микропленки из фосфолипидных или полипротеидных молекулярных комплексов на границе с воздушной средой);

2) гипофазы (глубжележащего гидрофильного слоя из белков, электролитов, связанной воды, фосфолипидов и полисахаридов);

3) клеточного компонента, представленного альвеолоцитами и альвеолярными макрофагами.


Основными химическими составляющими сурфактанта является липиды, белки и углеводы. Фосфолипиды (лецитин, пальмитиновая кислота, гепарин) составляют 80-90% его массы. Сурфактант покрывает непрерывным слоем и бронхиолы, понижает сопротивление при дыхании, поддерживает наполнение

При низком давлении растяжения, уменьшает действие сил, вызывающих накопление жидкости в тканях. Кроме того, сурфактант очищает вдыхаемые газы, отфильтровывает и улавливает вдыхаемые частицы, регулирует обмен воды между кровью и воздушной средой альвеолы, ускоряет диффузию СО 2 , обладает выраженным антиокислительным действием. Сурфактант очень чувствителен к различным эндо- и экзогенным факторам: нарушениям кровообращения, вентиляции и метаболизма, изменению РО 2 во вдыхаемом воздухе, загрязнению его. При дефиците сурфактанта возникают ателектазы и РДС новорожденных. Примерно 90-95% альвеолярного сурфактанта повторно перерабатывается, очищается, накапливается и ресекретируется. Период полувыведения компонентов сурфактанта из просвета альвеол здоровых легких составляет около 20 ч.

Легочные объёмы

Вентиляция легких зависит от глубины дыхания и частоты дыхательных движений. Оба этих параметра могут варьировать в зависимости от потребностей организма. Есть ряд объемных показателей, характеризующих состояние легких. Нормальные средние значения для взрослого человека следующие:


1. Дыхательный объем (ДО- VT - Tidal Volume) - объем вдыхаемого и выдыхаемого воздуха при спокойном дыхании. Нормальные значения - 7-9мл/кг.


2. Резервный объем вдоха (РОвд - IRV - Inspiratory Reserve Volume) - объем, который может дополнительно поступить после спокойного вдоха, т.е. разница между нормальной и максимальной вентиляцией. Нормальное значение: 2-2,5 л (около 2/3 ЖЕЛ).

3. Резервный объем выдоха (РОвыд - ERV - Expiratory Reserve Volume) - объем, который можно дополнительно выдохнуть после спокойного выдоха, т.е. разница между нормальным и максимальным выдохом. Нормальное значение: 1,0-1,5 л (около 1/3 ЖЕЛ).


4.Остаточный объем (ОО - RV - Residal Volume) - объем, остающийся в легких после максимального выдоха. Около 1,5-2,0 л.


5. Жизненная емкость легких (ЖЕЛ - VT - Vital Capacity) — количество воздуха, которое может быть максимально выдохнуто после максимального вдоха. ЖЕЛ является показателем подвижности легких и грудной клетки. ЖЕЛ зависит от возраста, пола, размеров и положения тела, степени тренированности. Нормальные значения ЖЕЛ - 60-70 мл/кг - 3,5-5,5 л.


6. Резерв вдоха (РВ) -Ёмкость вдоха (Евд - IC - Inspiritory Capacity) - максимальное количество воздуха, которое может поступить в легкие после спокойного выдоха. Равен сумме ДО и РОвд.

7. Общая емкость легких (ОЕЛ - TLC - Total lung capacity) или максимальная емкость легких - количество воздуха, содержащееся в легких на высоте максимального вдоха. Состоит из ЖЕЛ и ОО и рассчитывается как сумма ЖЕЛ и ОО. Нормальное значение около 6,0 л.
Исследование структуры ОЕЛ является решающим в выяснении путей увеличения или снижения ЖЕЛ, что может иметь существенное практическое значение. Увеличение ЖЕЛ может быть расценено положительно только в том случаи, если ОЕЛ не меняется или увеличивается, но меньше, чем ЖЕЛ, что происходит при увеличении ЖЕЛ за счет уменьшения ОО. Если одновременно с увеличением ЖЕЛ происходит еще большее увеличение ОЕЛ, то это нельзя считать положительным фактором. При ЖЕЛ ниже 70% ОЕЛ функция внешнего дыхания глубоко нарушена. Обычно при патологических состояниях ОЕЛ и ЖЕЛ изменяются одинаково, за исключением обструктивной эмфиземы легких, когда ЖЕЛ, как правило, уменьшается, ОО увеличивается, а ОЕЛ может оставаться нормальной или быть выше нормы.


8. Функциональная остаточная емкость (ФОЕ - FRC - Functional residual volume) - количество воздуха, которое остается в легких после спокойного выдоха. Нормальные значения у взрослых - от 3 до 3,5 л. ФОЕ = ОО + РОвыд. По определению ФОЕ - объем газа, который остается в легких при спокойном выдохе и может быть мерой области газообмена. Она образуется в результате баланса между противоположно направленными эластическими силами легких и грудной клетки. Физиологическое значение ФОЕ состоит в частичном обновлении альвеолярного объема воздуха во время вдоха (вентилируемый объем) и указывает на объем альвеолярного воздуха, постоянно находящегося в легких. Со снижением ФОЕ связаны развитие ателектазов, закрытие мелких дыхательных путей, уменьшение податливости легких, увеличение альвеолярно-артериального различия по О 2 в результате перфузии в ателектазированных участках легких, снижение вентиляционно-перфузионного соотношения. Обструктивные вентиляционные нарушения ведут к повышению ФОЕ, рестриктивные нарушения - к снижению ФОЕ.


Анатомическое и функциональное мертвое пространство


Анатомическим мертвым пространством называют объем воздухоносных путей, в котором не происходит газообмен. Это пространство включает носовую и ротовую полости, глотку, гортань, трахею, бронхи и бронхиолы. Объем мертвого пространства зависит от роста и положения тела. Приближенно можно считать, что у сидящего человека объем мертвого пространства (в миллилитрах) равен удвоенной массе тела (в килограммах). Таким образом, у взрослых он равен около 150-200 мл (2 мл/кг массы тела).


Под функциональным (физиологическим) мертвым пространством понимают все те участки дыхательной системы, в которых не происходит газообмена по причине сниженного или отсутствующего кровотока. К функциональному мертвому пространству в отличие от анатомического относятся не только воздухоносные пути, но также и те альвеолы, которые вентилируются, но не перфузируются кровью.


Альвеолярная вентиляция и вентиляция мертвого пространства

Часть минутного объема дыхания, достигающая альвеол, называется альвеолярной вентиляцией, остальная его часть составляет вентиляцию мертвого пространства. Альвеолярная вентиляция служит показателем эффективности дыхания в целом. Именно от этой величины зависит газовый состав, поддерживаемый в альвеолярном пространстве. Что касается минутного объема, то он лишь в незначительной степени отражает эффективность вентиляции легких. Так, если минутный объем дыхания нормальный (7л/мин), но дыхание частое и поверхностное (ДО-0,2 л, ЧД-35/мин), то вентилироваться

Будет главным образом мертвое пространство, в которое воздух поступает раньше, чем в альвеолярное; в этом случае вдыхаемый воздух почти не будет достигать альвеол. Поскольку объем мертвого пространства постоянен, альвеолярная вентиляция тем больше, чем глубже дыхание и меньше частота.


Растяжимость (податливость) легочной ткани
Растяжимость легких является мерой эластической тяги, а также эластического сопротивления легочной ткани, которое преодолевается в процессе вдоха. Иначе говоря, растяжимость — это мера упругости легочной ткани, т. е. её податливость. Математически растяжимость выражается в виде частного от изменения объема легких и соответствующего изменения внутрилегочного давления.

Растяжимость может быть измерена отдельно для легких и для грудной клетки. С клинической точки зрения (особенно во время ИВЛ) наибольший интерес представляет именно податливость самой легочной ткани, отражающая степень рестриктивной легочной патологии. В современной литературе растяжимость легких принято обозначать термином «комплайнс» (от английского слова «compliance», сокращенно — С).


Податливость легких снижается:

С возрастом (у пациентов старше 50 лет);

В положении лежа (из-за давления органов брюшной полости на диафрагму);

Во время лапароскопических хирургических вмешательств в связи с карбоксиперитонеумом;

При острой рестриктивной патологии (острые полисегментарные пневмонии, РДС, отёк легких, ателектазирование, аспирация и т. д.);

При хронической рестриктивной патологии (хроническая пневмония, фиброз легких, коллагенозы, силикозы и т. д.);

При патологии органов, которые окружают легкие (пневмо- или гидроторакс, высокое стояние купола диафрагмы при парезе кишечника и т.д.).


Чем хуже податливость лёгких, тем большее эластическое сопротивление легочной ткани надо преодолеть, чтобы достигнуть того дыхательного объема, что и при нормальной податливости. Следовательно, в случае ухудшающейся растяжимости лёгких при достижении того же дыхательного объема давление в дыхательных путях существенно возрастает.

Данное положение очень важно для понимания: при объемной ИВЛ, когда принудительный дыхательный объём подается больному с плохой податливостью легких (без высокого сопротивления дыхательных путей), существенный рост пикового давления в дыхательных путях и внутрилегочного давления значительно увеличивает риск баротравмы.


Сопротивление дыхательных путей


Поток дыхательной смеси в легких должен преодолеть не только эластическое сопротивление самой ткани, но и резистивное сопротивление дыхательных путей Raw (аббревиатура от английского слова «resistance»). Поскольку трахеобронхиальное дерево представляет собой систему трубок различной длины и ширины, то сопротивление газотоку в легких можно определить по известным физическим законам. В целом, сопротивление потоку зависит от градиента давлений в начале и в конце трубки, а также от величины самого потока.


Поток газа в легких может быть ламинарным, турбулентным и переходным. Для ламинарного потока характерно послойное поступательное движение газа с

Различной скоростью: скорость потока наиболее высока в центре и постепенно снижается к стенкам. Ламинарный поток газа преобладает при относительно низких скоростях и описывается законом Пуазейля, в соответствии с которым сопротивление газотоку в наибольшей степени зависит от радиуса трубки (бронхов). Уменьшение радиуса в 2 раза приводит к возрастанию сопротивления в 16 раз. В связи с этим понятна важность выбора по возможности наиболее широкой эндотрахеальной (трахеостомической) трубки и поддержания проходимости трахеобронхиального дерева во время ИВЛ.
Сопротивление дыхательных путей газотоку значительно увеличивается при бронхиолоспазме, отеке слизистой оболочки бронхов, скоплении слизи и воспалительного секрета по причине сужения просвета бронхиального дерева. На сопротивление влияют также скорость потока и длина трубки (бронхов). С

Увеличением скорости потока (форсирование вдоха или выдоха) сопротивление дыхательных путей увеличивается.

Основные причины увеличения сопротивления дыхательных путей:

Бронхиолоспазм;

Отек слизистой оболочки бронхов, (обострение бронхиальной астмы, бронхит, подсвязочный ларингит);

Инородное тело, аспирация, новообразования;

Скопление мокроты и воспалительного секрета;

Эмфизема (динамическая компрессия воздухоносных путей).


Турбулентный поток характеризуется хаотичным движением молекул газа вдоль трубки (бронхов). Он преобладает при высоких объемных скоростях потока. В случае турбулентного потока сопротивление дыхательных путей возрастает, так как при этом оно в еще большей степени зависит от скорости потока и радиуса бронхов. Турбулентное движение возникает при высоких потоках, резких изменениях скорости потока, в местах изгибов и разветвлений бронхов, при резком изменении диаметра бронхов. Вот почему турбулентный поток характерен для больных ХОЗЛ, когда даже в стадии ремиссии имеет место повышенное сопротивление дыхательных путей. Это же касается больных бронхиальной астмой.


Сопротивление воздухоносных путей распределено в легких неравномерно. Наибольшее сопротивление создают бронхи среднего калибра (до 5-7-й генерации), так как сопротивление крупных бронхов невелико из-за их большого диаметра, а мелких бронхов — вследствие значительной суммарной площади поперечного сечения.


Сопротивление дыхательных путей зависит также от объема легких. При большом объёме паренхима оказывает большее «растягивающее» действие на дыхательные пути, и их сопротивление уменьшается. Применение ПДКВ (PEEP) способствует увеличению объема легких и, следовательно, снижению сопротивления дыхательных путей.

Сопротивление дыхательных путей в норме составляет:

У взрослых — 3-10 мм вод.ст./л/с;

У детей — 15-20 мм вод.ст./л/с;

У младенцев до 1 года — 20-30 мм вод.ст./л/с;

У новорожденных — 30-50 мм вод.ст./л/с.


На выдохе сопротивление дыхательных путей на 2-4 мм вод.ст./л/с больше, чем на вдохе. Это связано с пассивным характером выдоха, когда состояние стенки воздухоносных путей в большей мере влияет на газоток, чем при активном вдохе. Поэтому для полноценного выдоха требуется в 2-3 раза больше времени, чем для вдоха. В норме соотношение времени вдох/выдох (I:E) составляет для взрослых около 1: 1,5-2. Полноценность выдоха у больного во время ИВЛ можно оценить при помощи мониторинга экспираторной временной константы.


Работа дыхания


Работа дыхания совершается преимущественно инспираторными мышцами во время вдоха; выдох почти всегда пассивен. В то же время в случае, например, острого бронхоспазма или отека слизистой оболочки дыхательных путей выдох также становится активным, что значительно увеличивает общую работу внешней вентиляции.


Во время вдоха работа дыхания, в основном, тратится на преодоление эластического сопротивления легочной ткани и резистивного сопротивления дыхательных путей, при этом около 50 % затраченной энергии накапливается в упругих структурах легких. Во время выдоха эта накопленная потенциальная энергия высвобождается, что позволяет преодолевать экспираторное сопротивление дыхательных путей.

Увеличение сопротивления вдоху или выдоху компенсируется дополнительной работой дыхательных мышц. Работа дыхания возрастает при снижении растяжимости легких (рестриктивная патология), росте сопротивления дыхательных путей (обструктивная патология), тахипноэ (за счет вентиляции мертвого пространства).


На работу дыхательной мускулатуры в норме тратится только 2-3% от всего потребляемого организмом кислорода. Это, так называемая, «стоимость дыхания». При физической работе стоимость дыхания может достигать 10-15%. А при патологии (особенно рестриктивной) на работу дыхательных мышц может расходоваться более 30-40% от всего поглощаемого организмом кислорода. При тяжёлой диффузионной дыхательной недостаточности стоимость дыхания возрастает до 90%. С какого-то момента весь дополнительный кислород, получаемый за счет увеличения вентиляции, идет на покрытие соответствующего прироста работы дыхательных мышц. Вот почему на определенном этапе существенное увеличение работы дыхания является прямым показанием к началу ИВЛ, при которой стоимость дыхания уменьшается практически до 0.


Работа дыхания, которая требуется для преодоления эластического сопротивления (податливости легких), возрастает по мере увеличения дыхательного объема. Работа, необходимая для преодоления резистивного сопротивления дыхательных путей, возрастает при увеличении частоты дыхания. Пациент стремится уменьшить работу дыхания, меняя частоту дыхания и дыхательный объем в зависимости от преобладающей патологии. Для каждой ситуации существуют оптимальные частота дыхания и дыхательный объем, при которых работа дыхания минимальна. Так, для больных со сниженной растяжимостью, с точки зрения минимизации работы дыхания, подходит более частое и поверхностное дыхание (малоподатливые легкие трудно поддаются расправлению). С другой стороны, при увеличенном сопротивлении дыхательных путей оптимально глубокое и медленное дыхание. Это понятно: увеличение дыхательного объема позволяет «растянуть», расширить бронхи, уменьшить их сопротивление газотоку; с этой же целью больные с обструктивной патологией во время выдоха сжимают губы, создавая собственное «ПДКВ» (PEEP). Медленное и редкое дыхание способствует удлинению выдоха, что важно для более полного удаления выдыхаемой газовой смеси в условиях повышенного экспираторного сопротивления дыхательных путей.


Регуляция дыхания

Процесс дыхания регулируется центральной и периферической нервной системой. В ретикулярной формации головного мозга находится дыхательный центр, состоящий из центров вдоха, выдоха и пневмотаксиса.


Центральные хеморецепторы расположены в продолговатом мозге и возбуждаются при повышении концентрации Н+ и РСО 2 в спинномозговой жидкости. В норме рН последней составляет 7,32, РСО 2 - 50 мм.рт.ст., а содержание НСО 3 - 24,5 ммоль/л. Даже небольшое снижение рН и рост РСО 2 увеличивают вентиляцию легких. Эти рецепторы реагируют на гиперкапнию и ацидоз медленнее, чем периферические, так как требуется дополнительное время на измерение величины СО 2 , Н + и НСО 3 из-за преодоления гематоэнцефалического барьера. Сокращения дыхательных мышц контролирует центральный дыхательный механизм, состоящий из группы клеток продолговатого мозга, моста, а также пневмотаксических центров. Они тонизируют дыхательный центр и по импульсации из механорецепторов определяют порог возбуждения, при котором прекращается вдох. Пневмотаксические клетки также переключают вдох на выдох.


Периферические хеморецепторы, расположенные на внутренних оболочках сонного синуса, дуги аорты, левого предсердия, контролируют гуморальные параметры (РО 2 , РСО 2 в артериальной крови и спинномозговой жидкости) и немедленно реагируют на изменения внутренней среды организма, меняя режим самостоятельного дыхания и, таким образом, корригируя рН, РО 2 и РСО 2 в артериальной крови и спинномозговой жидкости. Импульсы из хеморецепторов регулируют объем вентиляции, необходимый для поддержания определенного уровня метаболизма. В оптимизации режима вентиляции, т.е. установлении частоты и глубины дыхания, длительности вдоха и выдоха, силы сокращения дыхательных мышц при данном уровне вентиляции, участвуют и механорецепторы. Вентиляция легких определяется уровнем метаболизма, воздействием продуктов обмена веществ и О2 на хеморецепторы, которые трансформируют их в афферентную импульсацию нервных структур центрального дыхательного механизма. Основная функция артериальных хеморецепторов - немедленная коррекция дыхания в ответ на изменения газового состава крови.


