Главная · Аппендицит · Что такое диплоидный набор хромосом. Строение и функции хромосом. Диплоидный и гаплоидный набор хромосом. Редупликация хромосом. Гаплоидный и диплоидный набор хромосом

Что такое диплоидный набор хромосом. Строение и функции хромосом. Диплоидный и гаплоидный набор хромосом. Редупликация хромосом. Гаплоидный и диплоидный набор хромосом

Хромосомные наборы из соматических клеток мужских и женских особей каждого вида имеют отличие в одной паре хромосом. Эта пара - половые хромосомы, или гетерохромосомы. Все остальные пары хромосом, одинаковые у обоих полов, имеют общее название - аутосомы.

Например, в кариотипе человека пары хромосом, одинаковые у женщин и у мужчин - это аутосомы. Одна пара - двадцать третья - у мужчин и женщин определяет пол. Поэтому хромосомы, которые в нее входят, называются половыми. Эта пара у женщин - гомологичная (XX), а у мужчин -гетерологичная (ХУ). Именно поэтому половые хромосомы называют еще гетеросомами (от «гетеро» - разный).

Правила хромосом

1. Правило постоянства числа хромосом. Число хромосом в клетке постоянно у каждого вида. То есть, число хромосом и характерные особенности их строения - видовой признак. Например, у человека -46, шимпанзе - 48, мушки дрозофилы- 8 хромосом (общая формула -2а).

2. Правило парности хромосом. Хромосомы в диплоидном наборе образуют пары. Те хромосомы, которые относятся к одной паре, называются гомологичными. Эти хромосомы сходны по размерам, форме, по расположению центромер и по набору входящих в них генов. В каждой паре одна хромосома - от матери, другая - от отца.

3. Правило индивидуальности. Хромосомы разных пар отличаются друг от друга: по размеру; форме; месту расположения перетяжек; по исчерченности, выявляемой специальной окраской - ДОХ (дифференциальное окрашивание хромосом); по набору входящих в них генов. Набор генов одной пары больше не повторяется ни в какой другой паре.

4. Правило непрерывности хромосом. Каждое новое поколение имеет такое же строение и форму хромосом, как и предыдущее, т.е., хромосомы из поколения в поколение сохраняют относительно постоянную форму и строение. Это возможно, так как ДНК способна к редупликации (самоудвоению).

Таким образом, можно дать еще одно определение кариотипа: кариотип - это совокупность хромосом соматической клетки, которая характеризуется постоянным для вида числом хромосом, их размером, формой и расположением в них центромер.

Единственным способом образования новых клеток является деление предшествующих клеток.

Жизненный, или клеточный, цикл - это время от возникновения клетки до ее смерти или образования из нее новых клеток, то есть - это ее онтогенез.

Митотический цикл - это жизнь клетки от момента ее появления до конца ее деления с образованием двух новых клеток. (Это один из вариантов клеточного цикла).

Есть клетки, у которых жизненный цикл совпадает с митотическим циклом. Это клетки, которые все время делятся. Например, клетки кожного эпидермиса, семенников (обновляющиеся клеточные комплексы). Существуют клетки, у которых отсутствует митотический цикл (стабильные клеточные комплексы). Эти клетки теряют способность делиться (например, эритроциты, нейроны). Но было доказано, что такое состояние может быть обратимым. Например, если из яйцеклетки лягушки удалить ядро и пересадить туда ядро нервной клетки, оно начинает делиться. Исходя из этого, можно сделать вывод, что цитоплазма яйцеклетки содержит вещества, которые активируют митоз.

Описано три способа деления эукариотических клеток :

Амитоз (прямое деление);

Митоз (непрямое деление);

Мейоз (редукционное деление).

Амитоз - это деление, при котором интерфазное ядро делится путем перетяжки. Конденсация хромосом при этом отсутствует. Иногда после деления ядер цитоплазма не делится и образуются двуядерные клетки. Амитоз описан в клетках скелетной мускулатуры, клетках кожного эпителия, а также в патологически измененных клетках (клетках опухолей).

Митоз - это деление, при котором из одной клетки с диплоидным набором хромосом образуются две клетки также с диплоидным набором каждая. Этот способ деления является универсальным для эукариотических клеток. Он лежит в основе бесполого размножения организмов. За счет митоза идет рост тканей и целого организма.

