Главная · Диарея · Многослойный ороговевающий эпителий. Виды эпителиальных тканей: однослойные, многорядные, многослойные. Эпителиальная ткань: особенности строения, функции и виды

Многослойный ороговевающий эпителий. Виды эпителиальных тканей: однослойные, многорядные, многослойные. Эпителиальная ткань: особенности строения, функции и виды

(epithelium stratificatum squamosum noncornificatum) высти­лает слизистую оболочку полости рта, преддверия полости рта, пищевода и поверхность роговой оболочки глаза. Эпите­лий преддверия полости рта и оболочки глаза развивается из кожной эктодермы, эпителий полости рта и пищевода - из прехордальной пластинки. Эпителий состоит из 3 слоев:

1) базального (stratum basale);

2) шиповатого (stratum spinosum);

3) поверхностного (stratum superficialis).

Базальный слой представлен клетками призматической формы, которые друг с другом соединяются при помощи десмосом, а с базальной мембраной - при помощи полудесмосом. Клетки имеют призматическую форму, овальное или слегка вытянутое ядро. В цитоплазме клеток имеются органеллы общего значения и тонофибриллы. Среди базальных клеток имеются стволовые, которые постоянно делятся пу­тем митоза. Часть дочерних клеток после митоза вытесняет­ся в вышележащий шиповатый слой.

Клетки шиповатого слоя располагаются в несколько ря­дов, имеют неправильную форму. Тела клеток и их ядра по ме­ре удаления от базального слоя приобретают все более упло­щенную форму. Клетки называются шиповатыми потому, что на их поверхности имеются выросты, называемые шипами. Шипы одной клетки соединяются при помощи десмосом с шипами соседней клетки. По мере дифференцировки клет­ки шиповатого слоя смещаются в поверхностный слой.

Клетки поверхностного слоя приобретают уплощенную форму, утрачивают десмосомы и слущиваются. Функция это­го эпителия - защитная, кроме того, через эпителий ротовой полости происходит всасывание некоторых веществ, в том числе лекарственных (нитроглицерин, валидол).

Многослойный плоский ороговевающий эпителий (epithelium stratificatum squamosum cornificatum) развивает­ся из кожной эктодермы, покрывает кожу; называется эпи­дермисом. Строение эпидермиса - толщина эпидермиса не везде одинакова. Наиболее толстый эпидермис находится на ладонной поверхности кистей рук и на подошвах стоп ног. Здесь имеется 5 слоев:

1) базальный (stratum basale);

2) шипо­ватый (stratum spinosum);

3) зернистый слой (stratum granulare);

4) блестящий слой (stratum lucidum);

5) роговой (stra­tum corneum).

Базальный слой состоит из 4 дифферонов клеток:

1) кератиноцитов, составляющих 85 %;

2) меланоцитов, составляю­щих 10 %;

3) клеток Меркеля;

4) внутриэпидермальных мак­рофагов.

Кератиноциты имеют призматическую форму, овальное или слегка вытянутое ядро, богаты РНК, имеют органеллы об­щего значения. В их цитоплазме хорошо развиты тонофибрил­лы, состоящие из фибриллярного белка, способного к орогове­нию. Клетки друг с другом соединяются при помощи десмосом, с базальной мембраной - при помощи полудесмосом. Среди керотиноцитов имеются диффузно расположенные стволовые клетки, которые подвергаются постоянному делению. Часть об­разовавшихся дочерних клеток вытесняется в следующий, ши­поватый слой. В этом слое клетки продолжают делиться, затем утрачивают способность к митотическому делению. Благодаря способности клеток базального и шиповатого слоев к делению, оба эти слоя называются ростковым слоем.

Меланоциты образуют второй дифферон и развиваются из нервного гребня. Они имеют отростчатую форму, светлую цитоплазму и слабо развитые органеллы общего значения, не имеют десмосом, поэтому лежат свободно, среди кератиноцитов. В цитоплазме меланоцитов имеются 2 фермента: 1) ОФА-оксидаза и 2) тирозиназа. При участии этих фермен­тов в меланоцитах происходит синтез пигмента меланина из аминокислоты тирозина. Поэтому в цитоплазме этих клеток видны гранулы пигмента, которые выделяются из меланоци­тов и фагоцитируются кератиноцитами базального и шипо­ватого слоев.

Клетки Меркеля развиваются из нервного гребня, име­ют несколько более крупные размеры по сравнению с керати­ноцитами, светлую цитоплазму; по своему функциональному значению относятся к чувствительным.

Внутриэпидермальные макрофаги развиваются из мо­ноцитов крови, имеют отростчатую форму, в их цитоплазме имеются органеллы общего значения, и в том числе хорошо развитые лизосомы; выполняют фагоцитарную (защитную) функцию. Внутриэпидермальные макрофаги вместе с лим­фоцитами крови, проникшими в эпидермис, составляют им­мунную систему кожи. В эпидермисе кожи происходит антигеннезависимая дифференцировка Т-лимфоцитов.

Шиповатый слой состоит из нескольких рядов клеток неправильной формы. От поверхности этих клеток отходят Шипы, т. е. отростки. Шипы одной клетки соединяются с ши­пами другой клетки через десмосомы. В шипах проходят мно­гочисленные фибриллы, состоящие из фибриллярного белка.

Шиповатые клетки имеют неправильную форму. По мере удаления от базального слоя они и их ядра приобретают все более уплощенную форму. В их цитоплазме появляются кератиносомы, содержащие липиды. В шиповатом слое име­ются еще отростки внутриэпидермальных макрофагов и меланоцитов.

Зернистый слой состоит из 3-4 рядов клеток, которые имеют уплощенную форму содержат компактные ядра, бед­ны органеллами общего значения. В их цитоплазме синтези­руются филагрин и кератоламинин; органеллы и ядра начи­нают разрушаться. В этих клетках появляются гранулы кера- тогиалина, состоящие из кератина, филагрина и продуктов начинающегося распада ядра и органелл. Кератоламинин выстилает цитолемму, укрепляя ее изнутри.

В кератиноцитах зернистого слоя продолжают формиро­ваться кератиносомы, в которых содержатся липидные веще­ства (холестеринсульфат, церамиды) и ферменты. Кератиносо­мы путем экзоцитоза поступают в межклеточные простран­ства, где из их липидов образуется цементирующее вещество, склеивающее клетки зернистого, блестящего и рогового слоев. По мере дальнейшей дифференцировки клетки зернистого слоя вытесняются в следующий, блестящий слой.

Блестящий слой (stratum lucidum) характеризуется рас­падом ядер клеток этого слоя, иногда полным разрывом ядер (кариорексис), иногда - растворением (кариолизис). Гранулы кератогиалина в их цитоплазме сливаются в крупные струк­туры, включающие фрагменты микрофибрилл, пучки кото­рых цементируются филагрином, что означает дальнейшее ороговение кератина (фибриллярного белка). В результате этого процесса образуется элеидин. Элеидин не окрашивает­ся, но зато хорошо преломляет лучи света и поэтому блестит. По мере дальнейшей дифференцировки клетки блестящего слоя смещаются в следующий, роговой слой.

Роговой слой (stratum corneum) - здесь клетки оконча­тельно утрачивают ядра. Вместо ядер остаются пузырьки, заполненные воздухом, а элеидин подвергается дальнейше­му ороговению и преобразуется в кератин. Клетки превраща­ются в чешуйки, в цитоплазме которых содержатся кератин и остатки тонофибрилл, цитолемма утолщается за счет кератоламинина. По мере того как разрушается цементирующее вещество, связывающее чешуйки, последние слущиваются с поверхности кожи. В течение 10-30 суток происходит пол­ное обновление эпидермиса кожи.

Не все участки эпидермиса кожи имеют 5 слоев. 5 слоев имеются только в толстом эпидермисе: на ладонной поверх­ности кистей рук и подошвах стоп ног. Остальные участки эпидермиса не имеют блестящего слоя, и поэтому там он (эпидермис) тоньше.

Функции многослойного плоского ороговевающего эпите­лия:

1) барьерная; 2) защитная; 3) обменная.

Переходный эпителий (epithelium transitinale) высти­лает мочевыделительные пути, развивается из мезодермы, частично - из аллантоиса. Этот эпителий включает 3 слоя: базальный, промежуточный и поверхностный. Клетки базалъного слоя мелкие, темные; промежуточного - более крупные, светлые, имеют грушевидную форму; поверхност­ного слоя - самые крупные, содержат одно или несколько округлых ядер. В остальных многослойных эпителиях по­верхностные клетки мелкие. Эпителиоциты поверхностного слоя переходного эпителия соединяются друг с другом при помощи замыкательных пластинок. Эпителий называется переходным потому, что при растяжении стенки мочевыделительных органов, например мочевого пузыря, в момент наполнения его мочой толщина эпителия уменьшается, по­верхностные клетки уплощаются. При удалении мочи из мо­чевого пузыря эпителий утолщается, поверхностные клетки приобретают куполовидную форму.

Функция этого эпителия - барьерная (препятствует вы­ходу мочи через стенку мочевого пузыря).

ЖЕЛЕЗИСТЫЙ ЭПИТЕЛИЙ

Клеткижелезистого эпителия входят в состав желез и называются гланду лоцитами. Различают экзокринные и эндокринные железы. Экзокринные железы выделяют се­крет на поверхность тела или же в полости организма. Эндо­кринные железы выделяют секрет в кровь или лимфу. Желе­зы могут быть как мелкими и входить в состав отдельных органов (железы желудка, пищевода, трахеи, бронхов), так и большими, массой до 1 кг и более (печень).

Обычно гландулоциты экзокринных и эндокринных желез секретируют циклично. Секреторный цикл состоит из 4 фаз:

1. поступление исходных продуктов для синтеза секрета;

2. синтез и накопление секрета;

3. выделение секрета;

4. вос­становление клетки после выделения секрета.

1-я фаза характеризуется тем, что из кровеносных ка­пилляров через базальную мембрану в клетку поступают исходные продукты: вода, аминокислоты, белки, углеводы и минеральные соли.

2-я фаза характеризуется тем, что на ЭПС поступают ис­ходные вещества и происходит синтез секрета. Далее эти ве­щества по канальцам ЭПС транспортируются в сторону ком­плекса Гольджи и накапливаются в периферических отделах его цистерн. Затем они отделяются от цистерн и превраща­ются в секреторные гранулы, которые накапливаются в апи­кальной части клетки.

В 3-й фазе, в зависимости от характера выделения секре­та, различают 3 типа секреции: а) мерокриновый; б) апокри­новый, который подразделяется на макро- и микроапокрино­вый, и в) голокриновый. Мерокриновый тип секреции харак­теризуется тем, что секрет выделяется путем экзоцитоза без разрушения клетки. Микроапокриновый тип секреции харак­теризуется разрушением микроворсинок, макроапокриновый - отрывом и разрушением апикальной части клетки. При голокриновом типе секреции разрушается вся клетка и входит в состав секрета.

Мерокриновый тип секреции характерен для слюнных желез, апокриновый - для потовых и молочных желез, поэ­тому в просветах секреторных отделов лактирующих молоч­ных желез встречаются фрагменты цитоплазмы клеток; го­локриновый тип секреции характерен для сальных желез кожи.

При 4-й фазе происходит восстановление разрушенных структур клетки.

При мерокриновом типе секреции клетка не нуждается в восстановлении; при апокриновом типе происходит регене­рация или восстановление апикальной части клетки; при го­локриновом типе секреции вместо погибших образуются но­вые клетки путем митотического деления камбиальных кле­ток, лежащих на базальной мембране.

Кроме того, существуют железы, клетки которых секретаруют спонтанно, или диффузно. В гландулоцитах таких кле­ток одновременно происходит и синтез и выделение секрета. К таким железам относится кора надпочечников.

Экзокринные железы. Для них характерно то, что они обязательно состоят из концевых отделов (portio terminalis) и выводных протоков (ductus excretorius). Эти железы выра­батывают секрет и выделяют его либо на поверхность тела, либо в полости органов. К экзокринным железам относятся слюнные железы (околоушная, подчелюстная, подъязычная), малые слюнные железы (губные, щечные, язычные, нёбные), железы пищевода, желудка, кишечника.

Эндокринные железы - их секрет называется гормоном и выделяется в кровь или лимфу. Поэтому в эндокринных же­лезах нет выводных протоков, но зато они лучше кровоснабжаются, чем экзокринные. Примерами эндокринных желез являются щитовидная и околощитовидные железы, гипо­физ, мозговой эпифиз и надпочечники.