Периферические механорецепторы, локализующиеся в стенках альвеол, межреберных мышцах и диафрагме, реагируют на растяжение структур, в которых они находятся, на информацию о механических явлениях. Главную роль играют механорецепторы легких. Вдыхаемый воздух поступает по ВП к альвеолам и участвует в газообмене на уровне альвеолярно-капиллярной мембраны. По мере растяжения стенок альвеол во время вдоха механорецепторы возбуждаются и посылают афферентный сигнал в дыхательный центр, который тормозит вдох (рефлекс Геринга-Брейера).


При обычном дыхании межреберно-диафрагмальные механорецепторы не возбуждаются и имеют вспомогательное значение.

Система регуляции завершается нейронами, интегрирующими импульсы, которые поступают к ним от хеморецепторов, и посылающими импульсы возбуждения к дыхательным мотонейронам. Клетки бульбарного дыхательного центра посылают как возбуждающие, так и тормозящие импульсы к дыхательным мышцам. Координированное возбуждение респираторных мотонейронов приводит к синхронному сокращению дыхательных мышц.

Дыхательные движения, создающие воздушный поток, происходят благодаря согласованной работе всех дыхательных мышц. Нервные клетки двигательных

Нейронов дыхательных мышц расположены в передних рогах серого вещества спинного мозга (шейные и грудные сегменты).


У человека в регуляции дыхания принимает участие и кора большого мозга в пределах, допускаемых хеморецепторной регуляцией дыхания. Так, например, волевая задержка дыхания ограничена временем, в течение которого РаО 2 в спинномозговой жидкости повышается до уровней, возбуждающих артериальные и медуллярные рецепторы.


Биомеханика дыхания


Вентиляция легких происходит за счет периодических изменений работыдыхательных мышц, объема грудной полости и легких. Основными мышцами вдоха являются диафрагма и наружные межреберные мышцы. Во время их сокращения происходят уплощение купола диафрагмы и приподнятие ребер кверху, в результате объем грудной клетки увеличивается, растет отрицательное внутриплевральное давление (Ppl). Перед началом вдоха (в конце выдоха) Ppl приблизительно составляет минус 3-5 см вод.ст. Альвеолярное давление (Palv) принимается за 0 (т. е. равно атмосферному), оно же отражает давление в дыхательных путях и коррелирует с внутригрудным давлением.


Градиент между альвеолярным и внутриплевральным давлением называется транспульмонарным давлением (Ptp). В конце выдоха оно составляет 3-5 см вод.ст. Во время спонтанного вдоха рост отрицательного Ppl (до минус 6-10 см вод.ст.) вызывает снижение давления в альвеолах и дыхательных путях ниже атмосферного. В альвеолах давление снижается до минус 3-5 см вод.ст. За счёт разницы давлений воздух поступает (засасывается) из внешней среды в легкие. Грудная клетка и диафрагма действуют как поршневой насос, втягивающий воздух в легкие. Такое «присасывающее» действие грудной клетки важно не только для вентиляции, но и для кровообращения. Во время спонтанного вдоха происходят дополнительное «присасывание» крови к сердцу (поддержание преднагрузки) и активизация легочного кровотока из правого желудочка по системе легочной артерии. В конце вдоха, когда движение газа прекращается, альвеолярное давление возвращается к нулю, но внутриплевральное давление остается сниженным до минус 6-10 см вод.ст.

Выдох в норме является процессом пассивным. После расслабления дыхательных мышц силы эластической тяги грудной клетки и легких вызывают удаление (выдавливание) газа из легких и восстановление первоначального объема легких. В случае нарушения проходимости трахеобронхиального дерева (воспалительный секрет, отек слизистой оболочки, бронхоспазм) процесс выдоха затруднен, и в акте дыхания начинают принимать участие также мышцы выдоха (внутренние межреберные мышцы, грудные мышцы, мышцы брюшного пресса и т. д.). При истощении экспираторных мышц процесс выдоха еще более затрудняется, происходит задержка выдыхаемой смеси и динамическое перераздувание легких.


Недыхательные функции легких

Функции легких не ограничиваются диффузией газов. В них содержится 50% всех эндотелиальных клеток организма, которые выстилают капиллярную поверхность мембраны и участвуют в метаболизме и инактивации биологически активных веществ, проходящих через легкие.


1. Легкие контролируют общую гемодинамику путем различного заполнения собственного сосудистого русла и влияния на биологически активные вещества, регулирующие сосудистый тонус (серотонин, гистамин, брадикинин, катехоламины), превращением ангиотензина I в ангиотензин II, участием в метаболизме простагландинов.


2. Легкие регулируют свертывание крови, секретируя простациклин - ингибитор агрегации тромбоцитов, и удаляя из кровотока тромбопластин, фибрин и продукты его деградации. В результате этого оттекающая от легких кровь имеет более высокую фибринолитическую активность.


3. Легкие участвуют в белковом, углеводном и жировом обмене, синтезируя фосфолипиды (фосфатидилхолин и фосфатидилглицерол - основные компоненты сурфактанта).

4. Легкие продуцируют и элиминируют тепло, поддерживая энергетический баланс организма.


5. Легкие очищают кровь от механических примесей. Агрегаты клеток, микротромбы, бактерии, пузырьки воздуха, капли жира задерживаются легкими и подвергаются деструкции и метаболизму.


Типы вентиляции и виды нарушений вентиляции


Разработана физиологически четкая классификация типов вентиляции, в основу которой положены парциальные давления газов в альвеолах. В соответствии с этой классификацией выделяются следующие типы вентиляции:


1.Нормовентиляция - нормальная вентиляция, при которой парциальное давление СО2 в альвеолах поддерживается на уровне около 40 мм.рт.ст.


2.Гипервентиляция - усиленная вентиляция, превышающаяметаболические потребности организма (РаСО2<40 мм.рт.ст.).


3.Гиповентиляция - сниженная вентиляция по сравнению с метаболическими потребностями организма (РаСО2>40 мм.рт.ст.).


4. Повышенная вентиляция - любое увеличение альвеолярной вентиляции по сравнению с уровнем покоя, независимо от парциального давления газов в альвеолах (например, при мышечной работе).

5.Эупноэ - нормальная вентиляция в покое, сопровождающаяся субъективным чувством комфорта.


6.Гиперпноэ - увеличение глубины дыхания независимо от того, повышена ли при этом частота дыхательных движений или нет.


7.Тахипноэ - увеличение частоты дыхания.


8.Брадипноэ - снижение частоты дыхания.


9.Апноэ - остановка дыхания, обусловленная, главным образом, отсутствием физиологической стимуляции дыхательного центра (уменьшение напряжения СО2, в артериальной крови).


10.Диспноэ (одышка) - неприятное субъективное ощущение недостаточности дыхания или затрудненного дыхания.


11.Ортопноэ - выраженная одышка, связанная с застоем крови в легочных капиллярах в результате недостаточности левого сердца. В горизонтальном положении это состояние усугубляется, и поэтому лежать таким больным тяжело.


12.Асфиксия - остановка или угнетение дыхания, связанные, главным образом, с параличом дыхательных центров или закрытием дыхательных путей. Газообмен при этом резко нарушен (наблюдается гипоксия и гиперкапния).

В целях диагностики целесообразно различать два типа нарушений вентиляции - рестриктивный и обструктивный.


К рестриктивному типу нарушений вентиляции относятся все патологические состояния, при которых снижаются дыхательная экскурсия и способность легких расправляться, т.е. уменьшается их растяжимость. Такие нарушения наблюдаются, например, при поражениях легочной паренхимы (пневмонии, отёк лёгких, фиброз лёгких) или при плевральных спайках.


Обструктивный тип нарушений вентиляции обусловлен сужением воздухоносных путей, т.е. повышением их аэродинамического сопротивления. Подобные состояния встречаются, например, при накоплении в дыхательных путях слизи, набухании их слизистой оболочки или спазме бронхиальных мышц (аллергический бронхиолоспазм, бронхиальная астма, астмоидный бронхит и т.д.). У таких больных сопротивление вдоху и выдоху повышено, и поэтому со временем воздушность легких и ФОЕ у них увеличиваются. Патологическое состояние, характеризующееся чрезмерным уменьшением числа эластических волокон(исчезновением альвеолярных перегородок, объединением капиллярной сети), называется эмфиземой легких.

При нарушении дыхания у больного проводится искусственная вентиляция легких или ИВЛ. Ее применяют для жизнеобеспечения, когда пациент не может самостоятельно дышать или когда лежит на операционном столе под анестезией, которая вызывает нехватку кислорода. Выделяют несколько видов ИВЛ – от простой ручной до аппаратной. С первой может справиться практически любой человек, вторая – требует понимания устройства и правил применения медицинского оборудования­

Что такое искусственная вентиляция легких

В медицине под ИВЛ понимают искусственное вдувание воздуха в легкие с целью обеспечения газообмена между окружающей средой и альвеолами. Применяться искусственная вентиляция может в качестве меры реанимации, когда у человека серьезные нарушения самостоятельного дыхания, или в качестве средства для защиты от нехватки кислорода. Последнее состояние возникает при анестезии или заболеваниях спонтанного характера.

Формами искусственной вентиляции являются аппаратная и прямая. Первая использует газовую смесь для дыхания, которая закачивается в легкие аппаратом через интубационную трубку. Прямая подразумевает ритмичные сжимания и разжимания легких для обеспечения пассивного вдоха-выдоха без использования аппарата. Если применяется «электрическое легкое», мышцы стимулируются импульсом.

Показания для ИВЛ

Для проведения искусственной вентиляции и поддержания нормального функционирования легких существуют показания:

  • внезапное прекращение кровообращения;
  • механическая асфиксия дыхания;
  • травмы грудной клетки, мозга;
  • острое отравление;
  • резкое снижение артериального давления;
  • кардиогенный шок;
  • астматический приступ.

После операции

Интубационную трубку аппарата искусственной вентиляции вставляют в легкие пациента в операционной или после доставки из нее в отделение интенсивной терапии или палату наблюдения за состоянием больного после наркоза. Целями и задачами необходимости ИВЛ после операции считаются:

  • исключение откашливания мокроты и секрета из легких, что снижает частоту инфекционных осложнений;
  • уменьшение потребности в поддержке сердечно-сосудистой системы, снижение риска нижнего глубокого венозного тромбоза;
  • создание условий для питания через трубку для снижения частоты расстройства ЖКТ и возвращения нормальной перистальтики;
  • снижение отрицательного влияния на скелетную мускулатуру после длительного действия анестетиков;
  • быстрая нормализация психических функций, нормализация состояния сна и бодрствований.

При пневмонии

Если у больного возникает тяжелая пневмония, это быстро приводит к развитию острой дыхательной недостаточности. Показаниями применения искусственной вентиляции при этой болезни считаются:

  • нарушения сознания и психики;
  • снижение артериального давления до критического уровня;
  • прерывистое дыхание более 40 раз в минуту.

Проводится искусственная вентиляция на ранних стадиях развития заболевания, чтобы увеличить эффективность работы и снизить риск летального исхода. ИВЛ длится 10-14 суток, через 3-4 часа после ввода трубки делают трахеостомию. Если пневмония носит массивный характер, ее проводят с положительным давлением к концу выдоха (ПДКВ) для лучшего распределения легких и уменьшения венозного шунтирования. Вместе с вмешательством ИВЛ проводится интенсивная терапия антибиотиками.

При инсульте

Подключение ИВЛ при лечении инсульта считается реабилитационной мерой для больного и назначается при показаниях:

  • внутреннее кровотечение;
  • поражение легких;
  • патология в области дыхательной функции;
  • кома.

При ишемическом или геморрагическом приступе наблюдается затрудненное дыхание, которое восстанавливается аппаратом ИВЛ с целью нормализации утраченных функций мозга и обеспечения клеток достаточным количеством кислорода. Ставят искусственные легкие при инсульте на срок до двух недель. За это время проходит изменение острого периода заболевания, снижается отечность мозга. Избавиться от ИВЛ нужно по возможности, как можно раньше.

Виды ИВЛ

Современные методы искусственной вентиляции разделяют на две условные группы. Простые применяются в экстренных случаях, а аппаратные – в условиях стационара. Первые допустимо использовать при отсутствии у человека самостоятельного дыхания, у него острое развитие нарушения ритма дыхания или патологический режим. К простым методикам относят:

  1. Изо рта в рот или изо рта в нос – голову пострадавшего запрокидывают назад до максимального уровня, открывают вход в гортань, смещают корень языка. Проводящий процедуру становится сбоку, рукой сжимает крылья носа больного, отклоняя голову назад, другой рукой держит рот. Глубоко вдохнув, спасатель плотно прижимает губы ко рту или носу больного и резко энергично выдыхает. Больной должен выдохнуть за счет эластичности легких и грудины. Одновременно проводят массаж сердца.
  2. Использование S-образного воздуховода или мешка Рубена . До применения у больного нужно очистить дыхательные пути, после чего плотным образом прижать маску.

Режимы ИВЛ в реанимации

Аппарат искусственного дыхания применяется в реанимации и относится к механическому методу ИВЛ. Он состоит из респиратора и интубационной трубки или трахеостомической канюли. Для взрослого и ребенка применяют разные аппараты, отличающиеся размером вводимого устройства и настраиваемой частотой дыхания. Аппаратная ИВЛ проводится в высокочастотном режиме (более 60 циклов в минуту) с целью уменьшения дыхательного объема, снижения давления в легких, адаптации больного к респиратору и облегчения притока крови к сердцу.

Методы

Высокочастотная искусственная вентиляция делится на три способа, применяемые современными врачами:

  • объемная – характеризуется частотой дыхания 80-100 в минуту;
  • осцилляционная – 600-3600 в минуту с вибрацией непрерывного или прерывистого потока;
  • струйная – 100-300 в минуту, является самой популярной, при ней в дыхательные пути с помощью иглы или тонкого катетера вдувается кислород или смесь газов под давлением, другие варианты проведения – интубационная трубка, трахеостома, катетер через нос или кожу.

Помимо рассмотренных способов, отличающихся по частоте дыхания, выделяют режимы ИВЛ по типу используемого аппарата:

  1. Автоматический – дыхание пациента полностью подавлено фармакологическими препаратами. Больной полностью дышит при помощи компрессии.
  2. Вспомогательный – дыхание человека сохраняется, а подачу газа осуществляют при попытке сделать вдох.
  3. Периодический принудительный – используется при переводе от ИВЛ к самостоятельному дыханию. Постепенное уменьшение частоты искусственных вдохов заставляет пациента дышать самому.
  4. С ПДКВ – при нем внутрилегочное давление остается положительным по отношению к атмосферному. Это позволяет лучше распределять воздух в легких, устранять отеки.
  5. Электростимуляция диафрагмы – проводится через наружные игольчатые электроды, которые раздражают нервы на диафрагме и заставляют ее ритмично сокращаться.

Аппарат ИВЛ

В режиме реанимации или постоперационной палате используется аппарат искусственной вентиляции легких. Это медицинское оборудование нужно для подачи газовой смеси из кислорода и сухого воздуха в легкие. Используется принудительный режим с целью насыщения клеток и крови кислородом и удаления из организма углекислого газа. Сколько разновидностей аппаратов ИВЛ:

  • по виду применяемого оборудования – интубационная трубка, маска;
  • по применяемому алгоритму работы – ручной, механический, с нейроконтролируемой вентиляцией легких;
  • по возрасту – для детей, взрослых, новорожденных;
  • по приводу – пневмомеханический, электронный, ручной;
  • по назначению – общего, специального;
  • по применяемой сфере – отделение интенсивной терапии, реанимации, послеоперационное отделение, анестезиологии, новорожденных.

Техника проведения искусственной вентиляции легких

Для выполнения искусственной вентиляции врачи используют аппараты ИВЛ. После осмотра больного доктор устанавливает частоту и глубину вдохов, подбирает газовую смесь. Газы для постоянного дыхания подаются через шланг, связанный с интубационной трубкой, аппарат регулирует и держит под контролем состав смеси. Если используется маска, закрывающая нос и рот, аппарат снабжается сигнализационной системой, оповещающей о нарушении процесса дыхания. При длительной вентиляции интубационная трубка вставляется в отверстие через переднюю стенку трахеи.

Проблемы в ходе искусственной вентиляции легких

После установки аппарата искусственной вентиляции и в ходе его функционирования могут возникнуть проблемы:

  1. Наличие борьбы пациента с аппаратом ИВЛ . Для исправления устраняют гипоксию, проверяют положение вставленной эндотрахеальной трубки и саму аппаратуру.
  2. Десинхронизация с респиратором . Приводит к падению дыхательного объема, неадекватной вентиляции. Причинами считаются кашель, задержка дыхания, патологии легких, спазмы в бронхах, неправильно установленный аппарат.
  3. Высокое давление в дыхательных путях . Причинами становятся: нарушение целостности трубки, бронхоспазмы, отек легких, гипоксия.

Отлучение от искусственной вентиляции легких

Применение ИВЛ может сопровождаться травмами из-за повышенного давления, пневмонии, снижения работы сердца и прочих осложнений. Поэтому важно прекратить искусственную вентиляцию как можно быстрее с учетом клинической ситуации. Показанием для отлучения является положительная динамика выздоровления с показателями:

  • восстановление дыхания с частотой менее 35 в минуту;
  • минутная вентиляция сократилась до 10 мл/кг или меньше;
  • у пациента нет повышенной температуры или инфекции, апноэ;
  • показатели крови стабильны.

