Главная · Диагностика · Свертывающая система. Свертывающие и противосвертывающие системы крови. Гипокоагуляционный синдром: королевская история

Свертывающая система. Свертывающие и противосвертывающие системы крови. Гипокоагуляционный синдром: королевская история

Свёртывающая система крови (синоним гемокоагуляции)

многоступенчатая ферментная система, при активации которой растворенный в плазме крови подвергается после отщепления краевых пептидов полимеризации и образует в кровеносных сосудах фибринные тромбы, останавливающие .

В физиологических условиях в С. с. к. уравновешены процессы активации и торможения, в результате сохраняется жидкое состояние крови. Локальная активация С. с. к., происходящая в местах кровеносных сосудов, способствует остановке кровотечения. Активация С. с. к. в сочетании с агрегацией клеток крови (тромбоцитов, эритроцитов) играет существенную роль в развитии локального тромбоза при нарушениях гемодинамики и реологических свойств крови, изменениях ее вязкости, воспалительных (например, при васкулитах) и дистрофических изменениях стенок кровеносных сосудов. Множественный рецидивирующий у лиц молодого и среднего возраста может быть связан с врожденными (наследственными) аномалиями С. с. к. и системы фибринолиза, в первую очередь со снижением активности основных физиологических антикоагулянтов (антитромбина III, белков С и S и др.), необходимых для поддержания циркулирующей крови в жидком состояния.

Нарушение показаний всех коагуляционных тестов, включая тромбиновое время, характерно для тромбогеморрагического синдрома, наследственных гипо- и дисфибриногенемий, хронических поражений печени. При дефиците фактора XIII всех коагуляционных тестов остаются нормальными, но растворяется в 5-7 М мочевине.

Нарушения свертываемости крови, характеризующиеся склонностью к рецидивирующим тромбозам сосудов и инфарктам органов, чаще связаны с наследственным или вторичным (симптоматическим) дефицитом антитромбина III - основного инактиватора всех ферментных факторов свертывания крови и кофактора гепарина, белков С и S (блокаторов активированных факторов VIII и V), дефицитом компонентов фибринолитической (дефицит плазминогена и его эндотелиального активатора и др.) и калликреин-кининовой системы (дефицит плазменного прекалликрениа и высокомолекулярного кининогена), редко с дефицитом фактора XII и аномалиями фибриногена. Причиной тромбофилии могут быть и гиперагрегация тромбоцитов, дефицит простациклина и других ингибиторов агрегации тромбоцитов. Вторичное указанных выше механизмов поддержания жидкого состояния крови может быть обусловлено интенсивным расходом физиологических антикоагулянтов. Склонность к тромбозам усиливается при повышении вязкости крови, что определяется методом вискозиметрии, а также по увеличению гематокритного показателя, повышенному содержанию в плазме крови фибриногена.

Основной принцип лечения нарушений свертываемости крови заключается в быстром (струйном) внутривенном введении препаратов, содержащих недостающие факторы свертывания крови (криопреципитат при гемофилии А и болезни Виллебранда; протромбиновый комплекс или PPSB - комплекс II, VII, IX и Х факторов свертывания крови при дефиците факторов IX, VII, Х и II, в т.ч. при геморрагической болезни новорожденных, передозировке антикоагулянтов непрямого действия; концентратов отдельных факторов свертывания крови, антикоагулянтов, компонентов фибринолитической системы). Комплексное замещение различных компонентов крови достигается также массивным (до 1 л и более) струйным введением свежезамороженной или свежей нативной (сроком хранения до 1 сут.) донорской плазмы. Для стимуляции синтеза витамин-К-зависимых факторов парентерально вводят препараты витамина К, для подавления фибринолиза - аминокапроновую кислоту и другие антифибринолитики, для нейтрализации гепарина - протамина сульфат. Заместительная показана при проведении оперативных вмешательств, для предупреждения кровопотери в родах и др.

Библиогр.: Балуда В.П. и др. Лабораторные методы исследования системы гемостаза, Томск, 1980; Баркаган З.С. Геморрагические заболевания и синдромы, с. 63, М., 1988; Люсов В.А., Белоусов Ю.Б. и Бохарев И.Н. тромбозов и в клинике внутренних болезней, М., 1976; Фермилен Ж. и Ферстрате М. , пер. с англ., М., 1984; Они же, Тромбозы, пер. с англ., М., 1986, библиогр.

трансформация неактивного фактора в активный, тонкие стрелки - активация процесса, пунктирные линии - процесса. ВМК - высокомолекулярный кининоген, 3 пф - 3-й фактор тромбоцитов (фосфолипидные матрицы)">

Схема свертывания крови. Обозначения: толстые стрелки - трансформация неактивного фактора в активный, тонкие стрелки - активация процесса, пунктирные линии - торможение процесса. ВМК - высокомолекулярный кининоген, 3 пф - 3-й фактор тромбоцитов (фосфолипидные матрицы).


1. Малая медицинская энциклопедия. - М.: Медицинская энциклопедия. 1991-96 гг. 2. Первая медицинская помощь. - М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. - М.: Советская энциклопедия. - 1982-1984 гг . - (греч. haimorrhagia кровотечение) группа болезней и патологических состояний наследственного или приобретенного характера, общим проявлением которых является геморрагический синдром (склонность к рецидивирующим интенсивным длительным, чаще всего… … Медицинская энциклопедия

I (sanguis) жидкая ткань, осуществляющая в организме транспорт химических веществ (в т.ч. кислорода), благодаря которому происходит интеграция биохимических процессов, протекающих в различных клетках и межклеточных пространствах, в единую системуМедицинская энциклопедия

I Гемостаз (haemostasis; греч. haima кровь + stasis стояние) комплекс реакций организма, направленных на предупреждение и остановку кровотечений. В клинической практике термин «гемостаз» используют также для обозначения лечебных мероприятий,… … Медицинская энциклопедия - I Коагулограмма (лат. coagulum свертывание + греч. gramma черта, изображение) графическое изображение или цифровое выражение результатов исследования свертывающей системы крови, в более широком смысле всей системы гемостаза (сосудисто… … Медицинская энциклопедия

I Кальций (Calcium, Са) химический элемент II группы периодической системы химических элементов Д.И. Менделеева; относится к щелочноземельным металлам, обладает высокой биологической активностью. Атомный номер кальция 20, атомная масса 40,08. В… … Медицинская энциклопедия

Нормальное состояние крови в кровеносном русле обеспечивается деятельностью трех систем:

1) свертывающей;

2) противосвертывающей;

3) фибринолитической.

Процессы свертывания (коагуляции), противодействия свертыванию (антикоагуляции) и фибринолиза (растворения образовавшихся тромбов) находятся в состоянии динамического равновесия. Нарушение существующего равновесия может стать причиной патологического тромбообразования или, наоборот, кровоточивости.

Нарушения гемостаза — нормального функционирования указанных систем — наблюдается при многих заболеваниях внутренних органов: ишемической болезни сердца, ревматизме, сахарном диабете, заболеваниях печени, злокачественных новообразованиях, острых и хронических заболеваниях легких и др. Многие врожденные и приобретенные заболевания крови сопровождаются повышенной кровоточивостью. Грозным осложнением воздействия на организм ряда экстремальных факторов является ДВС-синдром (синдром диссеминированного внутрисосудистого свертывания крови).

Свертывание крови является жизненно важным физиологическим приспособлением, направленным на сохранение крови в пределах сосудистого русла. Образование сгустка (тромба) при нарушении целостности сосуда должно рассматриваться как защитная реакция, направленная на предохранение организма от кровопотери.