Митоз является частью митотического цикла. Весь митотический цикл состоит из интерфазы (подготовка клетки к делению) + митоз (собственно деление).

Интерфаза имеет три периода:

1. Пресинтетический - в 1

2. Синтетический - Б

3. Постсинтетический - 0 2

Пресинтетический период - клетка растет, накапливает АТФ, РНК, белки, необходимые для образования клеточных органоидов. В этот период клетка приобретает черты, свойственные данной ткани. В этом периоде клетка имеет 2п,2с (п - гаплоидный набор хромосом, с - количество ДНК в одной хроматиде): т.е., двойной набор однохроматидных хромосом.

Синтетический период - происходит редупликация ДНК, продолжает снтезироваться РНК, синтезируются белки-гистоны. В конце этого периода клетка имеет 2n,4c: _ т.е., двойной набор двухроматидных хромосом. (Число хромосом не изменяется, но каждая хромосома состоит уже из двух хроматид).

Постсинтетический период - синтезируются РНК, белки, необходимые для процесса деления, АТФ, ДНК митохондрий. Удваивается число митохондрий, пластид, центриолей. В этом периоде клетка имеет 2п,4с.,

В интерфазе ядро округлое, с четкими границами. В нем видны одно или несколько ядрышек, Хромосомы - в виде хроматина, находятся в кариоплазме.

Митоз делят на четыре основные фазы:

1.профаза;

2.метафаза;

3.анафаза;

4.телофаза.

Профаза. Ядро заметно увеличено. Исчезают ядрышки. Происходит. спирализация (конденсация, или укладка) хромосом: в начале профазы они тонкие и длинные, в конце - толстые и короткие. Центриоли расходятся к полюсам клетки, начинает образовываться веретено деления. В конце профазы видно что каждая хромосома состоит из 2-х хроматид. Профаза считается оконченной, когда оболочка ядра распадается на фрагменты и хромосомы выходят в цитоплазму. В этом периоде клетка имеет 2п,4с. В каждой хромосоме - две хроматиды.

Между профазой и метафазой можно еще выделять прометафазу, когда идет движение хромосом в сторону экватора.

Метафаза. Хромосомы располагаются на экваторе клетки. К каждой кроматиде в области центромеры прикрепляется нить веретена деления. Хроматиды каждой хромосомы остаются соединенными только в области центромеры. В этом периоде клетка имеет 2п,4с (диплоидный набор двухроматидных хромосом).

Анафаза . Хроматиды каждой хромосомы отсоединяются друг от друга в области центромеры. Нити веретена деления сокращаются и растягивают хроматиды (теперь они называются дочерними хромосомами) к разным полюсам клетки. В этом периоде клетка имеет 4п,4с (тетраплоидный набор однохроматидных хромосом).

Рис. Фазы митоза

Телофаза. В начале фазы происходит деспирализация (раскручивание) хромосом. Вокруг каждого скопления хромосом образуется ядерная оболочка. Появляются ядрышки. Ядра приобретают вид интерфазных ядер. Постепенно исчезает веретено деления. В конце телофазы происходит цитокинез, или цитотомия (деление цитоплазмы материнской клетки). Из одной материнской клетки образуются две дочерние. Они переходят в интерфазное состояние. В этом периоде каждая новая клетка имеет 2п,2с (двойной набор и однохроматидных хромосом). Т.е., начиная с анафазы и до S-периода интерфазы каждая хромосома состоит из одной хроматиды.

Биологическое значение митоза

1.Сохранение постоянного числа хромосом в дочерних клетках (каждая новая клетка имеет такой же набор хромосом, как и исходная - 2п).

2.Равномерное распределение наследственной информации между дочерними клетками.

3. Рост нового организма при бесполом размножении за счет появления новых клеток тела.

4. Регенерация (восстановление) утраченных клеток и органов.

Мейоз - это процесс, состоящий из двух последовательных делений. Из одной клетки с диплоидным набором хромосом (2п,4с) образуются четыре гаплоидные клетки (п, с). То есть, во время мейоза в клетке происходит редукция (уменьшение) числа хромосом.

