Главная · Запор · Наследственные болезни аминокислотного обмена. Генные болезни человека. Нарушение обмена аминокислот и других соединительных тканей - Контрольная работа

Наследственные болезни аминокислотного обмена. Генные болезни человека. Нарушение обмена аминокислот и других соединительных тканей - Контрольная работа

Нарушение трансаминирования и окислительного дезаминирования. Процессы трансаминирования и дезаминирования имеют универсальное значение для всех живых организмов и всех аминокислот: трансаминирование приводит к образованию аминокислот, дезаминирование - к их разрушению.

Сущность реакции трансаминирования заключается в обратимом переносе аминогруппы от аминокислоты на а-кетокислоту без промежуточного образования свободного аммиака. Реакция катализируется специфическими ферментами: аминотрансферазами или трансаминазами, кофакторами которых являются фосфорилированные формы пиридоксина (пиридоксальфосфат и пиридок-саминофосфат).

Нарушения реакции трансаминирования могут возникать по нескольким причинам: это прежде всего недостаточность пиридоксина (беременность, подавление сульфаниламидными препаратами кишечной флоры, частично синтезирующей витамин, торможение синтеза пиридоксальфосфата во время лечения фтивазидом). Снижение активности трансаминаз происходит также при ограничении синтеза белков (голодание, тяжелые заболевания печени). Если в отдельных органах возникает некроз (инфаркт миокарда или легких, панкреатит, гепатит и др.), то вследствие разрушения клеток тканевые трансаминазы поступают в кровь и повышение их активности в крови при данной патологии является одним из диагностических тестов. В изменении скорости трансаминирования существенная роль принадлежит нарушению соотношения между субстратами реакции, а также гормонам, особенно гликокортикоидам и гормону щитовидной железы, оказывающим стимулирующее влияние на этот процесс.

Угнетение окислительного дезаминирования, приводящее к накоплению неиспользованных аминокислот, может вызвать повышение концентрации аминокислот в крови - гипераминоацидемию . Следствием этого является усиленная экскреция аминокислот почками (аминоацидурия ) и изменение соотношения отдельных аминокислот в крови, создающие неблагоприятные условия для синтеза белковых структур. Нарушение дезаминирования возникает при недостатке компонентов, прямо или косвенно участвующих в этой реакции (недостаток пиридоксина, рибофлавина, никотиновой кислоты; гипоксия; белковая недостаточность при голодании).

Нарушения декарбоксилирования. Являясь очень важным, хотя и не универсальным, направлением белкового обмена, декарбоксилирование протекает с образованием CO 2 и биогенных аминов. Декарбоксилированию подвергаются только некоторые аминокислоты: гистидин - с образованием гистамина, тирозин - тирамина, 1-глутаминовая кислота - γ-аминомасляной кислоты , 5-гидрокситриптофан - серотонина , производные тирозина (3,4-диоксифенилаланин) и цистина (1-цистеиновая кислота) - соответственно 3,4-диоксифенилэтиламина (дофамин ) и таурина .


Биогенные амины, как известно, обладают специфической биологической активностью и увеличение их количества может вызвать ряд патологических явлений в организме. Причиной такого увеличения может быть не только усиление декарбоксилирования соответствующих аминокислот, но и угнетение окисления аминов и нарушение их связывания белками. Так, например, при гипоксических состояниях, ишемии и деструкции тканей (травмы, облучение и др.) ослабляются окислительные процессы, что способствует усилению декарбоксилирования. Появление большого количества биогенных аминов в тканях (особенно гистамина и серотонина) может вызвать значительное нарушение местного кровообращения, повышение проницаемости сосудов и повреждение нервного аппарата.

Наследственные нарушения обмена некоторых аминокислот. Прохождение аминокислот через определенные метаболические пути детерминируется наличием и активностью соответствующих ферментов. Наследственное нарушение синтеза ферментов приводит к тому, что соответствующая аминокислота не включается в метаболизм, а накапливается в организме и появляется в биологических средах: моче, кале, поте, цереброспинальной жидкости. Клиническая картина такого заболевания определяется, во-первых, появлением слишком большого количества вещества, которое должно было метаболизироваться при участии заблокированного фермента, а во-вторых, дефицитом вещества, которое должно было образоваться.

Таких генетически обусловленных нарушений обмена аминокислот известно довольно много; все они наследуются рецессивно. Некоторые из них представлены в табл. 4.

Нарушение трансаминирования и окислительного дезаминирования. Процессы трансаминирования и дезаминирования имеют универсальное значение для всех живых организмов: трансаминирование способствует синтезу аминокислот, дезаминирование - их разрушению.

