Главная · Болезни кишечника · Повреждение клеток в патологии. Нарушения функций органелл и других структур клетки

Повреждение клеток в патологии. Нарушения функций органелл и других структур клетки

Клетки - основные структурно-функциональные элементы тканей, органов и организма в целом - для выполнения своих функций поддерживают собственный гомеостаз, осуществляют обмен веществ и энергии, реализуют генетическую информацию, передают её потомству и прямо или опосредованно (через межклеточный матрикс и жидкости) обеспечивают функции организма. Любая клетка (рис. 4-1) либо функционирует в границах нормы (гомеостаз), либо приспосабливается к жизни в изменившихся условиях (адаптация), либо гибнет при превышении её адаптивных возможностей (некроз) или действии соответствующего сигнала (апоптоз).

Гомеостаз (гомеокинез) - динамическое равновесие в данной клетке, с другими клетками, межклеточным матриксом и гуморальными

Рис. 4-1. Гомеостаз, адаптация и типовые формы патологии клеток. Слева в овале - границы нормы. Существенное свойство типовых патологических процессов - их обратимость. Если степень повреждения выходит за пределы адаптивных возможностей, процесс становится необратимым (примеры - некроз, апоптоз, дисплазия, опухолевый рост).

факторами, обеспечивающее оптимальную метаболическую и информационную поддержку. Жизнь клетки в условиях гомеостаза - постоянное взаимодействие с различными сигналами и факторами.

Адаптация - приспособление в ответ на изменения условий существования клеток (в том числе на воздействие повреждающего фактора).

Гибель клетки - необратимое прекращение жизнедеятельности. Происходит либо вследствие генетически программированного процесса (апоптоз), либо в результате летального повреждения (некроз).

Типовые формы патологии клеток: дистрофии, дисплазии, метаплазия, гипотрофия (атрофия), гипертрофия, а также некроз и патологические формы апоптоза.

Повреждение Повреждающие факторы

Эффект повреждающего фактора может быть обратимым или необратимым (рис. 4-2).

Природа повреждающего фактора трояка: физическая, химическая или биологическая (включая социальную).

Генез. По происхождению повреждающие факторы подразделяют на экзогенные и эндогенные.

Рис. 4-2. Признаки обратимого и необратимого повреждения. [по 4].

Экзогенные факторы (действуют на клетку извне):

физические воздействия (механические, термические, лучевые, электрический ток);

химические агенты (кислоты, щёлочи, этанол, сильные окислители);

инфекционные факторы (вирусы, риккетсии, бактерии, эндо- и экзотоксины микроорганизмов, гельминты и др.).

Эндогенные агенты (образуются и действуют внутри клетки):

физической природы (например, избыток свободных радикалов; колебания осмотического давления);

химические факторы (например, накопление или дефицит ионов H+, K+, Ca 2 +, кислорода, углекислого газа, перекисных соединений, метаболитов и др.);

биологические агенты (например, белки, лизосомальные ферменты, метаболиты, Ig, цитотоксические факторы; дефицит или избыток гормонов, ферментов, простагландинов - Пг).

Эффекты повреждающих факторов достигаются прямо (первичные факторы повреждения) или опосредованно (при формировании цепи вторичных патологических реакций - вторичные факторы повреждения).

МЕХАНИЗМЫ ПОВРЕЖДЕНИЯ КЛЕТОК

К наиболее важным механизмам клеточной альтерации относятся:

♦ расстройства энергетического обеспечения клетки;

♦ повреждение мембран и ферментов;

♦ активация свободнорадикальных и перекисных процессов;

♦ дисбаланс ионов и воды;

♦ нарушения в геноме или экспрессии генов;

♦ расстройства регуляции функций клеток.

Расстройства энергетического обеспечения клетки

Энергоснабжение клетки может расстраиваться на этапах ресинтеза, транспорта и утилизации энергии АТФ. Главная причина расстройств - гипоксия (недостаточное снабжение клеток кислородом и нарушение биологического окисления).

Ресинтез АТФ нарушается в результате дефицита кислорода и субстратов метаболизма, снижения активности ферментов тканевого дыхания и гликолиза, а также повреждения и разрушения митохондрий (в которых осуществляются реакции цикла Кребса и со- пряжённый с фосфорилированием АДФ перенос электронов к молекулярному кислороду).

Транспорт энергии. Заключённая в макроэргических связях энергия АТФ поступает к эффекторным структурам (миофибриллы, ион-

ные насосы и др.) с помощью АДФ-АТФ-транслоказы и КФК. При повреждении этих ферментов или мембран клеток нарушается функция эффекторных структур.

Утилизация энергии может быть нарушена преимущественно за счёт уменьшения активности АТФаз (АТФаза миозина, Na+K+-АТФаза плазмолеммы, протонная и калиевая АТФаза, Са 2 +-АТФаза и др.), КФК, адениннуклеотидтрансферазы.

Повреждение мембран

Повреждение клеточных мембран происходит за счёт следующих процессов:

Активация гидролаз. Под влиянием патогенных факторов активность мембраносвязанных, свободных (солюбилизированных) и лизосомальных липаз, фосфолипаз и протеаз может значительно увеличиться (например, при гипоксии и ацидозе). В результате фосфолипиды и белки мембран подвергаются гидролизу, что сопровождается значительным повышением проницаемости мембран.

Расстройства репарации мембран. При воздействии повреждающих факторов репаративный синтез альтерированных или утраченных мембранных макромолекул (а также их синтез de novo) подавляется, что приводит к недостаточному восстановлению мембран.

Нарушения конформации макромолекул (их пространственной структуры) приводит к изменениям физико-химического состояния клеточных мембран и их рецепторов, что приводит к искажениям или потере их функций.

Разрыв мембран. Перерастяжение и разрывы мембран набухших клеток и органоидов в результате их гипергидратации (следствие значительного увеличения осмотического и онкотического давления) - важный механизм повреждения мембран и гибели клетки.

Свободнорадикальные и перекисные реакции - в норме это необходимое звено транспорта электронов, синтеза Пг и лейкотриенов, фагоцитоза, метаболизма катехоламинов и др. В свободнорадикальные реакции вовлекаются белки, нуклеиновые кислоты и, особенно, липиды, учитывая наличие большого их числа в мембранах клеток (свободнорадикальное перекисное окисление липидов - СПОЛ). При действии патогенных факторов генерация свободных радикалов и СПОЛ значительно возрастает, что усиливает повреждение клеток.

Этапы СПОЛ: образование активных форм кислорода - генерация свободных радикалов органических и неорганических веществ - продукция перекисей и гидроперекисей липидов.

Активные формы кислорода - ❖ синглетный (Ό 2) ❖ супероксидный радикал (O 2 -)

❖ пероксид водорода (H 2 O 2) ❖ гидроксильный радикал (OH -).

Прооксиданты и антиоксиданты. Интенсивность СПОЛ регулируется соотношением активирующих (прооксидантов) его и подавляющих (антиоксидантов) факторов.

Прооксиданты - легко окисляющиеся соединения, нейтрализующие свободные радикалы (нафтохиноны, витамины A и D, восстановители - НАДФH 2 , НАДH 2 , липоевая кислота, продукты метаболизма Пг и катехоламинов).

Антиоксиданты - вещества, ограничивающие или даже прекращающие свободнорадикальные и перекисные реакции (ретинол, каротиноиды, рибофлавин, токоферолы, маннитол, супероксиддисмутаза, каталаза).

Детергентные эффекты амфифилов. В результате активации липопероксидных реакций и гидролаз накапливаются гидроперекиси липидов, свободные жирные кислоты и фосфолипиды - амфифилы (вещества, способные фиксироваться как в гидрофобной, так и в гидрофильной зоне мембран). Это ведёт к формированию обширных амфифильных кластеров (простейшие трансмембранные каналы), микроразрывам и разрушению мембран.

Дисбаланс ионов и воды

Внутриклеточная жидкость содержит примерно 65% всей воды организма и характеризуется низкими концентрациями Na+ (10 ммоль/л), Cl - (5 ммоль/л), HCO 3 - (10 ммоль/л), но высокой концентрацией K+ (150 ммоль/л) и PO 4 3- (150 ммоль/л). Низкая концентрация Na+ и высокая концентрация K+ обусловлены работой Na+,K+-АТФазы, выкачивающей Na + из клеток в обмен на K + . Клеточный дисбаланс ионов и воды развивается вслед за расстройствами энергетического обеспечения и повреждением мембран.

К проявлениям ионного и водного дисбаланса относятся: ❖ изменение соотношения отдельных ионов в цитозоле; ❖ нарушение трансмембранного соотношения ионов; ❖ гипергидратация клеток; ❖ гипогидратация клеток; ❖ нарушения электрогенеза.

Изменения ионного состава обусловлены повреждениями мембранных АТФаз и дефектами мембран. Так, вследствие нарушения работы Na+,K+-АТФазы происходит накопление в цитозоле избытка Na+ и потеря клеткой K + .

Осмотическое набухание и осмотическое сморщивание клеток. Состояние клеток при изменении осмотичности рассмотрено на рис. 4-3.

Гипергидратация. Основная причина гипергидратации повреждён- ных клеток - повышение содержания Na + , а также органических веществ, что сопровождается увеличением в них осмотического давления и набуханием клеток. Это сочетается с растяжением и

Микроразрывами мембран. Такая картина наблюдается, например, при осмотическом гемолизе эритроцитов (рис. 4-3). Гипогидратация клеток наблюдается, например, при лихорадке, гипертермии, полиурии, инфекционных заболеваниях (холере, брюшном тифе, дизентерии). Эти состояния ведут к потере организмом воды, что сопровождается выходом из клеток жидкости, а также органических и неорганических водорастворимых соединений.

Рис. 4-3. Состояние взвешенных в растворе NaCl эритроцитов. По оси абсцисс: концентрация (С) NaCl (ммоль/л); по оси ординат: объём клеток (V). При концентрации NaCl 154 ммоль/л объём клеток такой же, как и в плазме крови (изотонический раствор NaCl), При увеличении концентрации NaCl (гипертонический раствор NaCl) вода выходит из эритроцитов, и они сморщиваются. При уменьшении концентрации NaCl (гипотонический раствор NaCl) вода входит в эритроциты, и они набухают. При гипотоничности раствора, примерно в 1,4 раза превышающей значение изотонического раствора, происходит разрушение мембраны. .

Нарушения электрогенеза (изменения характеристик мембранного потенциала - МП и потенциалов действия - ПД) имеют существенное значение, поскольку они нередко являются одним из важных признаков наличия и характера повреждения клеток. Примером могут служить изменения ЭКГ при повреждении клеток миокарда, электроэнцефалограммы при патологии нейронов головного мозга, электромиограммы при изменениях в мышечных клетках.

Генетические нарушения

Изменения в геноме и экспрессии генов - существенный фактор повреждения клетки. К таким нарушениям относятся мутации, дерепрессии и репрессии генов, трансфекции, нарушения митоза.

Мутации (так, мутация гена инсулина приводит к развитию сахарного диабета).

Дерепрессия патогенного гена (дерепрессия онкогена сопровождается трансформацией нормальной клетки в опухолевую).

Репрессия жизненно важного гена (подавление экспрессии гена фенилаланин 4-монооксигеназы обусловливает гиперфенилаланинемию и развитие олигофрении).

Трансфекция (внедрение в геном чужеродной ДНК). Например, трансфекция ДНК вируса иммунодефицита приводит к возникновению СПИДа.

Нарушения митоза (так, деление ядер эритрокариоцитов без деления цитоплазмы наблюдается при мегалобластных анемиях) и мейоза (нарушение расхождения половых хромосом ведёт к формированию хромосомных болезней).

ПРОЯВЛЕНИЯ ПОВРЕЖДЕНИЙ КЛЕТОК

Любое повреждение клетки вызывает в ней разной степени выраженности специфические и неспецифические изменения. Специфические изменения развиваются при действии определённого патогенного фактора на различные клетки или в определённых видах клеток при действии разных повреждающих агентов.

Патогенные факторы, вызывающие специфические изменения в различных клетках: осмотическое давление, разобщители, гиперальдостеронемия и др.

Осмотическое давление. Повышение осмотического давления в клетке всегда сопровождается её гипергидратацией, растяжением мембран и нарушением их целостности (феномен «осмотическая деструкция клеток»).

Разобщители. Под влиянием разобщителей окисления и фосфорилирования (например, высших жирных кислот - ВЖК или Ca 2 +) снижается или блокируется сопряжение этих процессов и эффективность биологического окисления.

Гиперальдостеронемия. Повышенное содержание в крови и интерстиции альдостерона ведёт к накоплению в клетках Na+.

Группы клеток, реагирующие специфическими изменениями на действие различных повреждающих агентов:

Мышечные элементы на влияние разнообразных патогенных факторов значительной силы реагируют развитием их контрактуры.

Эритроциты при различных повреждениях подвергаются гемолизу с выходом Hb.

Неспецифические изменения (стереотипные, стандартные) развиваются при повреждении различных видов клеток и действии на них широкого спектра патогенных агентов. Примеры: ацидоз, чрезмерная активация свободнорадикальных и перекисных реакций, денатурация молекул белка, повышение проницаемости клеточных мембран, дисбаланс ионов и воды, снижение эффективности биологического окисления.

Типовые формы патологии

Основными типовыми формами патологии клеток являются их гипотрофия и атрофия, гипертрофия и дистрофии, дисплазии, метаплазия, а также некроз и апоптоз.