Классификация экзокринных желез. Экзокринные же­лезы делятся на простые и сложные. Простыми называются такие железы, у которых выводной проток не ветвится. Про­стые железы могут быть разветвленными и неразветвленными. Неразветвленными называются такие железы, у которых концевой отдел не ветвится. Если концевые отделы простой железы подвергаются ветвлению, то такая железа называет­ся разветвленной. В зависимости от формы концевых отде­лов простые железы делятся на альвеолярные, если концевой отдел имеет форму пузырька или альвеолы, и трубчатые, если концевой отдел имеет форму трубочки.

Таким образом, простые железы классифицируются на простые неразветвленные и простые разветвленные, кото­рые могут быть альвеолярными или трубчатыми.

В сложных альвеолярных железах выводные протоки ве­твятся. Если в сложной железе ветвятся и выводные протоки, и концевые отделы, то такая железа называется сложной раз­ветвленной. Если в сложной железе концевые отделы не ве­твятся, то такая железа называется сложной неразветвленной. Если в сложной железе имеются только альвеолярные концевые отделы, то она называется сложной альвеолярной. Если в сложной железе имеются только трубчатые концевые отделы, то она называется сложной трубчатой железой. Если в сложной железе имеются и альвеолярные, и трубча­тые концевые отделы, то она называется сложной трубчато-альвеолярной железой.

Классификация экзокринных желез в зависимо­сти от характера секрета. Если секрет слизистый, то железы называются слизистыми; если секрет белковый, или серозный, то и железы называются серозными; если железа выделяет и слизистый, и белковый секрет, то она на­зывается смешанной; если железа выделяет сальный се­крет, то она называется сальной. Таким образом, железы по­дразделяются на слизистые, серозные и сальные. Можно еще выделить молочные железы.

Классификация желез в зависимости от типа се­креции. Если железа выделяет секрет по мерокриновому ти­пу, то она называется мерокриновой; если секретирует по апокриновому типу, то - апокриновой; если по голокриново­му типу - голокриновой. Таким образом, по характеру секре­та железы делятся на мерокриновые, апокриновые и голо­криновые.

Если железы развиваются из кожной эктодермы (слюн­ные, потовые, сальные, молочные, слезные), то их выводные протоки выстланы многослойным эпителием. Кроме того, в концевых отделах этих желез имеются миоэпителиальные клетки, расположенные между базальной поверхностью гландулоцитов и базальной мембраной. Значение миоэпителиальных клеток заключается в том, что при их сокращении сдавливается основание гландулоцитов, из которых при этом выделяется секрет.

ЛЕКЦИЯ 5

КРОВЬ И ЛИМФА

Кровь (sanquis) является составной частью системы кро­ви. Система крови включает: 1) кровь, 2) органы кроветворе­ния, 3) лимфу. Все компоненты системы крови развиваются из мезенхимы. Кровь локализуется в кровеносных сосудах и сердце, лимфа - в лимфатических сосудах. К органам кро­ветворения относятся: красный костный мозг, тимус, лимфа­тические узлы, селезенка, лимфатические узелки пищевари­тельного тракта, дыхательных путей и других органов. Меж­ду всеми компонентами системы крови существует тесная генетическая и функциональная связь. Генетическая связь заключается в том, что все компоненты системы крови раз­виваются из одного и того же источника.

Функциональная связь между органами кроветворения и кровью заключается в том, что в крови постоянно в течение суток погибают несколько миллионов клеток. В то же время в органах кроветворения в нормальных условиях образуется точно такое же количество кровяных клеток, т. е. уровень форменных элементов крови отличается постоянством. Ба­ланс между гибелью и новообразованием клеток крови обес­печивается регуляцией со стороны нервной и эндокринной систем, микроокружением и внутритканевой регуляцией в самой крови.

Что такое микроокружение ? Это клетки стромы и макрофа­ги, находящиеся вокруг развивающихся клеток крови в орга­нах кроветворения. В микроокружении вырабатываются гемопоэтины, которые стимулируют процесс кроветворения.

Что означает «внутритканевая регуляция» ? Дело в том, что в зрелых гранулоцитах вырабатываются кейлоны, кото­рые тормозят развитие молодых гранулоцитов.

Существует тесная связь между кровью и лимфой. Эту связь можно продемонстрировать следующим образом. В соединительной ткани имеется основное межклеточное вещество (внутритканевая жидкость). В формировании межклеточного вещества принимает участие кровь. Каким образом?

Из плазмы крови в соединительную ткань поступают во­да, белки и другие органические вещества и минеральные со­ли. Это и есть основное межклеточное вещество соедини­тельной ткани. Здесь же рядом с кровеносными капилляра­ми располагаются слепо заканчивающиеся лимфатические капилляры. Слепо заканчивающиеся - это значит, что они похожи на резиновый колпачок глазной пипетки. Через стен­ку лимфатических капилляров основное вещество поступает (дренируется) в их просвет, т. е. компоненты межклеточного вещества поступают из плазмы крови, проходят через соеди­нительную ткань, проникают в лимфатические капилляры и преобразуются в лимфу

Таким же путем из кровеносных капилляров в лимфатиче­ские могут поступать и форменные элементы крови, которые из лимфатических сосудов могут рециркулировать снова в кровеносные.

Существует тесная связь между лимфой и органами кро­ветворения. Лимфа из лимфатических капилляров поступает в приносящие лимфатические сосуды, впадающие в лимфа­тические узлы. Лимфатические узлы - это одна из разновид­ностей органов кроветворения. Лимфа, проходя через лим­фатические узлы, очищается от бактерий, бактериальных токсинов и других вредных веществ. Кроме того, из лимфати­ческих узлов в протекающую лимфу поступают лимфоциты.

Таким образом, лимфа, очищенная от вредных веществ и обогащенная лимфоцитами, поступает в более крупные лимфатические сосуды, затем в правый и грудной лимфати­ческие протоки, которые впадают в вены шеи, т. е. очищен­ное и обогащенное лимфоцитами основное межклеточное ве­щество снова возвращается в кровь. Из крови вышло и в кровь вернулось.

Существует тесная связь между соединительной тканью, кровью и лимфой. Дело в том, что как между соединительной тканью и лимфой происходит обмен веществ, так и между лимфой и кровью тоже осуществляется обмен веществ. Об­мен веществ между кровью и лимфой происходит только че­рез соединительную ткань.

Строение крови. Кровь (sanquis) относится к тканям вну­тренней среды. Поэтому, как и все ткани внутренней среды, она состоит из клеток и межклеточного вещества. Межкле­точным веществом является плазма крови, к клеточным эл­ементам относятся эритроциты, лейкоциты и тромбоциты. В других тканях внутренней среды межклеточное вещество имеет полужидкую консистенцию (рыхлая соединительная ткань) или плотную консистенцию (плотная соединительная ткань, хрящевая и костная ткани). Поэтому различные ткани внутренней среды выполняют различную функцию. Кровь выполняет трофическую и защитную функции, соединитель­ная ткань - опорно-механическую, трофическую и защит­ную, хрящевая и костная ткани - опорно-механическую и функцию механической защиты.

Форменные элементы крови составляют примерно 40-45 %, все остальное - плазма крови. Количество крови в организме человека составляет 5-9 % от массы тела.

Функции крови:

1) транспортная;

2) дыхательная;

3) тро­фическая;

4) защитная;

5) гомеостатическая (поддержание постоянства внутренней среды).

Плазма крови включает 90-93 % воды, 6-7,5 % белков, среди которых - альбумины, глобулины и фибриноген, а остальные 2,5-4 % составляют другие органические веще­ства и минеральные соли. За счет солей поддерживается по­стоянное осмотическое давление плазмы крови. Если из плазмы крови удалить фибриноген, то останется сыворотка крови. Плазма крови имеет рН 7,36.

Эритроциты. Эритроциты (erythrocytus) составляют в 1 л мужской крови 4-5,5×10 12 , у женщин несколько меньше, т. е. 3,7-5×10 12 . Повышенное количество эритроцитов назы­вается эритроцитозом, пониженное - эритропенией.

Эритроциты имеют различную форму. 80 % всех эритроцитов составляют эритроциты двояковогнутой формы (дискоциты); у них края толще (2-2,5 мкм), а центр тоньше (1 мкм), поэтому центральная часть эритроцита более свет­лая.

Кроме дискоцитов имеются и другие формы:

1) планоциты;

2) стоматоциты;

3) двуямочные;

4) седловидные;

5) шаро­видные, или сфероциты;

6) эхиноциты, у которых имеются отростки. Сфероциты и эхиноциты - это клетки, заканчи­вающие свой жизненный цикл.

Диаметр дискоцитов может быть различным. 75 % диско­цитов имеют диаметр 7-8 мкм, они называются нормоцитами; 12,5 % - 4,5-6 мкм (микроциты); 12,5 % - более 8 мкм (макроциты).

Эритроцит - это безъядерная клетка, или постклеточ­ная структура, в нем отсутствуют ядро и органеллы. Плазмолемма эритроцита имеет толщину 20 нм. На поверхности плазмолеммы могут быть адсорбированы гликопротеиды, аминокислоты, протеины, ферменты, гормоны, лекар­ственные и другие вещества. На внутренней поверхности плазмолеммы локализованы гликолитические ферменты, Na + -ATФаза, К + -АТФаза. К этой поверхности прилежит гемоглобин.

Плазмолемма эритроцитов состоит из липидов и бел­ков примерно в одинаковом количестве, гликолипидов и гликопротеидов - 5 %.

Липиды представлены 2 слоями липидных молекул. В со­став наружного слоя входят фосфатидилхолин и сфингомиелин, в состав внутреннего слоя - фосфатидилсерин и фос- фатидилэтаноламин.

Белки представлены мембранными (гликофорин и белок полосы 3) и примембранными (спектрин, белки полосы 4.1, актин).

Гликофорин своим центральным концом связан с «узло­вым комплексом»; проходит через билипидный слой цитолеммы и выходит за его пределы, участвует в формировании гликокаликса и выполняет рецепторную функцию.

Белок полосы 3 - трансмембранный гликопротеид, его полипептидная цепь много раз проходит в одном и другом на­правлении через билипидный слой, образует гидрофильные поры в этом слое, через которые проходят анионы НСО - 3 и Сl - в тот момент, когда эритроциты отдают СО 2 , а анион НСО - з замещается анионом Сl - .

Примембранный белок спектрин имеет вид нити длиной около 100 нм, состоит из 2 полипептидных цепей (альфаспектрина и бета-спектрина), одним концом связан с актиновыми филаментами «узлового комплекса», выполняет функ­цию цитоскелета, благодаря которому сохраняется правиль­ная форма дискоцита. Спектрин связан с белком полосы 3 при помощи белка анкирина.

«Узелковый комплекс» состоит из актина, белка полосы 4.1 и концов белков спектрина и гликофорина.

Олигосахариды гликолипидов и гликопротеидов образуют гликокаликс. От них зависит наличие агглютиногенов на по­верхности эритроцитов.

Агглютиногены эритроцитов - А и В.

Агглютинины плазмы крови - альфа и бета.

Если в крови одновременно окажутся «чужой» агглютиноген А и агглютинин альфа или «чужой» агглютиноген В и аг­глютинин бета, то произойдет склеивание (агглютинация) эритроцитов.

Группы крови. По содержанию агглютиногенов эритро­цитов и агглютининов плазмы различают 4 группы крови:

группа I(0) - нет агглютиногенов, есть агглютинины аль­фа и бета;

группа II(A) - есть агглютиноген А и агглютинин бета;

группа III(В) - есть агглютиноген В и агглютинин альфа;

группа IV(AB) - есть агглютиногены А и В, нет агглютини­нов.

На поверхности эритроцитов у 86 % людей имеется резус-фактор - агглютиноген (Rh). У 14 % людей нет резус-фактора (резус-отрицательные). При переливании резус-положитель­ной крови резус-отрицательному реципиенту образуются ре­зус-антитела, которые вызывают гемолиз эритроцитов.

На цитолемме эритроцитов адсорбируются избытки ами­нокислот, поэтому содержание аминокислот в плазме крови сохраняется на одинаковом уровне.

В состав эритроцита входит около 40 % плотного веще­ства, все остальное - вода. 95 % плотного (сухого) вещества составляет гемоглобин. Гемоглобин состоит из белка - глоби­на и железосодержащего пигмента - гема. Различают 2 раз­новидности гемоглобина:

1) гемоглобин А, т. е. гемоглобин взрослых;

2) гемоглобин F (фетальный) - гемоглобин плода.

У взрослого человека содержится 98 % гемоглобина А, у пло­да или новорожденного - 20 %, остальное составляет фе­тальный гемоглобин.