В каждом из делений мейоза выделяют те же фазы, что и в митозе: профазу (I и II), метафазу (I иІІ), анафазу (I и II) и телофазу (I и II). Но продолжительность отдельных фаз и происходящие в них процессы значительно отличаются от митоза. Главные отличия такие:

1. Профаза I - самая продолжительная. Поэтому ее делят на пять стадий:

Лептотена: хромосомы начинают спирализоваться;

Зиготена: гомологичные хромосомы конъюгируют (плотно прилегают друг к другу по всей длине). Такие пары называются бивалентами;

Пахитена: конъюгация завершается полностью. Между конъюгирующими хромосомами может произойти обмен гомологичными участками (содержащими одни и те же гены) - кроссинговер (или рекомбинация). Участки обмена называются хиазмами;

Диплотена: между гомологичными хромосомами возникают силы отталкивания сначала в области центромер, а затем в других участках. Становится заметным, что эти фигуры состоят из четырех элементов. То есть биваленты превращаются в тетрады. Хроматиды в тетрадах сцеплены в области теломер и хиазм;

Диакинез: хромосомы максимально спирализованы, биваленты обосабливаются и размещаются их по периферии ядра. Тетрады укорачиваются, исчезают ядрышки.

Мейоз напоминает митоз, но имеет свои особенности:

а) В профазе первого мейоза в отличие от митоза происходит конъюгация Гомологичных хромосом. Между гомологичными хромосомами происходит обмен гомологичными участками, генами (кроссинговер).

о) В метафазе I на экваторе клетки находятся соединенные парами (одна напротив другой) гомологичные хромосомы (рис. 34,метафаза I).

в) Во время анафазы расходятся к полюсам не хроматиды (как при митозе), а двухроматидные гомологи (рис. 34, анафаза I). Поэтому, после первого мейотического деления дочерние клетки (овоцит П и одно полярное тельце при овогенезе и сперматоциты II при сперматогенезе) имеют гаплоидный набор хромосом, но каждая хромосома состоит из двух хроматид.

г) Интерфаза II очень короткая, т.к редупликация ДНК не нужна (хромосомы - двухроматидные).

Остальные фазы мейоза II проходят довольно быстро, не отличаясь от митотического деления. В анафазе парные сестринские хроматиды расходятся по одной в дочерние клетки. Таким образом, при мейозе из одной исходной клетки (2п,4с) образуются четыре клетки - каждая с гаплоидным набором однохроматидных хромосом (п,с).

Биологическое значение мейоза

1. Во время мейоза в новых клетках образуется гаплоидный набор хромосом. А при оплодотворении (слиянии гамет) восстанавливается диплоидный набор хромосом. Таким образом, у всех организмов сохраняется постоянство числа хромосом из поколения в поколение.

2. Во время двух делений мейоза происходит перекомбинация

генетического материала вследствие

а) кроссинговера;

б)независимого расхождения отцовских и материнских хромосом. Возникает комбинативная изменчивость - это дает разнообразный материал для эволюции.

3 ОСОБЕННОСТИ СТРОЕНИЯ ПОЛОВЫХ КЛЕТОК (ГАМЕТ)

Яйцеклетки неподвижны, обычно имеют шаровидную форму. Они содержат все клеточные органоиды, характерные для соматических клеток. Но в яйцеклетках содержатся вещества (например, желток), необходимые для развития зародыша. В зависимости от количества желтка яйцеклетки делят на разные типы. Например, изолецитальная яйцеклетка: в ней желтка мало и он равномерно распределяется по всей цитоплазме (яйцеклетка ланцетника, человека). У рептилий и птиц желтка очень много (телолецитальная яйцеклетка) и он находится у одного из полюсов клетки. Этот полюс называется вегетативным (питающим). Противоположный полюс, где желтка мало, несет ядро клетки и называется анимальным. От количества и распределения желтка зависит тип дробления зиготы.

Самая крупная яйцеклетка - у акул (50 - 70 мм в диаметре), у курицы -более 30 мм(без белковых оболочек), у коровы - 100 мкм, у человека - 130-200 мкм.

Яйцеклетки покрыты оболочками, которые выполняют защитную и другие функции (например, у плацентарных млекопитающих - для врастания зародыша в стенку матки).