Перед отлучением от респиратора проверяют остатки мышечной блокады, сокращают до минимума дозу успокаивающих препаратов. Выделяют следующие режимы отлучения от искусственной вентиляции:

  • тест на спонтанное дыхание – временное отключение аппарата;
  • синхронизация с собственной попыткой вдоха;
  • поддержка давления – аппарат подхватывает все попытки вдоха.

Если у больного наблюдаются следующие признаки, его невозможно отключить от искусственной вентиляции:

  • беспокойство;
  • хронические боли;
  • судороги;
  • одышка;
  • снижение дыхательного объема;
  • тахикардия;
  • повышенное давление.

Последствия

После использования аппарата ИВЛ или другого метода искусственной вентиляции не исключены побочные эффекты:

  • бронхиты, пролежни слизистой бронхов, ;
  • пневмония, кровотечения;
  • снижение давления;
  • внезапная остановка сердца;
  • мочекаменная болезнь (на фото);
  • психические нарушения;
  • отек легких.

Осложнения

Не исключены и опасные осложнения ИВЛ во время применения специального аппарата или длительной терапии при помощи него:

  • ухудшение состояния больного;
  • потеря самостоятельного дыхания;
  • пневмоторакс – скопление жидкости и воздуха в плевральной полости;
  • сдавливание легких;
  • соскальзывание трубки в бронхи с образованием раны.

Видео

Внимание! Иформация представленная в статье носит ознакомительный характер. Материалы статьи не призывают к самостоятельному лечению. Только квалифицированный врач может поставить диагноз и дать рекомендации по лечению исходя из индивидуальных особенностей конкретного пациента.

Нашли в тексте ошибку? Выделите её, нажмите Ctrl + Enter и мы всё исправим!

Искусственная вентиляция легких (Controlled mechanical ventilation - CMV ) - метод, с помощью которого восстанавливаются и поддерживаются нарушен­ные функции легких - вентиляция и газообмен.

Известно много способов ИВЛ - от самых простых («изо рта в рот», «изо рта в нос», с помощью дыхательного мешка, ручные) до сложных - механической вентиляции с точной регулировкой всех параметров дыха­ния. Наибольшее распространение получили методы ИВЛ, при которых с помощью респиратора в дыхательные пути пациента вводят газовую смесь с заданным объемом или с заданным давлением. При этом в дыхательных путях и легких создается положительное давление. После окончания искусственного вдоха подача газовой смеси в легкие прекращается и происходит выдох, во время которого давление снижается. Эти методы получили название ИВЛ с перемежающимся положительным давлением (Intermittent positive pressure ventilation - IPPV). Во время спонтанного вдоха сокраще­ние дыхательных мышц уменьшает внутригрудное давление и делает его ниже атмосферного, и воздух поступает в легкие. Объем газа, поступающе­го в легкие с каждым вдохом, определяется величиной отрицательного дав­ления в дыхательных путях и зависит от силы дыхательных мышц, ригид­ности и податливости легких и грудной клетки. Во время спонтанного вы­доха давление в дыхательных путях становится слабоположительным. Таким образом, вдох при спонтанном (самостоятельном) дыхании проис­ходит при отрицательном давлении, а выдох - при положительном давле­нии в дыхательных путях. Так называемое среднее внутригрудное давление при спонтанном дыхании, рассчитанное по величине площади выше и ниже нулевой линии атмосферного давления, во время всего дыхательного цикла будет равно 0 (рис. 4.1; 4.2). При ИВЛ с перемежающимся положи­тельным давлением среднее внутригрудное давление будет положитель­ным, поскольку обе фазы дыхательного цикла - вдох и выдох - осущест­вляются с положительным давлением.

Физиологические аспекты ИВЛ. По сравнению со спонтанным дыханием при ИВЛ происходит инверсия фаз дыхания в связи с повышением давления в дыхательных путях во время вдоха. Рассматривая ИВЛ как физиологический процесс, можно отметить, что она сопровождается изменениями в дыхательных путях давления, объема и потока вдыхаемого газа во времени. К моменту завершения вдоха кривые объема и давления в легких достигают максимального значения.

Определенную роль играет форма кривой инспираторного потока:

Постоянный поток (не изменяющийся во время всей фазы вдоха);

Снижающийся - максимум скорости в начале вдоха (рампообразная кривая);

Возрастающий - максимум скорости в конце вдоха;

Синусоидальный поток - максимум скорости в середине вдоха.

Рис. 4.1. Среднее внутригрудное давление при спонтанном дыхании.

T i - фаза вдоха; Т е - фаза выдоха; S 1 - площадь ниже нулевой линии при вдохе; S 2 - пло­щадь выше нулевой линии при выдохе (S 1 = 82). Среднее внутригрудное давление равно 0.

Рис. 4.2. Среднее внутригрудное давление при ИВЛ.

T i - фаза вдоха; Т е - фаза выдоха. Среднее внутригрудное давление равно +9 см вод.ст. Зна­чение S 1 и S 2 - см. на рис. 4.1.

Графическая регистрация давления, объема и потока вдыхаемого газа позволяет наглядно представить преимущества различных типов аппаратов, выбрать те или иные режимы и оценить изменения механики дыхания в ходе ИВЛ. От типа кривой потока вдыхаемого газа зависит давление в дыхательных путях. Наибольшее давление (Р пик) создается при возрастаю­щем потоке в конце вдоха. Эту форму кривой потока, как и синусоидаль­ную, в современных респираторах применяют редко. Наибольшие преиму­щества создает снижающийся поток с рампообразной кривой, особенно при вспомогательной ИВЛ (ВИВЛ). Этот тип кривой способствует наилуч­шему распределению вдыхаемого газа в легких при нарушениях в них вентиляционно-перфузионных отношений.

Внутрилегочное распределение вдыхаемого газа при ИВЛ и спонтанном дыхании различно. При ИВЛ периферические сегменты легких венти­лируются менее интенсивно, чем перибронхиальные области; увеличивает­ся мертвое пространство; ритмичное изменение объемов или давлений вы­зывает более интенсивную вентиляцию заполненных воздухом областей легких и гиповентиляцию других отделов. Тем не менее легкие здорового человека хорошо вентилируются при самых различных параметрах само­стоятельного дыхания.

Рис. 4.3. Передача альвеолярного давления на легочные капилляры в здоровых (а) и пораженных легких (б).

ДО - дыхательный объем; Р А - альвеолярное давление; Рс - давление в капиллярах; Р тм - трансмуральное давление на поверхность капиллярной мембраны.

При патологических состояниях, требующих ИВЛ, условия распределения вдыхаемого газа исходно неблагоприятны. ИВЛ в этих случаях может уменьшить неравномерность вентиляции и улучшить распределение вдыхае­мого газа. Однако нужно помнить, что неадекватно выбранные параметры ИВЛ могут привести к увеличению неравномерности вентиляции, выражен­ному росту физиологического мертвого пространства, падению эффектив­ности процедуры, повреждению легочных эпителия и сурфактанта, ателектазированию и увеличению легочного шунта. Повышение давления в дыха­тельных путях может привести к снижению МОС и гипотензии. Этот отри­цательный эффект часто возникает при неустраненной гиповолемии.

Трансмуральное давление (Ртм) определяется разностью давления в аль­веолах (Р альв) и внутригрудных сосудах (рис. 4.3). При ИВЛ введение в здо­ровые легкие какого-либо ДО газовой смеси в норме приведет к повышению Р альв. Одновременно происходит передача этого давления на легочные капилляры (Рс). Р альв быстро уравновешивается с Pс, эти показатели стано­вятся равными. Ртм будет равно 0. Если податливость легких вследствие отека или другой легочной патологии ограничена, введение в легкие того же объема газовой смеси приведет к повышению Р альв. Передача же поло­жительного давления на легочные капилляры будет ограничена и Рс повы­сится на меньшую величину. Таким образом, разность давления Р альв и Рс будет положительной. Ртм на поверхность альвеолярно-капиллярной мембраны при этом приведет к сжатию сердечных и внутригрудных сосудов. При нулевом Ртм диаметр этих сосудов не изменится [Марино П., 1998].

Показания к ИВЛ. ИВЛ в различных модификациях показана во всех случаях, когда имеются острые нарушения дыхания, приводящие к гипоксемии и(или) гиперкапнии и дыхательному ацидозу. Классическими кри­териями перевода больных на ИВЛ являются РаО 2 < 50 мм рт.ст. при оксигенотерапии, РаСО 2 > 60 мм рт.ст. и рН < 7,3. Анализ газового состава ар­териальной крови - наиболее точный метод оценки функции легких, но, к сожалению, не всегда возможен, особенно в экстренных ситуациях. В этих случаях показаниями к ИВЛ служат клинические признаки острых нарушений дыхания: выраженная одышка, сопровождающаяся цианозом; рез­кое тахипноэ или брадипноэ; участие вспомогательной дыхательной мускулатуры грудной клетки и передней брюшной стенки в акте дыхания; па­тологические ритмы дыхания. Перевод больного на ИВЛ необходим при дыхательной недостаточности, сопровождающейся возбуждением, и тем более при коме, землистом цвете кожных покровов, повышенной потли­вости или изменении величины зрачков. Важное значение при лечении ОДН имеет определение резервов дыхания. При критическом их снижении (ДО<5 мл/кг, ЖЕЛ<15 мл/кг, ФЖЕЛ<10 мл/кг, ОМП/ДО>60 %) необхо­дима ИВЛ.

Чрезвычайно экстренными показаниями к ИВЛ являются апноэ, агональное дыхание, тяжелая степень гиповентиляции и остановка кровообращения.

Искусственную вентиляцию легких проводят:

Во всех случаях тяжелого шока, нестабильности гемодинамики, прогрессирующем отеке легких и дыхательной недостаточности, вы­званной бронхолегочной инфекцией;

При черепно-мозговой травме с признаками нарушения дыхания и/или сознания (показания расширены из-за необходимости лече­ния отека мозга с помощью гипервентиляции и достаточного обес­печения кислородом);

При тяжелой травме грудной клетки и легких, приводящей к нарушению дыхания и гипоксии;

В случае передозировки лекарственных препаратов и отравления седативными средствами (немедленно, так как даже незначительная гипоксия и гиповентиляция ухудшают прогноз);

При неэффективности консервативной терапии ОДН, вызванной астматическим статусом или обострением ХОЗЛ;

При РДСВ (главным ориентиром является падение РаО 2 , не устраняемое оксигенотерапией);

Больным с гиповентиляционным синдромом (центрального происхождения или при нарушениях нейромышечной передачи), а также если необходима мышечная релаксация (эпилептический статус, столбняк, судороги и др.).

Пролонгированная интубация трахеи. Длительная ИВЛ через интубационную трубку возможна в течение 5-7 сут и более. Применяют как оротрахеальную, так и назотрахеальную интубацию. При длительной ИВЛ предпочтительнее последняя, так как легче переносится больным и не ограничивает прием воды и пищи. Интубацию через рот, как правило, проводят по экстренным показаниям (кома, остановка сердца и др.). При интубации через рот более высок риск повреждения зубов и гортани, аспирации. Возможными осложнениями назотрахеалыюй интубации могут быть: носовое кровотечение, введение трубки в пищевод, синусит вследствие сдавления костей носовых пазух. Поддерживать проходимость носовой трубки более сложно, так как она длиннее и уже ротовой. Смена интубационной трубки должна проводиться не реже чем через 72 ч. Все интубационные трубки снабжены манжетами, раздувание которых создает герме­тичность системы аппарат - легкие. Однако следует помнить, что недоста­точно раздутые манжеты приводят к утечке газовой смеси и уменьшению объема вентиляции, установленного врачом на респираторе.

Более опасным осложнением может быть аспирация секрета из ротоглотки в нижние дыхательные пути. Мягкие, легко сжимаемые манжеты, предназначенные для сведения к минимуму риска некроза трахеи, не исключают риска аспирации! Раздувание манжет должно быть очень осторожным до полного отсутствия утечки воздуха. При большом давлении в манжете возможен некроз слизистой оболочки трахеи. При выборе интубационных трубок следует отдавать предпочтение трубкам с манжетой эл­липтической формы с большей поверхностью окклюзии трахеи.

Сроки замены интубационной трубки на трахеостомическую должны устанавливаться строго индивидуально. Наш опыт подтверждает возможность длительной интубации (до 2-3 нед). Однако по прошествии первых 5-7 дней необходимо взвесить все показания и противопоказания к нало­жению трахеостомы. Если срок ИВЛ должен по расчетам закончиться в ближайшее время, можно оставить трубку еще на несколько дней. Если же экстубация в ближайшее время по причине тяжелого состояния больного невозможна, следует наложить трахеостому.

Трахеостомия. В случаях длительной ИВЛ, если санация трахеобронхиального дерева затруднена и активность больного снижена, неизбежно воз­никает вопрос о проведении ИВЛ через трахеостому. К трахеостомии сле­дует относиться как к серьезному хирургическому вмешательству. Предва­рительная интубация трахеи - одно из важных условий безопасности опе­рации.

Трахеостомию производят, как правило, под общей анестезией. Перед операцией необходимо подготовить ларингоскоп и набор интубационных трубок, мешок Амбу, отсос. После введения канюли в трахею отсасывают содержимое, раздувают уплотняющую манжетку до прекращения утечки газов при вдохе и проводят аускультацию легких. Не рекомендуется раздувать манжету, если сохранено спонтанное дыхание и нет угрозы аспирации. Канюлю заменяют, как правило, каждые 2-4 дня. Первую смену ка­нюли целесообразно отложить до сформирования канала к 5-7-му дню.

Процедуру осуществляют осторожно, имея наготове набор для интубации. Смена канюли безопасна, если во время трахеостомии на стенку тра­хеи наложены провизорные швы. Подтягивание за эти швы намного облегчает проведение процедуры. Трахеостомическую рану обрабатывают раствором антисептика и накладывают стерильную повязку. Секрет из тра­хеи отсасывают каждый час, при необходимости чаще. Давление разреже­ния в отсасывающей системе должно быть не более 150 мм рт.ст. Для отса­сывания секрета используют пластиковый катетер длиной 40 см с одним отверстием на конце. Катетер соединяют с У-образным коннектором, под­ключают отсос, затем вводят катетер через интубационную или трахеосто­мическую трубку в правый бронх, закрывают свободное отверстие У-образного коннектора и вращательным движением вынимают катетер. Дли­тельность отсасывания не должна превышать 5-10 с. Затем процедуру по­вторяют для левого бронха.

Прекращение вентиляции на время отсасывания секрета может усугубить гипоксемию и гиперкапнию. Для устранения этих нежелательных яв­лений предложен метод отсасывания секрета из трахеи без прекращения ИВЛ или при замене ее высокочастотной (ВЧИВЛ).

Неинвазивные методы ИВЛ. Интубация трахеи и ИВЛ при лечении ОДН в последние четыре десятилетия считаются стандартными процедурами. Однако интубация трахеи связана с такими осложнениями, как нозокомиальная пневмония, синуситы, травмы гортани и трахеи, стенозы, кро­вотечения из верхних дыхательных путей. ИВЛ с интубацией трахеи назы­вают инвазивными методами лечения ОДН.

В конце 80-х годов XX столетия для длительной вентиляции легких у больных со стабильно тяжелой формой дыхательной недостаточности при нейромышечных заболеваниях, кифосколиозе, идиопатической централь­ной гиповентиляции был предложен новый метод респираторной под­держки - неинвазивной, или вспомогательной, ИВЛ с помощью носовых и лицевых масок (ВИВЛ). При ВИВЛ не требуется наложения искусствен­ных дыхательных путей - интубации трахеи, трахеостомы, что существен­но снижает риск инфекционных и «механических» осложнений. В 90-х годах появились первые сообщения о применении ВИВЛ у больных с ОДН. Исследователи отмечали высокую эффективность метода.

Использование ВИВЛ у больных с ХОЗЛ способствовало снижению смертельных исходов, сокращению сроков пребывания больных в стационаре, уменьшению потребности в интубации трахеи. Однако показания к длительной ВИВЛ нельзя считать окончательно установленными. Крите­рии отбора больных для ВИВЛ при ОДН не унифицированы.

РЕЖИМЫ МЕХАНИЧЕСКОЙ ИВЛ

ИВЛ с регуляцией по объему (объемная, или традиционная, ИВЛ - Con­ventional ventilation) - наиболее распространенный метод, при котором в легкие во время вдоха вводится с помощью респиратора заданный ДО. При этом в зависимости от конструктивных особенностей респиратора можно устанавливать ДО или MOB, либо оба показателя. ЧД и давление в дыхательных путях являются произвольными величинами. Если, напри­мер, величина MOB равна 10 л, а ДО - 0,5 л, то ЧД составит 10: 0,5 = 20 в минуту. В некоторых респираторах ЧД устанавливается независимо от других параметров и обычно равна 16-20 в минуту. Давление в дыхательных путях во время вдоха, в частности его максимальное пиковое (Рпик) значе­ние, при этом зависит от ДО, формы кривой потока, длительности вдоха, сопротивления дыхательных путей и растяжимости легких и грудной клет­ки. Переключение с вдоха на выдох осуществляется после окончания вре­мени вдоха при заданной ЧД или после введения в легкие заданного ДО. Выдох происходит после открытия клапана респиратора пассивно под воз­действием эластической тяги легких и грудной клетки (рис. 4.4).

Рис. 4.4. Кривые давления (Р) и потока (V) в дыхательных путях при ИВЛ.