После гибели эритроцит фагоцитируется макрофагом се­лезенки. В макрофаге гемоглобин распадается на билирубин и гемосидерин, содержащий железо. Железо гемосидерина переходит в плазму крови и соединяется с белком плазмы трансферрином, тоже содержащим железо. Это соединение фагоцитируется специальными макрофагами красного ко­стного мозга. Затем эти макрофаги передают молекулы желе­за развивающимся эритроцитам, отчего они и называются клетками-кормилками .

Эритроцит обеспечивается энергией благодаря гликолитическим реакциям. За счет гликолиза в эритроците синте­зируются АТФ и НАД-Н 2 . АТФ необходима как источник энергии, за счет которой через плазмолемму транспортируются различные вещества, в том числе ионы К + , Na + , благодаря чему сохраняется оптимальное равновесие осмотического давления между плазмой крови и эритроцитами, а также обеспечивается правильная форма эритроцитов. НАД-Н 2 необходима для сохранения гемоглобина в активном со­стоянии, т. е. НАД-Н 2 препятствует превращению гемоглобина в метгемоглобин. Метгемоглобин - это прочное соеди­нение гемоглобина с каким-либо химическим веществом. Такой гемоглобин не способен транспортировать кислород или углекислый газ. У заядлых курильщиков такого гемо­глобина содержится около 10 %. Он абсолютно бесполезен для курильщика. К непрочным соединениям гемоглобина относятся оксигемоглобин (соединение гемоглобина с ки­слородом) и карбоксигемоглобин (соединение гемоглобина с углекислым газом). Количество гемоглобина в 1 л крови здорового человека составляет 120-160 г.

В крови человека имеется 1-5 % молодых эритроцитов - ретикулоцитов. В ретикулоцитах сохраняются остатки ЭПС, рибосом и митохондрий. При субвитальной окраске в ретикулоците видны остатки этих органелл в виде ретикулофиламентозной субстанции. От этого и произошло название моло­дого эритроцита - ретикулоцит. В ретикулоцитах на остат­ках ЭПС осуществляется синтез белка глобина, необходимого для образования гемоглобина. Ретикулоциты дозревают в си­нусоидах красного костного мозга или в периферических сосудах.

Продолжительность жизни эритроцита составляет 120 суток. После этого в эритроцитах нарушается процесс гли­колиза. В результате этого нарушается синтез АТФ и НАД-Н 2 , эритроцит при этом утрачивает свою форму и превращается в эхиноцит или сфероцит; нарушается проницаемость ионов Na + и К + через плазмолемму, что приводит к повышению осмо­тического давления внутри эритроцита. Повышение осмоти­ческого давления усиливает поступление воды внутрь эритро­цита, который при этом набухает, плазмолемма разрывается, и гемоглобин выходит в плазму крови (гемолиз). Нормальные эритроциты также могут подвергнуться гемолизу, если в кровь ввести дистиллированную воду или гипотонический раствор, так как при этом снизится осмотическое давление плазмы крови. После гемолиза из эритроцита выходит гемоглобин, ос­тается только цитолемма. Тккие гемолизированные эритроци­ты называются тенями эритроцитов.

При нарушении синтеза НАД-Н 2 гемоглобин превращает­ся в метгемоглобин.

При старении эритроцитов на их поверхности снижается содержание сиаловых кислот, которые поддерживают отри­цательный заряд, поэтому эритроциты могут склеиваться. В стареющих эритроцитах изменяется скелетный белок спектрин, в результате чего дисковидные эритроциты утра­чивают свою форму и превращаются в сфероциты.

На цитолемме старых эритроцитов появляются специфи­ческие рецепторы, способные захватывать аутолитические антитела - IgG 1 и IgG 2 . В результате этого образуются ком­плексы, состоящие из рецепторов и вышеуказанных анти­тел. Эти комплексы служат признаками, по которым макро­фаги узнают эти эритроциты и фагоцитируют их.

Обычно гибель эритроцита происходит в селезенке. Поэ­тому селезенка называется кладбищем эритроцитов.

Общая характеристика лейкоцитов. Количество лейко­цитов в 1 л крови здорового человека составляет 4-9х10 9 . Повышенное количество лейкоцитов называется лейкоцито­зом, пониженное - лейкопенией. Лейкоциты делятся на гранулоциты и агранулоциты. Гранулоциты характеризуются наличием в их цитоплазме специфических гранул. Агрануло­циты специфических гранул не содержат. Кровь окрашива­ется азурэозином по Романовскому-Гймзе. Если при окра­ске крови гранулы гранулоцита окрашиваются кислыми кра­сителями, то такой гранулоцит называется эозинофильным (ацидофильным); если основными - базофильным; если и кислыми, и основными - нейтрофильным.

Все лейкоциты имеют сферическую или шаровидную фор­му, все они передвигаются в жидкости при помощи ложноно­жек, все они циркулируют в крови непродолжительный срок (несколько часов), затем через стенку капилляров переходят в соединительную ткань (строму органов), где выполняют свои функции. Все лейкоциты выполняют защитную функцию.

Гранулоциты. Нейтрофильные гранулоциты (granulocy­tes neutrophilicus) имеют диаметр в капле крови 7-8 мкм, в мазке - 12-13 мкм. В цитоплазме гранулоцитов содержат­ся 2 вида гранул:

1) азурофильные (неспецифические, пер­вичные), или лизосомы, составляющие 10-20 %;

2) специфи­ческие (вторичные), которые окрашиваются и кислыми, и ос­новными красителями.

Азурофильные гранулы (лизосомы) имеют диаметр 0,4-0,8 мкм, в них содержатся протеолитические ферменты, имеющие кислую реакцию: кислая фосфатаза, пероксидаза, кислая протеаза, лизоцим, арилсулфатаза.

Специфические гранулы составляют 80-90 % всех гранул, их диаметр равен 0,2-0,4 мкм, окрашиваются и кислыми, и основными красителями, так как содержат и кислые и ос­новные ферменты и вещества: ЩФ, щелочные белки, фагоцитин, лактоферрин, лизоцим. Лактоферрин 1) связывает молекулы Fe и склеивает бактерии и 2) угнетает дифференцировку молодых гранулоцитов.

Периферическая часть цитоплазмы нейтрофильных гра­нулоцитов не содержит гранул, там имеются филаменты, состоящие из сократительных белков. Благодаря этим филаментам гранулоциты выбрасывают ложноножки (псевдопо­дии), участвующие в фагоцитозе или в передвижении клеток.

Цитоплазма нейтрофильных гранулоцитов окрашивает­ся слабо оксифильно, бедна органеллами, содержит включе­ния гликогена и липидов.

Ядра нейтрофилов имеют различную форму. В зависимо­сти от этого различают сегментоядерные гранулоциты (granulocytus neutrophilicus segmentonuclearis), палочкоядерные (granulocytus neutrophilicus bacillonuclearis), а также юные (granulocytus neutrophylicus juvenilis).

Сегментоядерные нейтрофильные гранулоциты соста­вляют 47-72 % от всех гранулоцитов. Называются они так по­тому, что их ядра состоят из 2-7 сегментов, соединенных тон­кими перемычками. В состав ядер входит гетерохроматин, ядрышек не видно. От одного из сегментов может отходить спутник (сателлит), представляющий собой половой хрома­тин. Спутник имеет форму барабанной палочки. Спутники имеются только в нейтрофильных гранулоцитах женщин или гермафродитов по женскому типу.

Палочкоядерные нейтрофильные гранулоциты имеют ядро в виде изогнутой палочки, напоминающей русскую или латинскую букву S. Таких гранулоцитов в периферической крови содержится 3-5 %.

Юные нейтрофильные гранулоциты составляют от 0 до 1 %, самые молодые, содержат ядра бобовидной формы.

Нейтрофилы выполняют ряд функций. На поверхности цитолеммы гранулоцитов имеются Fc и СЗ рецепторы, благо­даря которым они способны фагоцитировать комплексы ан­тигенов с антителами и белками комплемента. Белки ком­племента - эта группа белков, участвующих в уничтожении антигенов. Нейтрофилы фагоцитируют бактерий, выделяют биооксиданты (биологические окислители), выделяют бактериоцидные белки (лизоцим), убивающие бактерий. За спо­собность нейтрофильных гранулоцитов выполнять фагоци­тарную функцию И. И. Мечников назвал их микрофагами. Фагосомы в нейтрофилах обрабатываются сначала фермен­тами специфических гранул, а после этого сливаются с азурофильными гранулами (лизосомами) и подвергаются окон­чательной обработке.

В нейтрофильных гранулоцитах содержатся кейлоны, ко­торые тормозят репликацию ДНК незрелых лейкоцитов и тем самым тормозят их пролиферацию.

Продолжительность жизни нейтрофилов составляет 8 су­ток, из которых они 8 часов циркулируют в крови, затем через стенку капилляров мигрируют в соединительную ткань и там до конца своей жизни выполняют определенные функции.

Эозинофильные гранулоциты. Их всего 1-6 % в перифе­рической крови; в капле крови имеют диаметр 8-9 мкм, а в мазке крови на стекле приобретают диаметр до 13-14 мкм. В состав эозинофильных гранулоцитов входят специфические гранулы, способные окрашиваться только кислыми красителями. Форма гранул овальная, их длина до­стигает 1,5 мкм. В гранулах имеются кристаллоидные струк­туры, состоящие из пластин, наслоенных друг на друга в ви­де цилиндров. Эти структуры погружены в аморфный матрикс. В гранулах содержатся главный щелочной белок, эозинофильный катионный белок, кислая фосфатаза и пе­роксидаза. В эозинофилах имеются и более мелкие гранулы. Они содержат гистаминазу и арилсульфатазу, фактор, блоки­рующий выход гистамина из гранул базофильных грануло­цитов и тканевых базофилов.

Цитоплазма эозинофильных гранулоцитов окрашивается слабо базофильно, содержит слабо развитые органеллы об­щего значения.

Ядра эозинофильных гранулоцитов имеют различную форму: сегментированную, палочковидную и бобовидную. Сегментоядерные эозинофилы чаще всего состоят из двух, реже - из трех сегментов.

Функция эозинофилов: участвуют в ограничении мест­ных воспалительных реакций, способны к слабо выраженно­му фагоцитозу; при фагоцитозе выделяют биологические окислители. Эозинофилы активно участвуют в аллергиче­ских и анафилактических реакциях при поступлении в орга­низм чужеродных белков. Участие эозинофилов в аллергических реакциях заключается в борьбе с гистамином. Эозинофилы ведут борьбу с гистамином 4 способами:

1) уничтожают гистамин при помощи гистоминазы;

2) выделяют фактор, блокирующий выход гистамина из базофильных гранулоцитов;

3) фагоцитируют гистамин;

4) захватывают гистамин при помощи рецепторов и удерживают его на своей поверх­ности.

На цитолемме имеются Fc-рецепторы, способные зах­ватывать IgE, IgG, IgM. Есть рецепторы СЗ и рецепторы С4.

Активное участие эозинофилов в анафилактических ре­акциях осуществляется за счет арилсульфатазы, которая, выделившись из мелких гранул, разрушает анафилаксии, ко­торый выделяется базофильными лейкоцитами.

Продолжительность жизни эозинофильных гранулоцитов составляет несколько суток, в периферической крови они циркулируют 4-8 часов.

Увеличение количества эозинофилов в периферической крови называется эозинофилией, уменьшение - эозинопенией. Эозинофилия возникает при появлении в организме чу­жеродных белков, очагов воспаления, комплексов антиген-антитело. Эозинопения наблюдается под влиянием адрена­лина, адренокортикотропного гормона (АКТГ), кортикостероидов.

Базофильные гранулоциты. В периферической крови составляют 0,5-1 %; в капле крови имеют диаметр 7-8 мкм, в мазке крови - 11-12 мкм. В их цитоплазме содержатся ба­зофильные гранулы, обладающие метахромазией. Метахромазия - это свойство структур окрашиваться в цвет, не ха­рактерный для красителя. Так, например, азур окрашивает структуры в фиолетовый цвет, а гранулы базофилов окраши­ваются им в пурпурный цвет. В состав гранул входят гепарин, гистамин, серотонин, хондроитинсульфаты, гиалуроновая кислота. В цитоплазме содержатся пероксидаза, кислая фосфатаза, гистидиндекарбоксилаза, анафилаксии. Гистидин-декарбоксилаза является маркерным ферментом для базо­филов.

Ядра базофилов слабо окрашиваются, имеют слабодоль­чатую или овальную форму, их контуры слабо выражены.