Гипотрофия и атрофия. Гипотрофия характеризуется уменьшением размеров и массы клетки, крайней степенью чего является атрофия. Гипотрофия и атрофия обычно сочетаются с уменьшением количества клеток - гипоплазией. Это приводит к уменьшению объёма органа, истончению кожи и слизистых оболочек. Пример: уменьшение массы и числа клеток в ишемизированной ткани или органе. Гипертрофия. Для гипертрофии характерно увеличение размеров и массы клетки. Нередко это сопровождается увеличением числа клеток (гиперплазией). Выделяют физиологическую и патологическую гипертрофию.

Физиологическая гипертрофия носит адаптивный характер (например, гипертрофия скелетных мышц у спортсменов).

Патологическая гипертрофия имеет (наряду с адаптивным) патологическое значение. Различают рабочую, викарную и нейрогуморальную патологическую гипертрофию, сочетающуюся с ремоделированием органа или ткани.

Рабочая гипертрофия развивается при постоянно повышенной нагрузке (например, патологическая гипертрофия миокарда при гипертонической болезни).

Викарная (заместительная) гипертрофия развивается в одном из парных органов при удалении второго.

Нейрогуморальная гипертрофия развивается при нарушении нейрогуморальной регуляции (например, акромегалия, гинекомастия).

Дистрофии

Клеточные дистрофии - нарушения обмена веществ, сопровождающиеся расстройством функций клеток.

Механизмы дистрофий разнообразны:

❖ синтез аномальных (в норме не встречающихся в клетке) веществ (например, белково-полисахаридного комплекса амилоида);

❖ избыточное превращение одних соединений в другие (например, углеводов в жиры при сахарном диабете);

❖ декомпозиция (фанероз): распад субклеточных структур и веществ (например, белково-липидных комплексов мембран при хронической гипоксии);

❖ инфильтрация клеток и межклеточного вещества органическими и неорганическими соединениями (например, липопротеинами низкой плотности - ЛПНП и Ca 2 + интимы артерий при атеросклерозе).

Классификация. Основным критерием классификации клеточных дистрофий является преимущественное нарушение метаболизма отдельных классов веществ. В связи с этим критерием различают диспротеинозы (белковые дистрофии), липидозы (жировые дистрофии), диспигментозы (пигментные дистрофии), углеводные и минеральные дистрофии. В отдельную группу выделяют тезаурисмозы (болезни накопления).

Диспротеинозы. Для белковых дистрофий характерно изменение физико-химических свойств клеточных белков. Выделяют зернистую, гиалиново-капельную и гидропическую дистрофии.

Липидозы. Для жировых дистрофий характерно увеличение содержания внутриклеточных липидов и их перераспределение в тканях и органах. Выделяют первичные и вторичные липидозы.

Первичные липидозы наблюдаются, как правило, при генетически обусловленных ферментопатиях (например, ганглиозидозы, цереброзидозы, сфинголипидозы).

Вторичные липидозы развиваются в результате воздействия различных патогенных факторов, таких как гипоксия, тяжёлые инфекции, системные заболевания, отравления (в том числе некоторыми ЛС - цитостатиками, антибиотиками, барбитуратами).

Углеводные дистрофии. Характеризуются нарушениями обмена полисахаридов (гликогена, мукополисахаридов) и гликопротеинов (муцина, мукоидов).

Полисахариды. При нарушениях метаболизма полисахаридов в клетках можно наблюдать уменьшение содержания углеводов (например, гликогена при СД), отсутствие углеводов (агликогенозы; например, при циррозе печени или хронических гепатитах) и накопление избытка углеводов (например, гликогеноз фон Гирке - нефромегалический синдром - гликогенная инфильтрация клеток почек).

Гликопротеины. Углеводные дистрофии, связанные с нарушением метаболизма гликопротеинов, характеризуются, как правило, накоплением муцинов и мукоидов, имеющих слизистую консистенцию (в связи с этим их называют также слизистыми дистрофиями).

Диспигментозы. Пигментные дистрофии классифицируют в зависимости от их происхождения (первичные и вторичные), механизма развития, структуры пигмента, проявлений и распро- странённости (местные и системные). Примеры:

Частицы сажи, угля и т.п. накапливаются в макрофагах лёгких в результате пребывания в загрязнённой атмосфере. В связи с этим ткань лёгких приобретает тёмно-серый цвет.

Гемосидерин. При гемолизе эритроцитов происходят освобождение Hb, его захват макрофагами печени, селезёнки, красного костного мозга и превращение в пигмент бурого цвета - гемосидерин.

Минеральные дистрофии. Из минеральных дистрофий наибольшее клиническое значение имеют нарушения обмена кальция, калия, железа, цинка, меди в виде отложения солей этих химических элементов (например, кальцинозы, сидерозы, отложение меди при гепатоцеребральной дистрофии).

Тезаурисмозы (от греч. thesauros - сокровищница) - болезни накопления промежуточных продуктов обмена углеводов, гликозаминогликанов, липидов и белков. Большинство тезаурисмозов - результат наследственных ферментопатий. В зависимости от типа накапливающихся веществ тезаурисмозы подразделяют на липидные (липидозы), гликогеновые (гликогенозы), аминокислотные, нуклеопротеиновые, мукополисахаридные (мукополисахаридозы), муколипидные (муколипидозы). В отдельные группы выделяют болезни накопления лизосомные и пероксисомные. Примеры:

Тэя-Сакса болезнь - врождённая недостаточность лизосомальной гексозаминидазы А нейронов - характеризуется накоплением ганглиозидов в цитоплазме нервных клеток.

Цереброгепаторенальный синдром (синдром Целлвегера) - типичная лизосомная болезнь накопления, развивающаяся вследствие дефектов генов, кодирующих белки пероксисом (в плазме крови и тканях увеличено содержание длинноцепочечных жирных кислот).

Болезнь Гоше - накопление в фагоцитирующих клетках селезён- ки и красного костного мозга избытка глюкоцереброзидов.

Гликогенозы - накопление в цитоплазме клеток внутренних органов разных форм аномального гликогена.

Метаплазия

Метаплазия - замещение клеток, свойственных данному органу, нормальными клетками другого типа. Примеры:

♦ Хронические воспалительные заболевания лёгких, дефицит витамина А, курение приводят к появлению среди клеток мерцательного эпителия бронхов островков многослойного плоского эпителия.

♦ При хроническом цервиците возможно замещение однослойного цилиндрического эпителия многослойным плоским.

♦ В результате забрасывания (рефлюкса) кислого содержимого желудка многослойный плоский эпителий слизистой оболочки пищевода замещается однослойным эпителием, характерным для тонкой кишки (пищевод Баррета).

Метаплазию рассматривают как пограничное состояние (на грани нормального). В ряде случаев участки метаплазии становятся диспластическими, что чревато их опухолевой трансформацией. Дисплазии - нарушения дифференцировки клеток, сопровождающиеся стойкими изменениями их структуры, метаболизма и функции (клеточный атипизм). В отличие от метаплазий, для дисплазий характерно появление признаков клеточного атипизма при сохранной структуре и архитектуре ткани. Дисплазии предшествуют опухолевому росту (предопухолевые состояния).

ГИБЕЛЬ КЛЕТКИ

Клетки погибают как в норме, так и в условиях патологии. Различают два принципиально разных варианта смерти клеток - некроз (гибель клетки вследствие её значительного - летального - повреждения) и апоптоз (гибель клетки в результате включения специальной программы смерти).

Некроз

Некроз (от греч. necros - мёртвый) - патологическая гибель клеток в результате действия на них повреждающих факторов.

Некроз является завершающим этапом клеточных дистрофий или следствием прямого действия на клетку повреждающих факторов значительной (разрушающей) силы. Основные звенья патогенеза некроза те же, что и повреждения клеток, но при развитии некроза они максимально интенсифицированы и развиваются на фоне недостаточности адаптивных механизмов (защиты и регенерации повреждённых структур, компенсации нарушенных процессов). О необратимости повреждения клетки свидетельствуют, как правило, разрывы плазмолеммы и выраженные изменения структуры ядра (кариорексис - разрывы

ядерной мембраны, фрагментация ядра; кариолизис - распыление хроматина; кариопикноз - сморщивание содержимого ядра).

Паранекроз и некробиоз. Некрозу предшествуют паранекроз (сходные с некротическими, но ещё обратимые изменения метаболизма и структуры клеток) и некробиоз (совокупность необратимых дистрофических изменений, ведущих к некрозу).

Лизис и аутолиз. Некротизированные клетки подвергаются деструкции (лизису). Если разложение осуществляется при помощи лизосомных ферментов и свободных радикалов погибших клеток, процесс называется аутолизом.

Гетеролизис. Разрушение повреждённых и погибших клеток при участии других (неповреждённых) клеток (мигрирующих в зону альтерации фагоцитов, а также попавших в неё микробов) обозначают как гетеролизис.

Этиология и патогенез некроза. Выделяют несколько основных этиологических факторов некроза - травматические, токсические, трофоневротические, циркуляторные и иммуногенные. Развивающиеся в связи с действием этих факторов ишемия, венозная гиперемия и лимфостаз сопровождаются гипоксией и активацией механизмов повреждения клеток, что приводит, в конце концов, к некрозу.

Травматический некроз. Является результатом прямого действия на ткань физических (механических, температурных, вибрационных, радиационных) и др. факторов.

Токсический некроз. Развивается при действии на ткани токсинов, чаще микробных.

Трофоневротический некроз развивается при нарушении кровоснабжения или иннервации тканей при поражении периферической нервной системы. Примером трофоневротического некроза могут служить пролежни.

Иммуногенный некроз - результат цитолиза в ходе аутоагрессивных иммунных и аллергических реакций. Примером может служить фибриноидный некроз при феномене Артюса. Цитолиз с участием T-лимфоцитов-киллеров, NK-клеток и фагоцитов приводит к некрозу участков печени при хроническом гепатите.

Циркуляторный некроз. Вызван недостаточностью циркуляции крови в кровеносных и лимфатических сосудах в результате их тромбоза, эмболии, длительного спазма, сдавления извне. Недостаточная циркуляция в ткани вызывает её ишемию, гипоксию и некроз.

Апоптоз

Апоптоз (от греч. apoptosis - опадание листьев) - программируемая гибель клетки.

В этом принципиальное отличие апоптоза от некроза. Апоптоз является компонентом многих физиологических процессов, а также наблюдается при адаптации клетки к факторам среды. Биологическая роль апоптоза заключается в поддержании равновесия между процессами пролиферации и гибели клеток. Апоптоз - энергозависимый процесс. Нарушения или блокада апоптоза может стать причиной патологии (роста опухолей, реакций иммунной аутоагрессии, иммунодефицитов и др.).

Примеры апоптоза

Запрограммированная гибель клеток в ходе эмбрионального развития, гистогенеза и морфогенеза органов. Пример: гибель нейробластов (от 25 до 75%) на определённых этапах развития мозга.

Смерть клеток, выполнивших свою функцию (например, иммунокомпетентных клеток по завершении иммунного ответа или эозинофилов после дегрануляции).

Ликвидация аутоагрессивных T-лимфоцитов на определённых этапах развития тимуса или после завершения иммунного ответа.

Старение сопровождается гормонозависимой инволюцией и апоптозом клеток эндометрия, атрезией фолликулов яичников у женщин в менопаузе, а также - ткани простаты и яичек у пожилых мужчин.

Трансфекция - внедрение в клетку фрагмента нуклеиновой кислоты вируса (например, при вирусном гепатите, миокардите, энцефалите, СПИДе) нередко вызывает её апоптоз.

Опухолевый рост закономерно сопровождается апоптозом большого числа трансформированных клеток.

Механизм апоптоза

В ходе апоптоза выделяют четыре стадии - инициация, программирование, реализации программы, удаление погибшей клетки. Стадия инициации. На этой стадии информационные сигналы воспринимаются клеточными рецепторами и передаются сигналы внутрь клетки.

Трансмембранные сигналы подразделяют на «отрицательные», «положительные» и смешанные. ❖ «Отрицательный» сигнал означает прекращение действия на клетку либо отсутствие в ткани факторов роста или цитокинов, регулирующих деление и созревание клетки, а также гормонов, контролирующих развитие клеток. ❖ «Положительный» сигнал подразумевает воздействие на клетку агента, запускающего программу апоптоза. Например, связывание ФНО с его мембранным рецептором CD95 активирует программу смерти клетки. ❖ Смешанный сигнал - комбинация сигналов первой и второй групп. Так, апоптозу подвергаются лимфоциты, стимулированные митогеном, но не контактировавшие с чужеродным Аг; погибают и лимфоциты, на которые воз-

действовал Аг, но они не получили других сигналов (например, митогенного).

♦ Среди внутриклеточных стимулов апоптоза наибольшее значение имеют: ❖ избыток H + и свободных радикалов; ❖ повышенная температура; ❖ внутриклеточные вирусы и ❖ гормоны, обеспечивающие свой эффект через ядерные рецепторы (например, глюкокортикоиды).

Стадия программирования (контроля и интеграции процессов апоптоза). Выделяют два варианта реализации стадии программирования: прямая активация эффекторных каспаз и эндонуклеаз (минуя геном клетки) и опосредованная их активация через экспрессию определённых генов.

Прямая передача сигнала. Осуществляется через адапторные белки, гранзимы и цитохром С. Прямая передача сигнала наблюдается в безъядерных клетках (например, эритроцитах).

Опосредованная через геном передача сигнала. На этой стадии специализированные белки либо блокируют потенциально летальный сигнал, либо реализуют сигнал к апоптозу путём активации исполнительной программы.

Белки-ингибиторы апоптоза (продукты экспрессии антиапоптозных генов Bcl-2, Bcl-XL) блокируют апоптоз (например, путём уменьшения проницаемости мембран митохондрий, в связи с чем уменьшается вероятность выхода в цитозоль одного из пусковых факторов апоптоза - цитохрома C).

