Главная · Язва · Клеточные включения и их функции. Пероксисомы клетки. Клеточные включения. Биологическое и медицинское значение клеточных включений

Клеточные включения и их функции. Пероксисомы клетки. Клеточные включения. Биологическое и медицинское значение клеточных включений

Вместе с мембранными и немембранными органеллами в цитоплазме находятся клеточные включения, которые являются непостоянными элементами клетки. Они появляются и исчезают на протяжении ее жизненного цикла.

Что относится к клеточным включениям, какова их роль в клетке?

По сути включения - это продукты метаболизма, способные накапливаться в виде гранул, зерен или капель с разной химической структурой. Редко могут встречаться в ядре.

Формируются они в основном в пластинчатом комплексе и в эндоплазматическом ретикулуме. Часть - результат неполного переваривания (гемосидерин).

Процесс расщепления и удаления зависит от происхождения. Секреторные включения выводятся через протоки, углеводные и липидные - расщепляются под действием ферментов, меланин разрушается клетками Лангерганса.

Классификация клеточных включений:

  • Трофические (крахмал, гликоген, липиды);
  • секреторные (включения поджелудочной железы, эндокринных органов);
  • экскреторные (гранулы мочевой кислоты);
  • пигментные (меланин, билирубин);
  • случайные (медикаменты, кремний);
  • минеральные (соли кальция).

Строение и функции

Жировые включения часто накапливаются в цитоплазме, как небольшие капли. Они характерны для одноклеточных, к примеру, инфузорий. У высших животных липидные капли находятся в жировой ткани. Чрезмерное накопление жировых включений приводит к патологическим изменениям в органах, к примеру, вызывает жировую дистрофию печени.

Полисахаридные имеют гранулярное строение различной формы и размеров. Наибольшие их скопления располагаются в клетках поперечнополосатой мускулатуры и печеночной ткани.


Включения белка встречаются не часто, главным образом являются питательным веществом в яйцеклетках (при микроскопическом исследовании можно увидеть разного рода пластинки, палочки).

Пигмент липофусцин - это включения желтого или коричневого цвета, которые скапливаются в клетках в процессе жизнедеятельности. Пигмент гемоглобин входит в состав эритроцитов крови. Родопсин — делает палочки сетчатки глаза чувствительными к свету.

Строение и функции клеточных включений
Группа Характеристика
Трофические Сюда относят белки, жиры и углеводы. В клетках животных, особенно в печени и мышечных волокнах, находится гликоген. При нагрузках и потреблении большого количества энергии он используется в первую очередь. У растений накапливается крахмал, как основной источник питания.
Экскреторные Это продукты метаболизма клетки, которые не были из нее удалены. Сюда также относят чужеродных агентов, проникших во внутриклеточное пространство. Такие включения поглощаются и перерабатываются лизосомами.
Секреторные Их синтез идет в специальных клетках, а после они выводятся наружу через протоки или с током лимфы и крови. К секреторной группе относятся гормоны.
Пигментные Иногда представлены продуктами обмена: гранулы липофусцина или скопления гемосидерина. Находятся в меланоцитах, клетках имеющих окрас. Выполняют защитную функцию, предотвращая действие солнечных лучей. У простейших видов меланоциты находятся во многих органах, что придает животным различную окраску. У человека основная масса пигментных клеток находится в эпидермисе, часть в радужке глаза.
Случайные Встречаются в клетках, способных к фагоцитозу. Захваченные бактерии, которые плохо перевариваются, остаются в цитоплазме в виде гранул.
Минеральные Сюда относятся соли Ca, которые откладываются при снижении активной деятельности органа. Нарушение метаболизма иона приводит также к накоплению солей в матриксе митохондрий.

Биологическое и медицинское значение клеточных включений

Избыточное скопление включений может привести к развитию серьезных патологий, которые принято называть болезнями накопления. Формирование заболевания связано со снижением активности лизосомальных ферментов и чрезмерным поступлением каких-либо веществ (жировое перерождение печени, гликогенозмышечной ткани).

Например, развитие наследственной болезни Помпе обусловлено дефицитом фермента кислая мальтаза , как следствие в клетках накаливается гликоген, что ведет к дистрофии нервной и мышечной ткани.

Скапливаться в цитоплазме могут свойственные для клетки вещества, а также чужеродные, которые в норме не встречаются (амилоидоз почек). Во время старения организма во всех клетках накапливается липофусцин, который служит маркером функциональной неполноценности клеток.

Чем отличаются органоиды от клеточных включений?

Органоиды - это постоянные структурные элементы клетки, необходимые для стабильной работы и жизнедеятельности.

Включения - это компоненты клетки, которые могут появляться и исчезать на протяжении ее жизни.

Что на определенном этапе не участвуют в обмене веществ или являются конечными его продуктами, называют включениями. Они не принадлежат к числу постоянных структур цитоплазмы . Согласно ее функционального состояния — то исчезают, то появляются вновь. Эти вещества — капельки жира, зерна крахмала и гликогена, кристаллики белка — откладываются в цитоплазме «про запас» или является нерастворимыми в воде солями, которые выводятся из обмена веществ. их легко разглядеть в световой микроскоп.

Внешне они представляют собой плотные зернышки, капельки или кристаллики. Включение образуются из веществ, полученных в результате биосинтеза.

Большое количество липидных капель случается в цитоплазме некоторых простейших, в частности инфузорий. У млекопитающих эти капли, как правило, случаются в специализированных жировых клетках в соединительной ткани. Иногда они откладываются в результате патологических процессов, например, во время перерождения печени. Капли жира встречаются в клетках почти всех растительных тканей, особенно много их в семенах некоторых растений.