ДО устанавливают из расчета 10-15, чаще 10-13 мл/кг массы тела. Нерационально выбранный ДО существенно влияет на газообмен и максимальное давление во время фазы вдоха. При неадекватно малом ДО часть альвеол не вентилируется, вследствие чего образуются ателектатические очаги, вызывающие внутрилегочный шунт и артериальную гипоксемию. Слишком большой ДО приводит к значительному увеличению давления в дыхательных путях во время вдоха, что может вызвать баротравму легких. Важным регулируемым параметром механической ИВЛ является отноше­ние времени вдох/выдох, от которого во многом зависит среднее давление в дыхательных путях во время всего дыхательного цикла. Более продолжи­тельный вдох обеспечивает лучшее распределение газа в легких при пато­логических процессах, сопровождающихся неравномерностью вентиляции. Удлинение фазы выдоха часто бывает необходимым при бронхообструктивных заболеваниях, снижающих скорость выдоха. Поэтому в современ­ных респираторах реализована возможность регуляции времени вдоха и выдоха (Т i и T E) в широких пределах. В объемных респираторах чаще ис­пользуются режимы Т i: T е = 1: 1; 1: 1,5 и 1: 2. Эти режимы способствуют улучшению газообмена, повышают РаО 2 и дают возможность уменьшить фракцию ингалируемого кислорода (ВФК). Относительное удлинение вре­мени вдоха позволяет, не уменьшая дыхательного объема, снизить Р пик на вдохе, что важно для профилактики баротравмы легких. При ИВЛ также широко используется режим с инспираторным плато, достигаемым преры­ванием потока после окончания вдоха (рис. 4.5). Этот режим рекомендует­ся при длительной ИВЛ. Длительность плато на вдохе может быть установ­лена произвольно. Рекомендуемые параметры его равны 0,3-0,4 с или 10-20 % от продолжительности дыхательного цикла. Данное плато также улуч­шает распределение газовой смеси в легких и снижает опасность баротрав­мы. Давление в конце плато фактически соответствует так называемому эластическому давлению, его считают равным альвеолярному давлению. Разница между Р пик и Р плато равна резистивному давлению. При этом создается возможность определять во время ИВЛ примерную величину растяжимости системы легкие - грудная клетка, но для этого нужно знать ско­рость потока [Кассиль В.Л. и др., 1997].

Рис. 4.5. Режим ИВЛ с инспираторным плато.

Кривая давления (Р) в дыхательных путях; Рпик - пиковое давление в дыхательных путях P плато - давление при инспираторной паузе.

Выбор MOB может быть приблизительным либо проводиться под контролем уровня газового состава артериальной крови. В связи с тем что на РаО 2 может влиять большое количество факторов, адекватность ИВЛ определяют по РаСО 2 . Как при контролируемой вентиляции, так и в случае ориентировочного установления MOB предпочтительна умеренная гипервентиляция с поддержанием РаСО 2 на уровне 30 мм рт.ст. (4 кПа). Преимущества такой тактики могут быть определены следующим образом: гипервентиляция менее опасна, чем гиповентиляция; при более высоком MOB меньше опасность коллапса легких; при гипокапнии облегчается синхронизация аппарата с пациентом; гипокапния и алкалоз более благоприятны для действия некоторых фармакологических средств; в условиях сниженного РаСО 2 уменьшается опасность сердечных аритмий.

Учитывая то, что гипервентиляция является рутинной методикой, следует помнить об опасности значительного снижения МОС и мозгового кровотока вследствие гипокапнии. Падение РаСО 2 ниже физиологической нормы подавляет стимулы к самостоятельному дыханию и может стать причиной неоправданно длительной ИВЛ. У больных с хроническим ацидозом гипокапния приводит к истощению бикарбонатного буфера и замед­ленному восстановлению его после ИВЛ. У больных группы высокого риска поддержание соответствующих MOB и РаСО 2 жизненно необходимо и должно осуществляться только при строгом лабораторном и клиничес­ком контроле.

Длительная ИВЛ с постоянным ДО делает легкие менее эластичными. В связи с увеличением объема остаточного воздуха в легких изменяется отношение величин ДО и ФОЕ. Улучшение условий вентиляции и газообмена достигается путем периодического углубления дыхания. Для преодоле­ния монотонности вентиляции в респираторах предусмотрен режим, обес­печивающий периодическое раздувание легких. Последнее способствует улучшению физических характеристик легких и в первую очередь увеличению их растяжимости. При введении в легкие дополнительного объема газовой смеси следует помнить об опасности баротравмы. В отделении ин­тенсивной терапии раздувание легких обычно проводят с помощью боль­шого мешка Амбу.

Влияние ИВЛ с перемежающимся положительным давлением и пассив­ным выдохом на деятельность сердца. ИВЛ с перемежающимся положи­тельным давлением и пассивным выдохом оказывает комплексное влияние на сердечно-сосудистую систему. Во время фазы вдоха создается повышен­ное внутригрудное давление и венозный приток к правому предсердию уменьшается, если давление в грудной клетке равно венозному. Переме­жающееся положительное давление с уравновешенным альвеолокапиллярным давлением не приводит к росту трансмурального давления и не меня­ет постнагрузку на правый желудочек. Если же трансмуральное давление при раздувании легких повысится, то возрастает нагрузка на легочные ар­терии и увеличивается постнагрузка на правый желудочек.

Умеренное положительное внутригрудное давление увеличивает венозный приток к левому желудочку, поскольку способствует поступлению крови из легочных вен в левое предсердие. Положительное внутригрудное давление также снижает постнагрузку на левый желудочек и приводит к увеличению сердечного выброса (СВ).

Если давление в грудной клетке будет очень высоким, то давление наполнения левого желудочка может уменьшиться вследствие увеличения постнагрузки на правый желудочек. Это может привести к перерастяже­нию правого желудочка, сдвигу межжелудочковой перегородки влево и снижению объема наполнения левого желудочка.

Большое влияние на состояние пред- и постнагрузки оказывает интраваскулярный объем. При гиповолемии и низком центральном венозном давлении (ЦВД) повышение внутригрудного давления приводит к более выраженному снижению венозного притока в легкие. Снижается и СВ, что зависит от неадекватного наполнения левого желудочка. Чрезмерное повышение внутригрудного давления даже при нормальном внутрисосудистом объеме снижает диастолическое наполнение обоих желудочков и СВ.

Таким образом, если ППД проводится в условиях нормоволемии и выбранные режимы не сопровождаются ростом трансмурального капиллярного давления в легких, то нет никакого отрицательного влияния метода на деятельность сердца. Более того, возможность увеличения СВ и АД сист следует учитывать во время сердечно-легочной реанимации (СЛР). Разду­вание легких ручным методом при резко сниженном СВ и нулевом АД способствует увеличению СВ и подъему АДсист [Марино П., 1998].

ИВЛ с положительным давлением в конце выдоха (ПДКВ ) (Continuous positive pressure ventilation - CPPV - Positive end-expiratory pressure - PEEP). При этом режиме давление в дыхательных путях во время конеч­ной фазы выдоха не снижается до 0, а удерживается на заданном уровне (рис. 4.6). ПДКВ достигается при помощи специального блока, встроенно­го в современные респираторы. Накоплен очень большой клинический ма­териал, свидетельствующий об эффективности данного метода. ПДКВ применяется при лечении ОДН, связанной с тяжелыми легочными заболе­ваниями (РДСВ, распространенные пневмонии, хронические обструктивные заболевания легких в стадии обострения) и отеком легких. Однако до­казано, что ПДКВ не уменьшает и даже может увеличивать количество внесосудистой воды в легких. В то же время режим ПДКВ способствует более физиологическому распределению газовой смеси в легких, снижению венозного шунта, улучшению механических свойств легких и транс­порта кислорода. Имеются данные о том, что ПДКВ восстанавливает ак­тивность сурфактанта и уменьшает его бронхоальвеолярный клиренс.

Рис. 4.6. Режим ИВЛ с ПДКВ.

Кривая давления в дыхательных путях.

При выборе режима ПДКВ следует иметь в виду, что он может существенно уменьшить СВ. Чем больше конечное давление, тем существеннее влияние этого режима на гемодинамику. Снижение СВ может наступить при ПДКВ 7 см вод.ст. и более, что зависит от компенсаторных возмож­ностей сердечно-сосудистой системы. Повышение давления до 12 см вод.ст. способствует значительному возрастанию нагрузки на правый желудочек и увеличению легочной гипертензии. Отрицательные эффекты ПДКВ могут во многом зависеть от ошибок в его применении. Не следует сразу создавать высокий уровень ПДКВ. Рекомендуемый начальный уро­вень ПДКВ - 2-6 см вод.ст. Повышение давления в конце выдоха следует проводить постепенно, «шаг за шагом» и при отсутствии должного эффек­та от установленной величины. Повышают ПДКВ на 2-3 см вод.ст. не чаще, чем каждые 15-20 мин. Особенно осторожно повышают ПДКВ после 12 см вод.ст. Наиболее безопасный уровень показателя - 6-8 см вод.ст., однако это не означает, что данный режим оптимален в любой си­туации. При большом венозном шунте и выраженной артериальной гипоксемии может потребоваться более высокий уровень ПДКВ с ВФК 0,5 и выше. В каждом конкретном случае величину ПДКВ выбирают индивиду­ально! Обязательным условием является динамическое исследование газов артериальной крови, рН и параметров центральной гемодинамики: сердечного индекса, давления наполнения правого и левого желудочков и общего периферического сопротивления. При этом следует учитывать также и рас­тяжимость легких.

ПДКВ способствует «раскрытию» нефункционирующих альвеол и ателектатических участков, вследствие чего улучшается вентиляция альвеол, которые вентилировались недостаточно или не вентилировались совсем и в которых происходило шунтирование крови. Положительный эффект ПДКВ обусловлен увеличением функциональной остаточной емкости и растяжимости легких, улучшением вентиляционно-перфузионных отношений в легких и уменьшением альвеолярно-артериальной разности по кислороду.

Правильность уровня ПДКВ может быть определена по следующим основным показателям:

Отсутствие отрицательного влияния на кровообращение;

Увеличение растяжимости легких;

Уменьшение легочного шунта.

Основным показанием кПДКВ служит артериальная гипоксемия, не устраняемая при других режимахИВЛ.

Характеристика режимов ИВЛ с регуляцией по объему:

Важнейшие параметры вентиляции (ДО и MOB), как и отношение длительности вдоха и выдоха, устанавливает врач;

Точный контроль адекватности вентиляции с выбранной FiО 2 осуществляется путем анализа газового состава артериальной крови;

Установленные объемы вентиляции независимо от физических характеристик легких не гарантируют оптимального распределения га­зовой смеси и равномерности вентиляции легких;

Для улучшения вентиляционно-перфузионных отношений рекомендуется периодическое раздувание легких или проведение ИВЛ в режиме ПДКВ.

ИВЛ с регулируемым давлением во время фазы вдоха - широко распространенный режим. Одним из режимов ИВЛ, который становится все более популярным в последние годы, является ИВЛ с регулируемым давлением и инверсированным отношением времени вдох: выдох (Pressure con­trolled inverse ratio ventilation - PC-IRV). Этот метод применяется при тяжелых поражениях легких (распространенные пневмонии, РДСВ), требующих более осторожного подхода к респираторной терапии. Улучшить рас­пределение газовой смеси в легких с меньшим риском баротравмы можно путем удлинения фазы вдоха в пределах дыхательного цикла под контро­лем заданного давления. Увеличение отношения вдох/выдох до 4: 1 позво­ляет снизить разницу между пиковым давлением в дыхательных путях и давлением в альвеолах. Вентиляция альвеол происходит во время вдоха, а в короткую фазу выдоха давление в альвеолах не снижается до 0 и они не коллабируются. Амплитуда давления при этом режиме вентиляции мень­ше, чем при ПДКВ. Важнейшим преимуществом ИВЛ с регуляцией по давлению является возможность управления пиковым показателем давле­ния. Применение же вентиляции с регуляцией по ДО не создает этой возможности. Заданный ДО сопровождается нерегулируемым пиковым показателем альвеолярного давления и может вести к перераздуванию неколлабированных альвеол и их повреждению, в то время как часть альвеол не будет в должной мере вентилироваться. Попытка же уменьшения Р альв путем уменьшения ДО до 6-7 мл/кг и соответственного увеличения ЧД не создает условий для равномерного распределения газовой смеси в легких. Таким образом, основным преимуществом ИВЛ с регуляцией по показате­лям давления и увеличением продолжительности вдоха является возмож­ность полноценной оксигенации артериальной крови при более низких дыхательных объемах, чем при объемной ИВЛ (рис. 4.7; 4.8).

Характерные черты ИВЛ с регулируемым давлением и инверсированным отношением вдох/выдох:

Уровень максимального давления Рпик и частоту вентиляции устанавливает врач;

Р пик и транспульмональное давление ниже, чем при объемнойИВЛ;

Продолжительность вдоха больше продолжительности выдоха;

Распределение вдыхаемой газовой смеси и оксигенация артериаль­ной крови лучше, чем при объемнойИВЛ;

Во время всего дыхательного цикла создается положительное давление;

Во время выдоха создается положительное давление, уровень которого определяется продолжительностью выдоха - давление тем выше, чем короче выдох;

Вентиляцию легких можно проводить с меньшим ДО, чем при объемной ИВЛ [Кассиль В.Л. и др., 1997].

Рис. 4.7. Режим ИВЛ с управляемым давлением. Кривая давления в дыхательных путях.

Рис. 4.8. Вентиляция легких с двумя фазами положительного давления в дыха­тельных путях (режим BIPAP).

T i - фаза вдоха; Те - фаза выдоха.

ВСПОМОГАТЕЛЬНАЯ ИВЛ

Вспомогательная ИВЛ (Assisted controlled mechanical ventilation - ACMV, или AssCMV) - механическая поддержка самостоятельного дыхания пациента. Во время начала спонтанного вдоха вентилятор делает искусственный вдох. Падение давления в дыхательных путях на 1-2 см вод.ст. во время начала вдоха воздействует на триггерную систему аппарата, и он начинает подавать отданный ДО, снижая работу дыхательных мышц. ВИВЛ позволяет устанав­ливать необходимую, наиболее оптимальную для данного пациента ЧД.

Адаптационный способ ВИВЛ. Этот способ проведения ИВЛ заключа­ется в том, что частота вентиляции, как и другие параметры (ДО, отноше­ние продолжительности вдоха и выдоха), тщательно приспосабливаются («подстраиваются») к спонтанному дыханию больного. Ориентируясь на предварительные параметры дыхания больного, обычно устанавливают первоначальную частоту дыхательных циклов аппарата на 2-3 больше, чем частота спонтанного дыхания больного, а ДО аппарата на 30-40 % выше, чем собственный ДО больного в покое. Адаптация пациента происходит легче при отношении вдох/выдох = 1:1,3, использовании ПДКВ 4-6 см вод.ст. и при включении в контур респиратора РО-5 клапана дополнитель­ного вдоха, допускающего поступление атмосферного воздуха при несо­впадении аппаратного и спонтанного дыхательных циклов. Начальный пе­риод адаптации проводят двумя-тремя кратковременными сеансами ВИВЛ (ВНВЛ) по 15-30 мин с 10-минутными перерывами. В перерывах с учетом субъективных ощущений больного и степени дыхательного ком­форта проводят корректировку вентиляции. Адаптацию считают достаточ­ной, когда отсутствует сопротивление вдоху, а экскурсии грудной клетки совпадают с фазами искусственного дыхательного цикла.

Триггерный способ ВИВЛ осуществляется с помощью специальных узлов респираторов («триггерного блока» или системы «откликания»). Триггерный блок предназначен для переключения распределительного устройства с вдоха на выдох (или наоборот) вследствие дыхательного уси­лия больного.

Работу триггерной системы определяют два основных параметра: чувствительность триггера и скорость «откликания» респиратора. Чувствительность блока определяется наименьшей величиной потока или отрица­тельного давления, необходимой для срабатывания переключающего уст­ройства респиратора. При малой чувствительности аппарата (например, 4-6 см вод.ст.) потребуется слишком большое усилие со стороны пациен­та, чтобы начался вспомогательный вдох. При повышенной чувствитель­ности респиратор, наоборот, может реагировать на случайные причины. Триггерный блок, чувствительный к потоку, должен реагировать на поток в 5-10 мл/с. Если же Триггерный блок чувствителен к отрицательному давлению, то разрежение на откликание аппарата должно быть 0,25- 0,5 см вод.ст. [Юревич В.М., 1997]. Такие скорость и разрежение на вдохе способен создавать ослабленный больной. Во всех случаях триггерная сис­тема должна быть регулируемой для создания лучших условий для адапта­ции больного.

Триггерные системы в различных респираторах регулируются по показателям давления (pressure triggering), скорости потока (flow triggering, flow by) или по ДО (volume triggering). Инерционность триггерного блока определяется «временем задержки». Последнее не должно превышать 0,05-0,1 с. Вспомогательный вдох должен приходиться на начало, а не на конец вдоха больного и во всяком случае должен совпадать с его вдохом.

Возможна комбинация ИВЛ с ВИВЛ.

Искусственно-вспомогательная вентиляция легких (Assist/Control venti­lation - Ass/CMV, или A/CMV) - сочетание ИВЛ и ВИВЛ. Суть метода заключается в том, что больному проводят традиционную ИВЛ с ДО 10-12 мл/кг, но частоту устанавливают такую, чтобы она обеспечивала минут­ную вентиляцию в пределах 80 % от должной. При этом должна быть включена триггерная система. Если конструкция аппарата позволяет, то используют режим поддержки давлением. Этот метод приобрел в послед­ние годы большую популярность, особенно при адаптации больного к ИВЛ и при отключении респиратора.

Поскольку MOB несколько ниже требуемого, у больного возникают попытки к самостоятельному дыханию, а триггерная система обеспечивает дополнительные вдохи. Такая комбинация ИВЛ и ВИВЛ находит широкое применение в клинической практике.