Суть реакции трансаминирования состоит в обратном переносе аминогруппы с аминокислоты в α-кетокислоту без промежугочного образования свободного иона аммония. Реакция катализируется специфическими ферментами аминотрансферазами (трансаминазами), кофакторами которых являются фосфорилированные формы пиридоксина (пиридоксальфосфат и пиридоксаминфосфат).

Нарушения реакций трансаминирования могут возникать по нескольким причинам, прежде всего - в результате дефицита пиридоксина (беременность, угнетение сульфаниламидными препаратами кишечной микрофлоры, торможение синтеза пиридоксальфосфата при лечении фтивазидом). Снижение активности аминотрансфераз происходит также в случае угнетения синтеза белков (голодание, тяжелая патология печени). Если в некоторых органах возникает некроз (инфаркт миокарда или легких, панкреатит, гепатит и др.), то вследствие разрушения клеток тканевые аминотрансферазы поступают в кровь, и повышение их активности в крови при такой патологии является одним из диагностических критериев. В изменении скорости трансаминирования важную роль играют нарушение соотношения субстратов реакции, а также влияние гормонов, особенно глюкокортикоидов и гормонов щитовидной железы, стимулирующих этот процесс.

Угнетение процесса окислительного дезаминирования, в результате которого распадаются неиспользованные аминокислоты, обусловливает повышенную концентрацию их в крови - гипераминоацидемию . Последствиями этого являются усиленная экскреция аминокислот почками (аминоацидурия ) и изменение соотношения отдельных аминокислот в крови, что создает неблагоприятные условия для синтеза белковых молекул. Дезаминирование нарушается при дефиците компонентов, которые прямо или косвенно принимают участие в этой реакции (пиридоксин, рибофлавин, никотиновая кислота), а также при гипоксии, голодании (белковая недостаточность).

Нарушение декарбоксилирования. Этот процесс является важным, хотя и не универсальным направлением белкового обмена, и происходит с образованием углекислого газа и биогенных аминов. Декарбоксилированию подвергаются лишь некоторые аминокислоты: гистидин преобразуется в гистамин, тирозин - в тирамин, γ-глугаминовая кислота - в γ-аминомасляную кислоту (ГАМК), 5-гидрокситриптофан - в серотонин, производные тирозина (3,4-диоксифенилаланин) и цистина (L-цистеиновая кислота - соответственно в 3,4-диоксифенилэтиламин (дофамин) и таурин.

Биогенные амины, как известно, имеют специфическую биологическую активность, и увеличение их количества может вызвать определенные патологические изменения в организме. Большое количество биогенных аминов может быть результатом не только усиленного декарбоксилирования соответствующих аминокислот, но и угнетения окисления аминов и нарушения связывания их белками. Например, при гипоксии, ишемии и деструкции тканей (травма, облучение и т. п.) замедляются окислительные процессы, тем самым способствуя усилению декарбоксилирования. Избыток биогенных аминов (особенно гистамина и серотонина) в тканях может обусловить значительное нарушение местного кровообращения, повышение проницаемости сосудистой стенки и повреждение нервного аппарата.

Наследственные нарушения обмена некоторых аминокислот

Метаболизм аминокислот детерминируется определенным количеством и активностью соответствующих ферментов. Наследственные нарушения синтеза ферментов приводят к тому, что необходимая аминокислота не включается в метаболизм, а накапливается в биологических средах организма: крови, моче, кале, поту, спинномозговой жидкости. Клиническая картина в таких случаях обусловлена, во-первых, наличием достаточно большого количества вещества, которое должно было метаболизоваться с помощью заблокированного фермента; во-вторых - дефицитом вещества, которое должно было образоваться.

Генетически обусловленных нарушений обмена аминокислот известно довольно много, все они наследуются по аутосомно-рецессивному типу. Некоторые из них приведены в табл. 2.

Нарушение обмена фенилаланина. В норме фенилаланин преобразуется в тирозин. Если в печени нарушается синтез необходимого для этого фермента фенила-ланингидроксилазы (схема 4), то окисление фенилаланина происходит посредством образования фенилпировиноградной и фенилмолочной кислот - развивается фенилкетонурия. Однако этот путь имеет малую “пропускную” способность, поэтому большое количество фенилаланина накапливается в крови, тканях и спинномозговой жидкости, что в первые же месяцы жизни новорожденного проявляется тяжелым поражением ЦНС и неизлечимым слабоумием. Вследствие недостаточного синтеза тирозина угнетается образование меланина, который обусловливает осветление кожи и волос. Кроме того, в результате повышенного образования фенилпировиноградной кислоты тормозится активность фермента дофамингидроксилазы, необходимого для синтеза катехоламинов (адреналина, норадреналина). Тяжесть наследственной патологии определяется комплексом всех этих нарушений. Больные умирают в детстве, если не проводится специальное лечение, заключающееся в постоянном, но осторожном (контроль аминокислотного состава крови) ограничении поступления фенилаланина с пищей. Раннюю диагностику заболевания нужно проводить сразу после рождения ребенка. Для этого применяют различные биохимические тест-системы.