В цитоплазме базофилов органеллы общего значения слабо выражены, окрашивается она слабо базофильно.

Функции базофильных гранулоцитов проявляются в сла­бо выраженном фагоцитозе. На поверхности базофилов име­ются рецепторы класса Е, которые способны удерживать им­муноглобулины. Основная функция базофилов связана с гепарином и гистамином, содержащимися в их гранулах. Бла­годаря им базофилы участвуют в регуляции местного гомеостаза. При выделении гистамина повышается проницаемость основного межклеточного вещества и стенки капилляра, повышается свертываемость крови, усиливается воспали­тельная реакция. При выделении гепарина снижается свер­тываемость крови, проницаемость капиллярной стенки и во­спалительная реакция. Базофилы реагируют на присутствие антигенов, при этом усиливается их дегрануляция, т. е. выде­ление гистамина из гранул, при этом усиливается отечность ткани за счет повышения проницаемости стенки сосудов. Ба­зофилы играют основную роль в развитии аллергических и анафилактических реакций. На их поверхности есть IgE-рецепторы к IgE.

Агранулоцнты. Лимфоциты составляют 19-37 %. В за­висимости от размеров лимфоциты подразделяются на ма­лые (диаметр менее 7 мкм), средние (диаметр 8-10 мкм) и большие (диаметр более 10 мкм). Ядра лимфоцитов чаще круглые, реже вогнутые. Цитоплазма слабо базофильна, со­держит небольшое количество органелл общего значения, имеются азурофильные гранулы, т. е. лизосомы.

При электронно-микроскопическом исследовании было установлено 4 разновидности лимфоцитов:

1) малые светлые, составляют 75 %, их диаметр равен 7 мкм, вокруг ядра распо­лагается тонкий слой слабо выраженной цитоплазмы, в кото­рой содержатся слабо развитые органеллы общего значения (митохондрии, комплекс Гольджи, гранулярная ЭПС, лизосо­мы);

2) малые темные лимфоциты, составляют 12,5%, их диа­метр 6-7 мкм, ядерно-цитоплазматическое отношение сме­щено в сторону ядра, вокруг которого еще более тонкий слой резко базофильной цитоплазмы, в которой содержится зна­чительное количество РНК, рибосом, митохондрий; другие ор­ганеллы отсутствуют;

3) средние составляют 10-12 %, их диа­метр около 10 мкм, цитоплазма слабо базофильна, в ней со­держатся рибосомы, ЭПС, комплекс Гольджи, азурофильные гранулы, ядро имеет круглую форму, иногда имеет вогнутость, содержит ядрышки, имеется рыхлый хроматин;

4) плазмоциты, составляют 2 %, их диаметр 7-8 мкм, цитоплазма окра­шивается слабо базофильно, около ядра имеется неокрашиваемый участок - так называемый дворик, в котором содер­жится комплекс Гольджи и клеточный центр, в цитоплазме хорошо развита гранулярная ЭПС, в виде цепочки опоясы­вающая ядро. Функция плазмоцитов - выработка антител.

Функционально лимфоциты делятся на В-, Т- и О-лимфоциты. В-лимфоциты вырабатываются в красном костном мозге, антигеннезависимой дифференцировке подвергаются в аналоге бурсы Фабрициуса.

Функция В-лимфоцитов - выработка антител, т. е. имму­ноглобулинов. Иммуноглобулины В-лимфоцитов являются их рецепторами, которые могут быть сконцентрированы в определенных местах, могут быть диффузно рассеяны по поверхности цитолеммы, могут перемещаться по поверхно­сти клетки. В-лимфоциты имеют рецепторы к антигенам и эритроцитам барана.

Т-лимфоциты подразделяются на Т-хелперы, Т-супрессоры и Т-киллеры. Т-хелперы и Т-супрессоры регулируют гумо­ральный иммунитет. В частности, под влиянием Т-хелперов повышается пролиферация и дифференцировка В-лимфоцитов и синтез антител в В-лимфоцитах. Под влиянием лимфокинов, выделяемых Т-супрессорами, пролиферация В-лимфоцитов и синтез антител подавляются. Т-киллеры участвуют в клеточном иммунитете, т. е. они уничтожают генетически чужеродные клетки. К киллерам относятся К-клетки, которые убивают чужеродные клетки, но только при наличии к ним ан­тител. На поверхности Т-лимфоцитов имеются рецепторы к эритроцитам мыши.

О-лимфоциты недифференцированы и относятся к резервным лимфоцитам.

Морфологически различить В- и Т-лимфоциты не всегда возможно. В то же время в В-лимфоцитах лучше развита гра­нулярная ЭПС, в ядре имеются рыхлый хроматин и ядрыш­ки. Лучше всего Т- и В-лимфоциты можно различить при по­мощи иммунных и иммуноморфологических реакций.

Продолжительность жизни Т-лимфоцитов составляет от нескольких месяцев до нескольких лет, В-лимфоцитов - от нескольких недель до нескольких месяцев.

Стволовые клетки крови (СКК) морфологически не отли­чимы от малых темных лимфоцитов. Если СКК попадают в соединительную ткань, то они дифференцируются в туч­ные клетки, фибробласты и др.

Моноциты. Составляют 3-11 %, их диаметр в капле крови равен 14 мкм, в мазке крови на стекле - 18 мкм, цитоплазма слабо базофильна, содержит органеллы общего значения, в том числе хорошо развитые лизосомы, или азурофильные гранулы. Ядро чаще всего имеет бобовидную форму, реже - подковооб­разную или овальную. Функция - фагоцитарная. Моноциты циркулируют в крови 36-104 часов, затем мигрируют через стенку капилляров в окружающую ткань и там дифференциру­ются в макрофаги - глиальные макрофаги нервной ткани, звездчатые клетки печени, альвеолярные макрофаги легких, остеокласты костной ткани, внутриэпидермальные макрофаги эпидермиса кожи и др. При фагоцитозе макрофаги выделяют биологические окислители. Макрофаги стимулируют процессы пролиферации и дифференцировки В- и Т-лимфоцитов, уча­ствуют в иммунологических реакциях.

Тромбоциты (trombocytus). Составляют в 1л крови 250-300 х 1012, представляют собой частицы цитоплазмы, отщепляющиеся от гигантских клеток красного костного мозга - мегакариоцитов. Диаметр тромбоцитов 2-3 мкм. Тромбоциты состоят из гиаломера, являющегося их основой, и хромомера, или грануломера.

Плазмолемма плазмоцитов покрыта толстым (15-20 нм) гликокаликсом, образует инвагинации в виде канальцев, от­ходящих от цитолеммы. Это открытая система канальцев, через которые из тромбоцитов выделяется их содержимое, а из плазмы крови поступают различные вещества. В плазмолемме имеются гликопротеины - рецепторы. Гпикопротеин PIb захватывает из плазмы фактор фон Виллебранда (vWF). Это один из основных факторов, обеспечивающих свертывание крови. Второй гликопротеин, PIIb-IIIa, является рецептором фибриногена и принимает участие в агрегации тромбоцитов.

Гиаломер - цитоскелет тромбоцита представлен актиновыми филаментами, расположенными под цитолеммой, и пучками микротубул, прилежащих к цитолемме и располо­женных циркулярно. Актиновые филаменты принимают участие в сокращении объема тромба.

Плотная тубулярная система тромбоцита состоит из трубочек, сходных с гладкой ЭПС. На поверхности этой си­стемы синтезируются циклооксигеназы и простагландины, в этих трубочках связываются двухвалентные катионы и де­понируются ионы Са 2+ . Кальций способствует адгезии и аг­регации тромбоцитов. Под влиянием циклооксигеназ арахидоновая кислота распадается на простагландины и тромбоксан А-2, которые стимулируют агрегацию тромбоцитов.

Грануломер включает органеллы (рибосомы, лизосомы, микропероксисомы, митохондрии), компоненты органелл (ЭПС, комплекса Гольджи), гликоген, ферритин и специаль­ные гранулы.

Специальные гранулы представлены следующими 3 типами:

1-й тип - альфа-гранулы, имеют диаметр 350-500 нм, со­держат белки (тромбопластин), гликопротеины (тромбоспон- дин, фибронектин), фактор роста и литические ферменты (катепсин).

2-й тип - бета-гранулы, имеют диаметр 250-300 нм, представляют собой плотные тельца, содержат серотонин, поступающий из плазмы крови, гистамин, адреналин, каль­ций, АДФ, АТФ.

3-й тип- гранулы диаметром 200-250 нм, представлен­ные лизосомами, содержащими лизосомальные ферменты, и микропероксисомами, содержащими пероксидазу.

Различают 5 разновидностей тромбоцитов: 1) юные; 2) зрелые; 3) старые; 4) дегенеративные; 5) гигантские. Функ­ция тромбоцитов - участие в образовании тромбов при пов­реждении кровеносных сосудов.

При образовании тромба происходит: 1) выделение тканя­ми внешнего фактора свертывания крови и адгезии тромбо­цитов; 2) агрегация тромбоцитов и выделение внутреннего фактора свертывания крови и 3) под влиянием тромбопластина протромбин превращается в тромбин, под действием которого фибриноген выпадает в нити фибрина и образуется тромб, который, закупоривая сосуд, прекращает кровотече­ние.

При введении в организм аспирина подавляется тромбообразование.

Гемограмма. Это количество форменных элементов кро­ви в единице ее объема (в 1л). Кроме того, определяют коли­чество гемоглобина и СОЭ, выражаемую в миллиметрах за 1 час.

Лейкоцитарная формула. Это процентное содержание лейкоцитов. В частности, сегментоядерных нейтрофильных лейкоцитов содержится 47-72 %, палочкоядерных - 3-5 %, юных - 0,5 %; базофильных гранулоцитов - 0,5-1 %, эозинофильных гранулоцитов - 1-6 %; моноцитов 3-11 %; лим­фоцитов - 19-37 %. При патологических состояниях орга­низма увеличивается количество юных и палочкоядерных нейтрофильных гранулоцитов - это называется «сдвиг фор­мулы влево».

Возрастные изменения содержания форменных эл­ементов крови. В организме новорожденного в 1 л крови со­держится 6-7×10 12 эритроцитов; к 14-м суткам - столько же, сколько у взрослого, к 6 месяцам количество эритроцитов уменьшается (физиологическая анемия), к периоду полового созревания достигает уровня у взрослого человека.

Существенные возрастные изменения претерпевает со­держание нейтрофильных гранулоцитов и лимфоцитов. В организме новорожденного их количество соответствует количеству у взрослого человека. После этого количество нейтрофилов начинает уменьшаться, лимфоцитов - увели­чиваться, и к 4-м суткам содержание тех и других становит­ся одинаковым (первый физиологический перекрест). За­тем количество нейтрофилов продолжает уменьшаться, лимфоцитов - возрастать, и к 1-2 годам количество ней­трофильных гранулоцитов снижается до минимального (20-30 %), а лимфоцитов - увеличивается до 60-70 %. По­сле этого содержание лимфоцитов начинает уменьшаться, нейтрофилов - увеличиваться, и к 4 годам количество тех и других уравнивается (второй физиологический пере­крест). Затем количество нейтрофилов продолжает увели­чиваться, лимфоцитов - уменьшаться, и к периоду полово­го созревания содержание этих форменных элементов такое же, как и у взрослого человека.

Лимфа состоит из лимфоплазмы и форменных элемен­тов крови. Лимфоплазма включает воду, органические ве­щества и минеральные соли. Форменные элементы крови на 98 % состоят из лимфоцитов, 2 % - остальные формен­ные элементы крови. Значение лимфы заключается в обно­влении основного межклеточного вещества ткани и очище­ние его от бактерий, бактериальных токсинов и других вредных веществ. Таким образом, лимфа отличается от кро­ви меньшим содержанием белков в лимфоплазме и большим количеством лимфоцитов.

ЛЕКЦИЯ 6

СОЕДИНИТЕЛЬНЫЕ ТКАНИ

Соединительные ткани относятся к тканям внутренней среды и классифицируются на собственно соединительную ткань и скелетную ткань (хрящевая и костная). Собственно соединительная ткань делится на: 1) волокнистую, включа­ющую рыхлую и плотную, которая подразделяется на офор­мленную и неоформленную; 2) ткани со специальными свой­ствами (жировая, слизистая, ретикулярная и пигментная).