Искусственно-вспомогательную вентиляцию легких целесообразно использовать при традиционной ИВЛ для постепенной тренировки и восстановления функции дыхательных мышц. Комбинация ИВЛ и ВИВЛ нахо­дит широкое применение как во время адаптации больных к механической вентиляции и режимам ИВЛ, так и в период отключения респиратора после длительной ИВЛ.

Поддержка дыхания давлением (Pressure support ventilation - PSV, или PS). Этот режим триггерной ИВЛ заключается в том, что в системе аппарат - дыхательные пути больного создается положительное постоянное давление. При попытке вдоха больного включается триггерная система, которая реагирует на снижение давления в контуре ниже заданного уровня ПДКВ. Важно, чтобы в период вдоха, как и во время всего дыхательного никла, не происходило эпизодов даже кратковременного снижения давле­ния в дыхательных путях ниже атмосферного. При попытке выдоха и по­вышении давления в контуре свыше установленной величины инспираторный поток прерывается и у больного происходит выдох. Давление в дыха­тельных путях быстро снижается до уровня ПДКВ.

Режим (PSV) обычно хорошо переносится больными. Это связано с тем, что поддержка дыхания давлением улучшает альвеолярную вентиля­цию при повышенном содержании внутрисосудистой воды в легких. Каж­дая из попыток вдоха у больного приводит к увеличению газотока, подава­емого респиратором, скорость которого зависит от доли участия самого па­циента в акте дыхания. ДО при поддержке давлением прямо пропорциона­лен заданному давлению. При этом режиме снижаются потребление кис­лорода и расход энергии, отчетливо преобладают положительные эффекты ИВЛ. Особо интересен принцип пропорциональной вспомогательной вен­тиляции, заключающийся в том, что во время энергичного вдоха у пациен­та увеличивается объемная скорость подаваемого потока в самом начале вдоха, и заданное давление достигается быстрее. Если же инспираторная попытка слабая, то поток продолжается почти до конца фазы вдоха и за­данное давление достигается позже.

В респираторе «Bird-8400-ST» реализована модификация Pressure Support с обеспечением заданного ДО.

Характеристики режима поддержки дыхания давлением (PSV):

Уровень Р пик устанавливается врачом и величина V т зависит от него;

В системе аппарат - дыхательные пути больного создается постоянное положительное давление;

На каждый самостоятельный вдох больного аппарат откликается изменением объемной скорости потока, которая регулируется автома­тически и зависит от инспираторного усилия больного;

ЧД и продолжительность фаз дыхательного цикла зависят от дыхания пациента, но в известных пределах могут регулироваться врачом;

Метод легко совместим с ИВЛ и ППВЛ.

Рис. 4.9. Перемежающаяся принудительная вентиляция легких.

При попытке вдоха у больного респиратор через 35-40 мс начинает подавать в дыхательные пути поток газовой смеси до достижения определенного заданного давления, которое поддерживается в течение всей фазы вдоха больного. Пик скорости потока приходится на начало фазы вдоха, что не приводит к дефициту потока. Современные респираторы снабжены микропроцессорной системой, которая анализирует форму кривой и вели­чину скорости потока и выбирает наиболее оптимальный режим для дан­ного больного. Поддержка дыхания давлением в описываемом режиме и с некоторыми модификациями используется в респираторах «Bird 8400 ST», «Servo-ventilator 900 С», «Engstrom-Erika», «Purittan-Bennet 7200» и др.

Перемежающаяся принудительная вентиляция легких (ППВЛ) (Inter­mittent mandatory ventilation - IMV) - это метод вспомогательной венти­ляции легких, при котором пациент дышит самостоятельно через контур респиратора, но через заданные произвольно промежутки времени осу­ществляется один аппаратный вдох с заданным ДО (рис. 4.9). Как правило, используется синхронизированная ППВЛ (Synchronized intermittent manda­tory ventilation - SIMV), т.е. начало аппаратного вдоха совпадает с нача­лом самостоятельного вдоха пациента. При этом режиме пациент сам вы­полняет основную работу дыхания, которая зависит от частоты самостоятельного дыхания больного, а в промежутках между вдохами осуществляет­ся вдох с помощью триггерной системы. Эти промежутки могут быть на­строены врачом произвольно, аппаратный вдох осуществляется через 2, 4, 8 и т.д. очередных попыток больного. При ППВЛ не допускают снижения давления в дыхательных путях и при поддержке дыхания обязательно ис­пользуют ПДКВ. Каждый самостоятельный вдох больного сопровождается поддержкой давлением, и на этом фоне с определенной частотой происхо­дит аппаратный вдох [Кассиль В.Л. и др., 1997].

Основные характеристики ППВЛ:

Вспомогательная вентиляция легких сочетается с аппаратным вдохом при заданном ДО;

Частота дыхания зависит от частоты инспираторных попыток больного, но ее может регулировать и врач;

MOB является суммой самостоятельного дыхания и МО принудительных вдохов; врач может регулировать работу дыхания больного путем изменения частоты принудительных вдохов; метод может быть совместим с поддержкой вентиляции давлением и другими способамиВВЛ.

ВЫСОКОЧАСТОТНАЯ ИВЛ

Высокочастотной принято считать ИВЛ с частотой дыхательных циклов более 60 в минуту. Такая величина выбрана потому, что при указанной частоте переключения фаз дыхательных циклов проявляется основное свойство ВЧ ИВЛ - постоянное положительное давление (ППД) в дыха­тельных путях. Естественно, что пределы частоты, от которых проявляется это свойство, довольно широки и зависят от MOB, растяжимости легких и грудной клетки, скорости и способа вдувания дыхательной смеси и других причин. Однако в подавляющем большинстве случаев именно при частоте дыхательных циклов 60 в минуту в дыхательных путях больного создается ППД. Указанная величина удобна для перевода частоты вентиляции в герцы, что целесообразно для расчетов в более высоких диапазонах и срав­нения получаемых результатов с зарубежными аналогами. Диапазон часто­ты дыхательных циклов очень широк - от 60 до 7200 в минуту (1-120 Гц), однако верхним пределом частоты ВЧ ИВЛ считают 300 в минуту (5 Гц). При более высоких частотах нецелесообразно применять пассивное меха­ническое переключение фаз дыхательных циклов из-за больших потерь ДО во время переключения, возникает необходимость использования актив­ных способов прерывания вдуваемого газа или генерирования его колеба­ний. Кроме того, при частоте ВЧ ИВЛ свыше 5 Гц становятся практически незначимыми величины амплитудного давления в трахее [Молчанов И.В., 1989].

Причиной образования ППД в дыхательных путях при ВЧ ИВЛ является эффект «прерванного выдоха». Очевидно, что при неизмененных про­чих параметрах учащение дыхательных циклов приводит к росту постоян­ного положительного и максимального давлений при уменьшении ампли­туды давления в дыхательных путях. Увеличение или уменьшение ДО вы­зывает соответствующие изменения давления. Укорочение времени вдоха приводит к уменьшению ППД и увеличению максимального и амплитуд­ного давления в дыхательных путях.

В настоящее время наиболее распространены три способаВЧ ИВЛ:

объемный, осцилляторный и струйный.

Объемная ВЧ ИВЛ (High frequency positive pressure ventilation - HFPPV) с заданным потоком или заданным ДО часто обозначается как ВЧ ИВЛ под положительным давлением. Частота дыхательных циклов обычно составляет 60-110 в минуту, продолжительность фазы вдувания не превышает 30 % длительности цикла. Альвеолярная вентиляция дости­гается при сниженных ДО и указанной частоте. Увеличивается ФОЕ, со­здаются условия для равномерного распределения дыхательной смеси в легких (рис. 4.10).

В целом объемная ВЧ ИВЛ не может заменить традиционную ИВЛ и находит ограниченное применение: при операциях на легких с наличием бронхоплевральных свищей, для облегчения адаптации больных к другим режимам ИВЛ, при отключении респиратора.

Рис. 4.10. ИВЛ в сочетании со струйной ВЧ ИВЛ. Кривая давления в дыхательных путях.

Осцилляторная ВЧ ИВЛ (High frequency oscillation - HFO, HFLO) представляет собой модификацию апноэтического «диффузионного» дыхания. Несмотря на отсутствие дыхательных движений, с помощью этого ме­тода достигается высокая оксигенация артериальной крови, но при этом нарушается элиминация СО 2 , что ведет к дыхательному ацидозу. Применяется при апноэ и невозможности быстрой интубации трахеи с целью устра­нения гипоксии.

Струйная ВЧ ИВЛ (High frequency jet ventilation - HFJV) - наиболее распространенный метод. При этом регулируются три параметра: частота вентиляции, рабочее давление, т.е. давление дыхательной смеси, подавае­мой в шланг пациента, и отношение вдох/выдох.

Существуют два основных способа ВЧ ИВЛ: инжекционный и чрескатетерный. В основу инжекционного способа положен эффект Вентури: струя кислорода, подаваемая под давлением 1-4 кгс/см 2 через инжекционную канюлю, создает вокруг последней разрежение, вследствие чего про­исходит подсос атмосферного воздуха. С помощью коннекторов инжектор соединяется с эндотрахеальной трубкой. Через дополнительный патрубок инжектора осуществляются подсос атмосферного воздуха и сброс выды­хаемой газовой смеси. Это позволяет реализовать струйную ВЧ ИВЛ при негерметичном дыхательном контуре.

Степень увеличения ДО при данном методе зависит от диаметра и длины инжекционной канюли, величины рабочего давления, частоты вентиляции, аэродинамического сопротивления дыхательных путей. При постоянном потоке для получения газовой смеси с содержанием 60-40 % кислорода коэффициент инжекции (относительное количество подсасываемого воздуха по отношению к расходу кислорода) необходимо соответст­венно увеличить от 1 до 3.

Таким образом, ВЧ ИВЛ проводится при негерметичном дыхательном контуре через интубационную трубку, катетер или иглу, вставленные чрескожным доступом в трахею. Больные легко адаптируются к струйной ВЧ ИВЛ при сохраненном самостоятельном дыхании. Метод может быть использован при наличии бронхоплевральных свищей.

Несмотря на широкое применение методов ВЧ ИВЛ, они в основном применяются как вспомогательные методы при проведении респираторной терапии. Как самостоятельный вид ВЧ ИВЛ для поддержания газооб­мена нецелесообразна. Дробное применение сеансов этого метода длитель­ностью 40 мин может быть рекомендовано всем больным, которым прово­дится ИВЛ свыше 24 ч. Комбинация ВЧ ИВЛ с традиционной ИВЛ - пре­рывистая ВЧ ИВЛ - является перспективным методом поддержания аде­кватного газообмена и профилактики легочных осложнений в послеопера­ционном периоде. Суть метода заключается в том, что в режим ВЧ ИВЛ вводятся паузы, обеспечивающие снижение давления в дыхательных путях до необходимой величины. Эти паузы соответствуют фазе выдоха при традиционной ИВЛ. Паузы создаются путем отключения электромагнитного преобразователя аппарата ВЧ ИВЛ на 2-3 с 6-10 раз в минуту под контролем уровня газов в крови (рис. 4.11).

Рис. 4.11. Прерывистая струйная ВЧ ИВЛ. Кривая давления в дыхательных путях.

В восстановительном периоде, особенно при «отлучении» больных от респиратора после длительной многодневной ИВЛ, имеются все показания к проведению сеансов ВЧ ИВЛ, часто в комбинации с ВИВЛ. Как в про­цессе ИВЛ, так и на этапе «отлучения» и после экстубации рекомендуется использовать режим ПДКВ. Количество сеансов ВЧ ИВЛ может быть различным - от 2-3 до 10 и более в сутки. Вследствие более рациональной вентиляции и улучшения физических свойств легких повышается оксигенация артериальной крови. Обычно больные хорошо переносят этот режим, влияние на гемодинамику в целом благоприятное. Однако указан­ные эффекты непродолжительны, для их закрепления требуются повтор­ные сеансы респираторной терапии, являющиеся своеобразным методом физиотерапии легких.

Показаниями к применению ВЧ ИВЛ также служат невозможность экстренной интубации трахеи, профилактика гипоксемии при смене интубационной трубки, транспортировка тяжелобольных, нуждающихся в ИВЛ. Для ВЧ ИВЛ применяются респираторы ЕУ-А («Дрегер»), отечественные серии «Спирон», «Ассистент» и др.

Недостатками методов ВЧ ИВЛ являются сложность согревания и увлажнения дыхательной смеси, большой расход кислорода. Возникают определенные трудности с мониторированием ВФК, определением истинного давления в дыхательных путях, ДО и MOB. Очень высокая частота вдо­хов (более 200-300 в минуту) или удлинение вдоха приводят к уменьшению альвеолярной вентиляции, а слишком короткий выдох способствует увеличению ПДКВ с более выраженным влиянием на гемодинамику и рис­ком баротравмы. ВЧ ИВЛ не рекомендуется применять для лечения тяже­лых форм распространенных пневмоний и РДСВ. Следует помнить о том, что большие потоки кислорода и воздуха при затрудненном выдохе могут вызвать тяжелую баротравму легких.

БАРОТРАВМА ЛЕГКИХ

Баротравма при ИВЛ - повреждение легких, вызванное действием повы­шенного давления в дыхательных путях. Следует указать на два основных механизма, вызывающих баротравму: 1) перераздувание легких; 2) нерав­номерность вентиляции на фоне измененной структуры легких.

При баротравме воздух может попасть в интерстиций, средостение, ткани шеи, вызвать разрыв плевры и даже проникать в брюшную по­лость. Баротравма представляет собой грозное осложнение, которое мо­жет привести к летальному исходу. Важнейшее условие профилактики баротравмы - мониторинг показателей биомеханики дыхания, тщатель­ная аускультация легких, периодический рентгенологический контроль грудной клетки. В случае возникшего осложнения необходима его ранняя диагностика. Отсрочка в диагностике пневмоторакса значительно ухуд­шает прогноз!

Клинические признаки пневмоторакса могут отсутствовать или быть неспецифичными. Аускультация легких на фоне ИВЛ часто не позволяет выявить изменения дыхания. Наиболее частые признаки - внезапная гипотензия и тахикардия. Пальпация воздуха под кожей шеи или верхней половины грудной клетки - патогномоничный симптом баротравмы легких. При подозрении на баротравму необходима срочная рентгенография груд­ной клетки. Ранний симптом баротравмы - выявление интерстициальной эмфиземы легких, которую следует считать предвестником пневмоторакса. В вертикальном положении воздух обычно локализуется в верхушечном отделе легочного поля, а в горизонтальном - в передней реберно-диафрагмальной борозде у основания легкого.

При проведении ИВЛ пневмоторакс опасен из-за возможности сдавления легких, крупных сосудов и сердца. Поэтому выявленный пневмото­ракс требует немедленного дренирования плевральной полости. Легкие лучше раздувать без использования отсоса, по методу Бюллау, так как со­здаваемое отрицательное давление в плевральной полости может превышать транспульмональное давление и увеличивать скорость потока воздуха нз легкого в полость плевры. Однако, как показывает опыт, в отдельных случаях необходимо применять дозированное отрицательное давление в плевральной полости для лучшего расправления легких.

МЕТОДЫ ОТМЕНЫ ИВЛ

Восстановление спонтанного дыхания после продленной ИВЛ сопровож­дается не только возобновлением деятельности дыхательных мышц, но и возвратом к нормальным соотношениям колебаний внутригрудного давле­ния. Изменения плеврального давления от положительных значений до от­рицательных приводят к важным гемодинамическим сдвигам: повышается венозный возврат, но также увеличивается постнагрузка на левый желудо­чек, и в результате может падать систолический ударный объем. Быстрое отключение респиратора может вызвать сердечную дисфункцию. Прекра­щать ИВЛ можно только после устранения причин, вызвавших развитие ОДН. При этом должны быть учтены и многие другие факторы: общее со­стояние больного, неврологический статус, показатели гемодинамики, водный и электролитный баланс и, самое главное, возможность поддержа­ния адекватного газообмена при самостоятельном дыхании.

Методика перевода больных после длительной ИВЛ на спонтанное дыхание с «отлучением» от респиратора пред­ставляет сложную многоэтапную процедуру, включающую множество технических приемов - лечебную физкультуру, тренировку дыхательных мышц, физиотерапию на область грудной клетки, питание, раннюю активацию больных и др. [Гологорский В.А. и др., 1994].

Существуют три метода отмены ИВЛ: 1) с помощью ППВЛ; 2) с помощью Т-образного коннектора или Т-образный способ; 3) с помощью сеан­совВИВЛ.

1. Перемежающаяся принудительная вентиляция легких. Этот метод обеспечивает для больного определенный уровень ИВЛ и позволяет боль­ному дышать самостоятельно в промежутках между работой респиратора. Постепенно сокращаются периоды ИВЛ и увеличиваются периоды само­стоятельного дыхания. Наконец, уменьшается продолжительность ИВЛ вплоть до полного ее прекращения. Эта методика небезопасна для больно­го, так как самостоятельное дыхание ничем не поддерживается.

2. Т-образный метод. В этих случаях периоды ИВЛ чередуются с сеансами самостоятельного дыхания через Т-вставочный коннектор при рабо­тающем респираторе. Обогащенный кислородом воздух поступает из рес­пиратора, предотвращая попадание атмосферного и выдыхаемого воздуха в легкие больного. Даже при хороших клинических показателях первый период самостоятельного дыхания не должен превышать 1-2 ч, после чего ИВЛ следует возобновлять на 4-5 ч для обеспечения отдыха больного. Учащая и увеличивая периоды спонтанной вентиляции, достигают прекращения последней на все дневное время суток, а затем и на целые сутки. Т-образный метод позволяет более точно определять показатели легочной функции при дозированном спонтанном дыхании. Этот метод превосходит ППВЛ по эффективности восстановления силы и работоспособности ды­хательной мускулатуры.