Включение полисахаридов различных размеров имеют, как правило, гранулярную форму. У многоклеточных животных и простейших в цитоплазме встречаются отложения гликогена, гранулы которого хорошо видно даже в световой микроскоп. Особенно большие скопления наблюдаются в волокнах полосатых мышц, в клетках , нейронах. По крахмала, то, кроме картофеля, значительное его количество содержат зерна злаков, причем форма включений специфическая как для каждого вида растений, так и для определенных тканей.

Белковые включения можно встретить гораздо реже, чем липидные и углеводы. (Как вы считаете, почему?) Найти — повешу их « тайник » — яйцеклетки, они имеют разнообразную форму: пластинок, шариков, палочек, однако встретить их можно и в цитоплазме клеток печени, а также в клетках простейших.

К клеточным включениям относят также пигменты . В частности, желтый и коричневый пигмент тканей — липо — фусцин, шаровидные гранулы которого накапливаются в процессе активной жизнедеятельности , особенно при старении.

Стоит вспомнить другой пигмент желтого и красного цвета — липохром. Он хранится в виде мелких капель в клетках коркового вещества надпочечников и отдельных клетках яичников.

Пигмент ретинин входит в компонетный состав зрительного пурпура сетчатки глаза. Наличие некоторых пигментов связана с выполнением клетками особых функций, достаточно вспомнить черный пигмент меланина в клетках покровных тканей животных.

Рибосомы — особые органеллы, построенные из РНК и белков. Рибосомы являются обязательными компонентами любой клетки. Более всего рибосом в тех клетках, где активно происходят физиологические процессы. их биологическая функция заключается в синтезе белков. Рибосомы можно разглядеть только в электронный микроскоп. В эукариотической клетке они содержатся в цитоплазме, но большинство — в мембранах эндоплазматической сети. В прокариот рибосомы значительно меньше по размерам и содержатся главным образом в цитоплазме.

Каждая рибосома состоит из двух разных по размеру частей, функционирующих как единое целое. Отдельные рибосомы могут соединяться в группы — полисомы (от греч. Поле — много и сома — тело). Рибосомы состоят из специфических рибосомальннх белков и рпбосомальнои РНК. (Вспомните, какие существуют типы РНК.) Интересно, что ни одна молекула, которая входит в состав рибосом, не повторяется дважды.

Цитоплазма эукариотической клетки включает целый ряд органелл, не имеющих мембранной структуры, а построены из белков. Они выполняют функцию клеточного каркаса, обеспечивающих движение клетки и цитоплазмы, играют ключевую роль в обмене веществ, в частности в биосинтезе белков. Кроме того, существуют органеллы специального назначения, которые присущи клеткам с определенными специфическими свойствами.

Это непостоянные структурные компоненты клетки. Они возникают и исчезают в зависимости от функционального и метаболического состояния клетки, являются продуктами её жизнедеятельности и отражают функциональное состояние клетки в момент исследования. Включения подразделяют на несколько групп: трофические, секреторные, экскреторные, пигментные и др.

Классификация включений

Трофические включения

– запас питательных веществ клетки. Различают углеводные, жировые и белковые включения. Например, глыбки гликогена и капли жира в клетках печени – запас углеводов и липидов, который образуется в организме после еды и исчезает при голодании. Желточные включения (липопротеидные гранулы) в яйцеклетке – запас питательных веществ, необходимый для развития зародыша в первые дни его возникновения.

Секреторные включения

гранулы и капли веществ, синтезированных в клетке для нужд организма (например, пищеварительные ферменты для желудочного и кишечного сока), которые накапливаются в вакуолях комплекса Гольджи апикальной части клетки и выводятся из клетки путём экзоцитоза.

Экскреторные включения

– гранулы и капли веществ, вредных для организма, которые выводятся клетками во внешнюю среду с мочой и калом. Например, экскреторные включения в клетках канальцев почек.

Пигментные включения

гранулы или капли веществ, придающих клетке цвет. Например, глыбки белка меланина, имеющего коричневый цвет в меланоцитах кожи, или гемоглобин в эритроцитах.

Помимо структур цитоплазмы, которые можно четко отнести к органеллам или включениям, в ней постоянно имеется огромное количество разнообразных транспортных пузырьков, обеспечивающих перенос веществ между различными компонентами клетки.

Гиалоплазма истинный раствор биополимеров заполняющий клетку, в котором во взвешенном состоянии (как в суспензии) находятся органеллы и включения, а также ядро клетки. К биополимерам гиалоплазмы относятся белки, жиры, углеводы, нуклеиновые кислоты, а также их сложные комплексы, которые растворены в воде, богатой минеральными солями и простыми органическими соединениями. Кроме того, в гиалоплазме находится цитоматрикс – сеть белковых волокон толщиной 2-3 нм. Через гиалоплазму различные структурные компоненты клетки взаимодействуют между собой, происходит обмен веществ и энергии. Гиалоплазма может переходить из жидкого (золь) в желеобразное (гель) состояние. При этом снижается скорость движения в гиалоплазме потоков веществ и энергии, движение органоидов, включений и ядра, а значит угнетается и функциональная активность клетки.

Реакция клеток на внешнее воздействие.

Описанная морфология клеток не является стабильной (постоянной). При воздействии на организм различных неблагоприятных факторов в строении различных структур проявляются различные изменения. В зависимости от факторов воздействия изменения клеточных структур проявляются неодинаково в клетках разных органов и тканей. При этом изменения клеточных структур могут быть адаптивными (приспособительными) и обратимыми, или жедезадаптивными , необратимыми (патологическими). Однако определить четкую грань между адаптивными и дезадаптивными изменениями не всегда возможно, так как приспособительные изменения могут перейти в патологические. Поскольку объектом изучения гистологии являются клетки, ткани и органы здорового организма человека, то здесь будут рассмотрены прежде всего адаптивные изменения клеточных структур. Изменения отмечаются как в строении ядра, так и цитоплазмы.