В состав рыхлой и плотной соединительной ткани входят клетки и межклеточное вещество. В рыхлой соединительной ткани много клеток и основного межклеточного вещества, в плотной - мало клеток и основного межклеточного веще­ства и много волокон. В зависимости от соотношения клеток и межклеточного вещества эти ткани выполняют различные функции. В частности, рыхлая соединительная ткань в боль­шей степени выполняет трофическую функцию и в мень­шей - опорно-механическую, а плотная соединительная ткань в большей степени - опорно-механическую функцию.

Общие функции соединительной ткани:

1) трофическая;

2) функция механической защиты (кости черепа);

3) опорно-механическая (костная, хрящевая ткани, сухожилия, апоне­врозы);

4) формообразующая (склера глаза придает глазу определенную форму);

5) защитная (фагоцитоз и иммуноло­гическая защита);

6) пластическая (способность адаптиро­ваться к новым условиям внешней среды, участие в заживле­нии ран);

7) участие в поддержании гомеостаза организма.

Рыхлая соединительная ткань (textus connectivus collagenosus laxus). Включает клетки и межклеточное вещество, которое состоит из основного межклеточного вещества и во­локон: коллагеновых, эластических и ретикулярных. Рыхлая соединительная ткань располагается под базальными бранами эпителия, сопровождает кровеносные и лимфат ские сосуды, образует строму органов.

Клетки:

1) фибробласты,

2) макрофаги,

3) плазмой

4) тканевые базофилы (тучные клетки, лаброциты),

5) адипоциты (жировые клетки),

6) пигментные клетки (пигментоциты, меланоциты),

7) адвентициальные клетки,

8) ретикуляр­ные клетки

9) лейкоциты крови.

Таким образом, в состав со­единительной ткани входят несколько дифферонов клеток.

Дифферон фибробластов: стволовая клетка, полустволо­вая, клетка-предшественник, малодифференцированные фибробласты, дифференцированные фибробласты и фибро­циты. Из малодифференцированных фибробластов могут развиваться миофибробласты и фиброкласты. В эмбриогене­зе фибробласты развиваются из мезенхимных клеток, а в постнатальном периоде - из стволовых и адвентициальных клеток.

Малодифференцированные фибробласты имеют удли­ненную форму, их длина около 25 мкм, содержат мало отро­стков; цитоплазма окрашивается базофильно, так как в ней имеется много РНК и рибосом. Ядро овальное, содержит глыбки хроматина и ядрышко. Функция этих фибробластов заключается в их способности к митотическому делению и дальнейшей дифференцировке, в результате которой они превращаются в дифференцированные фибробласты. Среди фибробластов есть долгоживущие и короткоживущие.

Дифференцированные фибробласты (fibroblastocytus) имеют вытянутую, уплощенную форму, их длина около 50 мкм, содержат много отростков, слабо базофильную цито­плазму, хорошо развитую гранулярную ЭПС, имеют лизосомы. В цитоплазме обнаружена коллагеназа. Ядро овальное, слабо базофильное, содержит рыхлый хроматин и ядрышки. По периферии цитоплазмы имеются тонкие филаменты, бла­годаря которым фибробласты способны передвигаться в межклеточном веществе.

Функции фибробластов:

1) секретируют молекулы колла­гена, эластина и ретикулина, из которых полимеризуются со­ответственно коллагеновые, эластические и ретикулярные волокна; секреция белков осуществляется всей поверхно­стью плазмолеммы, которая участвует в сборке коллагеновых волокон;

2) секретируют гликозаминогликаны, входящие в состав основного межклеточного вещества (кератансульфаты, гепарансульфаты, хондроитинсульфаты, дерматансульфаты и гиалуроновую кислоту);

3) секретируют фибронектин (склеивающее вещество);

4) белки, соединенные с гликозаминогликанами (протеогликаны).

Кроме того, фибробласты вы­полняют слабо выраженную фагоцитарную функцию.

Таким образом, дифференцированные фибробласты являются клетками, которые фактически формируют соединительную ткань. Там, где нет фибробластов, не может быть соедини­тельной ткани.

Фибробласты активно функционируют при наличии в организме витамина С, соединений Fe, Си и Сг. При гипо­витаминозе функция фибробластов ослабевает, т. е. пре­кращается обновление волокон соединительной ткани, не вырабатываются гликозаминогликаны, входящие в состав основного межклеточного вещества, что приводит к осла­блению и разрушению связочного аппарата организма, например зубных связок. Зубы при этом разрушаются и выпадают. В результате прекращения выработки гиалуроновой кислоты повышается проницаемость капилляр­ных стенок и окружающей соединительной ткани, что при­водит к мелкоточечным кровоизлияниям. Такое заболева­ние называется цингой.

Фиброциты образуются в результате дальнейшей дифференцировки дифференцированных фибробластов. Они со­держат ядра с грубыми глыбками хроматина, ядрышки в них отсутствуют. Фиброциты уменьшены в размерах, в цитоплаз­ме - малочисленные слабо развитые органеллы, функцио­нальная активность снижена.

Миофибробласты развиваются из малодифференцированных фибробластов. В их цитоплазме хорошо развиты миофиламенты, поэтому они способны выполнять сократи­тельную функцию. Миофибробласты имеются в стенке матки при наступлении беременности. За счет миофибробластов происходит, в значительной степени, нарастание массы гладкомышечной ткани стенки матки в ходе беременности.

Фиброкласты также развиваются из малодифференцированных фибробластов. В этих клетках хорошо развиты лизосомы, содержащие протеолитические ферменты, при­нимающие участие в лизисе межклеточного вещества и клеточных элементов. Фиброкласты принимают участие в рассасывании мышечной ткани стенки матки после ро­дов. Фиброкласты встречаются в заживающих ранах, где принимают участие в очищении ран от некротизированных структур тканей.

Макрофаги (macrophagocytus) развиваются из СКК, мо­ноцитов, они находятся везде в соединительной ткани, осо­бенно много их там, где богато развита кровеносная и лим­фатическая сеть сосудов. Форма макрофагов может быть овальной, округлой, вытянутой, размеры - до 20-25 мкм в диаметре. На поверхности макрофагов имеются псевдопо­дии. Поверхность макрофагов резко очерчена, на их цитолемме имеются рецепторы к антигенам, иммуноглобули­нам, лимфоцитам и другим структурам.

Ядра макрофагов имеют овальную, круглую или вытяну­тую форму, содержат грубые глыбки хроматина. Встречаются многоядерные макрофаги (гигантские клетки инородных тел, остеокласты). Цитоплазма макрофагов слабо базофильна, содержит много лизосом, фагосом, вакуолей. Органеллы общего значения развиты умеренно.

Функции макрофагов многочисленны. Основная функ­ция - фагоцитарная. При помощи псевдоподий макрофаги захватывают антигены, бактерии, чужеродные белки, ток­сины и другие вещества и при помощи ферментов лизосом переваривают их, осуществляя внутриклеточное пищева­рение. Кроме того, макрофаги выполняют секреторную функцию. Они выделяют лизоцим, разрушающий оболочку бактерий; пироген, повышающий температуру тела; интер­ферон, тормозящий развитие вирусов; секретируют интерлейкин-1 (ИЛ-1), под влиянием которого повышается синтез ДНК в В- и Т-лимфоцитах; фактор, стимулирующий образо­вание антител в В-лимфоцитах; фактор, стимулирующий дифференцировку Т- и В-лимфоцитов; фактор, стимулирую­щий хемотаксис Т-лимфоцитов и активность Т-хелперов; цитотоксический фактор, разрушающий клетки злокачествен­ных опухолей. Макрофаги принимают участие в иммунных реакциях. Они представляют антигены лимфоцитам.

В общей сложности макрофаги способны к прямому фаго­цитозу, фагоцитозу, опосредованному антителами, секреции биологически активных веществ, представлению антигенов лимфоцитам.

Макрофагическая система включает все клетки организ­ма, обладающие 3 основными признаками:

1) выполняют фа­гоцитарную функцию;

2) на поверхности их цитолеммы име­ются рецепторы к антигенам, лимфоцитам, иммуноглобули­нам и т. д.;

3) все они развиваются из моноцитов.

Примером таких макрофагов являются:

1) макрофаги (гистиоциты) рыхлой соединительной ткани;

2) купферовские клетки печени;

3) легочные макрофаги;

4) гигантские клетки инородных тел;

5) остеокласты костной ткани;

6) ретроперитонеальные макрофаги;

7) глиальные макрофаги нервной ткани.

Основоположником теории о системе макрофагов в орга­низме является И. И. Мечников . Он впервые понял роль макрофагической системы в защите организма от бактерий, ви­русов и других вредных факторов.

Тканевые базофилы (тучные клетки, лаброциты), вероят­но, развиваются из СКК, но точно это не установлено. Форма лаброцитов овальная, круглая, вытянутая и т. д. Ядра ком­пактные, содержат грубые глыбки хроматина. Цитоплазма слабо базофильна, содержит базофильные гранулы диаме­тром до 1,2 мкм.

В гранулах содержатся: 1) кристаллоидные, пластинча­тые, сетчатые и смешанные структуры; 2) гистамин; 3) гепа­рин; 4) серотонин; 5) хондроитинсерные кислоты; 6) гиалуроновая кислота.

В цитоплазме содержатся ферменты: 1) липаза; 2) кислая фосфатаза; 3) ЩФ; 4) АТФаза; 5) цитохромоксидаза и 6) гистидиндекарбоксилаза, являющаяся маркерным ферментом для лаброцитов.

Функции тканевых базофилов заключаются в том, что они, выделяя гепарин, снижают проницаемость капилляр­ной стенки и процессы воспаления, выделяя гистамин, повы­шают проницаемость капиллярной стенки и основного меж­клеточного вещества соединительной ткани, т. е. регулируют местный гомеостаз, усиливают воспалительные процессы и вызывают аллергические реакции. Взаимодействие лабро­цитов с аллергеном приводит к их дегрануляции, так как на их плазмолемме есть рецепторы к иммуноглобулинам типа Е. Лаброциты играют ведущую роль в развитии аллергиче­ских реакций.

Плазмоциты развиваются в процессе дифференцировки В-лимфоцитов, имеют круглую или овальную форму, диаметр 8-9 мкм; цитоплазма окрашивается базофильно. Однако около ядра имеется участок, который не окрашивается и называется «перинуклеарный дворик», в котором находятся комплекс Гольджи и клеточный центр. Ядро - круглое или овальное, перинуклеарным двориком смещено к периферии, содержит гру­бые глыбки хроматина, располагающиеся в виде спиц в колесе. В цитоплазме хорошо развита гранулярная ЭПС, много рибо­сом. Остальные органеллы развиты умеренно. Функция плазмоцитов - выработка иммуноглобулинов, или антител.

Адипоциты (жировые клетки) располагаются в рыхлой со­единительной ткани в виде отдельных клеток или группами. Одиночные адипоциты имеют круглую форму, всю клетку за­нимает капля нейтрального жира, состоящая из глицерина и жирных кислот. Кроме того, там имеются холестерин, фосфолипиды, свободные жирные кислоты. Цитоплазма клетки вместе с уплощенным ядром оттеснена к цитолемме. В цито­плазме имеются малочисленные митохондрии, пиноцитоз- ные пузырьки и фермент глицеролкиназа.

Функциональное значение адипоцитов заключается в том, что они являются источниками энергии и воды.

Развиваются адипоциты чаще всего из малодифференцированных адвентициальных клеток, в цитоплазме которых начинают накапливаться капельки липидов. Всосавшиеся из кишечника в лимфатические капилляры, капельки липидов, называемые хиломикронами, транспортируются в те места, где находятся адипоциты и адвентициальные клетки. Под влиянием липопротеидлипаз, выделяемых эндотелиоцитами капилляров, хиломикроны расщепляются на глицерин и жирные кислоты, которые поступают либо в адвентициальную, либо в жировую клетку. Внутри клетки глицерин и жир­ные кислоты соединяются в нейтральный жир под действием глицеролкиназы.

В том случае, если в организме возникла необходимость в энергии, из мозгового вещества надпочечников выделяется адреналин, который захватывается рецептором адипоцита. Адреналин стимулирует аденилатциклазу, под действием ко­торой синтезируется сигнальная молекула, т. е. цАМФ. цАМФ стимулирует липазу адипоцита, под влиянием которой ней­тральный жир расщепляется на глицерин и жирные кисло­ты, которые выделяются адипоцитом в просвет капилляра, где они соединяются с белком и затем в виде липопротеида транспортируются в те места, где необходима энергия.

Инсулин стимулирует отложение липидов в адипоцитах и препятствует выходу их из этих клеток. Поэтому если в ор­ганизме недостаточно инсулина (диабет), то адипоциты теря­ют липиды, при этом больные худеют.