Нарушение обмена тирозина. Обмен тирозина происходит несколькими путями. В случае недостаточного преобразования тирозина в гомогентизиновую кислоту (см. схему 4), что может быть обусловлено дефектом различных ферментов, тирозин накапливается в крови и выводится с мочой. Это нарушение называется тирозинозом и сопровождается печеночной и почечной недостаточностью и ранней смертью ребенка или лишь задержкой психомоторного развития. Если нарушение обмена тирозина происходит в момент окисления гомогентизиновой кислоты (см. схему 4), развивается алкаптонурия. Фермент, окисляющий гомогентизиновую кислоту (гомогентизиноксидаза), образуется в печени. В норме он настолько быстро разрывает ее гидрохиноновое кольцо, что кислота “не успевает” попасть в кровь, а если и попала, то быстро выделяется почками. В случае наследственного дефекта этого фермента гомогентизиновая кислота в большом количестве накапливается в крови и моче. Моча больных алкаптонурией на воздухе или после добавления щелочи становится черной. Это объясняется окислением гомогентизиновой кислоты кислородом воздуха и образованием в ней алкаптона (от лат. alcapton - захватывающий щелочь). Гомогентизиновая кислота с током крови поступает в ткани - хрящевую, сухожилия, связки, внутренний слой стенки аорты, вследствие чего образуются темные пятна в области ушей, носа, щек, на склерах. Алкаптон делает хрящи и сухожилия хрупкими, что иногда приводит к тяжелым изменениям в суставах.

Также тирозин - это исходный продукт для образования пигмента меланина, содержащегося в коже и волосах. Если преобразование тирозина в меланин замедленно вследствие наследственного дефицита тирозиназы (см. схему 4), возникает альбинизм , который сопровождается повышением чувствительности кожи к солнечному свету и нарушением зрения.

И наконец, тирозин является предшественником тироксина. В случае недостаточного синтеза фермента, который катализирует взаимодействие тирозина со свободным йодом, нарушается образование гормонов щитовидной железы.

Нарушение обмена триптофана. Основной путь метаболизма триптофана, как и никотиновой кислоты, обеспечивает синтез никотинамидадениндинуклеотида (НАД) и НАДФ, которые играют важную роль в жизнедеятельности организма, будучи коферментами многих реакций обмена, а значительный дефицит этих веществ служит причиной развития пеллагры . Нарушение обмена триптофана также может сопровождаться изменением количества образующегося из него серотонина.

Различают наследственные и приобретенные нарушения обмена аминокислот. Наибольшая скорость обмена аминокислот наблюдается в нервной ткани. По этой причине в психоневрологической практике различные наследственные аминоацидопатии считаются одной из причин слабоумия. Гидролиз белков в желудке происходит при превращении в кислой среде пепсиногена в пепсин. Пепсин расщепляет связи между ароматическими аминокислотами, соседствующими с карбоксильными аминокислотами. Пепсин инактивируется в щелочной среде. Этот этап переваривания белков отсутствует у больных после гастрэктомии, у больных, длительно принимающих ингибиторы Na-K-АТФазы, например омепразол. Расщепление пептидов пепсином прекращается после поступления химуса в тонкую кишку.

В тонкой кишке полипептиды подвергаются дальнейшему расщеплению протеазами, которые содержатся в соке поджелудочной железы и на поверхности ворсинок энтероцитов. Основное расщепление пептидов осуществляют панкреатические ферменты: трипсин, химотрипсин, эластаза, карбоксипептидазы А и В. Трипсин расщепляет полипептидные цепочки в местах соединения основных аминокислот (лизина, аргинина), в то время как химотрипсин разрушает связи ароматических аминокислот (фенилаланина, тирозина, триптофана). Эластаза расщепляет связи алифатических пептидов. При протеолизе, осуществляемом панкреатическими ферментами, происходит отщепление олигопептидов и некоторых свободных аминокислот. Микроворсинки энтероцитов имеют на своей поверхности эндопептидазы и экзопептидазы, расщепляющие олигопептиды до аминокислот и ди-, трипептидов. Всасывание ди- и трипептидов осуществляется с помощью активного транспорта. Эти продукты затем расщепляются до аминокислот внутриклеточными пептидазами энтероцитов. Аминокислоты абсорбируются по принципу механизма котранспорта с натрием на апикальном участке мембраны. Существуют как минимум пять

симпортов Na/аминокислота, которые различаются по типам переносимых аминокислот: нейтральный транспорт (переносящий нейтральные аминокислоты), основной (переносящий аргинин, лизин, гистидин), дикарбоксильный (транспортирующий глутамат, аспартат), гидрофобный (транспортирующий фенилаланин, метионин) и иминотранспорт (переносящий пролин, гидроксипролин).