В механизме образования кровоостанавливающего тромба и патологического тромба, закупоривающего мозговой сосуд или сосуд, питающий мышцу сердца, много общего. Справедливо высказывание известного отечественного гематолога В. П. Балуды: «Образование гемостатического тромба в сосудах перерезанной пуповины — первая защитная реакция новорожденного организма. Патологический тромбоз — нередкая непосредственная причина смерти больного при ряде заболеваний».

Тромбоз коронарных (питающих мышцу сердца) и мозговых сосудов как следствие повышения активности свертывающей системы — одна из ведущих причин смертности в Европе и США.

Процесс свертывания крови — тромбообразование — чрезвычайно сложен.

Сущность тромбоза (греч. thrombos — сгусток, свернувшаяся кровь) заключается в необратимой денатурации белка фибриногена и форменных элементов (клеток) крови. В тромбообразовании принимают участие самые разнообразные вещества, находящиеся в тромбоцитах, плазме крови, сосудистой стенке.

Весь процесс свертывания можно представить как цепь взаимосвязанных реакций, каждая из которых заключается в активации веществ, необходимых для следующего этапа.

Выделяют плазменный и сосудисто-тромбоцитар-ный гемостаз. В последнем самое активное участие принимают тромбоциты.

Тромбоциты — кровяные пластинки — мелкие безъядерные неправильно округлой формы клетки крови. Диаметр их составляет 1-4 мкм, а толщина 0,5-0,75 мкм. Они образуются в костном мозге путем отщепления участков вещества гигантских клеток — мегакариоцитов. Тромбоциты циркулируют в крови в течение 5-11 дней, а затем разрушаются в печени, легких, селезенке.

Кровяные пластинки различаются по форме, степени зрелости; в 1 мкл крови их содержится 200-400 тысяч.

Тромбоциты содержат биологически активные вещества (в частности, гистамин и серотонин), ферменты. Выделяют 11 факторов свертывания крови, находящихся в тромбоцитах.

3.1. Тромбоцитарно-сосудистый гемостаз

Характеризуется целым рядом последовательных фаз. Повреждение сосудистой стенки, обнажение ее внутренних структур способствуют адгезии и агрегации тромбоцитов (адгезия — свойство тромбоцитов прилипать к поврежденной внутренней поверхности сосуда; агрегация — свойство тромбоцитов при повреждении сосуда менять форму, набухать, соединяться в агрегаты). В эту фазу выделяются биологически активные вещества, которые вызывают сужение сосуда, уменьшая размер повреждения, усиливают адгезию и агрегацию тромбоцитов. Образуется первичный рыхлый тромбацитарный тромб (тромбоцитарная «гемостатическая пробка») — рис. 2.

ПОВРЕЖДЕНИЕ ВНУТРЕННЕЙ ПОВЕРХНОСТИ СОСУДА

АДГЕЗИЯ ТРОМБОЦИТОВ

АКТИВАЦИЯ ТРОМБОЦИТОВ

АГРЕГАЦИЯ ТРОМБОЦИТОВ

ПЕРВИЧНЫЙ ТРОМБОЦИТАРНЫЙ ТРОМБ

Рис. 2. Схема тромбоцитарно-сосудистого гемостаза

3.2. Плазменный гемостаз

Плазменный гемостаз представляет собой каскад последовательных превращений, происходящих в плазме крови с участием 13 факторов свертывания (табл. 3). Факторы свертывания согласно международной классификации обозначены римскими цифрами.

Большинство факторов свертывания крови — вещества белковой природы, образующиеся в печени. Их недостаток может быть связан с нарушением функции печени.

Основные фазы процесса:

    1) образование тромбопластина;
    2) образование тромбина;
    3) образование фибрина.

Первая фаза — образование и высвобождение тромбопластина (тромбокиназы) — весьма активного фермента.

Различают тканевой (внешний) тромбопластин, выделяющийся из клеток поврежденного сосуда и тканей, и кровяной (внутренний), освобождающийся при разрушении тромбоцитов.

Вторая фаза — образование тромбина. Последний образуется при взаимодействии протромбина и тромбопластина с обязательным участием ионов кальция и других факторов свертывающей системы.

Тромбин, расщепляя фибриноген, превращает его в нерастворимый белок фибрин. Это и есть третья фаза свертывания крови.

Нити фибрина, выпадая в осадок, образуют густую сеть, в которой «запутываются» клетки крови, прежде всего эритроциты.

Сгусток приобретает красный цвет. Тромбин, кроме того, активирует XIII фактор свертывания крови (фибринстабилизирующий), который связывает нити фибрина, укрепляя тромб.

3.3. Противосвертывающая система

Включает следующие основные компоненты:

Простациклин (тормозит адгезию и агрегацию тромбоцитов);

Антитромбин III (активирует тромбин и другие факторы свертывания крови);

Гепарин (препятствует образованию кровяного тромбопластина, сдерживает превращение фибриногена в фибрин).

3.4. Фибринолитическая система

Эта система разрушает фибрин. Основным компонентом ее является плазмин (фибринолизин), который образуется из плазминогена под действием тканевого активатора плазминогена (ТАП).

Плазмин расщепляет фибрин на отдельные фрагменты — продукты деградации фибрина (ПДФ).

В дальнейшем тромб, остановивший кровотечение, подвергается ретракции (сжатию) и лизису (растворению).

Патологическое тромбообразование в сосудах мозга, коронарных артериях нередко приводит к инсульту, инфаркту миокарда.

Тромбоз вен нижних конечностей может осложниться отрывом тромба и занесением его током крови в сосудистую систему легких — тромбоэмболией легочной артерии (ТЭЛА).

Для распознавания нарушений в системе свертывания крови существует различные лабораторные методы исследования.

Таблица 3

Факторы свертывания крови (плазменные)

Название фактора

Свойства и функции

Фибриноген

Белок. Под влиянием тромбина превращается в фибрин

Протромбин

Белок. Синтезируется в печени при участии витамина К

Тромбопластин (тромбокиназа)

Протеолитический фермент. Превращает протромбин в тромбин

Ионы кальция

Потенцируют большинство факторов свертывания крови

Проакцелерин

Акцелерин

Потенцирует превращение протромбина в тромбин

Проконвертин

Синтезируется в печени при участии витамина К. Активирует тканевой тромбопластин

Антигемофильный глобулин А

Фактор Кристмаса

Участвует в образовании тканевого тромбопластина

Фактор Стюарта -Прауэра (тромботропин)

Участвует в образовании тромбина, кровяного и тканевого тромбопластина

Предшественник плазменного тромбопластина

Участвует в образовании плазменного тромбопластина

Фактор Хагемана (фактор контакта)

Начинает и локализует тромбообразование

Фибринстабилизирующий фактор

Переводит нестабильный фибрин в стабильный

Для распознавания нарушений в системе свертывания крови существуют различные лабораторные методы исследования.

3.5. Исследования, характеризующие свертывающую систему крови

3.5.1. Исследования, характеризующие сосудисто-тромбоцитарную фазу гемостаза

В течение сосудисто-тромбоцитарной фазы гемостаза (см. выше) образуется тромбоцитарная гемостатическая пробка. Определение времени (длительности) кровотечения позволяет составить общее представление об этом процессе.

Чаще всего время кровотечения определяют прокалывая скарификатором (лабораторным инструментом для взятия крови) мочку уха на глубину 3,5 мм. Фильтровальной бумажкой каждые 20-30 сек снимают капли крови выступающие после прокола. У здоровых людей появление новых капель заканчивается через 2-4 мин после укола. Это и есть время (длительность) кровотечения.

Удлинение времени кровотечения в основном связано с уменьшением количества тромбоцитов или с их функциональной неполноценностью, с изменением проницаемости сосудистой стенки. Этот вид нарушений наблюдается при некоторых заболеваниях крови — наследственных и приобретенных тромбоцитопениях и тромбоцитопатиях (заболеваниях, при которых количество тромбоцитов уменьшено или нарушены их свойства). Некоторые лекарственные препараты (ацетилсалициловая кислота, гепарин, стрептокиназа) также могут увеличить продолжительность кровотечения.