Белки-промоторы апоптоза (например, белки, синтез которых контролируется генами Bad, Bax, антионкогенами Rb или p 53) активируют эффекторные цистеиновые протеазы (каспазы и эндонуклеазы).

Стадия реализации программы (исполнительная, эффекторная) заключается в гибели клетки, осуществляемой посредством активации протеаз и эндонуклеаз. Непосредственными исполнителями «умертвления» клетки являются Ca 2 +,Mg 2 +-зависимые эндонуклеазы (катализируют распад нуклеиновых кислот) и эффекторные каспазы (расщепляют белки). При этом в клетке формируются и от неё отпочковываются фрагменты, содержащие остатки органелл, цитоплазмы, хроматина и цитолеммы - апоптозные тельца.

Стадия удаления фрагментов погибших клеток. На поверхности апоптозных телец имеются лиганды, с которыми взаимодействуют рецепторы фагоцитирующих клеток. Фагоциты обнаруживают, поглощают и разрушают апоптозные тельца (гетеролизис). В результате содержимое разрушенной клетки не попадает в межклеточное пространство и при апоптозе отсутствует воспалительная реакция.

НЕКРОПТОЗ

В последние годы описан еще один вариант смерти клеток, отличающийся как от апоптоза, так и от некроза. Он обозначен как некроптоз. Программа некроптоза может быть стимулирована, подобно апоптозу, лигандами клеточных рецепторов из семейства фактора некроза опухолей (ФНОα). Однако гибель клетки происходит без активации протеаз, относящихся к каспазам (некроптоз развивается при полном подавлении активности каспаз).

Механизм разрушения клетки при некроптозе в большей мере подобен аутолизу. Считают, что некроптоз является одним из своеобразных механизмов гибели нервных клеток при инсультах.

Адаптация клеток

МЕХАНИЗМЫ АДАПТАЦИИ КЛЕТОК К ПОВРЕЖДЕНИЮ

Комплекс адаптивных реакций клеток подразделяют на внутриклеточные и межклеточные.

Внутриклеточные адаптивные механизмы

Внутриклеточные механизмы адаптации реализуются в самих повреж- дённых клетках. К этим механизмам относят: ❖ компенсацию нарушений энергетического обеспечения клетки; ❖ защиту мембран и ферментов клетки; ❖ уменьшение или устранение дисбаланса ионов и воды в клетке; ❖ устранение дефектов реализации генетической программы клетки;

Компенсацию расстройств регуляции внутриклеточных процессов;

Снижение функциональной активности клеток; ❖ действие белков теплового шока; ❖ регенерацию; ❖ гипертрофию; ❖ гиперплазию.

Компенсация энергетических нарушений обеспечивается активацией процессов ресинтеза и транспорта АТФ, снижением интенсивности функционирования клеток и пластических процессов в них.

Устранение дисбаланса ионов и воды в клетке осуществляется путём активации буферных и транспортных клеточных систем.

Ликвидация генетических дефектов достигается путём репарации ДНК, устранения изменённых фрагментов ДНК, нормализации транскрипции и трансляции.

Компенсация расстройств регуляции внутриклеточных процессов заключается в изменении числа рецепторов, их чувствительности к лигандам, нормализации систем посредников.

Снижение функциональной активности клеток позволяет сэкономить и перераспределить ресурсы и, тем самым, увеличить возможности компенсации изменений, вызванных повреждающим фактором. В результате степень и масштаб повреждения клеток при действии

патогенного фактора снижаются, а после прекращения его действия отмечается более интенсивное и полное восстановление клеточных структур и их функций.

Белки теплового шока (HSP, от Heat Shock Proteins; белки стресса) интенсивно синтезируются при воздействии на клетки повреждающих факторов. Эти белки способны защитить клетку от повреждений и предотвратить её гибель. Наиболее распространены HSP с молекулярной массой 70 000 (hsp70) и 90 000 (hsp90). Механизм действия этих белков многообразен и заключается в регуляции процессов сборки и конформации других белков.

Межклеточные адаптивные механизмы

Межклеточные (системные) механизмы адаптации реализуются непов- реждёнными клетками в процессе их взаимодействия с повреждёнными.

Механизмы взаимодействия клеток:

♦ обмен метаболитами, местными цитокинами и ионами; ❖ реализация реакций системы ИБН;

♦ изменения лимфо- и кровообращения;

эндокринные влияния;

♦ нервные воздействия.

Примеры

Гипоксия. Уменьшение содержания кислорода в крови и клетках стимулирует активность нейронов дыхательного центра, деятельность сердечно-сосудистой системы, выброс эритроцитов из костного мозга. В результате увеличивается объём альвеолярной вентиляции, перфузия тканей кровью, число эритроцитов в периферической крови, что уменьшает или ликвидирует недостаток кислорода и активирует обмен веществ в клетках.

Гипогликемия. Повреждение клеток в условиях гипогликемии может быть уменьшено в результате инкреции глюкагона, адреналина, глюкокортикоидов, соматотропного гормона (СТГ), способствующих повышению уровня глюкозы в плазме крови и транспорта глюкозы в клетки.

Ишемия. Снижение кровоснабжения артериальной кровью какого-либо участка ткани, как правило, сопровождается увеличением притока крови по коллатеральным (обходным) сосудам, что восстанавливает доставку к клеткам кислорода и субстратов метаболизма.

Повышение устойчивости клеток к повреждению

Мероприятия и средства, повышающие устойчивость интактных клеток к действию патогенных факторов и стимулирующие адаптивные механизмы при повреждении клеток, подразделяют:

♦ по целевому назначению на лечебные и профилактические;

♦ по природе на медикаментозные, немедикаментозные и комбинированные;

♦ по направленности на этиотропные, патогенетические и саногенетические.

Профилактические и лечебные мероприятия

Немедикаментозные агенты. Немедикаментозные средства применяют с целью профилактики повреждения клетки. Эти средства повышают устойчивость клеток к ряду патогенных агентов.

Пример. Тренировка организма (по определённой схеме) умеренной гипоксией, стрессорными факторами, физическими нагрузками и охлаждением увеличивает резистентность к значительной гипоксии, ишемии, холоду, инфекционным и другим агентам. В основе увеличения резистентности клеток при тренировке лежит повышение надёжности и мощности регулирующих систем, механизмов энергетического и пластического обеспечения клеток, их компенсаторных, восстановительных и защитных реакций, механизмов синтеза белков и репарации ДНК, процессов формирования субклеточных структур и других изменений.

Медикаментозные средства. Лекарственные средства (ЛС) применяют, в основном, для активации адаптивных механизмов уже после воздействия патогенного агента. Большинство ЛС применяют с целью этиотропной или патогенетической терапии.

К основным воздействиям, имеющим целью уменьшить силу патогенного действия на клетки или блокировать механизм развития патологического процесса, относят: снижение степени или устранение нарушений энергетического обеспечения клеток; коррекцию и защиту механизмов трансмембранного переноса, внутриклеточного распределения ионов и контроля объёма клеток; предотвращение повреждения генетического аппарата клетки; ? коррекцию механизмов регуляции и интеграции внутриклеточных процессов.

Комбинированные воздействия дают наибольший эффект (как лечебный, так и профилактический).

Общие принципы терапии и профилактики

К общим принципам терапии и профилактики относят этиотропный, патогенетический и саногенетический принципы.

Этиотропные воздействия направлены на предотвращение действия (профилактика) или на устранение, прекращение, уменьшение силы или длительности влияния патогенных факторов на клетки, а также устранение условий, способствующих реализации этого действия (лечение).

Саногенетические мероприятия имеют целью активацию адаптивных механизмов (компенсации, защиты, восстановления и приспособления клеток) к изменившимся условиям, что предотвращает развитие заболевания (профилактика) или ускоряет выздоровление организма (лечение).

Патогенетические воздействия направлены на разрыв звеньев патогенеза путём защиты механизмов энергоснабжения клеток, коррекции трансмембранного переноса, внутриклеточного распределения ионов и контроля объёма клеток; предотвращения действия факторов, вызывающих изменения в генетическом аппарате клеток.

Морфологически она проявляется в изменении структуры, размеров, формы и количества ядер и ядрышек, в появлении разнообразных ядерных включений и изменений ядерной оболочки. Особую форму ядерной патологии представляет патология митоза; с патологией хромосом ядра связано развитие хромосомных синдромов и хромосомных болезней.

Структура и размеры ядер

Структура и размеры ядра (речь идет об интерфазном, интермитозном, ядре) зависят в первую очередь от плоидности, в частности от содержания в ядре ДНК, и от функционального состояния ядра. Тетраплоидные ядра имеют диаметр больше, чем диплоидные, октоплоидные - больше, чем тетраплоидные.

Большая часть клеток содержит диплоидные ядра. В пролиферирующих клетках в период синтеза ДНК (S-фаза) содержание ДНК в ядре удваивается, в постмитотический период, напротив, снижается. Если после синтеза ДНК в диплоидной клетке не происходит нормального митоза, то появляются тетраплоидные ядра. Возникает полиплоидия - кратное увеличение числа наборов хромосом в ядрах клеток, или состояние плоидности от тетраплоидии и выше.

Полиплоидные клетки выявляют различными способами: по размеру ядра, по увеличенному количеству ДНК в интерфазном ядре или по увеличению числа хромосом в митотической клетке. Они встречаются в нормально функционирующих тканях человека. Увеличение числа полиплоидных ядер во многих органах отмечается в старости. Особенно ярко полиплоидия представлена при репаративной регенерации (печень), компенсаторной (регенерационной) гипертрофии (миокард), при опухолевом росте.

Другой вид изменений структуры и размеров ядра клетки встречается прианеуплоидии, под которой понимают изменения в виде неполного набора хромосом. Анеуплоидия связана с хромосомными мутациями. Ее проявления (гипертетраплоидные, псевдоплоидные, «приблизительно» диплоидные или триплоид-ные ядра) часто обнаруживаются в злокачественных опухолях.

Размеры ядер и ядерных структур независимо от плоидии определяются в значительной мере функциональным состоянием клетки. В связи с этим следует помнить, что процессы, постоянно совершающиеся в интерфазном ядре, разнонаправленны: во-первых, это репликация генетического материала в S-периоде («полуконсервативный» синтез ДНК); во-вторых, образование РНК в процессе транскрипции, транспортировка РНК из ядра в цитоплазму через ядерные поры для осуществления специфической функции клетки и для репликации ДНК.

Функциональное состояние ядра находит отражение в характере и распределении его хроматина. В наружных отделах диплоидных ядер нормальных тканей находят конденсированный (компактный) хроматин -гетерохроматин, в остальных ее отделах - неконденсированный (рыхлый) хроматин - эухроматин. Гетеро- и эухроматин отражают различные состояния активности ядра; первый из них считается «малоактивным» или «неактивным», второй - «достаточно активным». Поскольку ядро может переходить из состояния относительно функционального покоя в состояние высокой функциональной активности и обратно, морфологическая картина распределения хроматина, представленная гетеро- и эухроматином, не может считаться статичной. Возможна «гетерохроматинизация» или «эухроматинизация» ядер, механизмы которой изучены недостаточно. Неоднозначна и трактовка характера и распределения хроматина в ядре.

Например, маргинация хроматина, т. е. расположение его под ядерной оболочкой, трактуется и как признак активности ядра, и как проявление его повреждения. Однако конденсация эухроматиновых структур(гиперхроматоз стенки ядра), отражающая инактивацию активных участков транскрипции, рассматривается как патологическое явление, как предвестник гибели клетки. К патологическим изменениям ядра относят также егодисфункциональное (токсическое) набухание, встречающееся при различных повреждениях клетки. При этом происходит изменение коллоидно-осмотического состояния ядра и цитоплазмы вследствие торможения транспорта веществ через оболочку клетки.

Нарушения в ядре клетки . Они приводят к патологии хранения генетической информации в ДНК и передачи ее при делении клеток, генетического контроля клеточных процессов.

В связи с этим механизмы нарушений в ядре были рассмотрены при описании нарушений функций генетического аппарата и механизмов его реализации.

Восстановление клеток после повреждения, особенно в тканях, где основные популяции клеток не способны к делению (нервная, сердечная мышечная ткани), в зонах опухолевого роста, при патологической гипертрофии и гиперфункции органов может происходить путем образования полиплоидных клеток с многократным увеличением числа хромосом и размеров клеток. Такая полиплоидия сопровождается повышением функциональной активности клетки, однако это может привести к снижению ее резервных возможностей. Например, если гипертрофированный кардиомиоцит достигает очень больших размеров, то его трофическое обеспечение значительно затрудняется и приводит к гибели клетки. При ускорении синтеза белка и нуклеиновых кислот при гиперфункции и регенерации образуются множественные выпячивания и впячивания в связи с увеличением поверхности ядра. Эти явления сопровождаются увеличением количества хроматина и ядерных пор, возрастанием числа и размеров ядрышек.

Выделяют следующие патологии ядерного аппарата.

Уменьшение генетического материала наблюдают в злокачественных опухолевых клетках. Это приводит к уменьшению размеров таких клеток и изменению их свойств. Такие клетки по своим свойствам резко отличаются от нормальных клеток организма, имеют иные антигенные свойства, значительно изменяется их способность к дифференцировке.