Описаны наследственные нарушения функции отдельных переносчиков аминокислот, приводящие к дефициту этих аминокислот. Другой причиной дефицита аминокислот в организме являются различные нарушения в работе ферментов.

Энзимопатии — общее название болезней или патологических состояний, развивающихся вследствие отсутствия или снижения активности тех или иных ферментов. Выделяют наследственные энзимопатии, в основе которых лежит генетически обусловленная недостаточность одного или нескольких ферментов, и приобретенные энзимопатии, развивающиеся как следствие различных болезней, чаще хронических. Описаны следующие варианты нарушений активности ферментов:
полная блокада (выключение) синтеза фермента;
— снижение активности фермента;
— нарушение систем или биохимических реакций, от которых зависит активность фермента.

Особенностью течения наследственных энзимопатий является наличие так называемого скрытого периода, когда болезнь клинически не проявляется, но может быть заподозрена или установлена на основании биохимических исследований крови, мочи, кала. Первые клинические симптомы наследственных энзимопатий обычно обнаруживаются в раннем детском возрасте, но в ряде случаев болезнь может длительное время протекать бессимптомно и клинически проявляется у детей старшего возраста или у взрослых. Многочисленные патологические состояния, обусловленные дефицитом одного или нескольких ферментов, характеризуются большим разнообразием течения, прогноз их различен.

Рассмотрим нарушение обмена аминокислот на примере тирозина и метионина.

Тирозин — α-амино-β-(n-оксифенил)-пропионовая кислота, является заменимой ароматической одноосновной аминокислотой. Тирозин входит в состав молекул белков, в том числе ферментов, служит биосинтетическим предшественником катехоламинов (диоксифенилаланина, дофамина, адреналина, норадреналина, меланинов, тирамина), а также многих белково-пептидных гормонов, в частности гормонов щитовидной железы (тироксина и трийодтиронина), являясь йодированным компонентом специфического белка щитовидной железы тиреоглобулина. Недостаточность тирозина в организме ведет к нарушению синтеза белков, катехоламинов и др. Нарушение обмена тирозина обнаруживают при заболеваниях печени и почек, алкоголизме, меланоме, а также при наследственной патологии (тирозиноз, алкаптонурия, альбинизм).

Альбинизм врожденная аномалия обмена тирозина. При этом нарушается выработка фермента тирозиназы, вследствие чего происходит блок превращения диоксифенилаланина (ДОФА) в меланин. У альбиносов образование и обмен адреналина не нарушаются, поэтому трудно предположить, что обмен тирозина тормозится на более ранних стадиях превращения (до стадии образования ДОФА).

Вместе с тем наблюдают и такое патологическое состояние, при котором усиленно образуется меланин. Так, в процессе развития злокачественной опухоли — меланомы — значительная часть тирозина и фенилаланина используется клетками для синтеза меланина. Возникает дефицит этих аминокислот, что вызывает нарушение белкового обмена.

Алкаптонурия — заболевание, обусловленное аутосомно-рецессивным дефектом синтеза гомогентизиновой кислоты. При нормальных условиях фермент n-оксифенилпируватоксигеназа (вместе с витамином С) превращает n-оксифенилпируват, образованный из тирозина, в гомогентизиновую кислоту. В почках гомогентизиновая кислота превращается в 4-метилацетоуксусную кислоту. Если по каким-то причинам этот процесс тормозится, то накопление гомогентизиновой кислоты приводит к образованию хиноновых полифенолов (охронозных ферментов), которые выводятся почками и обусловливают темную окраску мочи. Гомогентизиновая кислота ингибирует фермент лизилгидроксилазу, из-за чего происходит нарушение синтеза коллагена, а охронозный фермент алкаптон не полностью выводится с мочой и откладывается в хрящевой и других видах соединительной ткани, вызывая их хрупкость. Такие изменения часто приводят к кальцификации и дегенеративному артриту позвоночника, суставов конечностей, пигментации склер и хрящей ушных раковин и др. Заболевание можно выявить в раннем детском возрасте (моча быстро темнеет на воздухе).

Тирозиноз Медеса — заболевание, при котором нарушена активность n-оксифенилпируватоксигеназы или печеночной тирозинаминотрансферазы. В отличие от алкаптонурии при этой патологии в печени вообще не образуется гомогентизиновая кислота. Развиваются печеночная недостаточность и нефропатия, тяжелые формы миастении.