Сперматозоиды - мелкие клетки (у человека имеют длину 50-70 мкм) состоят из головки, шейки и хвоста. В головке находится ядро и небольшое количество цитоплазмы. На переднем конце головки располагается акросома. Это видоизмененный комплекс Гольджи. В нем находятся ферменты, которые разрушают оболочки яйца при оплодотворении. В шейке расположены митохондрии и центриоли. Одна центриоль проксимальная (ближняя), она вместе с головкой проникает в яйцеклетку. Другая - дистальная (дальняя), к ней прикрепляется хвост. Митохондрии шейки обеспечивают его энергией. В состав хвоста входят микротрубочки.

Особенности половых клеток:

Имеют гаплоидный набор хромосом.

В половых клетках по сравнению с соматическими отмечается менее интесивный метаболизм. В яйцеклетках накапливаются вещества, необходимые для развития зародыша.

Сперматозоиды никогда не делятся, а яйцеклетка после внедрения в нее сперматозоида отделяет вторичный полоцит (т.е., только теперь в ней завершается второе деление мейоза).

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Хромосомы – органоиды делящегося клеточного ядра, являются носителями генов. Основа хромосом - непрерывная двухцепочная молекула ДНК, связана гистонами в нуклеопротеид. В хромосоме две сложенные по пдлине хроматиды соединены посередине первичной перетяжкой (центромерой). В зоне первичной перетяжки находится кинетахор – особая белковая структура для прикрепления микротрубочек, веретена деления и последующего расхождения хроматид в анафазе митоза.

Кариотип – совок-ость признаков хромосомного набора, т.е. число, размер, форма хр-сом, характ-ных для того или иного типа.

Функция хромосом: в хромосомах заключена наследственная информация. В хромосоме в линейном порядке расположены гены, самоудвоение и закономерное распределение хромосом в дочерней клетке при клеточном делении обеспечивает передачу наследственных свойств организма от поколения к поколению.

Гаплоидный набор хромосом. Он представляет собой скопление совершенно разных хромосом, т.е. в организме-гаплоиде есть несколько этих нуклеопротеидных структур, непохожих друг на друга. Гаплоидный набор хромосом характерен для растений, водорослей и грибов.

Диплоидный набор хромосом. Этот набор является таким собранием хромосом, при котором у каждой из них есть двойник, т.е. эти нуклепротеидные структуры расположены попарно. Диплоидный набор хромосом характерен для всех животных, в том числе и человека.

Удвоение хромосом эукариотов является сложным процессом, поскольку включает не только репликацию гигантских молекул ДНК, но также и синтез связанных с ДНК гистонов и негистоно-вых хромосомных белков. Конечным этапом является упаковка ДНК и гистонов в нуклеосомы. Считают, что удвоение хромосом также имеет полуконсервативный характер.

Репликационное поведение хромосом основывается на трех фундаментальных свойствах , а именно: непосредственно репликация, сегрегация хромосом при репликации ДНК и делении клеток, а также репликация и предохранение концов хромосом.

Вы никогда не задумывались о том, почему родившийся и подросший ребенок похож на своих родителей внешностью и привычками? "Генетика такая", - наверное, скажете вы. И многие знают, что у родителей и детей похожая ДНК. Вот ее и содержат хромосомы. "А это еще что такое?" - недоуменно воскликнут девять человек из десяти, столкнувшихся с данным понятием. Существует несколько их схем расположения. Сегодня мы рассмотрим гаплоидный и диплоидный набор хромосом. Но давайте сначала разберемся, что это такое.

Определение понятия

Хромосома является нуклеопротеидной структурой, одной из составляющих ядра эукариотической клетки. Она хранит, реализует и передает наследственную информацию. Хромосомы можно различить с помощью микроскопа только в то время, когда происходит митотическое или мейотическое деление клетки. Кариотип, как называется совокупность всех хромосом клетки - видоспецифичный признак с относительно низким уровнем индивидуальной изменчивости. Эти содержащие ДНК структуры у эукариотических организмов имеются в митохондриях, ядре и пластидах. У прокариотических - в клетках без ядра. А хромосомами вирусов является ДНК- или РНК-молекула, находящаяся в капсиде.