Определение абсолютного количества тромбоцитов в единице объема крови проводится подсчетом клеток под микроскопом с помощью специального устройства — камеры Горяева. Нормальное содержание тромбоцитов в периферической крови составляет 200-400 х 10 9 /л.

Уменьшение количества тромбоцитов — тромбоцитопения — наблюдается при многих заболеваниях крови (тромбоцитопеническая пурпура, малокровие, связанное с дефицитом витамина В 12 , острые и хронические лейкозы), а также при циррозе печени, злокачественных новообразованиях, заболеваниях щитовидной железы, длительно протекающих воспалительных процессах.

Ряд вирусных инфекций (корь, краснуха, ветряная оспа, грипп) могут вызвать временное уменьшение числа тромбоцитов.

Тромбоцитопения может развиться при приеме ряда лекарственных веществ: левомицетина, сульфаниламидов, ацетилсалициловой кислоты, противоопухолевых препаратов. Длительный прием этих медикаментов должен осуществляться под контролем содержания тромбоцитов в крови. Незначительное снижение числа тромбоцитов отмечено у женщин в предменструальном периоде.

Некоторые заболевания могут сопровождаться повышением содержания тромбоцитов в периферической крови — тромбоцитозом .

К ним относятся лимфогранулематоз, злокачественные опухоли, в частности рак желудка, рак почки, некоторые лейкозы, состояние после массивных кровопотерь, удаления селезенки.

Как было указано выше, адгезия и агрегация тромбоцитов — важнейшие этапы в образовании первичной гемостатической пробки. В лабораторных условиях определяют индекс адгезивности (слипчивости) тромбоцитов, в норме равный 20-50%, и агрегацию тромбоцитов — спонтанную и индуцированную.

У здоровых людей спонтанная агрегация отсутствует или выражена незначительно. Спонтанная агрегация повышена при атеросклерозе, тромбозах, пред-тромботических состояниях, инфаркте миокарда, нарушениях жирового обмена, сахарном диабете.

Изучение индуцированной агрегации тромбоцитов может быть использовано для более тонкого дифференцирования ряда заболеваний крови.

Ацетилсалициловая кислота, пенициллин, индометацин, делагил, мочегонные препараты (в частности, фуросемид в больших дозах) способствуют снижению агрегации тромбоцитов, что нужно учитывать при лечении этими препаратами.

Кровь при свертывании образует сгусток, который, сокращаясь, выделяет сыворотку. О ретракции кровяного сгустка судят по количеству выделившейся сыворотки. Степень ретракции (сжатия) сгустка выражают индексом ретракции, в норме равном 0,3-0,5.

Уменьшение индекса ретракции наблюдается при уменьшении количества тромбоцитов и их функциональной неполноценности.

Свойства стенок мельчайших сосудов (капилляров) проверяются специальными тестами. Для суждения о резистентности (устойчивости) капилляров используется манжеточная проба Румпеля-Лееде-Кончаловского и ее упрощенные варианты — проба жгута, симптом щипка.

Для выполнения пробы на плечо больного накладывают манжету аппарата для измерения артериального давления. В течение 10 мин в манжете поддерживается давление, на 10-15 мм рт.ст. выше минимального артериального давления испытуемого. Появление мелких точечных кровоизлияний (петехий) расценивается как положительный результат пробы.

Положительная проба Румпеля—Лееде—Конча-ловского указывает на повышенную хрупкость капилляров и наблюдается при васкулитах (воспалительных заболеваниях сосудов), сепсисе (заражении крови), ревматизме, инфекционном эндокардите, скарлатине, сыпном тифе, авитаминозе С (цинге).

На плечо больного может быть наложен жгут (симптом жгута). Симптом щипка заключается в появлении на коже подключичной области петехий или кровоподтека после щипка. Отрицательной стороной этих проб является субъективность определения степени сдавливания кожи жгутом или пальцами исследователя.

3.5.2. Исследования, характеризующие плазменную фазу гемостаза

Исследование времени свертывания крови характеризует функциональное состояние свертываемости в целом. Активация XII фактора (см. табл. 3) запускает каскад превращений профермент — фермент, причем каждый фермент активирует следующий до тех пор, пока не будет достигнута конечная цель — образование фибрина.

Описано более 30 методов определения времени свертывания крови, поэтому нормы свертываемости колеблются от 2 до 30 мин. В качестве унифицированных используются два метода: метод Сухарева (норма от 2 до 5 мин), метод Ли-Уайта (норма от 5 до 10 мин).

Свертываемость крови понижается при ряде заболеваний печени, апластической анемии — малокровии, связанном с подавлением кроветворной функции костного мозга.

Резкое понижение свертываемости крови наблюдается при гемофилии — время свертывания крови может увеличиваться до 60-90 мин.

Гемофилия врожденное заболевание, связанное с отсутствием VIII или IX факторов свертывания крови (гемофилия А или гемофилия В). Заболевание характеризуется повышенной кровоточивостью. Малейшая ранка может стоить больному жизни. Носителями гена болезни являются женщины, а болеют ею только мужчины. Гемофилия оказалась семейной болезнью королевских домов Европы (в том числе России). Из 69 сыновей, внуков и правнуков английской королевы Виктории 10 страдали гемофилией.

Время свертывания крови увеличивается при использовании антикоагулянтов (противосвертывающих веществ), в частности гепарина. Тест используется наряду с определением АЧТВ (см. ниже) в качестве экспресс-метода при лечении гепарином. Допускается удлинение времени свертывания крови в 1,5-2 раза.

Уменьшение времени свертывания крови указывает на гиперкоагуляцию и может наблюдаться после массивных кровотечений, в послеоперационном, послеродовом периоде. Контрацептивные средства (инфекундин, бисекурин, ричевидон и др.) усиливают процессы коагуляции, что проявляется ускорением свертывания крови.

Время рекальцификации плазмы — это время, необходимое для образования сгустка фибрина в плазме. Определение проводится в плазме, стабилизированной раствором цитрата натрия. Добавление к плазме хлорида кальция восстанавливает ее коагуляционную (свертывающую) способность. Время рекальцификации плазмы характеризует процесс свертывания в целом и у здорового человека колеблется в пределах 60-120 сек. Изменения времени рекальцификации плазмы наблюдается при тех же клинических состояниях, что и изменения времени свертывания крови.

Толерантность (устойчивость) плазмы к гепарину , характеризуя состояние свертывающей системы в целом, является в то же время косвенным показателем содержания тромбина. Исследование состоит в определении времени образования сгустка фибрина в плазме, к которой добавлены гепарин и раствор хлорида кальция. У здорового человека это время равно 7-15 мин. Если образование сгустка происходит за период, превышающий 15 мин, то говорят о пониженной толерантности (устойчивости) плазмы к гепарину.

Понижение толерантности плазмы к гепарину может зависеть от дефицита факторов V, VIII, X, XI, XII (см. табл. 3) и наблюдается при заболеваниях печени (гепатит, цирроз), а также при использовании антикоагулянтов (гепарин, фенилин, варфарин).

Образование сгустка за более короткий период (менее чем за 7 мин) свидетельствует о повышенной толерантности плазмы к гепарину и отмечается при наклонности к гиперкоагуляции (повышенной свертываемости крови).

Состояние гиперкоагуляции наблюдается при сердечной недостаточности, предтромботических состояниях, в последние месяцы беременности, в послеоперационном периоде, при злокачественных новообразованиях.