Наследственная тирозинемия — заболевание, которое связано с недостаточностью или отсутствием ферментов парагидроксифенилпируватоксидазы (синтезируется в печени и почках) и тирозинтрансаминазы (вырабатывается только в печени). Данные ферменты играют важную роль в катаболизме фенилаланина путем образования тирозина. Заболевание наследуется по аутосомно-рецессивному типу.

По течению выделяют острую и хроническую формы болезни. Больные с острой формой заболевания умирают в первые месяцы жизни. Хроническая форма медленно прогрессирует с развитием тяжелого поражения печени и почек. В печени развиваются стеатоз, диффузный фиброз. У детей старшего возраста формируется цирроз печени с пролиферацией желчных протоков.

Для клинической картины данного заболевания характерно отставание в умственном и физическом развитии, анорексия, рвота, поносы, желтуха, увеличение размеров печени и селезенки, асцит, отеки вплоть до анасарки, кровоточивость, развитие рахита.

При хроматографическом исследовании аминокислот сыворотки крови выявляют гипертирозинемию, в ряде случаев — повышение содержания метионина.

Частым осложнением данного заболевания является гигантоклеточная трансформация гепатоцитов. Более чем у 1/3 больных с хронической тирозинемией развивается гепатоцеллюлярная карцинома.

Лечение состоит в назначении диеты, бедной фенилаланином и метионином. Показано назначение больших доз витамина D (10 000-15 000 ЕД/сут).

Метионин (α-амино-γ-метилтиомас-ляная кислота) — незаменимая для человека кислота, входящая в состав многих белков. Метионин необходим для осуществления реакций трансметилирования, участвующих в биосинтезе креатина, холина, адреналина и других биологически активных веществ, а также в обезвреживании различных токсических метаболитов. Метионин всасывается в тонкой кишке и поступает в печень, где подвергается основным превращениям. Основной путь обмена метионина проходит через образование цистеина. Недостаток метионина сопровождается серьезными нарушениями обмена веществ, в первую очередь обмена липидов, и является причиной тяжелых поражений печени, в частности ее жировой инфильтрации. Нарушения обмена метионина в организме человека связаны в основном с наследственными энзимопатиями, которые характеризуются полным отсутствием или недостаточностью ферментов, участвующих в его превращениях.

Гомоцистинурия наследственное заболевание, обусловленное нарушением обмена метионина и связанное с отсутствием L-серин-дегидратазы в печени. У этих больных в тканях накапливается избыток метионина и гомоцистеина, уменьшается концентрация цистатионина и цистина в крови и моче. Повышенное содержание в крови и тканях метаболитов метионина оказывает токсическое влияние на нервную систему. Клиническая картина заболевания характеризуется задержкой психомоторного развития; дети поздно начинают сидеть, ходить, говорить. Больные легковозбудимы, раздражительны. Интеллектуальное развитие, как правило, снижено. Возможны судороги, гиперкинезы. Изменения скелета у многих сходны с изменениями при синдроме Марфана (высокий рост, арахнодактилия, кифосколиоз, деформации грудной клетки). Сходство дополняется общим для этих двух заболеваний поражением глаз. Частым проявлением гомоцистинурии является эмболия сосудов легких, почечных артерий, тромбоз артерий или вен. Значительны изменения двигательной сферы: мышечная гипотония, разболтанность суставов. Изредка отмечаются пирамидные расстройства (спастические явления, повышение сухожильных рефлексов с расширением рефлексогенной зоны). Часты разно-образные вегетативно-трофические симптомы: гипергидроз, сухость кожи, акроцианоз и др.

При недостаточности фермента, активирующего метионин, клинические проявления сходны с тирозинемией. У больных наблюдается увеличение печени и селезенки с развитием мелкоузлового цирроза.

Межуточный обмен аминокислот складывается из реакций дезаминирования, трансаминирования и декарбоксилирования.

Рис. 21. Метаболизм аминокислот.

Дезаминирование. Это этап межуточного обмена аминокислот, при котором происходит образование кетокислот и аммиака. Дезаминирование осуществляется ферментом аминооксидазой, коферментом которой является ФАД или НАД.

L -глутамат → NH 3 + α -кетоглутарат

Дезаминирование является универсальным процессом в образовании аминокислот, когда неиспользованные для синтеза белка аминокислоты теряют аминогруппы и превращаются в безазотистые продукты. Из аминогруппы образуется аммиак, а из безазотистой части – кетокислоты.

Благодаря образованию α -кетоглутарата дезаминирование обеспечивает работу цикла Кребса, а благодаря образованию ионов аммония в почечных канальцах – участвует в регуляции кислотно-основного состояния (аммониогенез).