Атипичные митозы (в том числе так называемый дегенеративный амитоз) сопровождаются анэуплоидией, хромосомными аберрациями. Это резко изменяет функциональные особенности клетки. В результате цитокинеза формируются две клетки со случайно распределенными наборами хромосом и содержимым цитоплазмы. Эти клетки являются атипичными, нередко опухолевыми. Подобные нарушения характерны для злокачественного опухолевого роста. Встречается неполный амитоз, когда цитотомии не происходит, и формируется многоядерная клетка - такой амитоз в патологии иногда называют дегенеративным.

Патология синтеза субъединиц рибосом и тРНК в ядрышке сопровождается нарушением синтетических процессов в клетке. В эту же группу включают нарушения экспрессии генов, транскрипции и сплайсинга, переноса генетической информации в составе иРНК из ядра в цитоплазму. Все эти изменения связаны с фенотипической изменчивостью.

Изменения генома и/или механизмов его реализации сопровождаются патологией строения ядер (полиморфизм, деформация, формирование инвагинаций цитоплазмы вплоть до включений цитоплазмы в ядре, выпячивания кариоплазмы в цитоплазму).

При нарушениях ядро набухает с вакуолизацией (расширением) перинуклеарной цистерны или сморщивается. Набухшие ядра становятся более светлыми, изменяется ядерно-цитоплазматическое отношение. Это часто предшествует разрушению ядерной оболочки со слиянием содержимого кариоплазмы и цитоплазмы (кариолизис). Кариолизис предшествует паранекрозу и/или некрозу, с последующим самоперевариванием клетки (аутолизом). Увеличение (конденсация) или уменьшение количества хроматина, разрыв ядра могут быть вызваны гипоксией, ионизирующим излучением и др. Данные нарушения сопровождаются снижением синтеза нуклеиновых кислот и белка.

При сморщивании ядро (кариопикноз) уменьшается в размерах, в нем накапливается гетерохроматин, что приводит к усилению окрашивания кариоплазмы (гиперхроматоз). Ядрышки уплотняются, уменьшаются в размерах, нередко распадаются. Синтез РНК и субъединиц рибосом в таком ядре резко снижается. Прогрессируя, эти изменения приводят к сегментации ядра с последующим его распадом на глыбки (кариорексис), которые затем разрушаются. Эти последствия гибельные для клетки. Такая клетка распадается на части, которые подвергаются фагоцитозу макрофагами.

При гибели клетки хроматин коагулируется и собирается в грубые конгломераты.

При подавлении синтеза рРНК ядрышко сжимается и фрагментируется, утрачивает гранулы. В ядрышке появляются «полости» с низкой плотностью.

Нарушение созревания рибосом (ингибиция процессинга рРНК) вызывает увеличение размеров ядрышек, но в них отсутствуют зрелые субъединицы рибосом.

Изменения в цитозоле (гиалоплазме) . Для них характерны патологии циклоза, обеспечения взаимодействия клеточных структур друг с другом, анаэробного гликолиза, обмена углеводов, белков, липидов и других веществ, депонирования гликогена, жиров, пигментов.

Гипоксия, протеолитические процессы, аутолиз, преобладание анаэробно-гликолитических процессов могут приводить к накоплению низкомолекулярных органических соединений, изменять онкотическое давление. Повышение онкотического давления вызывает диффузию воды в гиалоплазму и набухание клетки. Подобные же явления могуг сопровождать гипоосмолярную гипергидрию. При резком набухании разрывается цитомембрана и содержимое гиалоплазмы сливается с межклеточным веществом.

Повышенная проницаемость цитомембраны при различных патологических воздействиях вызывает выход ионов калия из клетки и поступление в нее ионов натрия, хлора и кальция. Повышается осмотическое давление гиалоплазмы. В нее поступает вода, и клетка набухает.

Обезвоживание, гиперосмолярность межклеточного вещества приводят к выходу воды из гиалоплазмы и сморщиванию клетки. Потеря клеткой воды (дегидратация) понижает функциональную активность, замедляет циклоз, происходит накопление продуктов жизнедеятельности (аутоинтоксикация).

При патологии изменяется кислотно-щелочное равновесие в матриксе клетки. Недоокисленные продукты, накапливающиеся в матриксе, вызывают метаболический ацидоз, повышают проницаемость мембран. Нарушение проницаемости активизирует протеолитические ферменты, что вызывает внутриклеточное самопереваривание - аутолиз.

Патофизиология митохондрий . Она связана с нарушением аэробного фосфорилирования и энергетического обеспечения. Изменения в митохондриях возникают при гипоксии, действии токсинов, блокирующих цепи окислительного фосфорилирования.

Нарушение функций митохондрий наблюдают при гипертиреозе за счет трийодтиронина, рецепторы к которому имеются в органелле. α-Динитрофенол, глюкокортикоиды, инсулин, интерлейкин-1, избыток кальция и тиреоидных гормонов вызывают набухание митохондрий и разобщение цепей окислительного фосфорилирования. В результате клетка не может выработать достаточного количества АТФ, и энергозависимые процессы затухают. Эти функциональные нарушения сопровождаются структурными перестройками в виде набухания митохондрий, изменения структуры их крист и плотности матрикса.

При нарушении обмена веществ, гипоксии, интоксикации митохондрии набухают, их матрикс просветляется и вакуолизируется. Все это приводит к снижению образования АТФ и эффективности окислительного фосфорилирования.

Разобщение цепей окислительного фосфорилирования происходит при лихорадке в момент повышения температуры и при гипотермии как механизм, обеспечивающий повышенную теплопродукцию.

Кроме набухания можно наблюдать конденсацию и фрагментацию митохондрий. Формируются органические (белковые, липидные) и минеральные (нерастворимые соли кальция) включения. Все это также снижает эффективность синтеза АТФ за счет полной или частичной блокады окислительных процессов.

Иногда встречаются гигантские митохондрии с соответствующей гипертрофией крист. Эти нарушения имеют место в случае гипертрофии органелл или за счет их слияния. Изменяются также число и форма крист внутренней мембраны. Увеличение числа крист обычно указывает на повышение активности митохондрий. Иногда трансформируется форма крист и появляются не только трабекулярные, но и мультивезикулярные (трубчатые). Динамике подвергается и направлен на крист. Может встречаться продольная и поперечная направленность. Фрагментация крист, нарушение их правильного расположения появляются при гипоксии.

При гиповитаминозах, алкогольной интоксикации, в опухолевых клетках изменяется форма митохондрий и крист.

Количественные изменения содержания митохондрий в клетке могут быть как в виде увеличения, так и уменьшения. Увеличение числа митохондрий в клетке обычно возникает при усилении ее функциональной активности (гиперфункции и гипертрофии), в процессе восстановления нарушенных функций, при апоптозе. Уменьшение абсолютного содержания митохондрий в клетке указывает на снижение ее функциональной активности, деструктивные атрофические процессы.

Высокой динамичностью отличается распределение митохондрий. Так, при различных патологических ситуациях они локализуются вокруг ядра или на одном из полюсов клетки. В результате математического моделирования показано, что эти изменения в числе прочих могут быть обусловлены динамикой диффузии кислорода и глюкозы.

Часть антибиотиков специфически нарушает белковый синтез на рибосомах митохондрий, например левомицетин, эритромицин. Если в выделенные митохондрии добавить подобные антибиотики, то нарушаются синтетические процессы и органеллы гибнут. Подобные явления в целом организме не наблюдаются, так как указанные антибиотики не накапливаются внутри эукариотической клетки, плохо проникая через ее мембрану.

Патологические процессы в рибосомах . Они сопровождаются нарушением трансляции с образованием полипептидных цепочек в цитозоле, гр. ЭПС и митохондриях.

Эти нарушения возникают при влиянии некоторых патологических факторов, например противоопухолевых препаратов, блокирующих синтез белков у эукариот.

Изменения рибонуклеопротеидных комплексов рибосом, а также рецепторов к ним могут сопровождаться снижением связывания рибосом и полисом с гр. ЭПС в ходе образования секреторных белков. Такие вновь образованные полипептидные цепочки быстро разрушаются в матриксе цитоплазмы.

Патология ядрышкового аппарата приводит к снижению содержания рибосом в цитоплазме и подавлению пластических процессов в организме.

Некоторые особенности имеет патология митохондриальных рибосом. Их нарушения вызывают препараты, блокирующие белковый синтез у бактерий, например левомицетин, эритромицин, которые не влияют на активность цитоплазматических рибосом.

Нарушения в ЭПС . Изменения в гр. и глад. ЭПС по проявлениям близки и сводятся к ниже перечисленным.

Расширение цистерн ЭПС с вакуолизацией цитоплазмы клеток . Наблюдается при повышении активности ЭПС с накоплением в ее структуре синтезированных веществ, при нарушении транспорта веществ в комплекс Гольджи, накоплении патологических веществ. При избыточном накоплении нормальных и патологических веществ развивается дистрофия клетки.

Фрагментация ЭПС , накопление в канальцах обрывков мембран, остатков клеточных органелл характерны для большого числа повреждений клетки, в том числе некроза и паранекроза, «шоковой» клетки, и сопровождаются значительным снижением синтетической активности ЭПС.

Гипертрофия ЭПС наблюдается при гиперфункции секреторных клеток, возникающей от избыточных стимулирующих воздействий на клетку. Это дисфункции вегетативной нервной системы, дисгормонозы, раздражающие воздействия на секреторные клетки, опухолевое их перерождение.

Гипотрофия ЭПС сопровождается снижением секреторной активности клеток и скорости замещения мембранных комплексов. Это характерно для гипотрофии, атрофии, апоптоза и может являться следствием подавления вегетативного нервного

контроля, гормонального блокирования секреции, гипоксии и голодания.

Упрощение структуры и изменение распределения ЭПС возникают при гипотрофии и атрофии в зонах хронических воспалительных процессов, дедифференцировке клеток в опухолях.

Нарушения в гранулярной ЭПС проявляются блокадой, избыточным синтезом полипептидов либо синтезом измененных полипептидных цепочек (мембранных, лизосомальных, секреторных).

Гипертрофия гр. ЭПС нередко сопровождается гиперсекрецией того или иного вещества. Это связано с чрезмерной внешней активацией специфической активности клетки при дисгормональных нарушениях и патологии нервной регуляции.

Патология гр. ЭПС с блокадой синтетических и/или транспортных процессов в клетке сопровождается вакуолизацией, фрагментацией органеллы, нарушением связи с рибосомами и др. Это приводит к дистрофиям, нарушению ресинтетических процессов в клетке.

Гипоксия, различного рода интоксикации изменяют форму цистерн и их размеры. Наблюдается фрагментация цистерн, изменяется их распределение в клетке. На цистернах исчезают рибосомы или они распределяются неравномерно. Эти явления значительно снижают эффективность синтетической функции клетки, в первую очередь восстановление мембранных структур, синтез секрета, восполнение лизосомальных ферментов. Это ведет к угнетению пластических (анаболических) процессов в клетке.

Патологические изменения могут возникать в функционировании свободных и связанных рибосом, что обусловлено несколькими механизмами. Свободные и связанные с гр. ЭПС рибосомы не связываются с иРНК, блокируются соединения с тРНК, не объединяются субъединицы рибосом, необходимые для процессов трансляции.

Дезагрегация рибосом и полисом на гр. ЭПС, их исчезновение вызывают нарушения синтеза секреторных и лизосомальных белков, белков клеточной мембраны.

Для гиповитаминоза С характерно неравномерное распределение рибосом на мембранах, что обусловлено нарушением рецепторной функции мембран гр. ЭПС и вызывает снижение синтетической активности клетки.

Нарушения в гладкой ЭПС выражаются патологией регенерации клеточных мембран, синтеза гликогена, липидов, стероидных гормонов, депонирования и высвобождения Са 2+ , детоксикации экзогенных и эндогенных веществ. Эти нарушения проявляются снижением обезвреживающей функции печеночных клеток, а также уменьшением секреторной активности экзокринных и эндокринных желез, уменьшением интенсивности сокращений в мышечной ткани. Может снижаться двигательная активность фагоцитов, нарушаться передача возбуждения в нейронах и т. д.

Нарушения в комплексе Гольджи . Это патологии модификации, сортировки и упаковки белков, которые или секретируются клеткой, или поступают в плазмолемму, изменения в лизосомах, нарушение образования полисахаридов, гликопротеинов, липопротеинов, гликолипидов.

Гиперфункция комплекса Гольджи с его гипертрофией вызывает избыточную секрецию и/или накопление секреторных продуктов внутри клетки. Гипертрофия с гиперфункцией комплекса Гольджи в секреторных клетках наблюдается при избыточной стимуляции секреции вегетативными нервными окончаниями, гиперфункции гормонов, стимулирующих секрецию. Гиперфункция комплекса Гольджи сопровождается набуханием цистерн, увеличением их числа и размеров. Подобным же образом изменяются вакуоли и пузырьки, участвующие в его формировании.

Гипофункция комплекса Гольджи нарушает репарацию мембранных комплексов клетки, снижает ее секреторную активность и переваривающую способность. Гипофункция возникает при гипотрофии и атрофии, денервации, гипофункции гормонов, стимулирующих секреторную активность клеток, и/или при повышенной активности гормонов, блокирующих секрецию, нарушениях питания. При вирусных инфекциях структуры комплекса Гольджи могут исчезнуть или их содержание резко уменьшается.

Парциальные нарушения функций комплекса Гольджи обусловлены врожденными или приобретенными ферментопатиями и сопровождаются блокадой созревания отдельных гликопротеиновых, липопротеиновых и других комплексов.

Патология лизосом . Она сопровождается активацией аутолиза при избыточной и дистрофией при недостаточной активности.