Активированное частичное (парциальное) тромбопластиновое время (АЧТВ или АПТВ) — чувствительный метод, выявляющий плазменные дефекты образования тромбопластина (см. табл. 3). АЧТВ — время, необходимое для образования сгустка фибрина в плазме, бедной тромбоцитами. Использование бестромбоцитной плазмы исключает влияние тромбоцитов.

Пределы колебания АЧТВ у здорового взрослого человека равны 38-55 сек.

Удлинение АЧТВ свидетельствует о гипокоагуляции — снижении свертывающих свойств крови. Чаще всего это зависит от дефицита факторов И, V, VIII, IX, XI, XII свертывания крови при врожденных коагулопатиях. Коагулопатиями обозначаются заболевания и состояния, связанные с нарушением свертывания крови.

На свойстве АЧТВ удлиняться при избытке в крови гепарина основано применение этого теста для контроля за состоянием свертывающей системы при терапии гепарином. При внутривенном капельном введении гепарина скорость вливания подбирают таким образом, чтобы поддерживать АЧТВ на уровне, в 1,5-2,5 раза превышающем исходный.

При подкожном введении гепарина его дозу также подбирают с учетом АЧТВ, которое определяют за 1 ч до очередного введения гепарина. И если АЧТВ окажется удлиненным более чем в 2,5 раза по сравнению с исходным, то снижают дозу препарата или увеличивают интервал между введениями.

Следует иметь в виду, что АЧТВ подвержено значительным суточным колебаниям. Максимальные значения АЧТВ наблюдаются в ранние утренние часы, минимальные — к концу дня.

Протромбиновое время — время образования сгустка фибрина в плазме при добавлении к ней хлорида кальция и тканевого стандартизированного тромбопластина. Протромбиновое время характеризует активность так называемого протромбинового комплекса (факторов V, VII, X и собственно протромбина — фактора II). Результат исследования выражают в секундах (протромбиновое время), которое в норме равно 11-15 сек. Чаще вычисляют протромбиновый индекс , сравнивая протромбиновое время здорового человека (стандартные серии тромбопластина) с протромбиновым временем обследуемого.

В норме пределы колебания протромбинового индекса равны 93-107% или в единицах системы СИ — 0,93-1,07.

Снижение протромбинового индекса говорит о снижении свертывающих свойств крови.

В связи с тем, что синтез факторов протромбинового комплекса происходит в клетках печени, при заболеваниях последней количество их снижается и протромбиновый индекс в определенной степени может служить показателем функционального состояния печени.

Для образования факторов протромбинового комплекса необходим витамин К. При его дефиците, нарушении всасывания витамина в кишечнике при энтероколитах, дисбактериозе протромбиновый индекс также может снижаться.

Антагонистами витамина К являются противосвертывающие вещества непрямого действия (фенилин, синкумар, варфарин). Терапия этими препаратами должна контролироваться исследованием протромбинового времени или протромбинового индекса.

Большие дозы ацетилсалициловой кислоты, диуретики типа гипотиазида вызывают снижение протромбинового индекса, что должно учитываться при применении этих препаратов одновременно с фенилином, синкумаром.

Увеличение протромбинового индекса говорит о повышении свертывающих свойств крови и наблюдается в предтромботическом состоянии, в последние месяцы беременности, а также при приеме противозачаточных препаратов типа инфекундина, бисекурина.

Нормальное значение протромбинового времени зависит от применяемых для исследования тканевых тромбопластинов. Более стандартизированным тестом является международное нормализационное отношение (MHO) . В большинстве случаев при лечении противосвертывающими препаратами (антикоагулянтами) непрямого действия достаточно добиться увеличения MHO в пределах от 2 до 3, что соответствует увеличению протромбинового времени в 1,3-1,5 раза по сравнению с исходным значением (или, соответственно, снижению протромбинового индекса).

Концентрация фибриногена . Фибриноген (плазменный фактор I) синтезируется главным образом клетками печени. В крови он находится в растворенном состоянии и под влиянием тромбина превращается в нерастворимый фибрин. В норме концентрация фибриногена в крови, определяемая унифицированным методом Рутберга, составляет 2-4 г/л (200-400 мг%).

Повышение концентрации фибриногена говорит о гиперкоагуляции (повышенной свертываемости крови) и наблюдается при инфаркте миокарда, предтромботических состояниях, при ожогах, в последние месяцы беременности, после родов, хирургических вмешательств.

Отмечено увеличение концентрации фибриногена при воспалительных процессах (в частности, при воспалении легких), злокачественных новообразованиях (рак легкого).

Тяжелые заболевания печени с выраженными нарушениями ее функции сопровождаются гипофибриногенемией — снижением концентрации фибриногена в крови.

3.5.3. Исследование фибринолитического звена гемостаза

Фибринолитическая активность . После того как сгусток фибрина (тромб) образовался, уплотнился и сократился, начинается сложный ферментативный процесс, ведущий к его растворению. Этот процесс (фибринолиз) происходит под воздействием плазмина, который находится в крови в виде неактивной формы — плазминогена. Переход плазминогена в плазмин стимулируют активаторы плазменного, тканевого и бактериального происхождения. Тканевые активаторы образуются в ткани предстательной железы, легких, матки, плаценты, печени.

Об активности фибринолиза судят по быстроте растворения сгустка фибрина. Естественный лизис, определенный методом Котовщиковой, равен 12-16% сгустка; определенный более сложным методом лизиса эуглобулинового сгустка — 3-5 ч.

Если растворение сгустка ускорено, это свидетельствует о склонности к кровоточивости, если удлинено — о предтромботическом состоянии.

Повышение фибринолитической активности отмечается при поражении органов, богатых активаторами плазминогена (легкие, предстательная железа, матка), и при хирургических вмешательствах на этих органах.

Снижение фибринолитической активности наблюдается при инфаркте миокарда, злокачественных опухолях, в частности раке желудка.

О чем говорят анализы. Секреты медицинских показателей – для пациентов Евгений Александрович Гринь

4. Свертывающая система крови

4. Свертывающая система крови

Свертывающая система крови – это одна из наиболее важных защитных систем организма, которая обеспечивает сохранность крови в сосудистой системе, а также предотвращает гибель организма от кровопотери при нарушении целостности сосудов при травме.

Рис. 15. Так выглядит артерия изнутри

Науке на современном этапе ее развития известно, что в остановке кровотечения принимают участие два механизма:

Клеточный, или сосудисто-тромбоцитарный.

Плазменный, коагуляционный.

Следует иметь в виду, что деление реакций гемостаза на клеточный и плазменный является условным, т. к. два этих механизма свертывающей системы неразрывно связаны и отдельно друг от друга функционировать не могут.

Процесс свертывания крови осуществляется при многостадийном взаимодействии плазменных белков на фосфолипидных мембранах, именуемых факторами свертывания крови. Эти факторы обозначаются римскими цифрами. В случае же их перехода в активированную форму к номеру фактора добавляют маленькую букву «а».

Чтобы как следует разобраться, необходимо знать, что же входит в состав этих факторов.

Их всего 12:

I – фибриноген. Его синтез происходит в печени, а также в костном мозге, селезенке, лимфатических узлах и других клетках ретикулоэндотелиальной системы. Разрушение фибриногена происходит в легких под действием специального фермента – фибриногеназы. В норме в плазме содержится 2–4 г/л. Минимальное же количество, необходимое для гемостаза, составляет всего 0,8 г/л.

II – протромбин. Протромбин образуется в печени с помощью витамина К. При эндогенном или экзогенном дефиците витамина К происходит снижение количества протромбина или же нарушается его функциональность. Это ведет к образованию неполноценного протромбина. В плазме его содержится всего 0,1 г/л, но скорость свертывания крови нарушается только при снижении протромбина до 40 % от нормы и ниже.