История понятия

По наиболее распространенной версии, хромосомы были открыты в 1882 году немецким анатомом Вальтером Флемингом. Хотя "открыл" - это громко сказано, им лишь была собрана и упорядочена вся информация о них. В 1888 году немецкий гистолог Генрих Вальдейер впервые предложил называть новые структуры хромосомами. Трудно ответить, когда и кем были сделаны первые их описания и рисунки. Через пару лет после того, как были открыты законы Менделя, предположили, что хромосомы играют важную генетическую роль. Хромосомная теория была подтверждена в 1915 году людьми, основавшими классическую генетику. Ими стали Г. Мёллер, К. Бриджес, А. Стёртевант и Т. Морган. Последним в 1933-м была получена Нобелевская премия в области физиологии и медицины за то, что он обосновал роль хромосом в наследственности.

Плоидность

Общее количество одинаковых хромосом указывает на их плоидность. Существует гаплоидный, полиплоидный и диплоидный набор хромосом. Сейчас мы поговорим о первом и третьем.

Гаплоидный набор хромосом

Начнем с гаплоидного. Он представляет собой скопление совершенно разных хромосом, т.е. в организме-гаплоиде есть несколько этих нуклеопротеидных структур, непохожих друг на друга (фото). Гаплоидный набор хромосом характерен для растений, водорослей и грибов.

Диплоидный набор хромосом

Этот набор является таким собранием хромосом, при котором у каждой из них есть двойник, т.е. эти нуклепротеидные структуры расположены попарно (фото). Диплоидный набор хромосом характерен для всех животных, в том числе и человека. Кстати, о последнем. У здорового человека их 46, т.е. 23 пары. Однако его пол определяют всего две, называемые половыми, - Х и Y. Их расположение определяется еще в утробе матери. Если схема таких хромосом ХХ - родится девочка, если же они расположены в виде XY - родится мальчик. Однако могут наблюдаться и нарушения плоидности, ведущие к негативным изменениям в физическом и психическом состоянии организма, такие, как:

Эти болезни носят генетический характер и являются неизлечимыми. Дети и взрослые с одним из таких или многих похожих хромосомных синдромов ведут неполноценный образ жизни, а некоторые и вовсе не доживают до зрелого возраста.

Заключение

Видите, до чего важны хромосомы для всех организмов. У различных видов животных и растений разное количество и число наборов этих нуклеопротеидных структур.

Гомологичные хромосомы (гомологи) - это парные хромосомы, аутосомы, по одной от каждого родителя в диплоидных клетках. Перед обычным митотическим делением каждый из пары гомологов удваивается, и две образовавшиеся копии остаются соединенными вместе в центромерной области. Эти копии называются сестринскими хроматидами. Гомологичные хромосомы конъюгируют между собой в процессе мейоза, т.е. сближаются и соединяются в пары. У них одинаковые локусы расположены в одной и той же линейной последовательности. Соответствующие локусы гомологичных хромосом могут нести как одинаковые, так и разные варианты (аллели) одних и тех же генов.

Диплоидный Набор Хромосом -совокупность хромосом, присущая соматическим клеткам, в которой все характерные для данного биологического вида хромосомы представлены попарно; у человека Д н х содержит 44 аутосомы и 2 половые хромосомы.

Диплоидный набор хромосом клетки называется кариотипом (от греч. karyon- ядро, typhe-форма). Этот термин введен в 1924 г. со­ветским цитологом Г. А. Левитским. Нормальный кариотип человека включает 46 хромосом, или 23 пары; из них 22 пары аутосом и одна па­ра- половых хромосом (гетерохромосом).

27.Гетерохроматин и эухроматин.

Хроматин, его классификация .

В ядре клеток обнаруживаются мелкие зернышки и глыбки материала, который окрашивается основными красителями и поэтому был назван хроматином (от греч. chroma – краска). Хроматин представляет собой дезоксирибонуклеопротеид (ДНП) и состоит из ДНК, соединённой с белка-ми-гистонами или негистоновыми белками.

Классификация хроматина . Различают два вида хроматина:

1 ) Эухроматин, активный хроматин - участки хроматина, сохраняющие деспирализованное состояние элементарных дезоксирибонуклеопротеидных нитей (ДНП) в покоящемся ядре, т. е. в интерфазе.