Повышение проницаемости мембран лизосом под действием гипоксии, СПОЛ, канцерогенных веществ и др. приводит к активизации переваривания с самоперевариванием клетки (аутолизом). Запускается аутолиз при гипоксии, кахексии (истощении) организма, травмах клетки, действии чрезмерно высокой или низкой температуры, кислот и щелочей, выраженной интоксикации, ионизирующих излучениях и др. Глюкокортикоиды, холестерин, противовоспалительные препараты поддерживают сохранность мембран, предотвращая самопереваривание.

Противоположное явление - недостаточное внутриклеточное переваривание - сопровождается накоплением в клетке продуктов неполного разрушения, что может приводить к дистрофии. Как вариант нарушения переваривания - невозможность разрушения патогенных микроорганизмов - нарушает защитные реакции организма. Уменьшение числа лизосом, снижение ферментативной активности встречаются при хронической гипоксии, избытке стероидных гормонов, некоторых инфекциях и нарушениях обмена веществ и др.

Патологию в лизосомах наблюдают при следующих явлениях: изменениях в самих лизосомах и реакции лизосом на нарушения в других клеточных компонентах. При генетических изменениях, вызывающих перестройку лизосомальных ферментов и снижающих их ферментативную активность, возникают «болезни накопления», при которых увеличивается количество остаточных телец и изменяются структуры вторичных митохондрий. Отравление клеток каротином при гипервитаминозе повышает проницаемость мембран клетки, в том числе мембран лизосом, лизосомальным ферментам становятся доступны клеточные субстраты, активируется аутолиз.

Нарушение функций пероксисом . Это снижает эффективность обезвреживания кислородных радикалов и активизирует перекисные процессы в клетке, приводит к накоплению недоокисленных продуктов и активизации свободнорадикальных перекисных процессов, что нарушает проницаемость мембран, вызывает мутации и аутолиз. Снижается содержание пероксисом при ионизирующем излучении и в опухолевых клетках.

Увеличение количества пероксисом встречается при патологических процессах и носит защитно-компенсаторный характер, например при лептоспирозе и вирусном гепатите.

Нарушения структуры и функций центриолей . Это нарушает деление, структурирование клетки вне деления, образование ресничек и жгутиков.

Нарушения структуры и функции центриолей, формирующих клеточный центр, тесно взаимосвязаны с процессами полимеризации и деполимеризации микротрубочек. В результате распада центриолей и разрушения центросферы изменяется распределение органелл в гиалоплазме. Комплекс Гольджи локализуется вблизи клеточного центра. При нарушениях в клеточном центре могут быть значительные изменения распределения транспортных процессов как в пределах компартментов комплекса, так и от него в направлении цитомембраны (регулируемая секреция) и в цитозоле (прелизосомы).

Под действием колхицина и его аналогов, разрушающих клеточный центр, блокируются процессы митоза и нормальное распределение генетического и цитоплазматического материала при делении.

Изменения элементов цитоскелета (микротрубочек, микрофиламентов, микротрабекул) . Они изменяют форму и подвижность клеток, нарушают распределение и перемещение компонентов клетки, транспорта веществ в клетку и из нее, возникает дезагрегация в межклеточных соединениях.

Патология полимеризации микротрубочек может привести к нарушению процессов перемещения секреторных пузырьков, лизосом, органелл в клетке, нарушению митоза, затруднению экзоцитоза секреторных включений, изменениям в формировании и подвижности ресничек и жгутиков. Например, изменение активности динеина блокирует движения ресничек дыхательных путей и половых органов, ведет к застою.

Полимеризация тесно связана с содержанием ионов кальция. Она может быть блокирована колхицином. Недостаток АТФ также вызывает снижение подвижности ресничек и жгутиков. Нарушение функции кинезиновых и динеиновых комплексов в нейротубулах (микротрубочках нейронов) сопровождается грубыми нарушениями в транспорте веществ вдоль аксона. Снижается регенерация поврежденных отростков нейронов.

Патология формирования тонких филаментов сопровождается повреждением микроворсинок и стереоцилий, ленточных десмосом. Снижается подвижность клеток, нарушаются процессы фагоцитоза и циклоза, возникает дискинезия выводящих путей экзокринных желез. Деполимеризация тонких микрофиламентов (миофиламентов) мышечной ткани характеризуется блокадой сокращений. Подобные явления наблюдают при невозможности взаимодействия тонких и толстых миофиламентов и микромиозиновых комплексов, например, когда нарушаются кальциевый обмен, образование, транспорт и использование АТФ, изменяется строение тропомиозинов и др.

Нарушения синтеза и распределения промежуточных филаментов сопровождаются деформациями клеток и ядер, значительно снижается механическая прочность клеток и их соединений. Снижение прочности адгезивных соединений связано с десмосомальными и полудесмосомальными контактами.

Кроме изменений в полимеризации самих микротрубочек, промежуточных филаментов и тонких микрофиламентов может возникнуть дезинтеграция их связи со структурными белками цитомембран.

Нарушения функций плазматической мембраны . Под действием патогенных факторов в течение длительного времени может повышаться ионная проницаемость клеточной мембраны. Нарушается функция калий-натриевых, кальций-магниевых и других насосов. В результате происходит перераспределение ионов внутри и вне клетки. Накапливаются ионы натрия, кальция и хлора и уменьшается количество калия в клетке. Процесс нередко сопровождается уменьшением количества АТФ либо блокированием АТФаз. Проникновение ионов Na + и Cl — вызывает повышение внутриклеточного давления и набухание вплоть до разрыва цитомембраны. Изменения проницаемости мембран характерны для многочисленных повреждений, в том числе гипоксии, действия животных и растительных ядов, ионизирующих излучений, блокаторов АТФаз и др.

Кроме повреждения транспорта ионов происходит снижение всасывания глюкозы (при сахарном диабете), отдельных аминокислот и др.

Наряду с блокадой активного транспорта при повреждениях нередко изменяются процессы эндоцитоза и экзоцитоза. Дисфункция эндоцитоза, не связанного с белками-рецепторами, обусловлена повреждением белков слияния. Это приводит к изменению транспортных процессов в эпителиальной ткани, в том числе в эндотелии кровеносных сосудов.

Микроэндоцитоз, опосредуемый через рецепторы, нарушается в связи с изменением рецепторного аппарата мембраны клетки. Это может быть также обусловлено нарушением образования вторых посредников, патологией прикрепления клатринов к внутренней поверхности мембраны клетки.

При фагоцитозе бактерий, крупных частей клетки и др. может нарушаться взаимодействие фагоцитируемой частицы с рецепторами на поверхности клетки, изменяются содержание кальция и полимеризация тонких микрофиламентов и микротрубочек.

Снижение спонтанной секреции вызывает повреждения комплекса Гольджи, что ведет к недостаточному восстановлению цитомембраны. Регулируемая секреция патологически меняется за счет дисфункции гормонального и нервного контроля, патологической деполяризации или гиперполяризации мембраны, избыточной или недостаточной активации клетки через вторые посредники, патологии микротрубочек и уровня внутриклеточного кальция. Изменения сопровождаются нарушением выведения секреторных продуктов, в том числе гормонов, ферментов, слизи, медиаторов при синаптической передаче в нервной ткани и т. д.

Одним из ведущих повреждающих механизмов клеточных мембран является каскад свободно-радикальных перекисных реакций липидов, в конечном итоге сопровождающийся накоплением амфифильных соединений с резким усилением проницаемости цитомембраны и активизацией аутолитических процессов.

При изменении рецепторного аппарата клетки повышается или снижается количество рецепторов к гормонам или другим биологически активным веществам, уменьшается аффинность (специфичность) рецепторов. Причины нарушений могут быть первичными (генетически обусловленными) или вторичными (приобретенными). Примерами причин вторичных нарушений служат аутоиммунный процесс с разрушением рецепторов антителами, компенсаторное уменьшение чувствительности к гормонам при повышении их активности, например увеличение содержания инсулина в сочетании со снижением чувствительности к нему при ожирении и инсулиннезависимом сахарном диабете.

Увеличение количества рецепторов наблюдают при денервации, например, в зонах, лишенных симпатического нервного контроля, повышается содержание рецепторов к адреналину и норадреналину. Уменьшение содержания рецепторов приводит к развитию заболеваний, связанных с относительной недостаточностью гормона, которые не корректируются введением даже повышенных доз этого биологически активного вещества (инсулиннезависимый сахарный диабет, карликовость).

Иногда наблюдаются изменения в передаче сигнала от рецепторов внутрь клетки. Возбуждение, вызванное сигналом, может передаваться в глубь клетки несколькими способами: при взаимодействии рецептора с интегральным G-белком, активирующим образование сигнальных молекул цитоплазмы (вторых посредников) - цАМФ, ионов кальция, цГМФ; во втором случае рецептор связан с тирозинкиназами, которые запускают Ras-каскад, в результате чего образуется инозитол-1,4,5-трифосфат, диацилглицерол. Вторые посредники влияют на цепь каталитических реакций, в том числе транскрипцию. Изменение активности вторых посредников и образующих их белков может привести к снижению или усилению влияния гормональных факторов.

Нарушение аффинности (сродства) рецепторов к молекулам адгезии и агрегации приводит к снижению прилипания клеток к себе подобным и/или межклеточным структурам. Нарушение «узнавания» рецептором гликокаликса родственных клеток сопровождается патологической подвижностью клеток с возможностью их миграции в организме. Такой способностью обладают злокачественные опухолевые клетки, что ведет к формированию метастазов и вызывает инфильтративный рост. В то же время снижение адгезивных свойств селектинов и интегринов лейкоцитов приводит к синдрому так называемых «ленивых» лейкоцитов, когда они не могут проникнуть из сосуда в зону воспаления.

Патология белков цитомембран, выполняющих опорно-каркасную функцию, нарушает форму клеток и их механическую прочность. Например, анемии с нарушением формы эритроцитов обусловлены повреждением связи опорных белков с микротрубочками и тонкими микрофиламентами.

Снижение активности белков-ферментов цитомембраны столбчатых энтероцитов резко затрудняет процессы пристеночного пищеварения в тонкой кишке. Повреждение белков-ферментов гликокаликса тироцитов блокирует образование гормонов щитовидной железой, а у фибробластов подавляет синтез коллагеновых и эластических волокон.

Нарушения образования главных комплексов гистосовместимости первого класса сопровождаются активизацией аутоиммунных процессов. Некоторые патогенные микроорганизмы выделяют фермент нейраминидазу, обнажающий антигенные структуры на мембранах клеток организма, что приводит к уничтожению таких клеток лейкоцитами. Изменяются главные комплексы гистосовместимости и при опухолевом перерождении клеток.

Нарушение функции механических контактов клетки (десмосом, полудесмоеом, ленточных десмосом) приводит к снижению прочности таких соединений, к разрывам контактов клеток с соседними структурами даже при незначительных механических воздействиях.

Патология щелевидных контактов нарушает единство физиологических реакций в тканях. Так, в гладкой и сердечной мышечной тканях подавляется проведение импульса, в эпителиальной ткани происходит десинхронизация процессов регенерации и секреторной активности клеток.

Структурно-функциональные изменения плотных контактов приводят к диффузии веществ из полостей в межклеточное вещество эпителия и далее в соединительную ткань и наоборот, что нарушает гомеостаз.

Патология функции синапсов сопровождается блокадой или усилением синаптической передачи с нарушениями функций нервной системы.

Микроскопически на ранних этапах повреждения чаще происходит округление (выравнивание формы и границ) клеток и потеря числа клеточных выростов и микроворсинок. В дальнейшем, наоборот, появляются на поверхности различные выросты и мелкие пузырьки, в норме не встречающиеся. Часто поверхность клетки как бы вскипает.

Таким образом, в приведенных в разделе материалах рассмотрены только некоторые из узловых моментов возможных нарушений. Они не могут охватить весь спектр подобных явлений, но позволяют наметить те направления изменений, которые происходят в клетке под влиянием повреждающих факторов. Каждое из изменений происходит не отдельно, а тянет за собой цепь структурно-функциональных нарушений во взаимодействующих между собой макромолекулярных комплексах, органеллах, частях клетки.

Нарушение жизнедеятельности организма человека при различных экстремальных состояниях и заболеваниях всегда, так или иначе, связано с изменением функционирования клеток. Клетка является структурно-функциональной единицей тканей и органов. В ней протекают процессы, лежащие в основе энергетического и пластического обеспечения структур и функций тканей. Под действием неблагоприятных факторов окружающей среды, нарушение функционирования клеток может приобретать стойкий характер и быть обусловленным их повреждением. Патология всегда начинается с повреждения, когда адаптационные возможности становятся несостоятельными. Любой патологический процесс протекает с большей или меньшей степенью и масштабом повреждения клеток, которое выражается в определенном нарушении их структуры и функций. Исходя из этого, под повреждением клетки понимают такие изменения ее структуры, обмена веществ, физико-химических свойств и функций, которые ведут к нарушению ее жизнедеятельности и которые сохраняются после удаления повреждающего агента. Однако, принимая во внимание, что организм, как система, есть совокупность элементов и связей между ними, то природу болезни необходимо рассматривать с двояких позиций - структурно-метаболических и информационных, поскольку она связана как с повреждением самих клеток, их исполнительного клеточного аппарата, так и с нарушением информационных процессов - сигнализации, рецепции и межклеточных связей, т.е. с дизрегуляцией, а по терминологии Г.Н. Крыжановского с дизрегуляторной патологией. В то же время, несмотря на разнообразие патогенных факторов, действующих на клетки, они отвечают принципиально однотипными реакциями, в основе которых лежат тканевые механизмы клеточной альтерации. Таким образом, повреждение следует рассматривать как типовой патологический процесс, основу которого составляют нарушения внутриклеточного гомеостаза, структурой целостности клетки, а также ее функциональной способности.