Изменения в ядре - набухание ядра и сдвиг его на периферию клетки, расширение перинуклеарного пространства, образование инвагинаций кариолеммы (впячивание внутрь ядра его оболочки), конденсация хроматина. Кпатологическим изменениям ядра относят:

    пикноз - сморщивание ядра и коагуляция (уплотнение) хроматина;

    кариорексис - распад ядра на фрагменты;

    кариолизис - растворение ядра.

Изменения в цитоплазме - уплотнение, а затем набухание митохондрий, дегрануляция зернистой эндоплазматической сети (слущивание рибосом), а затем и фрагментация канальцев на отдельные вакуоли, расширение цистерн, а затем распад на вакуоли пластинчатого комплекса Гольджи, набухание лизосом и активация их гидролаз, увеличение числа аутофагосом, в процессе митоза - распад веретена деления и развитие патологических митозов.

Изменения цитоплазмы могут быть обусловлены структурными изменениями плазмолеммы, что приводит к усилению ее проницаемости и гидратации гиалоплазмы, нарушением обмена веществ, что сопровождается снижением содержания АТФ, снижением расщепления или увеличением синтеза включений (гликогена, липидов) и их избыточном накоплении.

После устранения неблагоприятных воздействий на организм реактивные (адаптивные) изменения структур исчезают и морфология клетки восстанавливается. При развитиипатологических (дезадаптивных) изменений даже после устранения неблагоприятных воздействий структурные изменения нарастают и клетка погибает.

Регенерация.

Регенера́ция (восстановление) - способность живых организмов со временем восстанавливать повреждённые ткани, а иногда и целые потерянные органы.

Виды смерти клеток.

Различают два вида клеточной гибели: насильственная смерть от повреждения – некроз и запрограммированная клеточная смерть – апоптоз .

Некроз

– это посмертные изменения клетки необратимого характера, заключающиеся в постепенном ферментативном разрушении и денатурации ее белков . Он развивается при чрезмерной альтерации клетки, не требует затрат энергии и не зависит от управляющих сигналов местного и центрального происхождения («анархических путь гибели»). Вследствие синтеза поврежденной клеткой БАВ (простогландины) и нарушения целостности ее мембран (выход различных ферментов), некроз представляет определенную угрозу окружающим структурам – это часто способствует развитию воспалительного процесса.

Насильственная гибель клетки обусловлена:

    лишением ее питания и кислорода;

    необратимыми изменениями структуры и функции с угнетением важнейших метаболических процессов различными патогенными агентами.

Некрозу предшествует глубокая, частично необратимая стадия повреждения клетки – некробиоз (рис. 1). Несмотря на многообразие этиологических факторов, провоцирующих в конечном счете развитие некробиоза и некроза, молекулярно-клеточные изменения, выявляемые при гибели клетки в большинстве случаев одинаковы (Зайчик А.Ш., Чурилов Л.П., 1999). Согласно их мнению, важно различать гипоксический и свободно-радикальный некробиоз . Механизмы свободно-радикального повреждения клетки (см. выше) могут запускаться без первичной гипоксии, а иногда даже в условиях его избытка. Гипоксический некробиоз (см. раздел «Гипоксия») инициируется различными патогенными факторами, вызывающих продолжительную гипоксию. Оба вида некробиоза могут комбинироваться и взаимно дополнять друг друга. Исходом обоих видов некробиоза являются такие повреждения клетки, при которых она уже неспособна к самостоятельному энергообеспечению (т. необратимости , рис. 1) и подвергается некрозу.

Некоторые исследователи иногда рассматривают некробиоз, как процесс собственной гибели клетки. По Давыдовскому И.В., некробиоз – это процесс отмирания клеток. Некроз же, в большей степени характеристика морфологическая, наблюдающаяся после гибели клетки, а не механизм самой гибели.

Различают две основные разновидности некроза:

    коагуляционный (сухой) некроз. При нем в клетке развивается значительный ацидоз, идет коагуляция белков и отмечается повышенное накопление кальция с агрегацией элементов цитоскелета. Очень часто наблюдается при тяжелой гипоксии, например, в кардиомиоцитах при инфаркте миокарда. Данный некроз преимущественно развивается в тканях богатых белком и кальцием и характеризуется ранними и глубокими поражениями митохондрий;

    колликвационный некроз. Для него типично преобладание гидролитических процессов лизосомального аутолиза или гетеролизиса при участии фагоцитов. Очаг некроза размягчен, наблюдается накопление активных гидроксильных радикалов и эндогенное омыление клеток, что приводит к разрушению ее структур, например различных мембран.

Между коагуляционным и колликвационным некрозоми четких границ нет. Возможно, это объясняется тем, что механизмы их развития во многом общие. Ряд исследователей выделяют и так называемый казеозный (творожистый) некроз (при туберкулезе), пологая при этом, что он представляет собой комбинацию двух предыдущих типов.

Апоптоз.

Апоптоз – это программированная клеточная смерть (инициирующаяся под действием вне- или внутриклеточных факторов) в развитии которой активную роль принимают специальные и генетически запрограммированные внутриклеточные механизмы . Он, в отличие от некроза активный процесс, требующий определенных энергозатрат . Первоначально пытались разграничить понятия «программированная клеточная гибель » и «апоптоз »: к первому термину относили устранение клеток в эмбриогенезе, а ко второму – программированную смерть только зрелых дифференцированных клеток. В настоящее время выяснилось, что никакой целесообразности в этом нет (механизмы развития клеточной гибели одинаковы) и два понятия превратились в синонимы, хотя это объединение и не бесспорно.