3. Метод вспомогательной респираторной поддержки. В связи с появ­лением различных способов ВИВЛ стало возможным использовать их в пе­риод отлучения больных от ИВЛ. Среди этих методов наибольшее значение имеет ВВЛ, которую можно сочетать с режимами ПДКВ и ВЧ ИВЛ.

Обычно используется триггерный режим ИВЛ. Многочисленные описания методов, публикуемых под разными названиями, затрудняют понимание их функциональных различий и возможностей.

Применение сеансов вспомогательной вентиляции легких в триггерном режиме улучшает состояние функции дыхания и стабилизирует кровообращение. Увеличиваются ДО, снижается ЧД, возрастают уровни РаО 2 .

Путем многократного использования ВИВЛ с планомерным чередованием с ИВЛ в режимах ПДКВ и с самостоятельным дыханием удается до­биться нормализации дыхательной функции легких и постепенно «отлу­чить» больного от респираторной помощи. Количество сеансов ВИВЛ может быть различным и зависит от динамики основного патологического процесса и степени выраженности легочных изменений. Режим ВИВЛ с ПДКВ обеспечивает оптимальный уровень вентиляции и газообмена, не угнетает сердечную деятельность и хорошо переносится больными. Эти приемы могут быть дополнены сеансами ВЧ ИВЛ. В отличие от ВЧ ИВЛ, создающей лишь кратковременный положительный эффект, режимы ВИВЛ улучшают функцию легких и обладают несомненным преимущест­вом перед другими способами отмены ИВЛ.

ОСОБЕННОСТИ УХОДА ЗА БОЛЬНЫМИ

Пациенты, которым проводится ИВЛ, должны находиться под непрерыв­ным наблюдением. Особенно необходим контроль за показателями крово­обращения и газовым составом крови. Показано использование систем тревоги. Принято измерять выдыхаемый объем с помощью сухих спирометров, вентилометров. Быстродействующие анализаторы кислорода и уг­лекислого газа (капнограф), а также электроды для регистрации транскутанных РО 2 и РСО 2 в значительной мере облегчают получение важнейшей информации о состоянии газообмена. В настоящее время применяют мониторное наблюдение за такими характеристиками, как форма кривых давления и потока газа в дыхательных путях. Их информативность позво­ляет оптимизировать режимы ИВЛ, подбирать наиболее благоприятные параметры и прогнозировать терапию.

В уходе за больными, находящимися на ИВЛ, необходима определенная последовательность мероприятий. Каждые 30-60 мин регистрируют показатели гемодинамики и параметры ИВЛ, отсасывают секрет из трахеи и бронхов. Каждые 2 ч поворачивают больного с бока на бок, распускают на 2-3 мин манжету, проводят зондовое энтеральное питание, по показа­ниям применяют глазные капли, обрабатывают полость рта. Через каждые 4 ч измеряют температуру тела, раздувают легкие вручную двух-, трехкрат­ным ДО в течение 10-15 с; проводят массаж и лечебную перкуссию груд­ной клетки. Через каждые 6 ч определяют показатели газов в крови, КОС, параметры гемодинамики. Каждые 8 ч регистрируют баланс жидкостей, ЦВД, определяют плотность мочи, диурез. Проводят вакуумный массаж грудной клетки 2 раза в сутки, необходимые лабораторные исследования 1 раз в сутки и рентгенографию грудной клетки.

Необходим постоянный словесный контакт с больным во время ИВЛ. Пациенту следует объяснять все предстоящие процедуры (конечно, кроме тех, при которых требуется выключение сознания). Нужно также выявить жалобы (жажда, боль в горле и т.д.) и, по возможности, устранить все субъективные причины дискомфорта.

Большую часть времени больной должен находиться в положении на боку, животе и меньшую (примерно 1/3) - на спине.

Во время ИВЛ проводят активную физиотерапию на область грудной клетки (вибрационно-перкуссионный и вакуумный массаж), респираторно-ингаляционную терапию, дыхательную гимнастику и упражнения. Необходима специальная тренировка дыхательной мускулатуры путем отклю­чения от респиратора, применения ВЧ ИВЛ и индивидуальной терапии. Следует учитывать возможность исходной мышечной неполноценности у больных ХОЗЛ и тем более у больных с нейромышечными нарушениями.

При ИВЛ нарастает слабость дыхательной мускулатуры, что обусловлено не только выключением дыхательных мышц, но и выраженными катаболическими и электролитными нарушениями, поэтому обеспечение ор­ганизма калориями (белками) - важнейшая составляющая всего комплек­са лечения. С этой же целью применяется инфузионная терапия с включе­нием всех необходимых ингредиентов, в том числе электролитов и раство­ров, дающих свободную воду.

При несинхронности дыхания больного с режимом работы респирато­ра необходимо сразу же отключить респиратор и провести вентиляцию вручную с помощью мешка Амбу. Наиболее частые причины указанной несинхронности и «борьбы» с респиратором - обструкция интубационной (трахеостомической) трубки или дыхательных путей, неадекватный MOB, ухудшение состояния больного и изменения в работе респиратора. В этих случаях необходимо срочно провести туалет трахеобронхиального дерева и физикальное исследование легких, измерить АД, оценить состояние витальных функций. Иногда причина несинхронности - в прекращении действия седативных средств. Только после устранения причин, вызвав­ших нарушения синхронности, следует продолжить ИВЛ под мониторным контролем основных функций организма.

НОВЫЕ ВЗГЛЯДЫ НА РЕСПИРАТОРНУЮ ТЕРАПИЮ

В настоящее время намечается тенденция к использованию прессоциклических режимов вспомогательной и принудительной ИВЛ. При этих режи­мах в отличие от традиционных величина ДО уменьшается до 5-7 мл/кг (вместо 10-15 мл/кг массы тела), положительное давление в дыхательных путях поддерживается за счет увеличения потока и изменения соотноше­ния по времени фаз вдоха и выдоха. При этом максимальное Р пик составля­ет 35 см вод.ст. Это связано с тем, что спирографическое определение ве­личин ДО и МОД сопряжено с возможными ошибками, обусловленными искусственно вызванной спонтанной гипервентиляцией. При исследова­ниях же с помощью индуктивной плетизмографии установлено, что вели­чины ДО и МОД меньше, что послужило основой для уменьшения ДО при разрабатываемых методах ИВЛ.

При легочных процессах, имеющих показания к ИВЛ, изменения в легких обусловлены не столько снижением их податливости, сколько прогрессирующим снижением их «функционального объема». При КТ-исследованиях установлено наличие трех зон легких, представленных: 1) нормально функционирующими альвеолами; 2) коллабированными альвеолами, способными к расправлению при создании в них положительного давления; 3) коллабированными альвеолами, неспособными к расправлению при создании положительного давления в дыхательных путях. Полагаем, что в зависимости от поражения и выбранного режима ИВЛ соотношение зон с функционирующими и нефункционирующими альвеолами может изменяться, а жестко выбранный ДО может приводить к перераздуванию здоровых альвеол и их повреждению. При давлении на вдохе 30 см вод.ст. «сила сдвига» между аэрированными и коллабированными альвеолами достигает 140 см вод.ст. и создает все условия для волюмотравмы. Механическое повреждение эпителия и эндотелия альвеоло-капиллярной мембраны ведет к повышенной проницаемости легочных сосудов, интерстициальному отеку, системной аутоиммунной реакции и развитию ДВС-синдрома.

В экспериментах на животных было подтверждено, что высокое Р пик, достигаемое при высоком ДО, приводит легкие в состояние геморрагического отека с последующей сердечной и почечной недостаточностью и смертью. При этом самую существенную роль, по-видимому, играет не Р пик, а величина ДО. При создании высокого давления за счет перетягива­ния живота и грудной клетки у животных значительных изменений не про­исходило, в то время как увеличение ДО до 25 мл/кг вызывало отек легких г последующую полиорганную недостаточность.

В настоящее время активно обсуждаются и внедряются новые подходы к проведению ИВЛ. Они требуют более совершенной техники и непрерывного ароматического слежения за выбранными параметрами. Рекоменда­ции исследователей, занимающихся этой проблемой, заключаются в необ­ходимости разработки наиболее безопасных режимов ИВЛ, создающих условия для равномерного распределения газовых смесей в легких. Важным параметром ИВЛ является среднее давление вдыхательных путях, которое приближается по своему значению к среднему внутриальвеолярному давлению. Таким образом, регулирование первой величины приведет к установлению необходимого внутриальвеолярного давления с оптимальными или приемлемыми для каждого случая величинами РаО 2 . При этом выбирают прессоциклический тип режима вентиляции с максимальным давле­нием на вдохе 35 см вод.ст. и величиной ДО, равной 5-7 мл/кг массы тела. Обеспечивают убывающий инспираторный поток 60 л/мин, управляемый микропроцессором. Устанавливают инспираторную паузу, что создает плато в конце вдоха и обеспечивает более равномерное распределение газовых смесей в легких. Те же показатели могут быть достигнуты путем удлинения вдоха и создания соотношения вдох/выдох 1:1 или 2:1. Как и при традиционных методах ИВЛ, устанавливают ПДКВ на величине, поддерживающей РаО 2 60 мм рт.ст. при ВФК, равной 0,6.

На этапах коррекции выбранного режима постепенно уменьшают давление на вдохе, инспираторный поток до 30-40 л/мин,ДО, ПДКВ и увеличивают ЧД до нормокапнии или незначительной контролируемой гиперкапнии. При этом среднее давление в дыхательных путях повышают до 25 см вод. ст. и более, что особенно важно при лечении тяжелой гипоксемии, резистентной к высоким показателямДО и ПДКВ.

Предлагаемые методы не лишены недостатков, но уже сейчас применяются в клиниках. Мониторирование наиболее важной величины среднего давления в дыхательных путях доступно при использовании современ­ных вентиляторов типа «Сервовентилятор-900», «Сервовентилятор-300», «Энгестрем Эрика».

РЕЖИМЫ ИСКУССТВЕННОЙ ВЕНТИЛЯЦИИ ЛЕГКИХ

Airway pressure release ventilation -APRV - вентиляция легких с периодическим снижением давления вдыхательных путях.

Assist control ventilation - ACV - вспомогательная управляемая вентиляция легких (ВУВЛ).

Assisted controlled mechanical ventilation - ACMV (AssCMV) искусственно-вспомогательная вентиляция легких.

Biphasic positive airway pressure - BIPAP - вентиляция легких с двумя фазами положительного давления в дыхательных путях (ВТФП) модификация ИВЛ и ВВЛ.

Continuous distending pressure - CDP - самостоятельное дыхание с постоянно положительным давлением в дыхательных путей (СДППД).

Controlled mechanical ventilation -CMV -управляемая (искусственная) вентиляция легких.

Contionuous positive ail-way pressure - СРАР - самостоятельное дыхание с положительным давлением в дыхательных путях (СДППД).

Continuous positive pressure ventilation - CPPV - ИВЛ с положительным давлением в конце выдоха (ПДКВ, Positive end-expiratorv psessure - PEEP).

Conventional ventilation - традиционная (обычная)ИВЛ.

Extended mandatory minute volume (ventilation) - EMMV - ППВЛ с автоматическим обеспечением заданного МОД.

High frequency jet ventilation -HFJV - высокочастотная инжекционная (струйная) вентиляция легких -ВЧ ИВЛ.

High frequency oscillation - HFO (HFLO) - высокочастотная осцилляция (осцилляторная ВЧ ИВЛ).

High frequency positive pressure ventilation - HFPPV - ВЧ ИВЛ под положительным давлением, контролируемая по объему.

Intermittent mandatory ventilation -IMV - принудительная перемежающаяся вентиляция легких(ППВЛ).

Intermittent positive negative pressure ventilation - IPNPV - ИВЛ с отрицательным давлением на выдохе (с активным выдохом).

Intermittent positive pressure ventilation- IPPV - вентиляция легких с перемежающимся положительным давлением.

Intratracheal pulmonary ventilation -ITPV - внутритрахеальная легочная вентиляция.

Inverse ratio ventilation -IRV - ИВЛ с обратным (инверсированным) отношением вдох:выдох (более 1:1).

Low frequency positive pressure ventilation - LFPPV - ИВЛ с низкой частотой (брадипноическая).

Mechanical ventilation -MV - механическая вентиляция легких (ИВЛ).

Proportional assist ventilation - PAV - пропорциональная вспомогательная вентиляция легких (ВВЛ), модификация поддержки вентиляции давлением.

Prolonged mechanical ventilation - PMV - продленная ИВЛ.

Pressure limit ventilation -PLV - ИВЛ с ограничением давлением на вдохе.

Spontaneous breathing - SB - самостоятельное дыхание.

Synchronized intermittent mandatory ventilation - SIMV - синхронизированная принудительная перемежающаяся вентиляция легких (СППВЛ).

Трахеостомии делят на неинфекционные и инфекционные. Среди неинфекционных осложнений встречают различной выраженности кровотечения и (или) гемоаспирацию, эмфизему средостения и подкожной клетчатки, пролежни с изъязвлениями слизистой оболочки трахеи от канюль и манжет интубационной трубки.

Инфекционные осложнения трахеостомии — ларингиты, трахеобронхиты, пневмонии, флегмоны паратрахеальной клетчатки, гнойные тиреоидиты.

Осложнения искусственной вентиляции легких

Легочную реанимацию проводят с помощью искусственной вентиляции легких. В процессе проведения ИВЛ, особенно в течение длительного времени, может развиться ряд осложнений, причем некоторые из них сами по себе оказываются танатогенетически значимыми. По данным разных авторов, частота этих осложнений колеблется от 21,3 % до 100 % (Кассиль В. Л., 1987).

По локализации и характеру осложнения ИВЛ В. Л. Кассиль (1981) делит на четыре группы:

  1. осложнения со стороны дыхательных путей (трахеобронхиты, пролежни слизистой оболочки трахеи, трахеопищеводные свищи , стенозы трахеи);
  2. осложнения со стороны легких (пневмонии, ателектазы, пневмоторакс);
  3. осложнения со стороны сердечно-сосудистой системы (кровотечения из сосудов, внезапная остановка сердца, снижение артериального давления);
  4. осложнения из-за технических погрешностей проведения ИВЛ.

Общие осложнения ИВЛ. Прежде чем рассмотреть частные осложнения ИВЛ, отдельно остановимся на неблагоприятных физиологических изменениях и осложнениях, которые в себе несет сама искусственная вентиляция легких.

В этой связи уместно вспомнить философское замечание Ф. Энгельса (1975):

«Не будем, однако, слишком обольщаться нашими победами над природой. За каждую такую победу она нам мстит. Каждая из этих побед имеет, правда, в первую очередь те последствия, на которые мы рассчитывали, но во вторую и третью очередь совсем другие, непредвиденные последствия, которые очень часто уничтожают значение первых».

Прежде всего, при использовании аппаратного искусственного дыхания изменяется биомеханика н регуляция дыхания, в первую очередь вследствие того, что имеется выраженная разница внутриальвеолярного и внутриплеврального давлений в конце вдоха по сравнению со спонтанным дыханием. Если при спонтанном дыхании эти показатели соответственно составляют минус 1 — 0 мм рт. ст. и минус 10 см вод. ст., то при ИВЛ — соответственно +15 — +20 мм рт. ст. и +3 см вод. ст. В этой связи при ИВЛ повышается растяжимость стенки дыхательных путей н меняется отношение анатомически мертвого пространства к транспульмональному давлению. При длительной ИВЛ растяжимость легких постепенно снижается. Это происходит вследствие обтурационного ателектазирования легких в связи с нарушением дренажной функции дыхательных путей, вентиляционно-нерфузиопных, фильтрацией по абсорбционных соотношении, а также с деструкцией поверхностно активного вещества - сурфактанта. Длительная ИВЛ приводит к образованию ателектазов, обусловленных нарушениями дренажной функции бронхов и обмена сурфактанта.

При ИВЛ но принципу вдувания нарушается присасывающее действие грудной клетки , обеспечивающее значительную часть венозного возврата при естественном вдохе. Поскольку давление в легочных капиллярах в норме равно 10—12 мм рт. ст., ИВЛ с более высоким. давлением вдоха неизбежно нарушает легочный кровоток . Вытеснение крови из легких в левое предсердие во время искусственного вдоха и противодействие выбросу правого желудочка сердца вносят существенный дисбаланс в функционирование правой и левой половин сердца. Поэтому как одно из общих осложнений ИВЛ в системе кровообращения рассматриваются нарушения венозного возврата и уменьшение сердечного выброса.

Помимо влияния на систему кровообращения, ИВЛ может приводить к развитию выраженного респираторного алкалоза или ацидоза (вследствие неадекватно выбранного режима: соответственно при гипер- или гиповентиляции). К осложнениям ИВЛ относят продленное анноэ при переходе па спонтанную вентиляцию. Обычно оно является результатом анормального раздражения рецепторов легких, подавляющих физиологические рефлексы .

При манипуляциях (отсасывании, смене интубационной трубки, трахеотомический канюли. санации трахеобронхиального дерева) может развиться острая гипоксемия с гипотензией и последующей остановкой сердца и дыхания. В генезе подобной остановки сердца у больных остановка дыхания и сердца может возникнуть при быстром снижении давления. Например в ответ на гипервентиляцию после санации трахеобронхиального дерева.