Причины и последствия недостаточности дезаминирования.

Ослаблен этот процесс при поражении печени, при гипоксии, при авитаминозах С, РР и В 2 .

Нарушение дезаминирования приводит к ослаблению мочевинообразования увеличению аминокислот в крови (аминоацидемии ), что сопровождается аминоацидурией.

Также последствиями снижения дезаминирования являются: уменьшение синтеза белка вследствие недостаточности смежных реакций трансаминирования, подавление активности цикла Кребса, энергообразования, ацидоз, гипераммониемия.

Причины и последствия избыточности дезаминирования.

Причинами увеличения дезаминирования могут быть: голодание, когда энергетические потребности организма удовлетворяются за счет белка.

Последствиями усиления дезаминирования являютсяувеличение образования α-кетоглутарата, ведущее к повышению энергообразования и образования кетокислот, уменьшение синтеза белка, повышение синтеза аммиака и увеличение мочевинообразования.

Трансаминирование (переаминирование) – это обратимый перенос аминогруппы с аминокислоты на кетокислоту без промежуточного образования аммиака с образованием новой кетокислоты (КК) и новой заменимой аминокислоты. Аминокислоты являются донаторами аминогруппы, а кетокислоты – акцепторами.

Трансаминирование протекает в присутствии кофермента, роль которого выполняет пиридоксальфосфат (витамин В 6).

Трансаминирование поставляет кетокислоты (щавелевоуксусную кислоту) в цикл Кребса, тем самым поддерживает энергетический обмен, пировиноградную кислоту – для обеспечения глюконеогенеза, синтеза заменимых аминокислот.

При переносе аминогруппы на α-кетоглутарат образуется коллекторное вещество L-глутамат:

А-та + α -кетоглутарат ↔ КК (ПК, ЩУК) + L -глутамат

L-глутамат используется в синтезе мочевины.

Причины уменьшения трансаминирования:

    гиповитаминоз В 6 вследствие недостаточного содержания витамина в пище, при высокой потребности во время беременности, при нарушении его усвоения и фосфорилирования во время лечения фтивазидом, при подавлении кишечной микрофлоры, частично синтезирующей витамин, под воздействием длительного применения сульфаниламидных препаратов.

    ограничение синтеза белка (при голодании и тяжелых заболеваниях печени, при недостаточности коры надпочечников и щитовидной железы).

Последствия уменьшения трансаминирования:

    уменьшение синтеза заменимых аминокислот (аланина из пировиноградной кислоты, аспарагина из щавелевоуксусной кислоты);

    гипогликемия вследствие уменьшения глюконеогенеза;

    аминоацидемия вследствие уменьшения синтеза мочевины;

    ацидоз в мышцах вследствие увеличения пировиноградной кислоты (ПК) в мышцах (из-за нарушения ее переноса в печень)

ПК + L -глутамат → α -Аланин + α -кетоглутарат

В процессе трансаминирования из триптофана образуется никотиновая кислота. Отсутствие фосфопиридоксаля приводит к нарушению синтеза никотиновой кислоты, в результате чего развивается пеллагра.

При ряде причин (избыток кетокислот (ПК, α-кетоглутарата, увеличении глюкокортикоидов) отмечается повышение трансаминирования.

Последствия повышенного трансаминирования :

    уменьшение содержания незаменимых аминокислот

    снижение синтеза белка,

    повышение синтеза мочевины и гиперазотемия.

Если в отдельных органах возник некроз (панкреатит, гепатит, инфаркт миокарда или легких), то вследствие разрушения клеток тканевые трансаминазы поступают в кровь и повышение активности в крови является одним из диагностических тестов. Повышение уровня аспартатаминотрансферазы (АСТ) характерно для болезней сердца и аланинаминотрансферазы (АЛТ) – характерно для болезни печени.

Декарбоксилирование. Это процесс отщепления карбоксильных групп от аминокислот в виде CO 2 .

Аминокислота → Амины (биогенные) + С O 2

Первичные амины образуются при декарбоксилировании аминокислот. В эту реакцию вступают вcе аминокислоты. Процесс декарбоксилирования осуществляется специфическими декарбоксилазами, коферментом которых является фосфопиридоксаль (витамин В 6).

Декарбоксилированию с образованием биогенных аминов и углекислоты подвергаются только некоторые аминокислоты.

    гистидин → гистамин

Содержание гистамина повышается при аллергических заболеваниях (бронхиальная астма, отек Квинке и др.), при ожогах, распаде опухолей, при шоках (анафилактическом, травматическом и гемотрасфузионном), при укусах ядовитых насекомых, при нервном возбуждении, кислородном голодании. Избыток гистамина повышает проницаемость сосудов, вызывает их дилатацию, нарушает микроциркуляцию, вызывает спазм гладкой мускулатуры.