Прежде чем приступить к изложению материала о роли апоптоза для жизнедеятельности клетки (и организма) в норме и патологии, мы рассмотрим механизм апоптоза. Их реализацию можно представить в виде поэтапного развития следующих стадий:

1 стадия стадия инициации (индукции) .

В зависимости от происхождения сигнала, стимулирующего апоптоз, различают:

    внутриклеточные стимулы апоптоза . Среди них к наиболее известным относят – разные виды облучения, избыток Н + , оксид азота, свободные радикалы кислорода и липидов, гипертермия и др. Все они могут вызывать различные повреждения хромосом (разрывы ДНК, нарушения ее конформации др.) и внутриклеточных мембран (особенно митохондрий). То есть в данном случае поводом для апоптоза служит «неудовлетворительное состояние самой клетки» (Мушкамбиров Н.П., Кузнецов С.Л., 2003). Причем, повреждение структур клеток должно быть достаточно сильным, но не разрушительным. У клетки должны сохраниться энергетические и материальные ресурсы для активации генов апоптоза и его эффекторных механизмов. Внутриклеточный путь стимуляции программированной смерти клетки можно обозначить как «апоптоз изнутри »;

    трансмембранные стимулы апоптоза , т.е., в этом случае он активируется внешней «сигнализацией», которая передается через мембранные или (реже) внутриклеточные рецепторы. Клетка может быть вполне жизнеспособной, но, с позиции целостного организма или «ошибочной» стимуляции апоптоза, она должна погибнуть. Этот вариант апоптоза получил название «апоптоз по команде ».

Трансмембранные стимулы подразделяются на:

    «отрицательные » сигналы. Для нормальной жизнедеятельности клетки, регуляции ее деления и размножения необходимо воздействие на нее через рецепторы различных БАВ: факторов роста, цитокинов, гормонов. Среди прочих эффектов, они подавляют механизмы клеточной гибели. И естественно, дефицит или отсутствие данных БАВ активирует механизмы программированной смерти клетки;

    «положительные » сигналы. Сигнальные молекулы, такие как ФНОα, глюкокортикоиды, некоторые антигены, адгезивные белки и др., после взаимодействия с клеточными рецепторами могут запускать программу апоптоза.

На клеточных мембранах находится группа рецепторов, в задачу которых передача сигнала к развитию апоптоза является основной, возможно даже единственной функцией. Это, например, белки группы DR (death receptos – «рецепторы смерти »): DR 3 , DR 4 , DR 5 . Наиболее хорошо изучен Fas-рецептор, появляющийся на поверхности клеток (гепатоцитах) спонтанно или под влиянием активации (зрелые лимфоциты). Fas-рецептор при взаимодействии с Fas-рецептором (лигандом) Т-киллера запускает программу смерти клетки мишени. Однако, взаимодействие Fas-рецептора с Fas-лигандом в областях, изолированных от иммунной системы, заканчивается гибелью самого Т-киллера (см. нижеигандом в областях, изолированных от иммунной системы, заканчивается гибелью самого Т-киллера ()ожно000000000000000000000000000).

Следует помнить, что некоторые сигнальные молекулы апоптоза, в зависимости от ситуации могут наоборот, блокировать развитие программированной смерти клеток. Амбивалентность (двойственное проявление противоположных качеств) характерна для ФНО, ИЛ-2, интерферона γ и др.

На мембранах эритроцитов, тромбоцитов, лейкоцитов, а так же клеток легкого и кожи обнаружены особые антигены-маркеры . На них синтезируются физиологические аутоантитела , и они, выполняя роль опсонинов , способствуют фагоцитозу этих клеток, т.е. гибель клеток происходит путемаутофагоцитоза . Выяснилось, что антигены-маркеры появляются на поверхности «старых» (прошедших свой путь онтогенетического развития) и поврежденных клетках, молодые и неповрежденные клетки их не имеют. Данные антигены получили название «антигены-маркеры стареющих и поврежденных клеток» или «белок третьей полосы». Появление белка третьей полосы контролируется геномом клетки. Следовательно, аутофагоцитоз можно рассматривать, как вариант запрограммированной гибели клеток .

    Смешанные сигналы. Это сочетанное воздействие сигналов первой и второй группы. Например, апоптоз происходит с лимфоцитами, активированных митогоном (положительный сигнал), но не вступивших в контакт с АГ (отрицательный сигнал).

2 стадия стадия программирования (контроля и интеграции механизмов апоптоза).

Для этой стадии характерно два, диаметрально противоположных процесса, наблюдающихся после инициации. Происходит либо:

    реализация пускового сигнала к апоптозу через активацию его программы (эффекторами являются каспазы и эндонуклеазы);

    блокируется эффект пускового сигнала апоптоза.

Различают два основных, но не исключающих друг друга, варианта исполнения стадии программирования (рис. 14):

Рис. 14. Каспазный каскад и его мишени

R– мембранный рецептор; К – каспазы;AIF– митохондриальная протеаза; Цит. С – цитохром с;Apaf-1 – цитоплазматический белок;IAPs– ингибиторы каспаз

1. Прямая передача сигнала (прямой путь активации эффекторных механизмов апоптоза минуя геном клетки) реализуется через:

    адапторные белки. Например, так осуществляется запуск апоптоза Т-киллером. Он активирует каспазу-8 (адапторный белок). Аналогично может действовать и ФНО;

    цитохром С и протеазу ΑIF (митохондриальная протеаза). Они выходят из поврежденной митохондрии и активируют каспазу-9;

    гранзимы. Т-киллеры синтезируют белок перфорин, который образует каналы в плазмолемме клетки-мишени. Через эти каналы в клетку проникают протеолитические ферменты гранзимы , выделяемые все тем же Т-киллером и они запускают каскад каспазной сети.