Пигментные клетки (меланоциты) находятся в соедини­тельной ткани, хотя они не являются собственно соедини­тельнотканными клетками, развиваются из нервного гребня. Меланоциты имеют отростчатую форму, светлую цитоплаз­му, бедную органеллами, содержащую гранулы пигмента ме­ланина.

Адвентициалъные клетки располагаются вдоль крове­носных сосудов, имеют веретеновидную форму, слабо базофильную цитоплазму, содержащую рибосомы и РНК.

Функциональное значение адвентициальных клеток за­ключается в том, что они являются малодифференцированными клетками, способными к митотическому делению и дифференцировке в фибробласты, миофибробласты, адипоциты в процессе накопления в них капелек липидов.

В соединительной ткани много лейкоцитов, которые, циркулируя в крови несколько часов, затем мигрируют в сое­динительную ткань, где выполняют свои функции.

Перициты входят в состав стенки капилляров, имеют отростчатую форму. В отростках перицитов имеются сокра­тительные филаменты, при сокращении которых суживает­ся просвет капилляра.

Межклеточное вещество рыхлой соединительной ткани. Межклеточное вещество рыхлой соединительной тка­ни включает коллагеновые, эластические и ретикулярные во­локна и основное (аморфное) вещество.

Коллагеновые волокна (fibra collagenica) состоят из бел­ка коллагена, имеют толщину 1-10 мкм, неопределенной ве­личины длину, извилистый ход. Коллагеновые белки имеют 14 разновидностей (типов). Коллаген I типа имеется в волок­нах костной ткани, сетчатом слое дермы. Коллаген II типа входит в состав гиалинового и волокнистого хрящей и в сте­кловидное тело глаза. Коллаген III типа входит в состав рети­кулярных волокон. Коллаген IV типа имеется в волокнах базальных мембран, капсулы хрусталика. Коллаген V типа располагается вокруг тех клеток, которые его вырабатывают (гладкие миоциты, эндотелиоциты), образуя вокругклеточный, или перицеллюлярный, скелет. Остальные типы колла­гена мало изучены.

Формирование коллагеновых волокон осуществляется в процессе 4 уровней организации.

I уровень - молекуляр­ный, или внутриклеточный;

II уровень - надмолекулярный, или внеклеточный;

III уровень - фибриллярный;

IV уро­вень - волоконный.

I уровень (молекулярный) характеризуется тем, что на гранулярной ЭПС фибробластов синтезируются молекулы коллагена (тропоколлаген) длиной 280 нм и диаметром 1,4 нм. Состоят молекулы из 3 цепочек аминокислот, чере­дующихся в определенном порядке. Эти молекулы выделяют­ся из фибробластов всей поверхностью их цитолеммы.

II уровень (надмолекулярный) характеризуется тем, что молекулы коллагена (тропоколлаген) соединяются своими концами, в результате чего образуются протофибриллы. 5-6 протофибрилл соединяются своими боковыми поверхностя­ми, и в результате образуются фибриллы диаметром около 10 нм.


Похожая информация.


Эпителиальные ткани осуществляют связь организма с внешней средой. Они выполняют покровную и железистую (секреторную) функции.

Эпителий расположен в кожном покрове, выстилает слизистые оболочки всех внутренних органов, входит в состав серозных оболочек и выстилает полости.

Эпителиальные ткани выполняют разнообразные функции - всасывания, выделения, восприятия раздражений, секреции. Большинство желез организма построено из эпителиальной ткани.

В развитии эпителиальных тканей принимают участие все зародышевые листки: эктодерма, мезодерма и энтодерма. Например, эпителий кожи переднего и заднего отделов кишечной трубки является производным эктодермы, эпителий среднего отдела желудочно-кишечной трубки и органов дыхания имеет энтодермальное происхождение, а эпителий мочевыделительной системы и органов размножения формируется из мезодермы. Клетки эпителия называются эпителиоцитами.

К основным общим свойствам эпителиальных тканей относятся следующие:

1) Клетки эпителия плотно прилегают друг к другу и соединены различными контактами (с помощью десмосом, поясков замыкания, поясков склеивания, щелей).

2) Клетки эпителия образуют пласты. Между клетками нет межклеточного вещества, а имеются очень тонкие (10-50 нм) межмембранные щели. В них располагается межмембранный комплекс. Сюда проникают вещества, поступающие в клетки и выделяемые ими.

3) Клетки эпителия располагаются на базальной мембране, которая в свою очередь лежит на рыхлой соединительной ткани, питающей эпителий. Базальная мембрана до 1 мкм толщиной представляет собой бесструктурное межклеточное вещество, через которое питательные вещества поступают из кровеносных сосудов, расположенных в подлежащей соединительной ткани. В образовании базальных мембран участвуют как клетки эпителия, так и рыхлой соединительной подлежащей ткани.

4) Клетки эпителия обладают морфофункциональной полярностью или полярной дифференциацией. Полярная дифференциация - это разное строение поверхностного (апикального) и нижнего (базального) полюсов клетки. Например, на апикальном полюсе клеток некоторых эпителиев плазмолемма образует всасывающую каемку из ворсинок или мерцательные реснички, а в базальном полюсе находятся ядро и большинство органелл.

В многослойных пластах клетки поверхностных слоев отличаются от базальных формой, строением и функциями.

Полярность свидетельствует о том, что в разных участках клетки совершаются различные процессы. Синтез веществ происходит у базального полюса, а у апикального происходит всасывание, движение ресничек, выделение секрета.

5) У эпителиев хорошо выражена способность к регенерации. При повреждении они быстро восстанавливаются путем деления клеток.

6) В эпителии нет кровеносных сосудов.

Классификация эпителиев

Существует несколько классификаций эпителиальных тканей. В зависимости от места расположения и выполняемой функции различают два типа эпителиев: покровные и железистые .

В основу наиболее распространенной классификации покровных эпителиев положены форма клеток и количество их слоев в эпителиальном пласте.

Согласно этой (морфологической) классификации покровные эпителии делят на две группы: I) однослойные и II) многослойные .

В однослойных эпителиях нижние (базальные) полюса клеток прикреплены к базальной мембране, а верхние (апикальные) граничат с внешней средой. В многослойных эпителиях только нижние клетки лежат на базальной мембране, все остальные расположены на нижележащих.

В зависимости от формы клеток однослойные эпителии подразделяют на плоские, кубические и призматические, или цилиндрические . В плоском эпителии высота клеток значительно меньше ширины. Такой эпителий выстилает респираторные отделы легких, полость среднего уха, некоторые отделы почечных канальцев, покрывает все серозные оболочки внутренних органов. Покрывая серозные оболочки эпителий (мезотелий), участвует в выделении и всасывании жидкости в брюшную полость и обратно, препятствует сращиванию органов друг с другом и со стенками тела. Создавая гладкую поверхность органов, лежащих в грудной и брюшной полости, обеспечивает возможность их перемещения. Эпителий почечных канальцев участвует в образовании мочи, эпителий выводных протоков выполняет разграничительную функцию.

Благодаря активной пиноцитозной деятельности клеток плоского эпителия происходит быстрый перенос веществ из серозной жидкости в лимфатическое русло.

Однослойный плоский эпителий, покрывающий слизистые оболочки органов и серозные, называется выстилающим.

Однослойный кубический эпителий выстилает выводные протоки желёз, канальцы почек, формирует фолликулы щитовидной железы. Высота клеток приблизительно равна ширине.

Функции этого эпителия связаны с функциями органа, в котором он находится (в протоках - разграничительная, в почках осморегулирующая и др. функции). На апикальной поверхности клеток в канальцах почки находятся микроворсинки.

Однослойный призматический (цилиндрический) эпителий имеет бóльшую высоту клеток по сравнению с шириной. Он выстилает слизистую оболочку желудка, кишечника, матки, яйцеводов, собирательные трубочки почек, выводные протоки печени и поджелудочной железы. Развивается в основном из энтодермы. Овальные ядра сдвинуты к базальному полюсу и расположены на одной высоте от базальной мембраны. Кроме разграничительной функции этот эпителий выполняет специфические функции, присущие тому или иному органу. Например, цилиндрический эпителий слизистой желудка вырабатывает слизь и называется слизистым эпителием , эпителий кишечника называется каёмчатым , так как на апикальном конце имеет ворсинки в виде каемки, которые увеличивают площадь пристеночного пищеварения и всасывания питательных веществ. Каждый эпителиоцит имеет более 1000 микроворсинок. Рассмотреть их можно только в электронный микроскоп. Микроворсинки увеличивают всасывающую поверхность клетки до 30 раз.

В эпителии, выстилающем кишечник, находятся бокаловидные клетки. Это одноклеточные железы, вырабатывающие слизь, которая предохраняет эпителий от воздействия механических и химических факторов и способствует лучшему продвижению пищевых масс.

Однослойный многорядный мерцательный эпителий выстилает воздухоносные пути органов дыхания: носовую полость, гортань, трахею, бронхи, а также некоторые участки половой системы животных (семявыносящие пути у самцов, яйцеводы у самок). Эпителий воздухоносных путей развивается из энтодермы, эпителий органов воспроизводства из мезодермы. Однослойный многорядный эпителий состоит из четырех видов клеток: длинных реснитчатых (мерцательных), коротких (базальных), вставочных и бокаловидных. Свободной поверхности достигают только реснитчатые (мерцательные) и бокаловидные клетки, а базальные и вставочные не доходят до верхнего края, хотя вместе с другими они лежат на базальной мембране. Вставочные клетки в процессе роста дифференцируются и становятся реснитчатыми (мерцательными) и бокаловидными. Ядра разных видов клеток лежат на разной высоте, в виде нескольких рядов, поэтому эпителий и называется многорядным (псевдомногослойным).

Бокаловидные клетки являются одноклеточными железами, выделяющими слизь, покрывающую эпителий. Это способствует прилипанию вредных частиц, микроорганизмов, вирусов, попавших вместе с вдыхаемым воздухом.

Мерцательные (реснитчатые) клетки на своей поверхности имеют до 300 ресничек (тонких выростов цитоплазмы с микротрубочками внутри). Реснички находятся в постоянном движении, благодаря чему вместе со слизью удаляются из дыхательных пктей попавшие с воздухом пылинки. В половых органах мерцание ресничек способствует продвижению половых клеток. Следовательно, мерцательный эпителий, кроме разграничительной функции, выполняет транспортную и защитную функции.

II. Многослойные эпителии

1. Многослойный неороговевающий эпителий покрывает поверхность роговицы глаза, ротовую полость, пищевод, влагалище, каудальную часть прямой кишки. Происходит этот эпителий из эктодермы. В нем различают 3 слоя: базальный, шиповатый и плоский (поверхностный). Клетки базального слоя цилиндрической формы. Овальные ядра расположены в базальном полюсе клетки. Базальные клетки делятся митотическим путем, возмещая гибнущие клетки поверхностного слоя. Таким образом, эти клетки являются камбиальными. С помощью полудесмосом базальные клетки прикрепляются к базальной мембране.

Клетки базального слоя делятся и, выдвигаясь вверх, теряют связь с базальной мембраной, дифференцируются и входят в состав шиповатого слоя. Шиповатый слой образован несколькими слоями клеток неправильной многоугольной формы с небольшими отростками в виде шипов, которые с помощью десмосом прочно соединяют клетки друг с другом. Через щели между клетками циркулирует тканевая жидкость с питательными веществами. В цитоплазме шиповатых клеток хорошо развиты тонкие нити-тонофибриллы. В каждую тонофибриллу входят более тонкие нити-микрофибриллы. Они построены из белка кератина. Тонофибриллы, прикрепляясь к десмосомам, выполняют опорную функцию.

Клетки этого слоя не потеряли митотической активности, но их деление протекает менее интенсивно, чем клеток базального слоя. Верхние клетки шиповатого слоя постепенно уплощаются и перемещаются в поверхностный плоский слой толщиной в 2-3 ряда клеток. Клетки плоского слоя как бы распластываются по поверхности эпителия. Ядра их тоже становятся плоскими. Клетки утрачивают способность к митозу, приобретают форму пластинок, затем чешуек. Связи между ними ослабевают и они отпадают с поверхности эпителия.

2. Многослойный плоский ороговевающий эпителий развивается из эктодермы и образует эпидермис, покрывающий поверхность кожного покрова.

В эпителии безволосых участков кожи имеется 5 слоев: базальный, шиповатый, зернистый, блестящий и роговой.

В коже с волосами хорошо развиты только три слоя - базальный шиповатый и роговой.