Переходя к конкретным аспектам патофизиологии повреждения, исходя из учения основоположника клеточной патологии Р. Вирхова, учитывая «приоритет повреждения элементов над расстройством связи», в начале рассмотрим типовые нарушения внутриклеточного гомеостаза, патохимические и патофизиологические аспекты повреждения клетки, ее исполнительного аппарата.

Причины нарушения функционирования и повреждения клетки

Непосредственной причиной нарушения функционирования клетки служат изменения в ее окружении, в то время как повреждение клетки вызвано действием на нее повреждающих агентов. Повреждение клетки, сущность которого составляют нарушения внутриклеточного гомеостаза, может быть результатом непосредственного (прямых) или опосредованного, вследствие нарушения межклеточного взаимодействия, постоянства внутренней среды самого организма (гипоксия, ацидоз, алкалоз, гипогликемия, гиперкалиемия, повышение содержания в организме конечных продуктов метаболизма), воздействия множества патогенных факторов, которые подразделяются на три основные группы: физического, химического и биологического характера.

Среди факторов физического характера причинами повреждения клеток наиболее часто являются следующие:

Механические воздействия: они обусловливают нарушение структуры плазмолеммы и мембран субклеточных образований;

Температурный фактор: повышенная температура среды, в которой находится клетка, до 45-50°С и более может привести к денатурации белка, нуклеиновых кислот, декомпозиции липопротеидных комплексов, повышению проницаемости клеточных мембран и другим изменениям. Значительное снижение температуры может обусловить существенное замедление или необратимое прекращение метаболических процессов в клетке, кристаллизацию внутриклеточной жидкости и разрыв мембран;

Изменения осмотического давления в клетке: накопление в ней продуктов неполного окисления органических субстратов, а также избытка ионов сопровождается током жидкости в клетку по градиенту осмотического давления, набуханием ее и растяжением (вплоть до разрыва) ее плазмолеммы и мембран органелл. Снижение внутриклеточного осмотического давления или повышение его во внеклеточной среде ведет к потере клеткой жидкости, ее сморщиванию (пикнозу) и нередко к гибели;

Воздействие ионизирующей радиации, обусловливающей образование свободных радикалов и активацию перекисных свободно-радикальных процессов, продукты которых повреждают мембраны и денатурируют ферменты клеток;

Гравитационные, электромагнитные факторы.

Повреждение клеток нередко вызывают воздействия факторов химической природы. К их числу относятся разнообразные вещества экзогенного и эндогенного происхождения: кислоты, щелочи, соли тяжелых металлов, яды растительного и животного происхождения, продукты нарушенного метаболизма. Так, цианиды подавляют активность цитохромоксидазы. Этанол и его метаболиты ингибируют многие ферменты клетки. Вещества, содержащие соли мышьяка, угнетают пируватоксидазу. Неправильное применение лекарственных средств также может привести к повреждению клеток. Например, передозировка строфантина обусловливает значительное подавление активности К + - Na + -АТФазы сарколеммы клеток миокарда, что ведет к дисбалансу интрацеллюлярного содержания ионов и жидкости.

Важно, что повреждение клетки может быть обусловлено как избытком, так и дефицитом одного и того же фактора. Например, избыточное содержание кислорода в тканях активирует процесс перекисного окисления липидов (ПОЛ), продукты которого повреждают ферменты и мембраны клеток. С другой стороны, снижение содержания кислорода обусловливает нарушение окислительных процессов, понижение образования АТФ и, как следствие, расстройство функций клетки.

Повреждение клеток нередко обусловливается факторами иммунных и аллергических процессов. Они могут быть вызваны, в частности, сходством антигенов, например, микробов и клеток организма.

Повреждение может быть также результатом образования антител или влияния Т-лимфоцитов, действующих против неизмененных клеток организма вследствие мутации в геноме В- или Т-лимфоцитов иммунной системы.

Важную роль в поддержании метаболических процессов в клетке играют вещества, поступающие в нее из окончаний нейронов, в частности, нейромедиаторы, трофогены, нейропептиды. Уменьшение или прекращение их транспорта является причиной расстройства обмена веществ в клетках, нарушения их жизнедеятельности и развития патологических состояний, получивших название нейродистрофий.

Кроме указанных факторов, повреждение клеток нередко бывает обусловлено значительно повышенной функцией органов и тканей. Например, при длительной чрезмерной физической нагрузке возможно развитие сердечной недостаточности в результате нарушения жизнедеятельности кардиомиоцитов.

Повреждение клетки может быть результатом действия не только патогенных факторов, но и следствием генетически запрограммированных процессов. Примером может служить гибель эпидермиса, эпителия кишечника, эритроцитов и других клеток в результате процесса их старения. К механизмам старения и смерти клетки относят постепенное необратимое изменение структуры мембран, ферментов, нуклеиновых кислот, истощение субстратов метаболических реакций, снижение устойчивости клеток к патогенным воздействиям.

По происхождению все причинные факторы повреждения клетки делят на: экзогенные и эндогенные; инфекционного и неинфекционного генеза.

Общие механизмы повреждения клеток

В зависимости от скорости развития и выраженности основных проявлений повреждение клетки может быть острым и хроническим. В зависимости от степени нарушения внутриклеточного гомеостаза повреждение бывает обратимым и необратимым.

Выделяются два патогенетических варианта повреждения клеток.

Насильственный вариант . Развивается в случае действия на исходно здоровую клетку физических, химических и биологических факторов, интенсивность которых превышает обычные возмущающие воздействия, к которым клетка адаптирована. Наиболее чувствительны к данному варианту повреждения функционально малоактивные клетки, обладающие малой мощностью собственных гомеостатических механизмов.

Цитопатический вариант . Возникает в результате первичного нарушения защитно-компенсаторных гомеостатических механизмов клетки. В этом случае фактором, запускающим патогенетические механизмы повреждения, являются естественные для данной клетки возмущающие стимулы, которые в этих условиях стано­вятся повреждающими. К цитопатическому варианту относятся все виды повреждения клетки вследствие отсутствия каких-либо необходимых ей компонентов (гипоксическое, при голодании, гиповитаминоз, нейротрофическое, при антиоксидантной недостаточности, при генетических дефектах и др.). К цитопатическому повреждению наиболее чувствительны те клетки, интенсивность возмущений, а, следовательно, и функциональная активность которых в естественных условиях очень высоки (нейроны, миокардиоциты).

На уровне клетки повреждающие факторы «включают» несколько патогенетических звеньев. К их числу относят:

Расстройство процессов энергетического обеспечения клеток;

Повреждение мембран и ферментных систем;

Дисбаланс ионов и жидкости;

Нарушение генетической программы и/или ее реализации;

Расстройство механизмов регуляции функции клеток.

Нарушение энергетического обеспечения процессов, протекающих в клетках, часто является инициальным и ведущим механизмом их альтерации. Энергоснабжение может расстраиваться на этапах синтеза АТФ, ее доставки и использования.

Нарушение процессов энергообеспечения, в свою очередь, может стать одним из факторов расстройств функции мембранного аппарата клеток, их ферментных систем (АТФазы актомиозина, К + - Na + - зависимой АТФазы плазмолеммы, Mg 2+ -зависимой АТФазы «кальциевой помпы» саркоплазмати-ческого ретикулума и др.), баланса ионов и жидкости, снижения мембранного потенциала, а также механизмов регуляции клетки.

Повреждение мембран и ферментов играет существенную роль в расстройстве жизнедеятельности клетки, а также переходе обратимых изменений в ней в необратимые. Это обусловлено тем, что основные свойства клетки в существенной мере зависят от состояния ее мембран и связанных с ними энзимов.

Одним из важнейших механизмов повреждения мембран и ферментов является интенсификация перекисного окисления их компонентов. Образующиеся в больших количествах радикалы кислорода (супероксид и гидроксильный радикал) и липидов вызывают: 1) изменение физико-химических свойств липидов мембран, что обусловливает нарушение конформации их липопротеидных комплексов и в связи с этим снижение активности белков и ферментных систем, обеспечивающих рецепцию гуморальных воздействий, трансмембранный перенос ионов и молекул, структурную целостность мембран; 2) изменение физико-химических свойств белковых мицелл, выполняющих структурную и ферментные функции в клетке; 3) образование структурных дефектов в мембране - т.н. простейших каналов (кластеров) вследствие внедрения в них продуктов ПОЛ. Указанные процессы, в свою очередь, обусловливают нарушение важных для жизнедеятельности клеток процессов – возбудимости, генерации и проведения нервного импульса, обмена веществ, восприятия и реализации регулирующих воздействий, межклеточного взаимодействия и др.

В норме состав и состояние мембран модифицируется не только свободнорадикальными и липоперексидными процессами, но также мембраносвязанными, свободными (солюбилизированными) и лизосомальными ферментами: липазами, фосфолипазами, протеазами. Под влиянием патогенных факторов их активность или содержание в гиалоплазме клетки может повыситься (в частности, вследствие развития ацидоза, способствующего увеличению выхода ферментов из лизосом и их последующей активации, проникновению ионов кальция в клетку). В связи с этим интенсивному гидролизу подвергаются глицерофосфолипиды и белки мембран, а также ферменты клеток. Это сопровождается значительным повышением проницаемости мембран и снижением кинетических свойств ферментов.

В результате действия гидролаз (главным образом липаз и фосфолипаз) в клетке накапливаются свободные жирные кислоты и лизофосфолипиды, в частности, глицерофосфолипиды: фосфатидилхолин, фосфатидил-этаноламин, фосфатидилсерин. Они получили название амфифильных соединений в связи со способностью проникать и фиксироваться в обеих - как в гидрофобной, так и в гидрофильных средах мембран клеток (амфи - означает «оба», «два»). Накопление в большом количестве амфифилов в мембранах, что так же, как и избыток гидроперекисей липидов, ведет к формированию кластеров и микроразрывов в них. Повреждение мембран и ферментов клеток является одной из главных причин существенного расстройства жизнедеятельности клеток и нередко приводит к их гибели.

Дисбаланс ионов и жидкости в клетке. Как правило, нарушение трансмембранного распределения, а также внутриклеточного содержания и соотношения различных ионов развивается вслед за или одновременно с расстройствами энергетического обеспечения и сочетается с признаками повреждения мембран и ферментов клеток. В результате этого существенно изменяется проницаемость мембран для многих ионов. В наибольшей мере это относится к калию, натрию, кальцию, магнию, хлору, то есть ионам, которые принимают участие в таких жизненно важных процессах, как возбуждение, его проведение, электромеханическое сопряжение и др.

Следствием дисбаланса ионов является изменение мембранного потенциала покоя и действия, а также нарушение проведения импульса возбуждения. Эти изменения имеют важное значение, поскольку они нередко являются одним из важных признаков наличия и характера повреждения клеток. Примером могут служить изменения электрокардиограммы при повреждении клеток миокарда, электроэнцефалограммы при нарушении структуры и функций нейронов головного мозга.

Нарушения внутриклеточного содержания ионов обусловливают изменение объема клеток вследствие дисбаланса жидкости. Это может проявляться гипергидратацией клетки. Так, например, повышение содержания ионов натрия и кальция в поврежденных клетках сопровождается увеличением в них осмотического давления. В результате этого в клетках накапливается вода. Клетки при этом набухают, объем их увеличивается, что сопровождается увеличением растяжения, нередко микроразрывами цитолеммы и мембран органелл. Напротив, дегидратация клеток (например, при некоторых инфекционных заболеваниях, обусловливающих потерю воды) характеризуется выходом из них жидкости и растворенных в ней белков (в том числе ферментов), а также других органических и неорганических водорастворимых соединений. Внутриклеточная дегидратация нередко сочетается со сморщиванием ядра, распадом митохондрий и других органелл.

Одним из существенных механизмов расстройства жизнедеятельности клетки является повреждение генетической программы и/или механизмов ее реализации. Основными процессами, ведущими к изменению генетической информации клетки, являются мутации, дерепрессия патогенных генов (например, онкогенов), подавление активности жизненно важных генов (например, регулирующих синтез ферментов) или внедрение в геном фрагмента чужеродной ДНК (например, ДНК онкогенного вируса, аномального участка ДНК другой клетки). Помимо изменений в генетической программе, важным механизмом расстройства жизнедеятельности клеток является нарушение реализации этой программы , главным образом, в процессе клеточного деления при митозе или мейозе.

Важным механизмом повреждения клеток является расстройство регуляции внутриклеточных процессов. Это может быть результатом нарушений, развивающихся на одном или нескольких уровнях регуляторных механизмов:

На уровне взаимодействия биологически активных веществ (гормонов, нейромедиаторов и др.) с рецепторами клетки;

На уровне клеточных т.н. «вторых посредников» (мессенджеров) нервных влияний: циклических нуклеотидов-аденозинмонофосфата (цАМФ) и гуанозинмонофосфата (цГМФ), образующихся в ответ на действие «первых посредников» - гормонов и нейромедиаторов. Примером может служить нарушение формирования мембранного потенциала в кардиомиоцитах при накоплении в них цАМФ, что является, в частности, одной из возможных причин развития сердечных аритмий;

На уровне метаболических реакций, регулируемых циклическими нуклеотидами или другими внутриклеточными факторами. Так, нарушение процесса активации клеточных ферментов может существенно изменить интенсивность метаболических реакций и, как следствие, привести к расстройству жизнедеятельности клетки.

Рассмотрев патохимические аспекты повреждения клетки, необходимо не забывать, что проблема клеточного повреждения имеет и другую, очень важную сторону - информационный аспект проблемы повреждения клетки. Связь между клетками, те сигналы, которыми они обмениваются тоже могут быть источниками болезни.