2. Опосредованная передача сигнала. Она реализуется с помощью генома клетки путем:

    репрессии генов, контролирующих синтез белков-ингибиторов апоптоза (гены Bcl-2, Bcl-XL и др). Белки Bcl-2 в нормальных клетках входят в состав мембраны митохондрий и закрывают каналы по которым из этих органоидов выходят цитохром С и протеаза AIF;

    экспрессии, активации генов, контролирующих синтез белков-активаторов апоптоза (гены Bax, Bad, Bak, Rb, P 53 и др.). Они, в свою очередь активируют каспазы (к-8, к-9).

На рис. 14 представлена примерная схема каспазного принципа активации каспаз. Видно, что откуда бы не запускался каскад, его узловым моментом является каспаза 3. Она активируется и каспазой 8 и 9. Всего в семействе каспаз – более 10 ферментов. Локализуются в цитоплазме клетки в неактивном состоянии (прокаспазы). Положение всех каспаз в данном каскаде до конца не выяснено, поэтому на схеме ряд из них отсутствует. Как только активируются каспазы 3,7,6 (возможно и их другие типы) наступает 3 стадия апоптоза.

3 стадия стадия реализация программы (исполнительная, эффекторная).

Непосредственными исполнителями («палачами» клетки) являются выше указанные каспазы и эндонуклеазы. Местом приложения их действия (протеолиза) служат (рис. 14):

    цитоплазматические белки – белки цитоскелета (фодрин и актин). Гидролизом фодрина объясняют изменение поверхности клетки – «гофрирование» плазмолеммы (появление на ней впячиваний и выступов);

    белки некоторых цитоплазматических регуляторных ферментов: фосфолипазы А 2 , протеинкиназы С и др.;

    ядерные белки. Протеолиз ядерных белков занимает основное место в развитии апоптоза. Разрушаются структурные белки, белки ферментов репликации и репарации (ДНК-протеинкиназы и др.), регуляторные белки (рRb и др.), белки-ингибиторов эндонуклеаз.

Иннактивация последней группы – белков ингибиторов эндонуклеаз приводит к активации эндонуклеаз, второму « орудию » апоптоза . В настоящее время эндонуклеазы и в частности, Са 2+ , Мg 2+ -зависимая эндонуклеаза , рассматривается как центральный фермент программируемой смерти клетки. Она расщепляет ДНК не в случайных местах, а только в линкерных участках (соединительные участки между нуклеосомами). Поэтому хроматин не лизируется, а только фрагментируется, что определяет отличительную, структурную черту апоптоза.

Вследствие разрушения белка и хроматина в клетке формируются и от нее отпочковываются различные фрагменты – апоптозные тельца. В них находятся остатки цитоплазмы, органелл, хроматина и др.

4 стадия стадия удаления апоптозных телец (фрагментов клетки).

На поверхности апоптозных телец экспрессируются лиганды, они распознаются рецепторами фагоцитов. Процесс обнаружения, поглощения и метаболизирования фрагментов погибшей клетки происходит сравнительно быстро. Это способствует избежать попадания содержания погибшей клетки в окружающую среду и тем самым, как отмечено выше, воспалительный процесс не развивается. Клетка уходит из жизни «спокойно», не беспокоя «соседей» («тихий суицид»).

Программированная клеточная гибель имеет важное значение для многих физиологических процессов . С апоптозом связаны:

    поддержание нормальных процессов морфогенеза – запрограммированная смерть клеток в процессе эмбриогенеза (имплантации, органогенеза) и метаморфоза;

    поддержание клеточного гомеостаза (в том числе ликвидация клеток с генетическими нарушениями и инфицированных вирусами). Апоптозом объясняется физиологическая инволюция и уравновешивание митозов в зрелых тканях и органах. Например, гибель клеток в активно пролиферирующих и самообновляющихся популяциях – эпителиоцитов кишечника, зрелых лейкоцитов, эритроцитов. Гормонально-зависимая инволюция – гибель эндометрия в конце менструального цикла;

    селекция разновидностей клеток внутри популяции. Например, формирование антигенспецифической составляющей иммунной системы и управление реализацией ее эффекторных механизмов. С помощью апоптоза происходит выбраковка ненужных и опасных для организма клонов лимфоцитов (аутоагрессивных). Сравнительно недавно (Griffith T.S., 1997) показали значение программированной гибели клеток в защите «иммунологически привилегированных» зон (внутренние среды глаза и семенников). При прохождении гисто-гематических барьеров данных зон (что случается редко), эффекторные Т-лимфоциты гибнут (см. выше). Включение механизмов их смерти обеспечивается при взаимодействии Fas-лиганда барьерных клеток с Fas-рецепторами Т-лимфоцита, тем самым предотвращается развитие аутоагрессии.

Роль апоптоза в патологии и виды различных заболеваний связанных с нарушением апоптоза представлены в виде схемы (рис. 15) и таблицы 1.

Конечно, значение апоптоза в патологии меньше чем некроза (возможно, это связано с недостаточностью таких знаний). Однако, проблема его в патологии имеет и несколько иной характер: она оценивается по степени выраженности апоптоза — усиление или ослабление при тех или иных болезнях.