III – тканевой тромбопластин. Это не что иное как термостабильный липопротеид, который содержится во многих органах (в легких, мозге, сердце, почках, печени и скелетных мышцах). Особенностью тканевого тромбопластина является то, что он находится в тканях не в активном состоянии, а лишь в роли предшественника – протромбопластина.

Тканевой тромбопластин, взаимодействуя с факторами IV и VII, может активировать плазменный фактор X, а также принимает участие во внешнем пути формирования комплекса факторов, которые протромбин преобразовывает в тромбин, т. е. протромбиназы.

IV – ионы кальция. В норме содержание этого фактора в плазме равно 0,09-0,1 г/л. Из достоинств фактора IV следует отметить то, в принципе невозможен его расход, и процессы свертывания не нарушаются даже при снижении концентрации кальция. Ионы кальция также участвуют во всех трех фазах свертывания крови.

V – проакцелерин, плазменный AC-глобулин, или лабильный фактор. Этот фактор образуется в печени, но от других печеночных факторов (II,VII, X) его отличает то, что он не зависит от витамина K. В плазме его содержится всего 0,01 г/л.

VI – акцелерин, или сывороточный AC-глобулин. Является активной формой фактора V.

VII – проконвертин. Образуется в печени при участии витамина К. Содержится в плазме всего 0,005 г/л.

VIII – антигемофильный глобулин А. Синтез его происходит в печени, селезенке, клетках эндотелия, почках, лейкоцитах. Его содержание в плазме колеблется в пределах 0,01-0,02 г/л. Принимает участие во внутреннем пути формирования протромбиназы.

IX – фактор Кристмаса, антигемофильный глобулин В. Синтезируется в печени также при участии витамина K и его количество в плазме составляет 0,003 г/л. Активно принимает участие во внутреннем пути формирования протромбиназы.

X – фактор Стюарта-Прауэра. Образуется в неактивном состоянии в печени, а затем активируется трипсином и ферментом из яда гадюки. Также зависим от витамина K. Участвует в образовании протромбиназы. Содержание в плазме составляет всего 0,01 г/л.

XI – фактор Розенталя. Этот фактор синтезируется в печени, а также является антигемофильным фактором и плазменным предшественником тромбопластина. Содержание фактора Розенталя в плазме составляет примерно 0,005 г/л.

XII – фактор контакта, фактор Хагемана. Образуется также в печени в неактивном состоянии. Содержание в плазме всего 0,03 г/л.

XIII Фибринстабилизирующий фактор, фибриназа, плазменная трансглутаминаза. Принимает участие в формировании плотного сгустка.

Также не стоит забывать и о вспомогательных факторах:

Фактор Виллебранда, который является антигеморрагическим сосудистым фактором. Он выполняет роль белка-носителя для антигемофильного глобулина А.

Фактор Флетчера – плазменный прекалликреин. Принимает участие в активации плазминогена, факторов IX и XII, а также переводит кининоген в кинин.

Фактор Фитцджеральда – плазменный кининоген (фактор Фложека, фактор Вильямса). Активно принимает участие в активации плазминогена и фактора XII.

Для нормального состояния крови бесперебойно должны работать три системы:

1. Свертывающая.

2. Противосвертывающая.

3. Фибринолитическая.

И эти три системы находятся в состоянии динамического равновесия. Нарушение этого равновесия может привести, как к неостанавливаемым кровотечениям, так и к тромбофилиям.

Так, наследственный или приобретенный дефицит компонентов фибринолитической системы и первичных антикоагулянтов может стать причиной развития тромбофилических состояний, которые характеризуются склонностью к многочисленно повторяющимся тромбозам. Наиболее часто приобретенные формы тромбофилии вызваны:

Во-первых, повышенным потреблением антикоагулянтов или компонентов фибринолитической системы, которое сопровождается массивным внутрисосудистым свертыванием крови;

Во-вторых, проведением интенсивной противосвертывающей и фибринолитической терапии, которая ускоряет метаболизм тех же антикоагулянтов или компонентов фибринолитической системы. В данной ситуации, чтобы восполнить недостаток факторов крови, проводят внутривенное введение их концентратов или переливание свежезамороженной плазмы.

Нарушение свертываемости крови, которое характеризуется склонностью к часто повторяющимся тромбозам сосудов и инфарктам органов, также очень часто связывают с наследственным или симптоматическим недостатком антитромбина III, компонентов фибринолитической и калликреин-кининовой системы, а также с нехваткой фактора XII и аномалиями фибриногена.

К причинам тромбофилий относят гипперагрегацию тромбоцитов, а также недостаток простациклина и прочих блокираторов агрегации тромбоцитов.

С другой стороны, существует определенное состояние, при котором наоборот происходит снижение свертываемости крови. Данное состояние получило название – гипокоагуляция. Ее появление связывают:

С недостатком одного или нескольких факторов свертывания крови.

С появлением в кровотоке антител к факторам свертывания крови. Наиболее часто происходит угнетение факторов V, VIII, IX, а также фактора Виллебранда.

С действием противосвертывающих и тромболитических препаратов.

С ДВС-синдромом (синдромом диссеминированного внутрисосудистого свертывания крови.

Что касается наследственных заболеваний, при которых происходит нарушение свертываемости крови, то в большинстве случаев они представлены гемофилией A и B, а также болезнью Виллебранда. Для этих болезней свойственна кровоточивость, возникающая еще в детском возрасте, причем у мужчин кровоточивость преимущественно гематомного типа, т. е. кровоизлияния наблюдаются в суставах и происходит поражение всего опорно-двигательного аппарата. Смешанный же тип кровоточивости – петехиально-пятнистый с редкими гематомами встречается у обоих полов, но уже при болезни Виллебранда.

Из книги Как продлить быстротечную жизнь автора Николай Григорьевич Друзьяк

БУФЕРНАЯ СИСТЕМА КРОВИ Буферными называют системы (или растворы), рН которых не изменяется при прибавлении небольшого количества кислоты или щелочи. Буферные растворы содержат компоненты, диссоциирующие с образованием одноименных ионов, но отличающиеся друг от друга

Из книги Заболевания крови автора М. В. Дроздова

Система свертывания крови Механизм гемокоагуляцииОсновы ферментной теории свертывания крови были заложены еще в XIX в. профессором Юрьевского университета А. А. Шмидтом (1861 г.; 1895 г.) и уточнены П. Моравитцем в 1905 г. Согласно данной теории образование волокон фибрина,

Из книги Нормальная физиология: конспект лекций автора Светлана Сергеевна Фирсова

2. Понятие о системе крови, ее функции и значение. Физико-химические свойства крови Понятие системы крови было введено в 1830-х гг. Х. Лангом. Кровь – это физиологическая система, которая включает в себя:1) периферическую (циркулирующую и депонированную) кровь;2) органы

Из книги Пропедевтика детских болезней: конспект лекций автора О. В. Осипова

ЛЕКЦИЯ № 13. Система крови и органов кроветворения у детей 1. Особенности системы крови у детей У плода происходит постоянное нарастание числа эритроцитов, содержания гемоглобина, количества лейкоцитов. Если в первой половине внутриутробного развития (до 6 месяцев) в

Из книги Общая хирургия: конспект лекций автора Павел Николаевич Мишинькин

ЛЕКЦИЯ № 14. Особенности периферической крови у детей. Общий анализ крови 1. Особенности периферической крови у детей раннего возраста Состав периферической крови в первые дни после рождения значительно изменяется. Сразу после рождения красная кровь содержит

Из книги Судебная медицина. Шпаргалка автора В. В. Баталина

ЛЕКЦИЯ № 9. Переливание крови и ее компонентов. Особенности гемотрансфузионной терапии. Групповая принадлежность крови 1. Переливание крови. Общие вопросы гемотрансфузии Гемотрансфузия является одним из часто и эффективно применяющихся способов при лечении