Базальный слой состоит из одного ряда призматических клеток, большинство из которых называют кератиноцитами . Имеются и другие клетки - меланоциты и беспигментные клетки Лангерганса, являющиеся макрофагами кожи. Кератиноциты участвуют в синтезе волокнистых белков (кератинов), полисахаридов, липидов. В клетках содержатся тонофибриллы и зерна пигмента меланина, поступившие из меланоцитов. Кератиноциты обладают высокой митотической активностью. После митоза часть дочерних клеток перемещается в расположенный выше шиповатый слой, другие остаются в запасе в базальном слое.

Основное значение кератиноцитов - образование плотного, защитного, неживого рогового вещества кератина.

Меланоциты стросчатой формы. Их клеточные тела расположены в базальном слое, а отростки могут достигать других слоев эпителиального пласта.

Основная функция меланоцитов - образование меланосом , содержащих кожный пигмент - меланин. Меланосомы по отросткам меланоцита поступают в соседние клетки эпителия. Кожный пигмент предохраняет организм от чрезмерного ультрафиолетового облучения. В синтезе меланина принимают участие: рибосомы, гранулярная эндоплазматическая сеть, аппарат Гольджи.

Меланин в виде плотных гранул расположен в меланосоме между белковыми мембранами, которые покрывают меланосомы и снаружи. Таким образом меланосомы по химическому составу являются меланопродеидами. Клетки шиповатого слоя многогранны, имеют неровные границы из-за цитоплазматических выростов (шипиков), с помощью которых они связаны друг с другом. Шиповатый слой имеет ширину в 4-8 слоев клеток. В этих клетках формируются тонофибриллы, которые заканчиваются в десмосомах и прочно соединяют клетки друг с другом, образуя опорно-защитный каркас. Шиповатые клетки сохраняют способность к размножению, из-за чего базальный и шиповатый слой вместе называются ростковым.

Зернистый слой состоит из 2-4 рядов клеток плоской формы с уменьшенным количеством органелл. Тонофибриллы пропитаны кератогеалиновым веществом и превратились в зерна. Кератиноциты зернистого слоя являются предшественниками следующего слоя - блестящего .

Блестящий слой состоит из 1-2 рядов отмирающих клеток. При этом кератогеалиновые зерна сливаются. Органеллы деградируют, ядра распадаются. Кератогеалин превращается в элеидин, сильно преломляющий свет, что дало название слою.

Самый поверхностный роговой слой состоит из роговых чешуек, расположенных многими рядами. Чешуйки заполнены роговым веществом кератином. На коже, покрытой волосами, роговой слой тонкий (2-3 ряда клеток).

Итак, кератиноциты поверхностного слоя превращаются в плотное неживое вещество - кератин (keratos - рог). Он защищает нижележащие живые клетки от сильных механических воздействий и высыхания.

Роговой слой выполняет функцию первичного защитного барьера, непроницаемого для микроорганизмов. Специализация клетки выражается в ее ороговении и превращении в роговую чешуйку, содержащую химически устойчивые белки и липиды. Роговой слой обладает плохой теплопроводностью и препятствует проникновению воды из вне и потерю ее организмом. В процессе гистогенеза из клеток эпидермиса формируются потово - волосяные фолликулы, потовые, сальные и молочные железы железы.

Переходный эпителий - происходит из мезодермы. Он выстилает внутренние поверхности почечных лоханок, мочеточников, мочевого пузыря и мочеиспускательного канала, т. е. органов, подверженных значительному растяжению при наполнении мочой. Переходный эпителий состоит из 3-х слоев: базального, промежуточного и поверхностного .

Клетки базального слоя - мелкие кубические, обладают высокой митотической активностью и выполняют функцию камбиальных клеток.

Этот эпителий покрывает роговицу глаза, выстилает полости рта, вентральную поверхность языка, пищевод, слизистую оболочку влагалища. В нем различают 5-20 слоев эпителиальных клеток, в котором клетки сходной формы объединены в три основных слоя: базальный , лежащий на базальной мембране и образованный слоем призматических эпителиоцитов, способных к митотическому делению; шиповатый , состоящий из слоев клеток полигональной формы; плоский , поверхностный, представленный 2-3 слоями клеток.

В базальном и шиповатом слое в эпителиоцитах хорошо развиты тонофибриллы, а между клетками – десмосомы и другие виды контактов

Плоские клетки отмирают и отпадают с поверхности эпителия, замещаясь за счет нижележащих слоев.

Многослойный плоский ороговевающий эпителий образует эпидермис кожи.

Наиболее сложной организации многослойный кожный эпителий достигает у представителей высших классов позвоночных (млекопитающих, птиц, рептилий). Этот эпителий представляет собой тканевую систему с закономерным направлением специализации клеток.

Процесс цитодифференцировки связан с накоплением клетками специфических белков – кератинов и преобразованием их в сложные надмолекулярные структуры.

Весь процесс морфобиохимических процессов получил название кератинизации.

В эпидермисе кожи человека различают несколько слоев клеток – базальный, шиповатый, зернистый, блестящий и роговой. Последние три слоя особенно сильно выражены в коде ладоней и подошв.

Большую часть клеток эпидермиса составляют кератиноциты, в цитоплазме которых синтезируется кератиновый белок, формирующий тонофиламенты.

Базальный или ростковый слой состоит из призматических клеток, здесь же находятся стволовые клетки дифферона кератиноцитов.

Шиповатый слой образован кератиноцитами многоугольной формы, прочно связанных между собой многочисленными десмосомами.

В цитоплазме шиповатых кератиноцитов тонофиламенты образуют пучки – тонофибриллы, появляются кератиносомы – гранулы, содержащие липиды. Путем экзоцитозы они выделяются в межклеточное пространство, цементирующее кератиноциты.

В базальном и шиповатом слоях имеются также меланоциты с гранулами пигмента меланина, внутриэпидермальные макрофаги (клетки Лангерганса), клетки Меркеля (осязательные), эндокринные (апудоцитые), влияющие на регенерацию эпидермиса.

Зернистый слой состоит из уплощенных кератиноцитов, в цитоплазме которых содержатся крупные базофильные гранулы, получившие название кератогиалиновых. Они содержат кератин, белок филаггрин, вещества, образующиеся при распаде органелл и ядер под действием гидролитических ферментов, а также специфический белок кератолинин, укрепляющий плазмолемму клеток.

Блестящий слой выявляется в эпидермисе ладоней и подошв. В плоских кератиноцитах этого слоя отсутствуют ядра и органеллы, кератогиалиновые гранулы сливаются, образуя кератиновые фибриллы, склеенные аморфным матриксом, содержащим филаггрин.

Роговой слой в разных участках кожи разной толщины. Он состоит из плоских многоугольной формы кератиноцитов – роговых чешуек.

Филаггрин в них распадается на аминокислоты, самые наружные роговые чешуйки утрачивают связь друг с другом и опадают с поверхности эпидермиса. Роговой слой устойчив к механическим и химическим воздействиям.

Полностью обновляется эпидермис через каждые 3-4 недели.

Важную роль в десквамации (отторжении) роговых чешуй принадлежит липолитическим ферментам в лизосомах клеток Лангерганса.

Процессы пролиферации и кератинизации в эпидермисе регулируются при участии нервной системы, эндокринных желез (надпочечников и др.), а также регуляторных веществ – кейлонов, простагландинов, эпителиального фактора роста.

Итак, в таблице 1 представлена локализация различных эпителиев.

ЭПИТЕЛИИ БЕСПОЗВОНОЧНЫХ И ПОЗВОНОЧНЫХ ЖИВОТНЫХ.

Филогенетически наиболее древние разновидности эпителиальных тканей – кожные и кишечные эпителии – развиваются из разных эмбриональных зачатков (экто- и энтодермы). Более позднего происхождения в эволюции являются целомические эпителии. Специализация части клеток кожных и кишечных эпителиев в направлении способности к выделению специфических секреторных продуктов привела к обособлению железистых эпителиев (одноклеточные и многоклеточные железы).

В кожном эпителии немертин, моллюсков, низших позвоночных секрет слизистых бокаловидных одноклеточных желез играет вспомогательную роль в осуществлении барьерной функции этого эпителия.

У многих высших первичноротых животных широкое распространение имеют малоклеточные железы, состоящие из основных секреторных клеток и клеток, выстилающих выводной проток железы (например, клетки слюнных желез двукрылых насекомых с политенными хромосомами или туловищная железа приапулид).

У беспозвоночных животных имеются клетки, способные вырабатывать специальные вещества: хиноны (жуков, термитов), фенолы (у губоногих, жуков), альдегиды (клопов), карбоновые кислоты (скорпионы, пауки, муравьи) и т.д.

Многоклеточные железы хорошо развиты у высших позвоночных и, в частности, у млекопитающих (молочные, сальные, слюнные и др. железы).

Эпителиальные эндокринные железы беспозвоночных по своему биологическому значению аналогичны железам внутренней секреции позвоночных.

Однако, хотя у низших многоклеточных нет специальных эндокринных желез, все же гуморальная функция у них обеспечивается нейроэндокринной системой, состоящей из диффузно расположенных железистых клеток. С повышением уровня организации животных формируются специальные эндокринные железы, причем независимо у трех групп животных: головоногих моллюсков, высших членистоногих и позвоночных. Наибольшего уровня дифференцировки эндокринные железы достигают у высших позвоночных (гипофиз, эпифиз, щитовидная железа, надпочечники и др.) и у насекомых (экдизальные железы, прилежащие тела и др.).

Кишечные эпителии – это наиболее древние тканевые системы многоклеточных организмов.

У разных животных три основных типа специализированных клеток кишечного эпителия (всасывающие пищеварительные и секреторные) имеют общие признаки морфобиохимической дифференцировки. Наряду с этим разным группам животных характерны особенности строения и дифференцировки кишечных клеток. Например, у насекомых сочетаются у одних и тех же клеток и секреторная и всасывающая функции, что не свойственно всасывающим клеткам высших позвоночных.

Кишечный эпителий и его производные у многих групп животных обеспечивает также и хранение запасных питательных веществ (гликогена, жировых включений). Эта функция лучше всего развита у позвоночных в виде специального органа – печени.

Кожные эпителии возникли на начальных этапах эволюции многоклеточных организмов. Основной функцией этой ткани была пограничная функция, сочетающаяся с поглощением кислорода и питательных веществ из окружающей среды, выделением вредных продуктов, восприятием раздражения.

Среди кожных эпителиев выделяют три разновидности:

а) погруженные, однослойные и многорядные эпителии;

б) однослойные кутикулярные эпителии;

в) многослойные неороговевающие и ороговевающие эпителии.

Погруженные эпителии характерны для низших многоклеточных животных.

Эпителиальная ткань или эпителий образуют внешние и внутренние покровы организма, а также большинство желез.

Функции эпителиальной ткани

  • защитная (барьерная);
  • секреторная (секретирует ряд веществ);
  • экскреторная (выделяет ряд веществ);
  • всасывательная (эпителий желудочно-кишечного тракта, полости рта).

Структурно-функциональные особенности эпителиальных тканей

  • эпителиальные клетки всегда располагаются пластами;
  • эпителиальные клетки всегда располагаются на базальной мембране;
  • эпителиальные ткани не содержат кровеносных и лимфатических сосудов, исключение, сосудистая полоска внутреннего уха (кортиев орган);
  • эпителиальные клетки строго дифференцированы на апикальный и базальный полюс;
  • эпителиальные ткани имеют высокую регенераторную способность;
  • в эпителиальной ткани имеется преобладание клеток над межклеточным веществом или даже его отсутствие.

Структурные компоненты эпителиальной ткани

  1. Эпителиоциты - являются основными структурными элементами эпителиальных тканей. Располагаются в эпителиальных пластах вплотную и связаны между собой различными типами межклеточных контактов:
  • простыми;
  • десмосомами;
  • плотными;
  • щелевидными (нексусами).

К базальной мембране клетки прикрепляются посредством полудесмосом. В различных эпителиях, а часто и в одном типе эпителия, содержатся разные типы клеток (несколько клеточных популяций). В большинстве эпителиальных клеток ядро локализуется базально, а в апикальной части присутствует секрет, который вырабатывает клетка, в середине расположены все остальные органеллы клетки. Подобная характеристика каждого типа клеток будет дана при описании конкретного эпителия.

  1. Базальная мембрана - толщина около 1 мкм, состоит из:
  • тонких коллагеновых фибрилл (из белка коллагена 4 типа);
  • аморфного вещества (матрикса), состоящего из углеводно-белково-липидного комплекса.

Классификация эпителиальных тканей

  • покровные эпителии - образующие внешние и внутренние покровы;
  • железистые эпителии - составляющие большинство желез организма.