Клеточные структуры: митохондрии, пластиды, органоиды движения, включения. Ядро

Клеточные органеллы, их строение и функции

Органеллы

Строение

Функции

Митохондрии

Микроскопические органеллы, имеющие двухмембранное строение. Внешняя мембрана гладкая, внутренняя образует различной формы выросты – кристы. В матриксе митохондрии (полужидком веществе) находятся ферменты, рибосомы, ДНК, РНК.

Универсальная органелла является дыхательным и энергетическим центром. В процессе кислородного (окислительного) этапа в матриксе с помощью ферментов происходит расщепление органических веществ с освобождением энергии, которая идет на синтез АТФ на (кристах).

Лейкопласты

Микроскопические органеллы, имеющие двухмембранное строение. Внутренняя мембрана образует 2–3 выроста. Форма – округлая. Бесцветны.

Характерны для растительных клеток. Служат местом отложения запасных питательных веществ, главным образом крахмальных зерен. На свету их строение усложняется, и они преобразуются в хлоропласты. Образуются из пропластид.

Хлоропласты

Микроскопические органеллы, имеющие двухмембранное строение. Наружная мембрана гладкая. Внутренняя мембрана образует систему двухслойных пластин – тилакоидов стромы и тилакоидов гран. В мембранах тилакоидов гран между слоями молекул белков и липидов сосредоточены пигменты – хлорофилл и каротиноиды. В белково-липидном матриксе находятся собственные рибосомы, ДНК, РНК.

Характерны для растительных клеток органеллы фотосинтеза, способные создавать из неорганических веществ (CO2 и H2O) при наличии световой энергии и пигмента хлорофилла органические вещества – углеводы и свободный кислород. Синтез собственных белков. Могут образовываться из пластид или лейкопластов, а осенью перейти в хлоропласты (красные и оранжевые плоды, красные и желтые листья).

Хромопласты

Микроскопические органеллы, имеющие двухмембранное строение. Собственно хромопласты имеют шаровидную форму, а образовавшиеся из хлоропластов, принимают форму кристаллов каратинондов, типичную для данного вида растения. Окраска красная, оранжевая, желтая.

Характерны для растительных клеток. Придают лепесткам цветков окраску, привлекательную для насекомых-опылителей. В осенних листьях и зрелых плодах отделяющихся от растений, содержатся кристаллические каротиноиды?– конечные продукты обмена.

Клеточный центр

Ультрамикроскопическая органелла немембранного строения. Состоит из двух центриолей. Каждая имеет цилиндрическую форму, стенки образованы девятью триплетами трубочек, а в середине находится однородное вещество. Центриоли расположены перпендикулярно друг другу.

Принимает участие в делении клеток животных и низших растений. В начале деления (в профазе) центриоли расходятся к разным полюсам клетки. От центриолей к центромерам хромосом отходят нити веретена деления. В анафазе эти нити притягивают хроматиды к полюсам. После окончания деления центриоли остаются в дочерних клетках. Удваиваются и образуют клеточный центр.

Клеточные включения (непостоянные структуры)

Плотные в виде гранул включения, имеющие мембрану (например, вакуоли).

Органоиды движения

Реснички – многочисленные цитоплазмические выросты на поверхности мембраны.

Удаление частичек пыли (реснитчатые эпителии верхних дыхательных путей), передвижение (одноклеточные организмы).

Жгутики – единичные цитоплазматические выросты на поверхности клетки.

Передвижение (сперматозоиды, зооспоры, одноклеточные организмы).

Ложные ножки (псевдоподии) – амебовидные выступы цитоплазмы.

Образуются у животных в разных местах цитоплазмы для захвата пищи, для передвижения.

Миофибриллы – тонкие нити до 1 см. длиной и больше.

Служат для сокращения мышечных волокон, вдоль которых они расположены.

Цитоплазма, осуществляющая струйчатое и круговое движение.

Перемещение органелл клетки по отношению к источнику света (при фотосинтезе), тепла, химического раздражителя.

Схема состав и функции клеточных включений

Фагоцитоз – захват плазматической мембраной твёрдых частиц и втягивание их внутрь.

Плазматическая мембрана образует впячивание в виде тонкого канальца, в который попадает жидкость с растворёнными в ней веществами. Этот способ называют пиноцитозом .

Ядро

Все организмы, имеющие клеточное строение без оформленного ядра называются прокариотами . Все организмы, имеющие клеточное строение с ядром называются эукариотами .

Ядерные структуры, их строение и функции

Структуры

Строение

Функции

Ядерная оболочка

Двухслойная пористая. Наружная мембрана переходит в мембраны ЭС. Свойственна всем клеткам животных и растений, кроме бактерий и сине-зеленых, которые не имеют ядра.

Отделяет ядро от цитоплазмы. Регулирует транспорт веществ из ядра в цитоплазму (РНК и субъединицы рибосом) и из цитоплазмы в ядро (белки, жир, углеводы, АТФ, вода, ионы).

Хромосомы (хроматин)

В интерфазной клетке хроматин имеет вид мелкозернистых нитевидных структур, состоящих из молекул ДНК и белковой обкладки. В делящихся клетках хроматиновые структуры спирализуются и образуют хромосомы. Хромосома состоит из двух хроматид, и после деления ядра становится однохроматидной. К началу следующего деления у каждой хромосомы достраивается вторая хроматида. Хромосомы имеют первичную перетяжку, на которой расположена центромера; перетяжка делит хромосому на два плеча одинаковой или разной длины. У ядрышковых хромосом есть вторичная перетяжка.

Хроматиновые структуры – носители ДНК. ДНК состоит из участков – генов, несущих наследственную информацию и передающихся от предков к потомкам через половые клетки. Совокупность хромосом, а, следовательно, и генов половых клеток родителей передается детям, что обеспечивает устойчивость признаков, характерных для данной популяции, вида. В хромосомах синтезируется ДНК, РНК, что служит необходимым фактором передачи наследственной информации при делении клеток и построении молекул белка.