Из книги О чем говорят анализы. Секреты медицинских показателей – для пациентов автора Евгений Александрович Гринь

ЛЕКЦИЯ № 10. Переливание крови и ее компонентов. Оценка совместимости крови донора и реципиента 1. Оценка результатов, полученных при исследовании крови на принадлежность к группе по системе АВО Если гемагглютинация происходит в капле с сыворотками I (О), III (В), но не

Из книги Су Джок для всех автора Пак Чжэ Ву

2. Система резус. Исследование принадлежности крови к группе по системе резус экспресс-методом Известно, что, помимо системы АВО, наличие (или отсутствие) в крови определенных антигенов позволяет отнести ее к различным группам по другим классификациям.Так, наличие

Из книги Всё будет хорошо! автора Луиза Хей

53. Установление наличия крови на вещественных доказательствах. Судебно-медицинское исследование крови Установление наличия крови. Пробы на кровь делятся на две большие группы: предварительные (ориентировочные) и достоверные (доказательные).Предварительных проб

Из книги Энциклопедия клинического акушерства автора Марина Геннадиевна Дрангой

4.5. Как понять, в норме ли свертывающая система крови? Действительно, как? По каким показателям судят о состоянии того или иного звена?Чтобы не было путаницы, необходимо разделить проводимые исследования в зависимости от фазы гемостаза.Так как каждая из фаз гемостаза

Из книги Очищение водой автора Даниил Смирнов

Глава IV. Двойная система соответствия голове. Система "насекомого". Минисистема Двойная система соответствия головеНа пальцах кистей и стоп располагаются две системы соответствия голове: система "типа человека" и система "типа животного".Система "типа человека".Граница

Из книги Тайная мудрость человеческого организма автора Александр Соломонович Залманов

Первый эмоциональный центр - костная система, суставы, кровообращение, иммунная система, кожа Здоровое состояние органов, связанных с первым эмоциональным центром, зависит от ощущения безопасности в этом мире. Если вы лишены поддержки семьи и друзей, которая вам

Из книги Живые капилляры: Важнейший фактор здоровья! Методики Залманова, Ниши, Гогулан автора Иван Лапин

Свертывающая система крови Имеют место изменения и в свертывающей системе крови во время беременности. По мере прогрессирования беременности происходит значительное увеличение содержание фибриногена в крови (более чем на 70 % по сравнению с небеременными). А уже во

Из книги автора

Себастьян Кнейпп и его уникальная система очищения крови Себастьян Кнейпп, разработавший и применявший собственный метод водолечения, жил в Германии в XIX в. Кнейпп страстно любил книги и науки – отдавал себя учению без остатка. Но жизнь студента была тяжела и полна

Из книги автора

Венозная система и движение крови Каждое нарушение циркуляции крови вызывает уменьшение ее объема, предназначенного тканям, и снижает поступление кислорода. Наступает гипоксемия. Каждое уменьшение объема кислорода в артериальной крови вызывает нарушение

Из книги автора

Система Ниши – еще одна система восстановления капилляров Залманов – не единственный человек, который пришел к мысли о важности капилляров. Японский инженер Кацудзо Ниши, последовав вслед за Залмановым, создал свою методику здоровья, основанную на работе с

Жизнедеятельность человеческого организма возможна исключительно в условиях жидкого агрегатного состояния крови , которое позволяет ей выполнять свои функции: транспортную, дыхательную, питательную, защитную и т.д. Одновременно с этим, в экстремальных ситуациях необходим быстрый гемостаз (остановка кровотечения). За баланс этих разнонаправленных процессов ответственны свертывающая и противосвертывающая системы крови.

Гемостаз – процесс образования тромба в поврежденных сосудах, предназначенный для остановки кровотечения и обеспечения жидкого агрегатного состояния крови в сосудистом русле. Различают 2 механизма гемостаза:

  • Сосудисто-тромбоцитарный, или микроциркуляторный. Функционирует, главным образом, в сосудах мелкого калибра.
  • Коагуляционный. Ответственен за прекращение кровотечения в крупных сосудах.

Только тесное взаимодействие коагуляционного и микроциркуляторного механизмов способно обеспечить полноценную гемостатическую функцию организма.

Система тромбообразования

Компонентами свертывающей системы крови являются:

  • Тромбоциты. Мелкие кровяные пластинки дискообразной формы диаметром 3-4 мкм, способные к амебоидному движению. На их внешней оболочке располагаются специфические рецепторы для адгезии (прилипания) к сосудистой стенке и агрегации (склеивания) друг с другом. Содержимое тромбоцита включает большое число гранул с биологически активными веществами, участвующими в различных механизмах гемостаза (серотонин, АДФ, тромбоксан, ферменты, кальциевые ионы и др.). В 1 литре крови циркулирует 150-450×109 тромбоцитов.
  • Внутренняя оболочка кровеносных сосудов (эндотелий). Она синтезирует и выделяет в кровь большое число соединений, которые регулируют процесс гемостаза:
  1. простациклин: уменьшает степень агрегации тромбоцитов;
  2. кинины – местные гормоны, участвующие в процессе свертывания крови путем расширения артерий, повышения проницаемости капилляров и т.д.;
  3. фактор активации тромбоцитов: способствует лучшей их адгезии;
  4. оксид азота: обладает вазодилатирующими свойствами (т.е. расширяет сосудистый просвет);
  5. плазменные факторы свертывания крови: проакцелерин, фактор Виллебранда.
  • Факторы свертывания. Представлены преимущественно пептидами. Они циркулируют в плазме, содержатся в форменных элементах крови и тканях. Источником их образования обычно являются клетки печени, где они синтезируются с участием витамина К. Наибольшую роль играют I-IV факторы, остальные выполняют функцию ускорения процесса гемостаза.
  1. В ответ на болевое раздражение возникает рефлекторный сосудистый спазм, который поддерживается местным выделением серотонина, адреналина, тромбоксана;
  2. Затем тромбоциты прикрепляются к поврежденной сосудистой стенке путем образования коллагеновых мостиков с помощью фактора Виллебранда;
  3. Тромбоциты деформируются, у них появляются нитевидные выросты, благодаря которым они склеиваются между собой под влиянием адреналина, АДФ, простагландинов – стадия образования белого тромба;
  4. Продукция тромбина приводит к устойчивому склеиванию тромбоцитов – необратимая стадия образования тромбоцитарного тромба;
  5. Тромбоциты выделяют специфические соединения, которые индуцируют уплотнение и сокращение тромботического сгустка – стадия ретракции тромбоцитарного тромба.

Коагуляционный механизм

Суть его сводится к организации нерастворимого фибрина из растворимого белка фибриногена, в результате чего кровь переходит из жидкого агрегатного состояния в желеобразное с формированием сгустка (тромба).

Коагуляционный механизм представлен последовательной цепочкой ферментативных реакций с участием факторов свертывания крови, сосудистой стенки, тромбоцитов и т.д.

Свертывание крови осуществляется в 3 фазы:

  1. Образование протромбиназы (5-7 минут). Начинается под влиянием XII фактора и может осуществляться 2-мя путями: внешним и внутренним.
  2. Образование тромбина из протромбина (II фактор) под действием протромбиназы и ионов кальция (2-5 секунд).
  3. Тромбин активирует переход фибриногена (I фактор) в фибрин (3-5 секунд). Сначала происходит отщепление отдельных участков молекулы фибриногена с образованием разрозненных единиц фибрина, которые затем соединяются между собой, формируя растворимый полимер (фибрин S). Он легко подвергается растворению ферментами плазмы, поэтому происходит дополнительное его «прошивание», после чего образуется нерастворимый фибрин I. Благодаря этому тромб выполняет свою функцию.
В течение 120-180 минут свежий тромб подвергается сокращению .