    триптофан → триптамин→серотонин

Серотонин образуется в митохондриях хромаффинных клеток кишечника. Разрушается в основном в легких с помощью фермента аминооксидазы. Серотонин повышает тонус гладкой мускулатуры, тонус и резистентность сосудов, является медиатором нервных импульсов в ЦНС, уменьшает агрессивность. Увеличивается содержание серотонина в крови при карциноиде кишечника, при обострении хронического панкреатита, иммобилизационном стрессе у крыс.

    глутаминовая к-та → гамма-аминомасляная (ГАМК)

Гамма-аминомасляная кислота (ГАМК) тормозит синаптическую передачу поверхностных слоев коры головного мозга.

    тирозин → тирамин (фальш-медиатор)

    ДОФА → дофамин

    цистин → таурин

Причинами повышения содержания биогенных аминов могут быть не только увеличение декарбоксилирования соответствующих аминокислот, но также угнетение окислительного распада аминов и нарушение их связи с белками. Так, например, при гипоксических состояниях, ишемии, деструкции тканей (травмы, облучение и т.д.) ослабляются окислительные процессы, что уменьшает превращение аминокислот по пути их обычного распада и усиливает декарбоксилирование.

Появление большого количества биогенных аминов в тканях (особенно гистамина и серотонина) может вызвать значительные нарушения местного кровообращения, повышение проницаемости сосудов и повреждение нервной системы.

Снижение активности декарбоксилирования отмечается при гипоксии, дефиците витамина В 6.

Гипоксия и ацидоз снижают выработку ГАМК, при дефиците которой возникают судороги, недостаточное образование нейромедиатора серотонина вызывает нарушение эмоций.

(Ю.И. Барашнев, Ю.Е. Вельтищев, 1978 г.)

1. Наследственные нарушения обмена аминокислот, сопровождающиеся увеличением их концентрации в крови и моче: фенилкетонурия, гистидинемия, триптофанурия, болезнь "кленового сиропа", орнитинемия, цитруллинемия и др. Наследование, в основном, по аутосомно-рецессивному типу. В основе развития заболеваний лежит нарушение синтеза или структуры тех или иных ферментов.

2. Наследственные нарушения обмена аминокислот, сопровождающиеся увеличением их выделения с мочой без изменения уровня в крови: гомоцистинурия, гипофосфатазия, аргиносукцинатацидурия и др. При данных энзимопатиях нарушено обратное всасывание в почках, что приводит к увеличению их содержания в моче.

3. Наследственные нарушения систем транспорта аминокислот: цистинурия, триптофанурия, болезнь Гартнепа и др. К этой группе относятся энзимопатии, развитие которых обусловлено снижением реабсорбции аминокислот в почках и кишечнике.

4. Вторичные гипераминоцидурии: синдром Фанкони, фруктоземия, галактоземия, болезнь Вильсона-Коновалова и др. При данных состояниях возникает вторичная генерализованная гипераминоацидурия в результате вторичных тубулярных нарушений.

Фенилкетонурия (ФКУ)

Впервые описана в 1934 г. Folling под названием "фенилпировиноградная имбецильность". Тип наследования - аутосомнорецессивный. Частота заболевания составляет 1:10000- 1:20000 новорожденных. Пренатальный диагноз возможен при использовании генетических зондов и биопсии ворсин хориона.

К развитию классической клинической картины при ФКУ приводит недостаточность фенилаланингидроксилазы и недостаточность редуктазы дигидроптерина- 2-го фермента, обеспечивающего гидроксилирование фенилаланина. Их недостаток приводит к накоплению фенилаланина (ФА) в жидких средах организма (схема 1). Как известно, ФА относится к незаменимым аминокислотам. Поступающий с продуктами питания и не используемый для синтеза белка, он распадается по тирозиновому пути. При ФКУ наблюдается ограничение превращения ФА в тирозин и, соответственно, ускорение его превращения в фенилпировиноградную кислоту и другие кетоновые кислоты.

Схема 1. Варианты нарушений метаболизма фенилаланина.

Существование различных клинико-биохимических вариантов ФКУ объясняется тем, что фенилаланингидроксилаза является частью мультиферментной системы.

Различают следующие формы ФКУ:

1. Классическая

2. Скрытая.

3. Атипичная.

Развитие атипичных и скрытых форм ФКУ связывают с недостаточностью фенилаланинтрансаминазы, тирозинтрансаминазы и оксидазы парагидроксифенилпировиноградной кислоты. Атипичная ФКУ обычно не сопровождается поражением нервной системы в результате позднего развития ферментативного дефекта.