Последствия длительной интубации трахеи и трахеостомии. Группу осложнений ИВЛ представляют собой патологические процессы, связанные с длительным пребыванием в дыхательных путях интубационной или трахеотомической трубок. При этом могут развиваться фибринозно геморрагические и некротические ларинготрахео-бронхиты (рис. 59; см. иллюстр. мат.). пролежни, кровотечения из дыхательных путей. Трахеобронхиты возникают у 35 40 % больных, которым проводится ИВЛ. Большая частота их возникновения отмечена у больных. находящихся и коматозном состоянии. Более чем у половины больных трахеобронхиты выявляется на 2 3 и сутки проведения ИВЛ. В месте прилегания манжеты или конца интубационной трубки могут развиваться участки омертвения слизистой оболочки. Они обнаруживаются во время фибробронхоеконии при смене трубок у 12—13 % больных при длительной ИВЛ. Глубокий пролежень стенки трахеи может сам по себе привести к другим осложнениям (трахеопищеводному свищу, стенозу трахеи, кровотечению из аррозированных сосудов) (Кассиль В. Л., 1987).

Баротравма легких. При избыточном объеме вентиляции и десинхронизацию с аппаратом ИВЛ может развиться баротравма легких с перерастяжением и разрывом альвеол, с возникновением кровоизлияний в ткани легких. Проявлением баротравмы могут быть буллезная или интерстициальная эмфиземы, напряженный пневмоторакс, особенно у больных воспалительно-деструктивными заболеваниями легких.

В условиях ИВЛ пневмоторакс является очень опасным осложнением, так как всегда имеет характер напряженного и быстро нарастающего. Клинически это проявляется асимметрией дыхательных движений, резким ослаблением дыхания на стороне пневмоторакса, а также резким цианозом. Последний обусловлен не только нарушением оксигенации вследствие коллабирования легкого, но и централь ной венозной гипертензией в ответ на перегиб полых вен при смещении средостения в противоположную сторону. При этом значительно повышается сопротивление аппарату ИВЛ па вдохе. На рентгенограмме — воздух в плевральной полости, коллабирование легкого и смещение средостения.

У некоторых больных пневмоторакс сопровождается развитием эмфиземы средостения. В. Л. Кассиль (1987) описывает редкую ситуацию, когда, наоборот, из-за недостаточной герметизации между трахеостомической канюлей и стенкой трахеи воздух во время искусственного вдоха может проникнуть в средостение, а в дальнейшем прорваться через медиастинальную плевру в одну или в обе плевральные полости. В последнем случае развивается двусторонний пневмоторакс.

Избыточная вентиляция может привести к механической десквамации трахеобронхиального эпителия. При этом гистологически в альвеолах у больных, которым проводилась ИВЛ в режиме избыточной гипервентиляции, можно обнаружить фрагменты эпителия трахеобронхиального дерева.

Последствия гипероксического и высушивающего действия кислорода. Следует иметь в виду, что дыхание 100 %-ным кислородом, особенно длительно проводимое, приводит к гипероксическому повреждению эпителия трахеобронхиального дерева и альвеолокапиллярной мембраны , с последующим диффузным склерозированием легких (Matsubara О. и соавт., 1986). Известно, что кислород , особенно в высоких концентрациях, высушивает дыхательную поверхность легких, что целесообразно при кардио отеке легкого. Это связано с тем, что после высушивания белковые массы «облипают» дыхательную поверхность, катастрофически увеличивают диффузионный путь и даже прекращают диффузию. В этой связи концентрация кислорода во вдыхаемом воздухе без крайней необходимости не должна превышать 40—50 %

Инфекционные осложнения ИВЛ. Среди инфекционных процессов, связанных с ИВЛ, нередко встречаются ларинго- и трахеобронхиты. Но данным В. Л. Кассиля (1987), у 36—40 % больных, находящихся на ИВЛ, развивается пневмония . В гепезе воспалительных поражений легких очень важное значение имеет инфицирование, в том числе перекрестное. При бактериологическом исследовании мокроты чаще всего высеивается стафилококковая и гемолитическая флора, синегнойная палочка и микробы кишечной группы в разлпч пых ассоциациях. При взятии проб в одно и то же время у больных. находящихся в разных палатах, флора в дыхательных путях, как правило, одинаковая. К сожалению, свой вклад в возникновение пневмоний вносит ипфицирование легких через аппараты ИВЛ (например, семейства «РО»). Это связано с невозможностью полной дезинфекции внутренних частей этих аппаратов.

Чаще всего пневмония начинается на 2—6-е сутки проведения ИВЛ. Обычно она проявляется гипертермией до 38 "С, появлением н легких крепитации и влажных мелкопузырчатых хрипов, одышки, другими симптомами гипоксемии. На рентгенограмме выявляются усиление сосудистого рисунка, очаговые затемнения в легких.

Одним из серьезных осложнении И ВЛ через маску является раздувание воздухом желудка. Чаще всего это осложнение возникает при использовании повышенного давления при ИВЛ в условиях час тичпой или полной обструкции дыхательных путей. В результате воздух с силой попадает в пищевод н желудок . Значительное скопление воздуха в желудке не только создает предпосылки к регургитации и ограничивает функциональные резервы легкого, но может способствовать развитию разрыва стенки желудка в период проведения peaнимационных мероприятии.

Данная информация предназначена для специалистов в области здравоохранения и фармацевтики. Пациенты не должны использовать эту информацию в качестве медицинских советов или рекомендаций.

Типы искусственной вентиляции легких

1. Что такое искусственная вентиляция лёгких?

Искусственная вентиляция лёгких (ИВЛ) – это форма вентиляции, призванная решать ту задачу, которую в норме выполняют дыхательные мышцы. Задача включает в себя обеспечение оксигенации и вентиляции (удалении углекислого газа) пациента. Существует два главных типа ИВЛ: вентиляция с положительным давлением и вентиляция с отрицательным давлением. Вентиляция с положительным давлением может быть инвазивной (через эндотрахеальную трубку) или неинвазивной (через лицевую маску). Возможна также вентиляция с переключением фаз по объёму и по давлению (см. вопрос 4). К многочисленным разным режимам ИВЛ относятся управляемая искусственная вентиляция (CMV в английской аббревиатуре – ред.), вспомогательная искусственная вентиляция (ВИВЛ, ACV в английской аббревиатуре), перемежающаяся принудительная (мандаторная) вентиляция (IMV в английской аббревиатуре), синхронизированная перемежающаяся принудительная вентиляция (SIMV), вентиляция с контролируемым давлением (PCV), вентиляция с поддерживающим давлением (PSV), вентиляция с инвертированным отношением вдоха и выдоха (иИВЛ, IRV), вентиляция сбросом давления (PRV в английской аббревиатуре) и высокочастотные режимы.

Важно делать отличие между эндотрахеальной интубацией и ИВЛ, поскольку одно необязательно подразумевает другое. Например, больной может нуждаться в эндотрахеальной интубации для обеспечения проходимости дыхательных путей, однако при этом оставаться ещё способным самостоятельно поддерживать вентиляцию через эндотрахеальную трубку, обходясь без помощи ИВЛ.

2. Каковы показания к ИВЛ?

ИВЛ показана при многих расстройствах. В то же время, во многих случаях показания не являются строго очерченными. К главным причинам применения ИВЛ относятся неспособность к достаточной оксигенации и утрата адекватной альвеолярной вентиляции, что может быть связано либо с первичным паренхиматозным поражением лёгких (например, при пневмонии или отёке лёгких), либо с системными процессами, опосредованно поражающими функцию лёгких (как это происходит при сепсисе или нарушениях функции центральной нервной системы). Дополнительно к этому, проведение общей анестезии часто подразумевает ИВЛ, потому что многие препараты оказывают угнетающий эффект на дыхание, а миорелаксанты вызывают паралич дыхательных мышц. Главная задача ИВЛ в условиях дыхательной недостаточности – поддержание газообмена до тех пор, пока не будет устранен патологический процесс, вызвавший эту недостаточность.

3. Что такое неинвазивная вентиляция и каковы показания для неё?

Неинвазивная вентиляция может проводиться или в режиме отрицательного, или в режиме положительного давления. Вентиляция с отрицательным давлением (обычно с помощью танкового – «железные лёгкие» – или кирасного респиратора) изредка применяется у пациентов с нейромышечными расстройствами или хроническим усталостью диафрагмы вследствие хронического обструктивного заболевания лёгких (ХОЗЛ). Оболочка респиратора обхватывает туловище ниже шеи, а создаваемое под оболочкой отрицательное давление приводит к возникновению градиента давлений и газотока из верхних дыхательных путей в лёгкие. Выдох происходит пассивно. Этот режим вентиляции позволяет отказаться от интубации трахеи и избежать связанных с нею проблем. Верхние дыхательные пути должны быть свободны, однако это делает их уязвимыми для аспирации. В связи с застоем крови во внутренних органах может возникать гипотония.

Неинвазивная вентиляция с положительным давлением (NIPPV в английской аббревиатуре – ред.) может проводиться в нескольких режимах, включая масочную вентиляцию с непрерывным положительным давлением (НПД, CPAP в английской аббревиатуре), с двухуровневым положительным давлением (BiPAP), масочную вентиляцию с поддерживающим давлением или комбинацию этих методов вентиляции. Этот тип вентиляции может быть использован у тех больных, которым нежелательна интубация трахеи – больные с терминальной стадией заболевания или с некоторыми типами дыхательной недостаточности (например, обострением ХОЗЛ с гиперкапнией). У больных с терминальной стадией заболевания, имеющих дыхательные расстройства, проведение NIPPV является надёжным, эффективным и более комфортным, по сравнению с другими методами, средством поддержки вентиляции. Метод не столь сложен и позволяет пациенту сохранять самостоятельность и словесный контакт; окончание неинвазивной вентиляции, когда оно будет показано, сопряжено с меньшим стрессом.

4. Опишите наиболее распространённые режимы ИВЛ: CMV, ACV, IMV.

Эти три режима с обычным переключением по объёму, по сути, представляют собой три разных способа откликания респиратора. При CMV вентиляция пациента целиком контролируется с помощью предварительно установленного дыхательного объёма (ДО) и заданной частоты дыхания (ЧД). CMV применяется у пациентов, полностью утративших способность совершать попытки дыхания, что, в частности, наблюдается во время общей анестезии при центральном угнетении дыхания или вызванном миорелаксантами параличе мышц. Режим ACV (ВИВЛ) позволяет пациенту вызывать искусственный вдох (почему и содержит слово «вспомогательный»), после чего осуществляется подача заданного дыхательного объёма. Если по каким-то развивается брадипноэ или апноэ, респиратор переходит на резервный управляемый режим вентиляции. Режим IMV, первоначально предложенный в качестве средства отучения от респиратора, допускает спонтанное дыхание пациента через дыхательный контур аппарата. Респиратор проводит ИВЛ с установленными ДО и ЧД. Режим SIMV исключает аппаратные вдохи во время продолжающихся спонтанных дыханий.

Дебаты вокруг преимуществ и недостатков ACV и IMV продолжают оставаться жаркими. Теоретически, в виду того, что не каждый вдох происходит с положительным давлением, IMV позволяет снизить среднее давление в дыхательных путях (Рaw) и уменьшить, таким образом, вероятность баротравмы. Кроме того, при IMV больного легче синхронизировать с респиратором. Возможно, что ACV чаще вызывает респираторный алкалоз, поскольку пациент, даже испытывающий тахипноэ, получает с каждым вдохом заданный ДО полностью. Любой из типов вентиляции требует определённой работы дыхания от пациента (обычно большей при IMV). У пациентов же с острой дыхательной недостаточностью (ОДН) работу дыхания на начальном этапе и до тех пор, пока патологический процесс, лежащий в основе расстройства дыхания, не начнёт регрессировать, целесообразно сводить к минимуму. Обычно в таких случаях необходимо обеспечить седацию, изредка – миорелаксацию и CMV.

5. Каковы первоначальные настройки респиратора при ОДН? Какие задачи решаются с помощью этих настроек?

Большинство пациентов с ОДН нуждаются в полной заместительной вентиляции. Главными задачами при этом становятся обеспечение насыщения артериальной крови кислородом и предотвращение связанных с искусственной вентиляцией осложнений. Осложнения могут возникать из-за увеличенного давления в дыхательных путях или длительного воздействия повышенной концентрации кислорода на вдохе (FiO2) (см. ниже).

Чаще всего начинают с режима ВИВЛ , гарантирующего поступление заданного объёма. Однако всё более популярными становятся прессоциклические режимы.

Необходимо выбрать FiO2 . Обычно начинают с 1,0, медленно снижая до минимальной концентрации, переносимой пациентом. Длительное воздействие высоких значений FiO2 (> 60-70%) может проявиться токсическим действием кислорода.

Дыхательный объём подбирается с учётом массы тела и патофизиологических механизмов повреждения лёгких. В настоящее время приемлемым считается установка объёма в пределах 10–12 мл/кг массы тела. Однако при состояниях, подобных острому респираторному дистресс-синдрому (ОРДС), объём лёгких снижается. Поскольку высокие значения давлений и объёмов могут ухудшать течение основного заболевания, используют меньшие объёмы – в пределах 6–10 мл/кг.

Частота дыхания (ЧД), как правило, устанавливается в диапазоне 10 – 20 дыханий в минуту. Для пациентов, нуждающихся в большом объёме минутной вентиляции, может потребоваться частота дыхания от 20 до 30 дыханий в минуту. При частоте > 25 удаление углекислого газа (СO2) существенно не улучшается, а частота дыхания > 30 предрасполагает к возникновению газовой ловушки вследствие сокращенного времени выдоха.

Положительное давление в конце выдоха (ПДКВ; см. вопрос 6) на начальном этапе обычно устанавливается невысоким (например, 5 см Н2О) и может быть постепенно увеличено при необходимости улучшения оксигенации. Небольшие значения ПДКВ в большинстве случаев острого повреждения лёгких помогают поддерживать воздушность альвеол, склонных к коллапсу. Современные данные свидетельствуют о том, что невысокое ПДКВ позволяет избежать воздействия противоположно направленных сил, возникающих при повторном раскрытии и спадении альвеол. Эффект от действия таких силы может усугублять повреждение лёгких.

Объёмная скорость вдоха, форма кривой надува и соотношение вдоха и выдоха (I/E) часто устанавливаются врачом респираторной терапии, однако смысл этих установок должен быть также понятен и врачу интенсивной терапии. Пиковая объёмная скорость вдоха определяет максимальную скорость надува, осуществляемого респиратором во время фазы вдоха. На первоначальном этапе удовлетворительным обычно считается поток, равный 50–80 л/мин. Соотношение I/E зависит от установленного минутного объёма и потока. При этом, если время вдоха определяется потоком и ДО, то время выдоха – потоком и частотой дыхания. В большинстве ситуаций оправдано соотношение I:E от 1/2 до 1/3. Однако пациенты с ХОЗЛ могут нуждаться даже в более продолжительном времени выдоха для его адекватного осуществления.

Снижения I:E можно добиться увеличением скорости надува. При этом высокая скорость вдоха может увеличивать давление в дыхательных путях, а иногда ухудшать распределение газа. При более медленном потоке возможно снижение давления в дыхательных путях и улучшение распределения газа за счёт роста I:E. Увеличенное (или «обратное», как будет упоминаться ниже) отношение I:E повышает Рaw, а также усиливает побочные проявления со стороны сердечно-сосудистой системы. Укороченное время выдоха плохо переносится при обструктивных заболеваниях дыхательных путей. Кроме прочего, тип или форма кривой надува имеют незначительное влияние на вентиляцию. Постоянный поток (прямоугольная форма кривой) обеспечивает надув с установленной объёмной скоростью. Выбор нисходящей или восходящей кривой надува может приводить к улучшению распределения газа при росте давления в дыхательных путях. Пауза на вдохе, замедление выдоха и периодические удвоенные по объёму вдохи – всё это также можно установить.

6. Объясните, что такое ПДКВ. Как подобрать оптимальный уровень ПДКВ?

ПДКВ дополнительно устанавливают при многих типах и режимах вентиляции. В этом случае давление в дыхательных путях в конце выдоха остаётся выше атмосферного. ПДКВ направлено на предотвращение коллапса альвеол, а также восстановление просвета спавшихся в состоянии острого повреждения лёгких альвеол. Функциональная остаточная ёмкость (ФОЕ) и оксигенация при этом увеличиваются. Изначально ПДКВ устанавливают приблизительно на уровне 5 см Н2О, а увеличивают до максимальных значений – 15–20 см Н2О – небольшими порциями. Высокие уровни ПДКВ могут отрицательно сказаться на сердечном выбросе (см. вопрос 8). Оптимальное ПДКВ обеспечивает наилучшую артериальную оксигенацию с наименьшим снижением сердечного выброса и приемлемым давлением в дыхательных путях. Оптимальное ПДКВ соответствует также уровню наилучшего расправления спавшихся альвеол, что можно быстро установить у кровати больного, увеличивая ПДКВ до той степени пневматизации лёгких, когда их растяжимость (см. вопрос 14) начнёт падать.

Отслеживать давление в дыхательных путях после каждого повышения ПДКВ несложно. Давление в дыхательных путях должно расти только пропорционально устанавливаемому ПДКВ. Если давление в дыхательных путях начнёт расти быстрее, чем устанавливаемые значения ПДКВ, это будет указывать на перерастяжение альвеол и превышение уровня оптимального раскрытия спавшихся альвеол. Непрерывное положительное давление (НПД) является формой ПДКВ, реализуемой с помощью дыхательного контура при спонтанном дыхании пациента.

7. Что такое внутреннее или ауто-ПДКВ?