Внешний путь свертывания

Провоцируется повреждением тканей (кроме эндотелия), из которых в сосудистое русло выделяется III фактор (тканевой тромбопластин). Он представлен гликопротеидами и фосфолипидами, активирующими VII фактор в присутствии кальциевых ионов. Дальнейший каскад биохимических реакций вызывает образование протромбиназы.

При случайных повреждениях мелких кровеносных сосудов возникающее кровотечение через некоторое время прекращается. Это связано с образованием в месте повреждения сосуда тромба или сгустка. Данный процесс называется свёртыванием крови.

В настоящее время существует классическая ферментативная теория свертывания крови – теория Шмидта – Моравица. Положения этой теории представлены на схеме (рис. 11):

Рис. 11. Схема свертывания крови

Повреждение кровеносного сосуда вызывает каскад молекулярных процессов, в результате образуется сгусток крови - тромб, прекращающий вытекание крови. В месте повреждения к открывшемуся межклеточному матриксу прикрепляются тромбоциты; возникает тромбоцитарная пробка. Одновременно включается система реакций, ведущих к превращению растворимого белка плазмы фибриногена в нерастворимый фибрин, который откладывается в тромбоцитарной пробке и на её поверхности, образуется тромб.

Процесс свёртывания крови протекает в две фазы.

В первой фазе протромбин переходит в активный фермент тромбин под влиянием тромбокиназы, содержащейся в тромбоцитах и освобождающейся из них при разрушении кровяных пластинок, и ионов кальция.

Во второй фазе под влиянием образовавшегося тромбина фибриноген превращается в фибрин.

Весь процесс свёртывания крови представлен следующими фазами гемостаза:

а) сокращение поврежденного сосуда;

б) образование в месте повреждения рыхлой тромбоцитарной пробки, или белого тромба. Коллаген сосуда служит связующим центром для тромбоцитов. При агрегации тромбоцитов освобождаются вазоактивные амины, которые стимулируют сужение сосудов;

в) формирование красного тромба (кровяной сгусток);

г) частичное или полное растворение сгустка.

Белый тромб образуется из тромбоцитов и фибрина; в нем относительно мало эритроцитов (в условиях высокой скорости кровотока). Красный тромб состоит из эритроцитов и фибрина (в областях замедленного кровотока).

В процессе свертывания крови участвуют факторы свертывания крови. Факторы свертывания, связанные с тромбоцитами, принято обозначать арабскими цифрами (1, 2, 3 и т.д.), а факторы свертывания, находящиеся в плазме крови, обозначают римскими цифрами.

Фактор I(фибриноген) - гликопротеин. Синтезируется в печени.

Фактор II(протромбин) - гликопротеин. Синтезируется в печени при участии витамин К. Способен связывать ионы кальция. При гидролитическом расщеплении протромбина образуется активный фермент свертывания крови.

Фактор III(тканевый фактор, или тканевый тромбопластин) образуется при повреждении тканей. Липопротеин.

Фактор IV(ионы Са 2+). Необходимы для образования активного фактораXи активного тромбопластина тканей, активации проконвертина, образования тромбина, лабилизации мембран тромбоцитов.

Фактор V(проакцелерин) - глобулин. Предшественник акцелерина, синтезируется в печени.

Фактор VII(антифибринолизин, проконвертин)- предшественник конвертина. Синтезируется в печени при участии витамина К.

Фактор VIII(антигемофильный глобулин А) необходим для формирования активного фактораX. Врожденный недостаток фактораVIII- причина гемофилии А.

Фактор IX(антигемофильный глобулин В, Кристмас-фактор) принимает участие в образовании активного фактораX. При недостаточностьи фактораIXразвивается гемофилия В.

Фактор X(фактор Стюарта-Прауэра) - глобулин. ФакторXучаствует в образовании тромбина из протромбина. Синтезируется клетками печени при участии витамина К.

Фактор XI(фактор Розенталя) - антигемофильный фактор белковой природы. Недостаточность наблюдается при гемофилии С.

Фактор XII(фактор Хагемана) участвует в пусковом механизме свертывания крови, стимулирует фибринолитическую активность, другие защитные реакции организма.

Фактор XIII(фибринстабилизирующий фактор) - участвует в образовании межмолекулярных связей в фибрин-полимере.

Факторы тромбоцитов. В настоящее время известно около 10 отдельных факторов тромбоцитов. Например: Фактор 1- адсорбированный на поверхности тромбоцитов проакцелерин. Фактор 4 - антигепариновый фактор.

В нормальных условиях тромбина в крови нет, он образуется из белка плазмы протромбина под действием протеолитического фермента фактора Ха (индекс а - активная форма), который образуется при кровопотере из фактора X. Фактор Ха превращает протромбин в тромбин только в присутствии ионов Са 2 + и других факторов свертывания.

Фактор III, переходящий в плазму крови при повреждении тканей, и фактор 3 тромбоцитов создают предпосылки для образования затравочного количества тромбина из протромбина. Он катализирует превращение проакцелерина и проконвертина в акцелерин (факторVa) и в конвертин (факторVIIa).

При взаимодействии перечисленных факторов, а также ионов Са 2+ происходит образование фактора Ха. Затем происходит образование тромбина из протромбина. Под влиянием тромбина от фибриногена отщепляются 2 пептида А и 2 пептида В. Фибриноген превращается в хорошо растворимый фибрин-мономер, который быстро полимеризуется в нерастворимый фибрин-полимер при участии фибринстабилизирующего фактора- фактораXIII(фермент трансглутаминаза) в присутствии ионов Са 2+ (рис. 12).

Фибриновый тромб прикрепляется к матриксу в области повреждения сосуда при участии белка фибронектина. Вслед за образованием нитей фибрина происходит их сокращение, для чего необходима энергия АТФ и фактор 8 тромбоцитов (тромбостенин).

У людей с наследственными дефектами трансглутаминазы кровь свертывается так же, как у здоровых, однако тромб получается хрупкий, поэтому легко возникают вторичные кровотечения.

Кровотечение из капилляров и мелких сосудов останавливается уже при образовании тромбоцитной пробки. Для остановки кровотечения из более крупных сосудов необходимо быстрое образование прочного тромба, чтобы свести к минимуму потерю крови. Это достигается каскадом ферментных реакций с механизмами усиления на многих ступенях.

Различают три механизма активации ферментов каскада:

1. Частичный протеолиз.

2. Взаимодействие с белками-активаторами.

3. Взаимодействие с клеточными мембранами.

Ферменты прокоагулянтного пути содержат γ-карбоксиглутаминовую кислоту. Радикалы карбоксиглутаминовой кислоты образуют центры связывания ионов Са 2+ . В отсутствие ионов Са 2+ кровь не свертывается.

Внешний и внутренний пути свёртывания крови.

Во внешнем пути свертывания крови участвуют тромбопластин (тканевой фактор, факторIII), проконвертин (факторVII), фактор Стюарта (факторX), проакцелерин (факторV), а также Са 2+ и фосфолипиды мембранных поверхностей, на которых образуется тромб. Гомогенаты многих тканей ускоряют свёртывание крови: это действие называют тромбопластиновой активностью. Вероятно, она связана с наличием в тканях какого-то специального белка. ФакторыVIIиX- проферменты. Они активируются путём частичного протеолиза, превращаясь в протеолитические ферменты - факторыVIIа иXа соответственно. ФакторV– это белок, который при действии тромбина превращается в факторV", который не является ферментом, но активирует ферментXа по аллостерическому механизму; активация усиливается в присутствии фосфолипидов и Са 2+ .