Эухроматин отличается от гетерохроматина также способностью к интенсивному синтезу рибонуклеиновой кислоты (РНК) и большим содержанием негистоновых белков. В нём, помимо ДНП, имеются рибонуклеопротеидные частицы (РНП-гранулы) диаметром 200-500, которые служат для завершения созревания РНК и переноса ее в цитоплазму. Эухроматин содержит большинство структурных генов организма

2) гетерохроматин - плотно спирализованная часть хроматина. Гетерохроматин соответствует конденсированным, плотно скрученным сегментам хромосом (что делает их недоступными для транскрипции). Гетерохроматин располагается ближе к оболочке ядра, более компактен, чем эухроматин и содержит “молчащие” гены, т.е. гены, которые в настоящий момент неактивны. Различают конститутивный и факультативный гетерохроматин. Конститутивный гетерохроматин никогда не переходит в эухроматин и является гетерохроматином во всех типах клеток. Факультативный гетерохроматин может превращаться в эухоматин в некоторых клетках или на разных стадиях онтогенеза организма.

28. Значение механизмов положительных и отрицательных обратных связей. Иммунитет.

Обратная связь характеризует системы регулирования и управления в живой природе, обществе и технике. Различают положительную и отрицательную обратную связь. Обратная связь классифицируют также в соответствии с природой тел и сред, посредством которых они осуществляются. Обратную связь в сложных системах рассматривают как передачу информации о протекании процесса, на основе которой вырабатывается то или иное управляющее воздействие.

Отрицательная обратная связь (ООС) – тип обратной связи, при котором входной сигнал системы изменяется таким образом, чтобы противодействовать изменению выходного сигнала. Отрицательная обратная связь делает систему более устойчивой к случайному изменению параметров. Отрицательная обратная связь широко используется живыми системами разных уровней организации – от клетки до экосистем – для поддержания гомеостаза. Например, в клетках на принципе отрицательной обратной связи основаны многие механизмы регуляции работы генов, а также регуляция работы ферментов (ингибирование конечным продуктом метаболического пути). В организме на этом же принципе основана система гипоталамо-гипофизарной регуляции функций, а также многие механизмы нервной регуляции, поддерживающие отдельные параметры гомеостаза (терморегуляция, поддержание постоянной концентрации диоксида углерода и глюкозы в крови и др.).Положительная обратная связь (ПОС) – тип обратной связи, при котором изменение выходного сигнала системы приводит к такому изменению входного сигнала, которое способствует дальнейшему отклонению выходного сигнала от первоначального значения.

Положительная обратная связь ускоряет реакцию системы на изменение входного сигнала, поэтому её используют в определённых ситуациях, когда требуется быстрая реакция в ответ на изменение внешних параметров. В то же время положительная обратная связь приводит к неустойчивости и возникновению качественно новых систем, называемых генераторы (производители).Положительная обратная связь рассогласует систему, и, в конечном счёте, существующая система трансформируется в другую систему, которая оказывается более устойчивой (то есть в ней начинают действовать отрицательные обратные связи).Действие механизма нелинейной положительной обратной связи ведёт к тому, что система начинает развиваться в режиме с обострением.Положительная обратная связь играет важную роль в макроэволюции. В целом, в макроэволюции положительная обратная связь приводит к гиперболическому ускорению темпов развития, что создает эффект равномерного распределения событий по логарифмической шкале времени.

Иммунитет (лат. immunitas - освобождение, избавление от чего-либо) - невосприимчивость, сопротивляемость организма к инфекциям и инвазиям чужеродных организмов (в том числе - болезнетворных микроорганизмов), а также воздействию чужеродных веществ, обладающих антигенными свойствами. Иммунные реакции возникают и на собственные клетки организма, измененные в антигенном отношении.

Иммунитет делится на врождённый и приобретенный.

    Врождённый (неспецифический, конституционный) иммунитет обусловлен анатомическими, физиологическими, клеточными или молекулярными особенностями, закрепленными наследственно. Как правило, не имеет строгой специфичности к антигенам, и не обладает памятью о первичном контакте с чужеродным агентом

Приобретенный иммунитет делится на активный и пассивный.

    Приобретенный активный иммунитет возникает после перенесенного заболевания или после введения вакцины.

    Приобретенный пассивный иммунитет развивается при введении в организм готовых антител в виде сыворотки или передаче их новорожденному с молозивом матери или внутриутробным способом.

Также иммунитет делится на естественный и искусственный .

    Естественный иммунитет включает врожденный иммунитет и приобретенный активный (после перенесенного заболевания)

    А также пассивный при передаче антител ребёнку от матери.