Впервые описанное Pepe и Marini в 1982 г., внутреннее ПДКВ (ПДКВвн) означает возникновение положительного давления и движения газа внутри альвеол в конце выдоха при отсутствии искусственно создаваемого наружного ПДКВ (ПДКВн). В норме объём лёгких в конце выдоха (ФОЕ) зависит от результата противоборства эластической тяги лёгких и упругости грудной стенки. Уравновешивание этих сил в обычных условиях приводит к отсутствию градиента давлений или воздушного потока в конце выдоха. ПДКВвн возникает вследствие двух главных причин. Если ЧД излишне высока или время выдоха слишком укорочено, при ИВЛ здоровым лёгким остаётся недостаточно времени для того, чтобы закончить выдох до начала следующего дыхательного цикла. Это приводит к накапливанию воздуха в лёгких и появлению положительного давления в конце выдоха. Поэтому пациенты, вентилируемые большим минутным объёмом (например, при сепсисе, травме) или с высоким I/E соотношением, имеют угрозу развития ПДКВвн. Эндотрахеальная трубка небольшого диаметра также может затруднять выдох, способствуя ПДКВвн. Другой главный механизм развития ПДКВвн связан с поражением самих лёгких.

Больные с повышенным сопротивлением дыхательных путей и растяжимостью лёгких (например, при астме, ХОЗЛ) имеют высокий риск ПДКВвн. Вследствие обструкции дыхательных путей и связанным с этим затруднением выдоха, такие пациенты склонны испытывать ПДКВвн и при спонтанном дыхании, и при ИВЛ. ПДКВвн обладает теми же побочными эффектами, что и ПДКВн, однако требует в отношении себя большей настороженности. Если респиратор, как это обычно бывает, имеет открытый в атмосферу выход, то единственный способ обнаружения и измерения ПДКВвн заключается в закрытии выходного отверстия выдоха на время мониторинга давления в дыхательных путях. Такая процедура должна стать привычной, особенно в отношении пациентов высокого риска. Лечебный подход опирается на этиологию. Изменение параметров респиратора (наподобие снижения ЧД или увеличения скорости надува со снижением I/E) может создать условия для полного выдоха. Кроме того, может помочь терапия основного патологического процесса (например, с помощью бронходилататоров). У пациентов с ограничением потока выдоха при обструктивном поражении дыхательных путей положительный эффект был достигнут применением ПДКВн, обеспечившим уменьшение газовой ловушки. Теоретически ПДКВн может действовать как распорка для дыхательных путей, позволяющая осуществить полный выдох. Однако, поскольку ПДКВн добавляется к ПДКВвн, могут возникать тяжёлые расстройства гемодинамики и газообмена.

8. Каковы побочные действия ПДКВн и ПДКВвн?

Баротравма – из-за перерастяжения альвеол.
Снижение сердечного выброса, которое может быть обусловлено с несколькими механизмами. ПДКВ повышает внутригрудное давление, вызывая рост трансмурального давления в правом предсердии и падение венозного возврата. Кроме того, ПДКВ ведёт к подъёму давления в лёгочной артерии, что затрудняет выброс крови из правого желудочка. Следствием дилатации правого желудочка может стать пролабирование межжелудочковой перегородки в полость левого желудочка, препятствующее наполнению последнего и способствующее снижению сердечного выброса. Всё это проявит себя гипотонией, особенно тяжёлой у больных с гиповолемией.

В обычной практике срочная эндотрахеальная интубация проводится у пациентов с ХОЗЛ и дыхательной недостаточностью. Такие больные пребывают в тяжёлом состоянии, как правило, несколько дней, в течение которых они плохо питаются и не восполняют потери жидкости. После интубации лёгкие пациентов энергично раздуваются для улучшения оксигенации и вентиляции. Ауто-ПДКВ быстро нарастает, и в условиях гиповолемии возникает тяжёлая гипотония. Лечение (если превентивные меры не увенчались успехом) включает интенсивные инфузии, обеспечение условий для более продолжительного выдоха и устранение бронхоспазма.
Во время ПДКВ возможна также ошибочная оценка показателей сердечного наполнения (в частности, центрального венозного давления или давления окклюзии лёгочной артерии). Давление, передающееся с альвеол на лёгочные сосуды, может приводить к ложному увеличению этих показателей. Чем более податливы лёгкие, тем большее давление передаётся. Поправку можно сделать с помощью эмпирического правила: из измеренной величины давления заклинивания лёгочных капилляров (ДЗЛК) надо вычесть половину величины ПДКВ, превышающей 5 см Н2О.
Перерастяжение альвеол избыточным ПДКВ сокращает кровоток в этих альвеолах, увеличивая мёртвое пространство (МП/ДО).
ПДКВ может увеличивать работу дыхания (при триггерных режимах ИВЛ или при спонтанном дыхании через контур респиратора), поскольку больному придётся создавать большее отрицательное давление для включения респиратора.
К другим побочным эффектам относятся увеличение внутричерепного давления (ВЧД) и задержка жидкости.

9. Опишите типы вентиляции с ограничением по давлению.

Возможность проведения ограниченной по давлению вентиляции – в триггерном (вентиляция с поддерживающим давлением) или принудительном режиме (вентиляция с управляемым давлением) – появилась на большинстве респираторов для взрослых лишь в последние годы. Для вентиляции новорождённых применение режимов с ограничением по давлению является рутинной практикой. При вентиляции с поддерживающим давлением (PSV) пациент начинает вдох, чем вызывает подачу газа респиратором до заданного – призванного увеличить ДО – давления. Искусственный вдох заканчивается после того, как поток на вдохе упадёт ниже предустановленного уровня, обычно – ниже 25% от максимального значения. Обратите внимание, что давление поддерживается до тех пор, пока поток не станет минимальным. Такие характеристики потока хорошо соответствуют требованиям внешнего дыхания пациента, в результате чего режим переносится с бóльшим комфортом. Данный режим спонтанной вентиляции может быть использован у больных, находящихся в терминальном состоянии, для снижения работы дыхания, затрачиваемой на преодоление сопротивления дыхательного контура и увеличение ДО. Поддержка давлением может применяться совместно с режимом IMV или самостоятельно, с ПДКВ или НПД и без них. Кроме того, было доказано, что PSV ускоряет восстановление спонтанного дыхания после ИВЛ.

При вентиляции с управляемым давлением (PCV) фаза вдоха прекращается после достижения заданного максимального давления. Дыхательный объём зависит от сопротивления дыхательных путей и податливости лёгких. PCV может применяться самостоятельно или в комбинации с другими режимами, например, иИВЛ (IRV) (см. вопрос 10). Характерный для PCV поток (высокий начальный с последующим падением), вероятно, обладает свойствами, улучшающими податливость лёгких и распределение газа. Было высказано мнение, что PCV можно использовать в качестве безопасного и удобного для пациента начального режима вентиляции больных с острой гипоксической дыхательной недостаточностью. В настоящее время на рынок стали поступать респираторы, обеспечивающие минимально гарантированный объём при режиме с управляемым давлением.

10. Имеет ли значение при вентиляции пациента обратное соотношение вдоха и выдоха?

Тип вентиляции, обозначаемый акронимом иИВЛ (IRV), применяется с определённым успехом у больных СОЛП. Сам режим воспринимается неоднозначно, поскольку предполагает удлинение времени вдоха свыше обычного максимума – 50% времени дыхательного цикла при прессоциклической или волюметрической вентиляции. По мере увеличения времени вдоха, соотношение I/E становится инвертированным (например, 1/1, 1.5/1, 2/1, 3/1). Большинство врачей интенсивной терапии не рекомендуют превышать соотношение 2/1 из-за возможного ухудшения гемодинамики и риска баротравмы. Хотя и было показано улучшение оксигенации при удлинении времени вдоха, на эту тему не выполнено ни одного проспективного рандомизированного исследования. Улучшение оксигенации может объясняться несколькими факторами: увеличением среднего Рaw (без увеличения пикового Рaw), раскрытием – в результате замедления инспираторного потока и развития ПДКВвн – дополнительных альвеол, имеющих бóльшую временную константу вдоха.

Более медленный поток на вдохе может снижать вероятность развития баро- и волотравмы. Тем не менее, у больных с обструкцией дыхательных путей (например, с ХОЗЛ или астмой), из-за усиления ПДКВвн, данный режим может иметь отрицательное воздействие. Учитывая то, что при иИВЛ больные часто испытывают дискомфорт, может потребоваться их глубокая седация или миорелаксация. В конечном счёте, несмотря на отсутствие неопровержимо доказанных преимуществ метода, следует признать, что иИВЛ может иметь самостоятельное значение в терапии запущенных форм СОЛП.

11. Оказывает ли ИВЛ влияние на различные системы организма, кроме сердечно-сосудистой системы?

Да. Повышенное внутригрудное давление может вызывать или способствовать подъёму ВЧД. В результате длительной назотрахеальной интубации возможно развитие синуситов. Постоянная угроза для больных, находящихся на искусственной вентиляции, заключена в возможности развития госпитальной пневмонии. Достаточно распространёнными являются желудочно-кишечные кровотечения из стрессовых язв, что требует профилактической терапии. Увеличенное образование вазопрессина и сниженный уровень натрийуретического гормона могут привести к задержке воды и соли. Неподвижно лежащие больные, находящиеся в критическом состоянии, подвержены постоянному риску тромбоэмболических осложнений, поэтому здесь вполне уместны профилактические меры. Многие больные нуждаются в седации, а в некоторых случаях – в миорелаксации (см. вопрос 17).

12. Что такое управляемая гиповентиляция с допустимой гиперкапнией?

Управляемая гиповентиляция – это метод, нашедший применение у пациентов, нуждающихся в такой ИВЛ, которая могла бы предотвратить перерастяжение альвеол и возможное повреждение альвеолярно-капиллярной мембраны. Современные данные свидетельствуют, что высокие значения объёмов и давлений могут вызывать или предрасполагать к повреждению лёгких вследствие перерастяжения альвеол. Управляемая гиповентиляция (или допустимая гиперкапния) реализуют стратегию безопасной, ограниченной по давлению вентиляции лёгких, придающей приоритетное значение давлению раздутия лёгких, а не уровню рСО2. Проведённые в связи с этим исследования больных с СОЛП и астматическим статусом показали уменьшение частоты баротравмы, числа дней, потребовавших интенсивной терапии, и летальности. Для поддержания пикового Рaw ниже 35–40 см вод.ст., а статического Рaw – ниже 30 см вод.ст., ДО устанавливают приблизительно в пределах 6–10 мл/кг. Малый ДО оправдан при СОЛП – когда лёгкие поражены негомогенно и вентилироваться способен лишь небольшой их объём. Gattioni и др. описали три зоны в поражённых лёгких: зону ателектазированных патологическим процессом альвеол, зону коллабированных, но ещё способных раскрыться альвеол и небольшую зону (25–30% от объёма здоровых лёгких) способных вентилироваться альвеол. Традиционно задаваемый ДО, существенно превышающий доступный для вентиляции объём лёгких, может вызвать перерастяжение здоровых альвеол и этим усугубить острое повреждение лёгких. Термин «лёгкие ребёнка» был предложен именно в связи с тем, что лишь малая часть объёма лёгких, способна вентилироваться. Вполне допустим постепенный подъём рСО2 до уровня 80–100 мм рт.ст.. Снижение рН ниже 7.20–7.25 может быть устранено введением буферных растворов. Другой вариант – подождать, пока нормально функционирующие почки компенсируют гиперкапнию задержкой бикарбоната. Допустимая гиперкапния обычно хорошо переносится. К возможным неблагоприятным следствиям относится расширение мозговых сосудов, повышающее ВЧД. Действительно, внутричерепная гипертензия является единственным абсолютным противопоказанием для допустимой гиперкапнии. Кроме того, при допустимой гиперкапнии могут встречаться повышенный симпатический тонус, лёгочная вазоконстрикция и сердечные аритмии, хотя все они редко приобретают опасное значение. У пациентов с исходным нарушением функции желудочков может иметь серьёзное значение угнетение сократимости сердца.

13. Какими ещё методами контролируют рСО2?

Существует несколько альтернативных методов контроля рСО2. Пониженное образование СО2 может быть достигнуто глубокой седацией, миорелаксацией, охлаждением (естественно, избегая гипотермии) и снижением количества потребляемых углеводов. Простым методом увеличения клиренса СО2 является трахеальная инсуффляция газа (ТИГ). При этом через эндотрахеальную трубку вводят небольшой (как для проведения отсасывания) катетер, проводя его до уровня бифуркации трахеи. Через этот катетер подают смесь кислорода и азота со скоростью 4–6 л/мин. Это приводит к вымыванию газа мёртвого пространства при неизменных минутной вентиляции и давлении в дыхательных путях. Среднее снижение рСО2 составляет 15%. Данный метод хорошо подходит той категории больных с травмой головы, в отношении которой может быть с пользой применена управляемая гиповентиляция. В редких случаях используют экстракорпоральный метод удаления СО2.

14. Что такое податливость лёгких? Как её определить?

Податливость – это мера растяжимости. Она выражается через зависимость изменения объёма от заданного изменения давления и для лёгких вычисляется по формуле: ДО/(Рaw – ПДКВ). Статическая растяжимость равна 70–100 мл/см вод.ст. При СОЛП она меньше 40–50 мл/см вод.ст. Податливость является интегральным показателем, не отражающим регионарных различий при СОЛП – состоянии, при котором поражённые участки чередуются с относительно здоровыми. Характер изменения податливости лёгких служит полезным ориентиром в определении динамики ОДН у конкретного больного.

15. Является ли вентиляция в положении на животе методом выбора у больных со стойкой гипоксией?

Исследования показали, что в положении на животе у большинства пациентов с СОЛП существенно улучшается оксигенация. Возможно, это связано с улучшением вентиляционно-перфузионных отношений в лёгких. Тем не менее, из-за усложнения сестринского ухода вентиляция в положении на животе не стала привычной практикой.

16. Какого подхода требуют больные, «борющиеся с респиратором»?

Возбуждение, расстройство дыхания или «борьба с респиратором» должны быть серьёзно приняты во внимание, поскольку ряд причин является жизнеугрожаемыми. Для того, чтобы избежать необратимого ухудшения состояния больного, необходимо быстро определиться с диагнозом. Для этого сначала отдельно анализируют возможные причины, связанные с респиратором (аппарат, контур и эндотрахеальная трубка), и причины, относящиеся к состоянию больного. Причины, связанные с состоянием больного, включают гипоксемию, обструкцию дыхательных путей мокротой или слизью, пневмоторакс, бронхоспазм, инфекционные процессы, подобные пневмонии или сепсису, лёгочную эмболию, ишемию миокарда, желудочно-кишечное кровотечение, нарастающую ПДКВвн и беспокойство.

К причинам, связанным с респиратором, относят утечку или разгерметизацию контура, неадекватный объём вентиляции или недостаточную FiO2, проблемы с эндотрахеальной трубкой, включая экстубацию, обструкцию трубки, разрыв или деформацию манжетки, неправильную настройку чувствительности триггера или объёмной скорости вдоха. До тех пор, пока с ситуацией не удалось полностью разобраться, необходимо проводить ручную вентиляцию больного 100% кислородом. Без промедления следует провести аускультацию лёгких и проверить показатели жизненно важных функций (включая данные пульсоксиметрии и СО2 в конце выдоха). Если позволяет время, следует выполнить анализ газов артериальной крови и рентгенографию грудной клетки.

Для контроля проходимости эндотрахеальной трубки и удаления мокроты и слизистых пробок допустимо быстрое проведение катетера для отсасывания через трубку. При подозрении на пневмоторакс с гемодинамическими расстройствами, следует безотлагательно, не дожидаясь рентгенографии грудной клетки, выполнить декомпрессию. В случае адекватной оксигенации и вентиляции пациента, а также стабильной гемодинамики, возможен более тщательный анализ ситуации, а при необходимости – седация больного.

17. Следует ли использовать миорелаксацию для улучшения условий ИВЛ?

Миорелаксация широко используется для облегчения ИВЛ. Это способствует умеренному улучшению оксигенации, снижает пиковое Рaw и обеспечивает лучшую сопряжённость больного и респиратора. А в таких специфических ситуациях, как внутричерепная гипертензия или вентиляция в необычных режимах (например, иИВЛ или экстракорпоральный метод), миорелаксация может приносить ещё большую пользу. Недостатками миорелаксации являются потеря возможности неврологического обследования, утрата кашля, возможность непреднамеренной миорелаксации больного в сознании, многочисленные проблемы, связанные с взаимодействием препаратов и электролитов, и возможность продлённого блока.

Кроме того, нет научных доказательств, что миорелаксация улучшает исходы критических состояний пациентов. Использование миорелаксантов следует хорошо продумать. Пока не выполнена адекватная седация больного, миорелаксацию следует исключить. Если же миорелаксация представляется абсолютно показанной, её следует проводить только после окончательного взвешивания всех за и против. Чтобы избежать продлённого блока, применение миорелаксации, по возможности, следует ограничивать 24–48 часами.

18. Действительно ли есть польза от раздельной вентиляции лёгких?

Раздельная вентиляция лёгких (РИВЛ) представляет собой независимую друг от друга вентиляцию каждого лёгкого обычно с помощью двухпросветной трубки и двух респираторов. Изначально возникшая с целью улучшения условий проведения торакальных операций, РИВЛ была распространена на некоторые случаи в практике интенсивной терапии. Здесь кандидатами для раздельной вентиляции лёгких могут стать пациенты с односторонним поражением лёгких. Показано, что данный вид вентиляции улучшает оксигенацию у пациентов с односторонними пневмониями, отёками и ушибами лёгких.

Защита здорового лёгкого от попадания содержимого поражённого лёгкого, достигаемая изоляцией каждого из них, может стать спасительной для жизни пациентов с массивным кровотечением или абсцессом лёгких. Кроме того, РИВЛ может оказаться полезной у больных с бронхоплевральным свищом. Применительно к каждому лёгкому могут быть установлены индивидуальные параметры вертиляции, включая значения ДО, скорости потока, ПДКВ и НПД. Нет никакой необходимости в синхронизации работы двух респираторов, поскольку, как показывает практика, стабильность гемодинамики лучше достигается при асинхронной их работе.