У женщин с фенилкетонурией возможно рождение детей с микроцефалией, задержкой умственного развития, нарушениями развития мочевыделительной системы, поэтому необходимо назначение диетотерапии во время беременности.

Клинические симптомы у больных ФКУ

При рождении ребенок с фенилкетонурией выглядит здоровым. Заболевание у этих детей проявляется на первом году жизни.

1. Интеллектуальный дефект. Нелеченный ребенок теряет около 50 баллов IQ к концу 1-го года жизни. У больных не выявляется зависимости между уровнем ФА и степенью интеллектуального дефекта.

2. Судорожный синдром (4 50%), экзема, гипопигментация.

3. Нарушение координации движения.

4. Задержка развития статических и двигательных функций.

5. Поражение пирамидных путей и стриопаллидарной системы. Клинические проявления классической ФКУ редко встречаются в странах, в которых действует программа неонатального скрининга на это заболевание.

У детей с фенилкетонурией наблюдается повышенный уровень в моче метаболитов ФА. Увеличение в физиологических жидкостях содержания ФА и недоокисленных продуктов его метаболизма приводит к поражению нервной системы. Определенная роль в этих нарушениях принадлежит дисбалансу аминокислот (дефицит тирозина, который в норме активно участвует в построении белкового компонента миелина). Демиелинизация является характерным патоморфологическим признаком фенилкетонурии. Нарушение соотношения аминокислот в

крови приводит к нарушению уровня свободных аминокислот в головном мозге, что вызывает слабоумие, гиперкинезы и другие неврологические симптомы.

Пирамидные симптомы обусловлены нарушением процессов миелинизации. Избирательный характер поражения нервной системы объясняется особенностями миелинизации- поражаются наиболее молодые в филогенетическом отношении отделы, выполняющие сложные и дифференцированные функции. С недостаточным образованием меланина из тирозина связывают голубой цвет глаз, светлую кожу. Запах "плесени" ("мышиный", "волчий") объясняется наличием фенилуксусной кислоты в моче. Кожные проявления (экссудативный диатез, экземы) связаны с выделением аномальных метаболитов. Недостаточность образования адренергических гормонов из тирозина приводит к артериальной гипотонии.

Необходимо отметить, что при ФКУ в патологический процесс вовлекается печень, но характер морфологических расстройств не является специфичным: выявляются признаки тканевой гипоксии, нарушения окислительной и белоксинтезирующей функции, перегрузка липидами. Наряду с этим наблюдаются компенсаторно-приспособительные изменения: высокое содержание гликогена, гиперплазия митохондрий. Генерализованную гипераминоацидемию при ФКУ можно объяснить вторичным нарушением метаболизма аминокислот в связи с повреждением гепатоцитов, т.к. многие ферменты, участвующие в аминокислотном обмене, локализуются в печени.

У нелеченых больных с классической ФКУ наблюдается значительное снижение концентрации катехоламинов, серотонина и их производных в моче, крови, ликворе. Поэтому в комплексном лечении ФКУ необходима промедиаторная коррекция, так как парциальный интеллектуальный дефект может быть связан с нейромедиаторными нарушениями.

Критерии диагностики классической формы фенилкетонурии:

1. Уровень ФА в плазме выше 240 ммоль/л.

2. Вторичный дефицит тирозина.

3. Повышенный уровень в моче метаболитов ФА.

4. Сниженная толерантность к полученному внутрь ФА.

Методы диагностики фенилкетонурии:

1. Проба Феллинга с FeCl 3 - при положительном анализе появляется сине-зеленое окрашивание мочи.

2. В крови выявление избытка фенилаланина возможно с помощью бактериального экспресс- теста Гольдфарба или теста Гатри (т.к. в течение первых дней жизни фенилпировиноградная кислота в моче может отсутствовать).

При ФКУ проводится лечение диетой с ограниченным содержанием ФА (главным образом назначают овощные блюда, мед, фрукты). Такие продукты, как молоко, молочные изделия, яйца, рыба, должны быть полностью исключены в период пребывания больных с ФКУ на острой диете. Назначаются специальные препараты (цимогран, лофеналак) и витамины.

Оптимальные сроки обследования новорожденных- 6-14 день жизни, начало терапии - не позднее 21 дня жизни. Необходимо помнить, что проведение исследования в первые сутки не исключает ложноположительных или ложноотрицательных результатов (повторное исследование проводят до 21 дня жизни). Эффективность лечения оценивается по интеллектуальному уровню развития пациента. Необходимо отметить, что лечение, начатое после года не нормализует интеллект полностью (возможно, это связано с развитием необратимых изменений в мозге).