В плазме крови постоянно содержатся следовые количества фактора VIIа. При повреждении тканей и стенок сосуда освобождается факторIII– мощный активатор фактораVIIа; активность последнего увеличивается более чем в 15000 раз. ФакторVIIа отщепляет часть пептидной цепи фактораX, превращая его в фермент - факторXа. Сходным образомXа активирует протромбин; образовавшийся тромбин катализирует превращение фибриногена в фибрин, а также превращение предшественника трансглутаминазы в активный фермент (факторXIIIа). Этот каскад реакций имеет положительные обратные связи, усиливающие конечный результат. ФакторXа и тромбин катализируют превращение неактивного фактораVIIв ферментVIIа; тромбин превращает факторVв факторV", который вместе с фосфолипидами и Са 2+ в 10 4 –10 5 раз повышает активность фактораXа. Благодаря положительным обратным связям скорость образования самого тромбина и, следовательно, превращения фибриногена в фибрин нарастают лавинообразно, и в течение 10-12 с кровь свёртывается.

Свёртывание крови по внутреннему механизму происходит значительно медленнее и требует 10-15 мин. Этот механизм называют внутренним, потому что для него не требуется тромбопластин (тканевой фактор) и все необходимые факторы содержатся в крови. Внутренний механизм свёртывания также представляет собой каскад последовательных активаций проферментов. Начиная со стадии превращения фактораXвXа, внешний и внутренний пути одинаковы. Как и внешний путь, внутренний путь свёртывания имеет положительные обратные связи: тромбин катализирует превращение предшественниковVиVIIIв активаторыV" иVIII", которые в конечном итоге увеличивают скорость образования самого тромбина.

Внешний и внутренний механизмы свёртывания крови взаимодействуют между собой. Фактор VII, специфичный для внешнего пути свёртывания, может быть активирован факторомXIIа, который участвует во внутреннем пути свёртывания. Это превращает оба пути в единую систему свёртывания крови.

Гемофилии. Наследственные дефекты белков, участвующих в свёртывании крови, проявляются повышением кровоточивости. Наиболее часто встречается болезнь, вызванная отсутствием фактораVIII– гемофилия А. Ген фактораVIIIлокализован вX- хромосоме; повреждение этого гена проявляется как рецессивный признак, поэтому у женщин гемофилии А не бывает. У мужчин, имеющих однуX-хромосому, наследование дефектного гена приводит к гемофилии. Признаки болезни обычно обнаруживаются в раннем детстве: при малейшем порезе, а то и спонтанно возникают кровотечения; характерны внутрисуставные кровоизлияния. Частая потеря крови приводит к развитию железодефицитной анемии. Для остановки кровотечения при гемофилии вводят свежую донорскую кровь, содержащую факторVIII, или препараты фактораVIII.

Гемофилия В. Гемофилия В обусловлена мутациями гена фактора IX, который, как и ген фактораVIII, локализован в половой хромосоме; мутации рецессивны, следовательно, гемофилия В бывает только у мужчин. Гемофилия В встречается примерно в 5 раз реже, чем гемофилия А. Лечат гемофилию В введением препаратов фактораIX.

При повышенной свертываемости крови могут образоваться внутрисосудистые тромбы, закупоривающие неповрежденные сосуды (тромботические состояния, тромбофилии).

Фибринолиз. Тромб в течение нескольких дней после образования рассасывается. Главная роль в его растворении принадлежит протеолитическому ферменту плазмину. Плазмин гидролизирует в фибрине пептидные связи, образованные остатками аргинина и триптофана, причём образуются растворимые пептиды. В циркулирующей крови находится предшественник плазмина – плазминоген. Он активируется ферментом урокиназой, который содержится во многих тканях. Пламиноген может активироваться калликреином, также имеющимся в тромбе. Плазмин может активироваться и в циркулирующей крови без повреждения сосудов. Там плазмин быстро инактивируется белковым ингибитором α 2 - антиплазмином, в то время как внутри тромба он защищён от действия ингибитора. Урокиназа – эффективное средство для растворения тромбов или предупреждения их образования при тромбофлебитах, тромбоэмболии легочных сосудов, инфаркте миокарда, хирургических вмешательствах.

Противосвёртывающая система. При развитии системы свёртывания крови в ходе эволюции решались две противоположные задачи: предотвращать вытекание крови при повреждении сосудов и сохранять кровь в жидком состоянии в неповреждённых сосудах. Вторая задача решается противосвёртывающей системой, которая представлена набором белков плазмы, ингибирующих протеолитические ферменты.

Белок плазмы антитромбин IIIингибирует все протеиназы, участвующие в свёртывании крови, кроме фактораVIIа. Он не действует на факторы, находящиеся в составе комплексов с фосфолипидами, а только на те, которые находятся в плазме в растворённом состоянии. Следовательно, он нужен не для регуляции образования тромба, а для устранения ферментов, попадающих в кровоток из места образования тромба, тем самым он предотвращает распространение свёртывания крови на поврежденные участки кровеносного русла.

В качестве препарата, предотвращающего свёртывание крови, применяется гепарин. Гепарин усиливает ингибирующее действие антитромбина III: присоединение гепарина индуцирует конформационные изменения, которые повышают сродство ингибитора к тромбину и другим факторам. После соединения этого комплекса с тромбином гепарин освобождается и может присоединяться к другим молекулам антитромбинаIII. Таким образом, каждая молекула гепарина может активировать большое количество молекул антитромбинаIII; в этом отношении действие гепарина сходно с действием катализаторов. Гепарин применяют как антикоагулянт при лечении тромботических состояний. Известен генетический дефект, при котором концентрация антитромбинаIIIв крови вдвое меньше, чем в норме; у таких людей часто наблюдаются тромбозы. АнтитромбинIII– главный компонент противосвёртывающей системы.

В плазме крови есть и другие белки – ингибиторы протеиназ, которые также могут уменьшать вероятность внутрисосудистого свёртывания крови. Таким белком является α 2 - макроглобулин, который ингибирует многие протеиназы, и не только те, которые участвуют в свёртывании крови. α 2 -Макроглобулин содержит участки пептидной цепи, которые являются субстратами многих протеиназ; протеиназы присоединяются к этим участкам, гидролизируют в них некоторые пептидные связи, в результате чего изменяется конформация α 2 -макроглобулина, и он захватывает фермент, подобно капкану. Фермент при этом не повреждается: в комплексе с ингибитором он способен гидролизировать низкомолекулярные пептиды, но для крупных молекул активный центр фермента не доступен. Комплекс α 2 -макроглобулина с ферментом быстро удаляется из крови: время его полужизни в крови около 10 мин. При массивном поступлении в кровоток активированных факторов свёртывания крови мощность противосвёртывающей системы может оказаться недостаточной, и появляется опасность тромбозов.

Витамин К. В пептидных цепях факторовII,VII,IX, иXсодержится необычная аминокислота - γ-карбоксиглутаминовая. Эта аминокислота образуется из глутаминовой кислоты в результате посттрансляционной модификации указанных белков:

Реакции, в которых участвуют факторы II,VII,IX, иX, активируются ионами Са 2+ и фосфолипидами: радикалы γ-карбоксиглутаминовой кислоты образуют центры связывания Са 2+ на этих белках. Перечисленные факторы, а также факторыV" иVIII" прикрепляютя к бислойным фосфолипидным мембранам и друг к другу при участии ионов Са 2+ , и в таких комплексах происходит активация факторовII,VII,IX, иX. Ион Са 2+ активирует также и некоторые другие реакции свёртывания: декальцинированная кровь не свёртывается.

Превращение глутамильного остатка в остаток γ-карбоксиглутаминовой кислоты катализируется ферментом, коферментом которого служит витамин К. Недостаточность витамина К проявляется повышенной кровоточивостью, подкожными и внутренними кровоизлияниями. В отсутствие витамина К образуются факторы II,VII,IX, иX, не содержащие γ-карбоксиглутаминовых остатков. Такие проферменты не могут превращаться в активные ферменты.