Ядрышко

Шаровидное тело, напоминающее клубок нити. Состоит из белка и РНК. Образуется на вторичной перетяжке ядрышковой хромосомы. При делении клеток распадается.

Формирование половинок рибосом из рРНК и белка. Половинки (субъединицы) рибосом через поры в ядерной оболочке выходят в цитоплазму и объединяются в рибосомы.

Ядерный сок (кариолимфа)

Полужидкое вещество, представляющее коллоидный раствор белков, нуклеиновых кислот, углеводов, минеральных солей. Реакция кислая.

Участвует в транспорте веществ и ядерных структур, заполняет пространство между ядерными структурами; во время деления клеток смешивается с цитоплазмой.

Схема строения ядра клетки

Функции ядра клетки:

  • регуляция процессов обмена веществ в клетке;
  • хранение наследственной информации и ее воспроизводство;
  • синтез РНК;
  • сборка рибосом.

Выводы по лекции

  1. В митохондриях происходит расщепление органических веществ с освобождением энергии, которая идет на синтез АТФ.
  2. Важную роль играют пластиды в обеспечении процессов жизнедеятельности растительной клетки.
  3. К органоидам движения относят клеточные структуры: реснички, жгутики, миофибриллы.
  4. Все клеточные организмы делятся на прокариоты (безъядерные) и эукариоты (с ядром).
  5. Ядро представляет собой структурный и функциональный центр, координирующий ее обмен веществ, руководящий процессами самовоспроизведения и хранения наследственной информации.

Вопросы для самоконтроля

  1. Почему митохондрии образно называют "силовыми станциями" клетки?
  2. Какие структуры клетки способствуют ее движению?
  3. Что относится к клеточным включениям? Какова их роль?
  4. Каковы функции ядра в клетке?

Самостоятельная работа

Темы рефератов, докладов:

  1. Исторический очерк. "Изучение строения клетки".
  2. Выдающийся биолог Р. Гук.
  3. Выдающийся биолог А. Левенгук.
  4. Выдающиеся биологи Т. Шванн и М. Шлейден.
  5. Выдающийся биолог Р. Вирхов.

Включения цитоплазмы - это необязательные компоненты клетки, появляющиеся и исчезающие в зависимости от интенсивности и характера обмена веществ в клетке и от условий существования организма. Включения имеют вид зерен, глыбок, капель, вакуолей, гранул различной величины и формы. Их химическая природа очень разнообразна. В зависимости от функционального назначения включения объединяют в группы:

трофические;

пигменты;

экскреты и др.

специальные включения (гемоглобин)

Среди трофических включений (запасных питательных веществ) важную роль играют жиры и углеводы. Белки как трофические включения используются лишь в редких случаях (в яйцеклетках в виде желточных зерен).

Пигментные включения придают клеткам и тканям определенную окраску.

Секреты и инкреты накапливаются в железистых клетках, так как являются специфическими продуктами их функциональной активности.

Экскреты - конечные продукты жизнедеятельности клетки, подлежащие удалению из нее.

2.Характеристика и классификация типа кольчатые черви.Медицинское значение кольчецов.

Кольчатые черви. Размеры кольчецов колеблются от долей миллиметра до 2.5 м. Свободноживущие формы. Тело, три части: голова, туловище, состоящее из колец, и анальная лопасть. Голова кольчецов снабжена различными органами чувств. У многих кольчецов хорошо развиты глаза. Некоторые имеют особо острое зрение, и их хрусталик способен к аккомодации. Глаза могут быть расположены не только на голове, но и на щупальцах, на теле и на хвосте. У кольчецов развиты и вкусовые ощущения. На голове и щупальцах многих из них есть особенные обонятельные клетки и ресничные ямки, которые воспринимают различные запахи и действие многих химических раздражителей. Хорошо развиты у кольчецов органы слуха, устроенные по типу локаторов. Тело кольчецов состоит из колец, или сегментов. Число колец может достигать несколько сотен. Другие кольчецы состоят всего из нескольких сегментов. Каждый сегмент до некоторой степени представляет самостоятельную единицу целого организма. Каждый сегмент включает части жизненно важных систем органов. Органы движения (параподии) располагаются по бокам каждого сегмента. Есть они у первичных кольчецов и многощетинковых червей. У малощетинковых остаются только щетинки. Примитивная пиявка акантобделла имеет щетинки. Остальные пиявки обходятся в движении без параподий и щетинок. У эхиурид параподий нет, а щетинки есть только на заднем конце тела. Параподии, узлы нервной системы, органы выделения, половые железы и, у некоторых полихет, парные карманы кишечника планомерно повторяются в каждом сегменте. Удлинение тела вызвало необходимость многократного повторения сначала органов движения с их мускулатурой и нервной системой, а затем и внутренних органов. Целом находится между кишечником и стенкой тела. Полость тела выстлана целотелием. По средней линии тела проходит мезентерий. Полостная жидкость служит хорошим «гидравлическим скелетом». Движением полостной жидкости могут переноситься внутри тела кольчецов различные питательные продукты, выделения желез внутренней секреции, а также кислород и углекислый газ, участвующие в процессе дыхания.