В большинстве случаев клетки в организме управляются химическими регуляторными сигналами, а именно гормонами, медиаторами, антителами, субстратами, ионами. Недостаток или отсутствие того или иного сигнала, как и избыток, может воспрепятствовать включению тех или иных адаптивных программ или способствовать излишне интенсивному, а, возможно, ненормально долгому их функционированию, что приводит к определенным патологическим последствиям. Особый случай представляет достаточно распространенная ситуация, когда клетка ошибочно принимает один сигнал за другой - так называемая мимикрия биорегуляторов, приводящая к серьезным регуляторным расстройствам. Примерами болезней, вызванных патологией сигнализации, могут служить: паркинсонизм, квашиоркор, инсулинозависимый сахарный диабет (патология, обусловленная дефицитом сигнала), болезнь фон Базедова, синдром Иценко-Кушинга, ожирение (патология, обусловленная избытком сигнала). Особенно ярко видна патогенность избытка субстратов на примере ожирения.

В ряде случаев, даже при адекватной сигнализации, клетка не в состоянии ответить должным образом, если она «слепа и глуха» по отношению к данному сигналу. Именно такая ситуация создается при отсутствии или дефиците рецепторов, соответствующих какому-либо биорегулятору. В частности, примером такой патологии может служить семейная наследственная гиперхолестеринемия, патогенез которой связан с дефектом белка-рецептора, ответственного за распознавание клетками сосудистой стенки и некоторых других тканей и органов белкового компонента липопротеинов низкой и очень низкой плотности - апопротеина В, а также инсулинрезистивная форма сахарного диабета.

Однако, даже при адекватной сигнализации и правильном распознавании сигналов клеточными рецепторами, клетки не в состоянии подключить надлежащие адаптационные программы, если отсутствует передача информации от рецепторов поверхностной мембраны внутрь клетки. По современным представлениям механизмы, опосредующие внутриклеточную передачу сигнала на геном клетки, разнообразны. Особое значение имеют пути пострецепторной передачи сигналов в клетке через систему G-белков (гуанозинтрифосфатсвязывающих белков). Эти белки - передатчики занимают ключевое положение в обмене информацией между поверхностно раположенными на клеточных мембранах рецепторами и внутриклеточным регуляторным аппаратом, потому что они способны интегрировать сигналы, воспринимаемые несколькими различными рецепторами, и в ответ на определенный рецепторно-опосредованный сигнал могут включать множество различных эффекторных программ, вводя в действие сеть различных внутриклеточных модуляторов, посредников, таких как цАМФ и цГМФ.

Неадекватное использование клеткой своих адаптационных возможностей при ряде наследственных и приобретенных болезней может быть результатом сбоев в работе не только пострецепторных информационных механизмов, но и дефектом генетических программ и/или механизмов их реализации (в результате повреждения мутациями ДНК, возникновения хромосомных аномалий). Из-за этого они либо не реализуются, либо дают неадекватный или несоответствующий ситуации результат.

Основные проявления повреждений клетки

Дистрофии . Под дистрофиями (dys - нарушение, расстройство, trophe- питание) понимают нарушения обмена веществ в клетках и тканях, сопровождающиеся расстройствами их функций, пластических проявлений, а также структурными изменениями, ведущими к нарушению их жизнедеятельности.

Основными механизмами дистрофий являются:

Синтез аномальных веществ в клетке, например, белково-полисахаридного комплекса амилоида;

Избыточная трансформация одних соединений в другие, например, жиров и углеводов в белки, углеводов в жиры;

Декомпозиция (фанероз), например, белково-липидных комплексов мембран;

Инфильтрация клеток и межклеточного вещества, органическими и неорганическими соединениями, например, холестерином и его эфирами стенок артерий при атеросклерозе.

К числу основных клеточных дистрофий относят белковые (диспротеинозы), жировые (липидозы), углеводные и минеральные.

Дисплазии (dys - нарушение, расстройство, plaseo- образую) представляют собой нарушение процесса развития клеток, проявляющееся стойким изменением их структуры и функции, что ведет к расстройству их жизнедеятельности.

Причиной дисплазии является повреждение генома клетки. Именно это обусловливает стойкие и, как правило, наследуемые от клетки к клетке изменения, в отличие от дистрофий, которые нередко носят временный, обратимый характер и могут устраниться при прекращении действия причинного фактора.

Основным механизмом дисплазии является расстройство процесса дифференцировки, который заключается в формировании структурной и функциональной специализации клетки. Структурными признаками дисплазии являются изменения величины и формы клеток, их ядер и других органелл, числа и строения хромосом. Как правило, клетки увеличены в размерах, имеют неправильную, причудливую форму («клетки-монстры»), соотношение различных органелл в них диспропорционально. Нередко в таких клетках обнаруживаются различные включения, признаки дистрофических процессов. В качестве примеров дисплазии клеток можно назвать образование мегалобластов в костном мозге при пернициозной анемии, серповидных эритроцитов при патологии гемоглобина, многоядерных гигантских клеток с причудливым расположением хроматина при нейрофиброматозе Реклингхаузена. Клеточные дисплазии являются одним из проявлений атипизма опухолевых клеток.

Изменение структуры и функций клеточных органелл при повреждении клетки . Повреждение клетки характеризуется большим или меньшим нарушением структуры и функции всех ее компонентов. Однако при действии различных патогенных факторов могут преобладать признаки повреждения тех или иных органелл.

При действии патогенных факторов отмечается уменьшение числа митохондрий по отношению к общей массе клетки. Стереотипными для действия большинства повреждающих факторов изменениями отдельных митохондрий является уменьшение или увеличение их размеров и формы. Многие патогенные воздействия на клетку (гипоксия, эндо- и экзогенные токсические агенты, в том числе лекарственные препараты при их передозировке, ионизирующая радиация, изменение осмотического давления) сопровождаются набуханием и вакуолизацией митохондрий, что может привести к разрыву их мембраны, фрагментации и гомогенизации крист. Нарушение структуры митохондрий приводит к существенному подавлению процесса дыхания в них и образования АТФ, а также к дисбалансу ионов внутри клетки.

При патогенных воздействиях высвобождение и активация ферментов лизосом может привести к «самоперевариванию» (аутолизу) клетки.

При действии повреждающих факторов наблюдается разрушение группировок субъединиц рибосом (полисом), уменьшение числа рибосом, отрыв органелл от внутриклеточных мембран. Эти изменения сопровождаются снижением интенсивности процесса синтеза белка в клетке.

Повреждение эндоплазматической сети и аппарата Гольджи сопровождается расширением канальцев сети, вплоть до образования крупных вакуолей и цистерн вследствие накопления в них жидкости. Имеет место очаговая деструкция мембран канальцев сети, их фрагментация.

Повреждение ядра сочетается с изменением его формы, конденсацией хроматина по периферии ядра (маргинация хроматина), нарушением двуконтурности или разрывами ядерной оболочки.

Действие на клетку повреждающих факторов может обусловливать уменьшение или увеличение содержания в цитоплазме жидкости, протеолиз или коагуляцию белка, образование «включений», не встречающихся в норме. Изменение состояния цитоплазмы, в свою очередь, существенно влияет на процессы метаболизма, протекающие в ней, в связи с тем, что многие ферменты (например, гликолиза) находятся в клеточном матриксе, на функцию органелл, на процессы восприятия регулирующих и других влияний на клетку.

Некроз и аутолиз . Некроз (гр. necros - мертвый) - гибель клеток и тканей, сопровождающаяся необратимым прекращением их жизнедеятельности. Некроз нередко является завершающим этапом дистрофий, дисплазий, а также следствием прямого действия повреждающих факторов значительной силы. Изменения, предшествующие некрозу, называют некробиозом или патобиозом. По И.В. Давыдовскому некробиоз - это процесс отмирания клеток. Примерами патобиоза могут служить процессы омертвления тканей при нейротрофических расстройствах в результате денервации тканей, вследствие длительной венозной гиперемии или ишемии. Некробиотические процессы протекают и в норме, являясь завершающим этапом жизненного цикла многих клеток. Большинство погибших клеток подвергаются аутолизу, т.е. саморазрушению структур. Основным механизмом аутолиза является гидролиз компонентов клеток и межклеточного вещества под влиянием ферментов лизосом. Этому способствует развитие ацидоза в поврежденных клетках.

В процессе лизиса поврежденных клеток могут принимать участие и другие клетки - фагоциты, а также микроорганизмы. В отличие от аутолитического механизма последний называют гетеролитическим. Таким образом, лизис некротизированных клеток (некролиз) может обеспечиваться ауто- и гетеролитическими процессами, в которых принимают участие ферменты и другие факторы как погибших, так и контактирующих с ними живых клеток.

Специфические и неспецифические изменения при повреждении клеток . Любое повреждение клетки вызывает в ней комплекс специфических и неспецифических изменений.

Под специфическими понимают изменения свойств клеток, характерные для данного фактора при действии его на различные клетки, либо свойственные лишь данному виду клеток при воздействии на них повреждающих агентов различного характера. Так, действие на любую клетку механических факторов сопровождается нарушением целостности ее мембран. Под влиянием разобщителей процесса окисления и фосфорилирования снижается или блокируется сопряжение этих процессов. Высокая концентрация в крови одного из гормонов коры надпочечников - альдостерона обусловливает накопление в различных клетках избытка ионов натрия. С другой стороны, действие повреждающих агентов на определенные виды клеток вызывает специфические для них изменения. Например, влияние различных патогенных факторов на мышечные клетки сопровождается развитием контрактуры миофибрилл, на нейроны - формированием так называемого потенциала повреждения, на эритроциты - гемолизом и выходом из них гемоглобина.

Повреждение всегда сопровождается комплексом и неспецифических , стереотипных изменений в клетках. Они наблюдаются в различных видах клеток при действии на них разнообразных агентов. К числу часто встречающихся неспецифических проявлений альтераций клеток относятся ацидоз, чрезмерная активация свободно-радикальных и перекисных реакций, денатурация молекул белка, повышение проницаемости клеточных мембран, повышение сорбционных свойств клеток.

Выявление комплекса специфических и неспецифических изменений в клетках органов и тканей дает возможность судить о характере и силе действия патогенного фактора, о степени повреждения, а также об эффективности применяемых с целью лечения медикаментозных и немедикаментозных средств.

Механизмы компенсации при повреждении

Действие на клетку патогенных факторов и развитие повреждения сопровождается активацией или включением реакций, направленных на устранение либо уменьшение степени повреждения и его последствий. Комплекс этих реакций обеспечивает приспособление клетки к изменившимся условиям ее жизнедеятельности. К числу основных приспособительных механизмов относят реакции компенсации, восстановления и замещения утраченных или поврежденных структур и нарушенных функций, защиты клеток от действия патогенных агентов, а также регуляторное снижение их функциональной активности. Весь комплекс таких реакций условно можно разделить на две группы: внутриклеточные и внеклеточные (межклеточные).

К числу основных внутриклеточных механизмов компенсации при повреждении можно отнести следующие.

Компенсация нарушений процесса энергетического обеспечения клеток . Одним из способов компенсации нарушений энергетического обмена вследствие поражения митохондрий является интенсификация процесса гликолиза. Определенный вклад в компенсацию нарушений энергообеспечения внутриклеточных процессов при повреждении вносит активация ферментов транспорта и утилизация энергии АТФ (адениннуклеотидтрансферазы, креатинфосфокиназы, АТФ-аз), а также снижение функциональной активности клетки. Последнее способствует уменьшению расхода АТФ.

Защита мембран и ферментов клеток . Одним из механизмов защиты мембран и ферментов клеток является ограничение свободно-радикальных реакций и процессов перекисного окисления липидов ферментами антиоксидантной защиты (супероксиддисмутазой, каталазой, глютатионпероксидазой). Другим механизмом защиты мембран и энзимов от повреждающего действия, в частности, ферментов лизосом, может быть активация буферных систем клетки. Это обусловливает уменьшение степени внутриклеточного ацидоза и, как следствие, избыточной гидролитической активности лизосомальных энзимов. Важную роль в защите мембран и ферментов клеток от повреждения играют ферменты микросом, обеспечивающие физико-химическую трансформацию патогенных агентов путем их окисления, восстановления, деметилирования и т.д.

Компенсация дисбаланса ионов и жидкости . Компенсация дисбаланса содержания ионов в клетке может быть достигнута путем активации механизмов энергетического обеспечения ионных «насосов», а также защиты мембран и ферментов, принимающих участие в транспорте ионов. Определенную роль в снижении степени ионного дисбаланса имеет действие буферных систем. Активация внутриклеточных буферных систем (карбонатной, фосфатной, белковой) может способствовать восстановлению оптимальных соотношений ионов К + , Na + и Са ++ . Снижение степени дисбаланса ионов в свою очередь, может сопровождаться нормализацией содержания внутриклеточной жидкости.

Устранение нарушений в генетической программе клеток . Повреждения участка ДНК могут быть обнаружены и устранены с участием ферментов репаративного синтеза ДНК. Эти ферменты обнаруживают и удаляют измененный участок ДНК (эндонуклеазы и рестриктазы), синтезируют нормальный фрагмент нуклеиновой кислоты взамен удаленного (ДНК-полимеразы) и встраивают этот вновь синтезированный фрагмент на место удаленного (лигазы). Помимо этих сложных ферментных систем репарации ДНК в клетке имеются энзимы, устраняющие «мелкомасштабные» биохимические изменения в геноме. К их числу относятся деметилазы, удаляющие метильные группы, лигазы, устраняющие разрывы в цепях ДНК, возникающие под действием ионизирующего излучения или свободных радикалов.

Компенсация расстройств внутриклеточных метаболических процессов, вызванных нарушением регуляторных функций клеток . Сюда относят: изменение числа рецепторов гормонов, нейромедиаторов и других физиологически активных веществ на поверхности клетки, а также чувствительности рецепторов к этим веществам. Количество рецепторов может меняться благодаря тому, что молекулы их способны погружаться в мембрану или цитоплазму клетки и подниматься на ее поверхность. От числа и чувствительности рецепторов, воспринимающих регулирующие стимулы, в значительной мере зависит характер и выраженность ответа на них.

Избыток или недостаток гормонов и нейромедиаторов или их эффектов может быть скомпенсирован также на уровне вторых посредников - циклических нуклеотидов. Известно, что соотношение цАМФ и цГМФ изменяется не только в результате действия внеклеточных регуляторных стимулов, но и внутриклеточных факторов, в частности, фосфодиэстераз и ионов кальция. Нарушение реализации регулирующих влияний на клетку может компенсироваться и на уровне внутриклеточных метаболических процессов, поскольку многие из них протекают на основе регуляции интенсивности обмена веществ количеством продукта ферментной реакции (принцип положительной или отрицательной обратной связи).

Снижение функциональной активности клеток . В результате снижения функциональной активности клеток обеспечивается уменьшение расходования энергии и субстратов, необходимых для осуществления пластических процессов. В результате этого степень и масштаб повреждения клеток при действии патогенного фактора существенно снижаются, а после прекращения его действия отмечается более интенсивное и полное восстановление клеточных структур и их функции. К числу главных механизмов, обеспечивающих временное понижение функции клеток, можно отнести уменьшение эфферентной импульсации от нервных центров, снижение числа или чувствительности рецепторов на поверхности клетки, внутриклеточное регуляторное подавление метаболических реакций.

Приспособление клеток в условиях повреждения происходит не только на метаболическом и функциональном уровнях. Длительное повторное или значительное повреждение обусловливает существенные структурные перестройки в клетке, имеющие приспособительное значение. Они достигаются за счет процессов регенерации, гипертрофии, гиперплазии, гипотрофии (см. раздел «Структурные основы компенсации»).

Регенерация (regeneratio - возрождение; восстановление) означает возмещение клеток и/или ее отдельных структурных элементов взамен погибших, поврежденных или закончивших свой жизненный цикл. Регенерация структур сопровождается восстановлением их функций. Выделяют так называемую клеточную и внутриклеточную формы регенерации. Первая характеризуется размножением клеток путем митоза или амитоза. Внутриклеточная регенерация проявляется восстановлением органелл - митохондрий, ядра, эндоплазматической сети и других вместо
поврежденных или погибших.

Гипертрофия (hyper - чрезмерно, увеличение; trophe - питаю) представляет собой увеличение объема и массы структурных элементов, в частности, клеток. Гипертрофия неповрежденных органелл клетки компенсирует нарушение или недостаточность функций ее поврежденных элементов.

Гиперплазия (hyper - чрезмерно; plaseo - образую) характеризуется увеличением числа структурных элементов, в частности, органелл в клетке. Нередко в одной и той же клетке наблюдаются признаки и гиперплазии и гипертрофии. Оба процесса обеспечивают не только компенсацию структурного дефекта, но и возможность повышенного функционирования клетки.

Межклеточные (внеклеточные) механизмы взаимодействия и приспособления клеток при их повреждении. В пределах тканей и органов клетки не разобщены. Они взаимодействуют друг с другом путем обмена метаболитами, физиологически активными веществами, ионами. В свою очередь взаимодействие клеток тканей и органов в организме в целом обеспечивается функционированием систем лимфо- и кровообращения, эндокринными, нервными и иммунными влияниями.

Характерной чертой межклеточных (внеклеточных) механизмов адаптации является то, что они реализуются, в основном, при участии клеток, которые не подвергались непосредственному действию патогенного фактора (например, гиперфункция кардиомиоцитов за пределами зоны некроза при инфаркте миокарда).

По уровню и масштабу такие реакции при повреждении клеток можно разделить на органно-тканевые, внутрисистемные, межсистемные. Примером приспособительной реакции органно-тканевого уровня может служить активация функции неповрежденных клеток печени или почки при повреждении клеток части органа. Это снижает нагрузку на клетки, подвергшиеся патогенному воздействию, и способствует уменьшению степени их повреждения. К числу внутрисистемных реакций относится сужение артериол при снижении работы сердца (например, при инфаркте миокарда), что обеспечивает и предотвращает (или уменьшает степень) повреждения их клеток.

Вовлечение в приспособительные реакции нескольких физиологических систем наблюдается, например, при общей гипоксии. При этом активируется работа систем дыхания, кровообращения, крови и тканевого метаболизма, что снижает недостаток кислорода и субстратов метаболизма в тканях, повышает их утилизацию и уменьшает благодаря этому степень повреждения их клеток (смотри раздел «Гипоксия»).

Активация внутриклеточных и межклеточных механизмов приспособления при повреждении, как правило, предотвращает гибель клеток, обеспечивает выполнение ими функций и способствует ликвидации последствий действия патогенного фактора. В этом случае говорят об обратимых изменениях в клетках. Если сила патогенного агента велика и/или защитно-приспособительные недостаточны, развивается необратимое повреждение клеток, и они погибают.

Задача №1

Для изучения предложены два микропрепарата: 1) кожица лука и 2) крыло комара.

1. При работе с каким из этих препаратов будет использована лупа?

2. При изучении какого из двух этих объектов будет использоваться микроскоп?

Задача №2

Для выполнения практической работы предложены временный и постоянный препараты.

1. Как вы отличите временный препарат от постоянного?

2. Почему для изучения некоторых объектов лучше использовать временный микропрепарат?

Задача №3

В поле зрения при изучении препарата «Перекрест волос» (волосы содержат большое количество пигмента – темно-коричневого цвета) видны при малом увеличении следующие образования: толстые полоски темно-коричневого цвета, расположенные крест-накрест, пузырьки разного диаметра темного цвета, длинные нитевидные образования с четкими краями, но бесцветные.

1. Где в поле зрения представлены артефакты?

2. Что на данном препарате является объектом исследования?

Задача №4

Рассматриваются три вида клеток: клетки кожицы лука, клетка бактерии и клетка эпителия кожи лягушки.

1. Какие из перечисленных клеток можно уже четко рассмотреть при увеличении микроскопа (7х8)?

2. Какие клетки можно увидеть только при увеличении (7х40) и при иммерсии?

Задача №5

Исходя из предложенного стихотворения:

«С лука сняли кожицу-

Тонкую, бесцветную,

Положили кожицу

На стекло предметное,

Микроскоп поставили,

Препарат – на столик…»

1. О приготовлении какого препарата идет речь (временного или постоянного)?

2. Какие важные моменты в приготовлении препарата здесь не отмечены?

Задача №6

Постоянный препарат изучен на малом увеличении, однако при переводе на большое увеличение объект не виден, даже при коррекции макро- и микрометрическим винтами и достаточном освещении.

1. С чем это может быть связано?

2. Как исправить данную ошибку?

Задача №7

Препарат помещен на предметный столик микроскопа, имеющего в основании лапки штатива зеркало. В аудитории слабый искусственный свет. Объект хорошо виден на малом увеличении, однако при попытке его рассмотреть при увеличении объектива х40, в поле зрения объект не просматривается, видно темное пятно.

1. С чем может быть связано появление темного пятна?

2. Как исправить ошибку?

Задача №8

Исследуемый препарат оказался поврежден: разбито предметное и покровное стекла.

1. Как это могло произойти?

2. Какие правила надо соблюдать при микроскопировании?

Задача №9

Общее увеличение микроскопа составляет при работе в одном случае - 280, а в другом - 900.

1. Какие использованы объективы и окуляры в первом и во втором случаях?

2. Какие объекты они позволяют изучать?

Занятие №2. БИОЛОГИЯ ЭУКАРИОТИЧЕСКОЙ КЛЕТКИ. СТРУКТУРНЫЕ КОМПОНЕНТЫ ЦИТОПЛАЗМЫ

Задача №1

Известно, что у позвоночных животных кровь красная, а у некоторых беспозвоночных (головоногих моллюсков) голубая.

1. Присутствие каких микроэлементов определяет красный цвет крови у животных?

2. С чем связан голубой цвет крови у моллюсков?

Задача №2

Зерна пшеницы и семена подсолнечника богаты органическими веществами.

1. Почему качество муки связано с содержанием в ней клейковины?

2. Какие органические вещества находятся в семенах подсолнечника?

Задача №3

Восковидные липофусцинозы нейронов могут проявляться в разном возрасте (детском, юношеском, зрелом), относятся к истинным болезням накопления, связанным с нарушением функций органоидов мембранного строения, содержащих большое количество гидролитических ферментов. Симптоматика включает признаки поражений центральной нервной системы с атрофией головного мозга, присоединяются судорожные припадки. Диагноз ставится при электронной микроскопии – в этих органоидах клеток очень многих тканей обнаруживаются патологические включения.

1. Функционирование какого органоида нейрона нарушено?

2. По каким признакам вы это выявили?

Задача №4

У больного выявлена редкая болезнь накопления гликопротеинов, связанная с недостаточностью гидролаз, расщепляющих полисахаридные связи. Это аномалии характеризуются неврологическими нарушениями и разнообразными соматическими проявлениями. Фукозидоз и маннозидоз чаще всего приводят к смерти в детском возрасте, тогда как аспартилглюкозаминурия проявляется как болезнь накопления с поздним началом, выраженной психической отсталостью и более продолжительным течением.

1. Функционирование какого органоида клеток нарушено?

2. По каким признакам это можно выявить?

Задача №5

При патологических процессахобычно в клетках увеличивается количество лизосом. На основании этого возникло представление, что лизосомы могут играть активную роль при гибели клеток. Однако известно, что при разрыве мембраны лизосом, входящие гидролазы теряют свою активность, т.к. в цитоплазме слабощелочная среда.

1. Какую роль играют лизосомы в данном случае, исходя из функциональной роли этого органоида в клетке?

2. Какой органоид клетки выполняет функцию синтеза лизосом?

Задача №6

Выявлено наследственное заболевание, связанное с дефектами функционирования органоида клетки, приводящее к нарушениям энергетических функций в клетках – нарушению тканевого дыхания, синтеза специфических белков. Данное заболевание передается только по материнской линии к детям обоих полов.

1. В каком органоиде произошли изменения?

2. Почему данное заболевание передается только по материнской линии?

Задача №7

Обычно, если клеточная патология связана с отсутствием в клетках печени и почек пероксисом, то организм с таким заболеванием нежизнеспособен.

1. Как объяснить этот факт, исходя из функциональной роли этого органоида в клетке?

2. С чем связана нежизнеспособность организма в данном случае?

Задача №8

У зимних спящих сурков и зимующих летучих мышей число митохондрий в клеткахсердечной мышцы резко снижено.

1. С чем связано данное явление?

2. Для каких еще животных характерно такое явление?

Занятие №3. ЯДРО, ЕГО СТРУКТУРНЫЕ КОМПОНЕНТЫ. РАЗМНОЖЕНИЕ КЛЕТОК

Задача № 1

Ядро яйцеклетки и ядро сперматозоида имеет равное количество хромосом, но у яйцеклетки объём цитоплазмы и количество цитоплазматических органоидов больше, чем у сперматозоида.

1. Одинаково ли содержание в этих клетках ДНК?

2. Увеличится ли количество органоидов после слияния яйцеклетки со сперматозоидом?

Задача №2

Гены, которые должны были включиться в работу в периоде G 2 остались неактивными.

1. К каким изменениям в клетке это приведет?

2. Отразится ли это на ходе митоза?

Задача №3

В митоз вступила двуядерная клетка с диплоидными ядрами (2n=46).

1. Какое количество наследственного материала будет иметь клетка в метафазе при формировании единого веретена деления?

2. Какое количество наследственного материала будут иметь дочерние ядра по окончании митоза?

Задача №4

После оплодотворения образовалась зигота 46ХХ, из которой должен сформироваться женский организм. Однако в ходе первого митотического деления (дробления) этой зиготы на два бластомера сестринские хроматиды одной из Х-хромосом, отделившись друг от друга, не разошлись по 2-м полюсам, а обе отошли к одному полюсу. Расхождение хроматид другой Х-хромосомы произошло нормально. Все последующие митотические деления клеток в ходе эмбриогенеза протекали без нарушений механизма митоза.

2. Какими могут быть фенотипические особенности этого организма?

Задача №5

После оплодотворения образовалась зигота 46ХY, из которой должен сформироваться мужской организм. Однако в ходе первого митотического деления (дробления) этой зиготы на два бластомера сестринские хроматиды Y-хромосомы не разделились и вся эта самоудвоенная (реплицированная) метафазная хромосома отошла к одному из полюсов дочерних клеток (бластомеров). Расхождение хроматид Х-хромосомы произошло нормально. Все последующие митотические деления клеток в ходе эмбриогенеза протекали без нарушений механизма митоза.

1. Каким будет хромосомный набор клеток индивида, развившегося из этой зиготы?

2. Какой фенотип может иметь этот индивид?

3. Действие каких факторов могло привести к данной мутации?

Задача №6

При делении клетки митозом в одной из двух образовавшихся новых клеток не оказалось ядрышка.

1. Какое строение имеет ядрышко?

2. К чему может привести данное явление?

Задача №7

Число ядерных пор постоянно меняется.

1. Какое строение имеет ядерная пора?

2. С чем связано изменение числа пор в ядерной оболочке?