Внутренние перегородки защищают организм при тяжелых ранениях и разрывах стенки тела. Кроме дыхательной и защитной роли, вторичная полость выполняет роль вместилища для половых продуктов, которые вызревают там, прежде чем выводятся наружу. Кольчецы, за немногими исключениями, имеют кровеносную систему, сердца нет. Стенки крупных сосудов сами сокращаются и проталкивают кровь через тончайшие капилляры. У пиявок функции кровеносной системы и вторичной полости настолько совпадают, что эти две системы совмещаются в единую сеть лакун, по которым течет кровь. У некоторых развиваются жабры. Рот ведет в глотку. У некоторых кольчецов в глотке располагаются сильные роговые челюсти и зубчики, помогающие крепче схватить живую добычу. У многих хищных кольчецов глотка служит мощным орудием нападения и защиты. За глоткой следует пищевод. Этот отдел часто снабжен мышечной стенкой. Перистальтические движения мышц медленно проталкивают пищу в следующие отделы. В стенке пищевода располагаются железы, фермент которых служит для первичной переработки пищи. За пищеводом следует средняя кишка. В отдельных случаях бывают развиты зоб и желудок. Стенка средней кишки образована эпителием, очень богатым железистыми клетками, которые вырабатывают пищеварительный фермент. Другие клетки средней кишки всасывают переваренную пищу. У одних кольчецев средняя кишка в виде прямой трубки, у других она изогнута петлями, третьи имеют с боков кишечника метамерные выросты. Задняя кишка заканчивается анальным отверстием.

Специальные органы - метанифридии – служат для выделения наружу половых клеток – сперматозоидов и яйцеклеток. Метанефридии начинаются воронкой в полости тела; от воронки идет извитой канал, который в следующем сегменте открывается наружу. В каждом сегменте располагаются два метанефридия.

КЛАСС ПЕРВИЧНЫЕ КОЛЬЧЕЦЫ (ARCHIANNELIDA), КЛАСС ПИЯВКИ (HIRUDINEA), КЛАСС МНОГОЩЕТИНКОВЫЕ КОЛЬЧЕЦЫ (POLYCHAETA), КЛАСС ОЛИГОХЕТЫ, ИЛИ МАЛОЩЕТИНКОВЫЕ КОЛЬЧЕЦЫ (OLIGOCHAETA).

Вопрос.

Наследственные болезни - заболевания человека, обусловленные хромосомными и генными мутациями. В зависимости от соотношения роли наследственных и экзогенных факторов в этиологии и патогенезе различных заболеваний все болезни человека условно можно разделить на три группы.

Первая группа - собственно наследственные болезни, т.е. болезни, при которых проявление патологической мутации (см. Мутагенез) как этиологического фактора практически не зависит от влияния окружающей среды, которая в этом случае определяет лишь степень выраженности симптомов болезни. К болезням первой группы относятся все хромосомные и генные Н.б. с полным проявлением, например болезнь Дауна.

К болезням второй группы относят так называемые мультифакториальные болезни, в основе которых лежит взаимодействие генетических и средовых факторов. К болезням этой группы относятся гипертоническая болезнь, атеросклероз, язвенная болезнь желудка и двенадцатиперстной кишки, сахарный диабет, аллергические заболевания, многие пороки развития, определенные формы ожирения. Болезни третьей группы связаны исключительно с воздействием неблагоприятных или вредных факторов окружающей среды, наследственность в их возникновении практически не играет никакой роли. К этой группе относят травмы, ожоги, острые инфекционные болезни. Однако генетические факторы могут оказывать определенное влияние на течение патологического процесса, т. е. на темпы выздоровления, переход острых процессов в хронические, развитие декомпенсации функций пораженных органов.

Здоровье человека есть опосредованный показатель состояния окружающей среды.

Качество окружающей среды в пределах КР определяют следующие экологические факторы, влияющие на здоровье человека:

Геофизические, в первую очередь климатические: атмосферное давление, определяемое высотой местности; сухость воздуха и высокая его естественная запыленность, объясняемая положением республики в зоне пустынь; резкие колебания температур (среднесуточные, сезонные, годовые); большая продолжительность солнечного сияния и напряженность солнечной радиации;

Геохимические: недостаток содержания йода в водных источниках и железа в почве; приуроченность к населенным пунктам обогатительных фабрик, связанных с добычей ртути, висмута, мышьяка, свинца;

Биотические: действие аллергенов, ядов растительного и животного происхождения; воздействие патогенных организмов; наличие полезных животных и растений.

На здоровье человека оказывают влияние природно-катастрофические процессы и явления: землетрясения, оползни, наводнения, засухи.

Для человека неблагоприятно загрязнение любой из сред, с которыми он соприкасается

Экзаменационный билет № 47

1.Постэмбриональное развитие.

Постэмбриональный онтогенез начинается с момента рождения, при выходе из зародышевых оболочек или при выходе из яйцевых оболочек и заканчивается смертью. Включает следующие периоды:

1.Ювенильный(дорепродуктивный)-от рождения до полового созревания

2.Репродуктивный(период зрелости)- организм способен к самовоспроизведению

3.Пострепродуктивный(период старения)- заканчивается смертью

Ювенильный период характеризуется продолжением начавшегося ещё в эмбриональный период органогенеза и увеличением размеров тела. Уже вначале этого периода все органы достигают той степени дифференцировки, при которой молодой организм может существовать и развиваться вне организма матери.

Пубертатный периуд называется стабильной стадией, т.к. организм в этот период функционирует как устойчивая система, способная поддерживать постоянство своего внутреннего состава в изменяющихся условиях внешней среды.В данный период осуществляется функция- размножения.

Период старения, Характеризуется уменьшением интенсивности обмена веществ, ослаблением физиологических, биохимических и морфологических функций.

В постнатальном периоде выделяют несколько критических периодов:

Новорождение-первые дни после рождения в связи с перстройкой всех процессов жизнедеятельности.

Половое созревание(12-16 лет), когда происходит гормональная перестройка.

Половое увядание(около 50 лет)- когда происходит угасани функций эндокринных желёз.