Морфологическая классификация покровных эпителиев:

  • однослойный плоский эпителий (эндотелий - выстилает все сосуды; мезотелий - выстилает естественные полости человека: плевральную, брюшную, перикардиальную);
  • однослойный кубический эпителий - эпителий почечных канальцев;
  • однослойный однорядный цилиндрический эпителий - ядра располагаются на одном уровне;
  • однослойный многорядный цилиндрический эпителий - ядра располагаются на разных уровнях (легочный эпителий);
  • многослойный плоский ороговевающий эпителий - кожа;
  • многослойный плоский неороговевающий эпителий - полость рта, пищевод, влагалище;
  • переходный эпителий - форма клеток этого эпителия зависит от функционального состояния органа, например, мочевой пузырь.

Генетическая классификация эпителиев (по Н. Г. Хлопину):

  • эпидермальный тип, развивается из эктодермы - многослойный и многорядный эпителий, выполняет защитную функцию;
  • энтеродермальный тип, развивается из энтодермы - однослойный цилиндрический эпителий, осуществляет процесс всасывания веществ;
  • целонефродермальный тип - развивается из мезодермы - однослойный плоский эпителий, выполняет барьерную и экскреторную функции;
  • эпендимоглиальный тип, развивается из нейроэктодермы, выстилает полости головного и спинного мозга;
  • ангиодермальный тип - эндотелий сосудов, развивается из мезенхимы.

Железистый эпителий

образует подавляющее большинство желез организма. Состоит из:

  • железистых клеток - гландулоцитов;
  • базальной мембраны.

Классификация желез:

  1. По количеству клеток:
  • одноклеточные (бокаловидная железа);
  • многоклеточные - подавляющее большинство желез.
  1. По способу выведения секрета из железы и по строению :
  • экзокринные железы - имеют выводной проток;
  • эндокринные железы - не имеют выводного протока и выделяют инкреты (гормоны) в кровь и лимфу.

Экзокринные железы состоят из концевых или секреторных отделов и выводных протоков. Концевые отделы могут иметь форму альвеолы или трубочки. Если в выводной проток открывается один концевой отдел - железа простая неразветвленная (альвеолярная или трубчатая). Если в выводной проток открываются несколько концевых отделов - железа простая разветвленная (альвеолярная, трубчатая или альвеолярно-трубчатая). Если главный выводной проток разветвляется - железа сложная , она же разветвленная (альвеолярная, трубчатая или альвеолярно-трубчатая).

Фазы секреторного цикла железистых клеток:

  • поглощение исходных продуктов секретообразования;
  • синтез и накопление секрета;
  • выделение секрета (по мерокриновому или апокриновому типу);
  • восстановление железистой клетки.

Примечание: клетки секретирующие по голокриновому типу (сальных желез) полностью разрушаются, а из камбиальных (ростковых) клеток образуются новые железистые сальные клетки.

Эпителиальные ткани, или эпителии (от греч. epi – над и thele – сосок) – пограничные ткани, покрывающие поверхность тела и выстилаютщие его полости, слизистые оболочки внутренних органов. Также эпителии образуют железы (железистый эпителий) и рецепторные клетки в органах чувств (сенсорный эпителий).

1. Лекция: ЭПИТЕЛИАЛЬНЫЕ ТКАНИ. ПОКРОВНЫЕ ЭПИТЕЛИИ 1.

2. Лекция: ЭПИТЕЛИАЛЬНЫЕ ТКАНИ. ПОКРОВНЫЕ ЭПИТЕЛИИ 2.

3. Лекция: ЭПИТЕЛИАЛЬНЫЕ ТКАНИ. ЖЕЛЕЗИСТЫЕ ЭПИТЕЛИИ

Виды эпителиальной ткани: 1. Покровные эпителии, 2. Железистые эпителии (образуют железы) и можно выделить 3) Сенсорный эпителий.

Общие морфологические признаки эпителия как ткани:

1) Эпителиоциты располагаются плотно друг к другу, образуя пласты клеток;

2) Для эпителиев характерно наличие базальной мембраны – особого неклеточного образования, которое создает основу для эпителия, обеспечивает барьерную и трофическую функции;

3) Практически отсутствует межклеточного вещества;

4) Между клетками находятся межклеточные контакты;

5) Для эпителиоцитов характерна полярность – наличие функционально неравнозначных поверхностей клеток: апикальная поверхность (полюс), базальная (обращенная к базальной мембране) и латеральная поверхности.

6) Вертикальная анизоморфность – неодинаковые морфологические свойства клеток различных слоев эпителиального пласта в многослойных эпителиях. Горизонтальная анизоморфность – неодинаковые морфологические свойства клеток в однослойных эпителиях.

7) В эпителии отсутствуют сосуды; питание осуществляется путем диффузии веществ через базальную мембрану из сосудов соединительной ткани;

8) Для большинства эпителиев характерна высокая способность к регенерации – физиологической и репаративной, которая осуществляется благодаря камбиальным клеткам.

Поверхности эпителиоцита (базальная, латеральная, апикальная) обладают отчетливой структурно-функциональной специализацией, которая особенно хорошо выявляется в однослойном эпителии, в том числе в железистом эпителии.

Латеральная поверхность эпителиоцитов обеспечивает взаимодействие клеток за счет межклеточных соединений, которые обуславливают механическую связь эпителиоцитов друг с другом – это плотные контакты, десмосомы, интердигитации, а щелевидные контакты обеспечивают обмен химическими веществами (метаболическая, ионная и электрическая связь).

Базальная поверхность эпителиоцитов прилежит к базальной мембране, с которой соединяется с помощью полудесмосом. Базальная и латеральная поверхности плазмолеммы эпителиоцита в совокупности образует единый комплекс, мембранные белки которого являются: а) рецепторами, воспринимающими различные сигнальные молекулы, б) переносчиками питательных веществ, поступающих из сосудов подлежащей соединительной ткани, в) ионными насосами и др.

Базальная мембрана (БМ) связывает эпителиальные клетки и подлежащую рыхлую волокнистую соединительную ткань. На светооптическом уровне на гистологических препаратах БМ имеет вид тонкой полоски, плохо окрашивается гематоксилином и эозином. На ультраструктурном уровне в базальной мембране выделяют три слоя (в направлении от эпителия): 1) светлая пластинка, которая соединяется с полудесмосомами эпителиоцитов, содержит гликопротеины (ламинин) и протеогликаны (гепарансульфат), 2) плотная пластинка содержит коллаген IV, V, VII типов, имеет фибриллярную структуру. Тонкие якорные филаменты пересекают светлую и плотную пластинки, переходя в 3) ретикулярную пластинку, где якорные филаменты связываются с коллагеновыми (коллаген I и II типов) фибриллами соединительной ткани.

В физиологических условиях БМ препятствует росту эпителия в сторону соединительной ткани, что нарушается при злокачественном росте, когда раковые клетки прорастают сквозь базальную мембрану в подлежащую соединительную ткань (инвазивный рост опухоли).

Апикальная поверхность эпителиоцитов может быть относительно гладкой или образует выпячивания. У некоторых эпителиоцитов на ней имеются специальные органеллы – микроворсинки или реснички. Микроворсинки максимально развиты в эпителиоцитах, участвующих в процессах всасывания (например, в тонкой кишке или канальцах проксимального отдела нефрона), где их совокупность называется щеточной (исчерченной) каемкой.

Микрореснички – подвижные структуры, содержащие внутри комплексы микротрубочек.

Источники развития эпителиев . Эпителиальные ткани развиваются из трех зародышевых листков, начиная с 3 – 4 недели эмбрионального развития человека. В зависимости от эмбрионального источника различают эпителий эктодермального, мезодермального и энтодермального происхождения.

Морфофункциональная классификация эпителиальной ткани

I. Покровные эпителии

1. Однослойные эпителии – все клетки лежат на базальной мембране:

1.1. Однорядные эпителии (ядра клеток на одном уровне): плоские, кубические, призматические;

1.2. Многорядный эпителий (ядра клеток на разных уровнях вследствие горизонтальной анизоморфности): призматический реснитчатый;

2. Многослойные эпителии – только нижний слой клеток связан с базальной мембраной, вышележащие слои располагаются на нижележащих слоях:

2.1. Плоские – ороговевающие, неороговевающие

3. Переходный эпителий – занимает промежуточное положение между однослойным многорядным и многослойным эпителием

II. Железистые эпителии:

1. С экзокринной секрецией

2. С эндокринной секрецией

ОДНОСЛОЙНЫЕ ЭПИТЕЛИИ

Однослойный однорядный плоский эпителий образован уплощенными клетками полигональной формы. Примеры локализации: мезотелий, покрывающий легкое (висцеральная плевра); эпителий, выстилающий изнутри грудную полость (париетальная плевра), а также париетальный и висцеральный листки брюшины, околосердечная сумка. Этот эпителий позволяет органам соприкасаться друг и с другом в полостях.

Однослойный однорядный кубический эпителий образован клетками, содержащими ядро сферической формы. Примеры локализации: фолликулы щитовидной железы, мелкие протоки поджелудочной железы и желчные протоки, почечные канальцы.

Однослойный однорядный призматический (цилиндрический) эпителий образован клетками с резко выраженной полярностью. Ядро эллипсовидной формы лежит вдоль длинной оси клетки и смещено к их базальной части, органеллы неравномерно распределены по цитоплазме. На апикальной поверхности находятся микроворсинки, щеточная каемка. Примеры локализации: выстилка внутренней поверхности тонкой и толстой кишки, желудка, желчного пузыря, ряда крупных протоков поджелудочной железы и желчных протоков печени. Для этого вида эпителия характерны функции секреции и (или) всасывания.

Однослойный многорядный реснитчатый (мерцательный) эпителий воздухоносных путей образован клетками нескольких типов: 1) низкие вставочные (базальные), 2) высокие вставочные (промежуточные), 3) реснитчатые (мерцательные), 4) бокаловидные. Низкие вставочные клетки являются камбиальными, своим широким основанием они прилежат к базальной мембране, а узкой апикальной частью не доходят до просвета. Бокаловидные клетки вырабатывают слизь, которая покрывает поверхность эпителия, перемещаясь по поверхности благодаря биению ресничек мерцательных клеток. Апикальные части этих клеток граничат с просветом органа.

МНОГОСЛОЙНЫЕ ЭПИТЕЛИИ

Многослойный плоский ороговевающий эпителий (МПОЭ)образует наружный слой кожи — эпидермис, и покрывает некоторые участки слизистой оболочки ротовой полости. МПОЭ состоит из пяти слоев: базальный, шиповатый, зернистый, блестящий (присутствует не везде) и роговой слои.

Базальный слой образован клетками кубической или призматической формы, лежащими на базальной мембране. Клетки делятся митозом – это камбиальный слой, из которого образуются все вышележащие слои.

Шиповатый слой образован крупными клетками неправильной формы. В глубоких слоях могут встречаться делящиеся клетки. В базальном и шиповатом слоях хорошо развиты тонофибриллы (пучки тонофиламентов), а между клетками десмосомальные, плотные, щелевидные контакты.

Зернистый слой состоит из уплощенных клеток – кератиноцитов, в цитоплазме которых содержатся зерна кератогиалина – фибриллярного белка, который в процессе ороговения превращается в элеидин и кератин.

Блестящий слой выражен только в эпителии толстой кожи, покрывающей ладони и подошвы. Блестящий слой — это зона перехода от живых клеток зернистого слоя к чешуйкам рогового слоя. На гистологических препаратах он имеет вид узкой оксифильной гомогенной полоски и состоит из уплощенных клеток.

Роговой слой состоит из роговых чешуек – постклеточных структурах. Процессы ороговения начинаются в шиповатом слое. Роговой слой имеет максимальную толщину в эпидермисе кожи ладоней и подошв. Сущность кератинизации – обеспечение защитной функции кожного покрова от внешних воздействий.

Дифферон кератиноцита включает в себя клетки всех слоев этого эпителия: базального, шиповатого, зернистого, блестящего, рогового. Кроме кератиноцитов в многослойном ороговевающем эпителии присутствуют в небольшом количестве меланоциты, макрофаги (клетки Лангерганса) и клетки Меркеля (см. тему «Кожа»).

В эпидермисе преобладают кератиноциты, организованные по колонковому принципу: клетки на разных стадиях дифференцировки располагаются друг над другом. В основании колонны – камбиальные малодифференцированные клетки базального слоя, верхушка колонки – роговой слой. Колонка кератиноцитов включает в себя клетки дифферона кератиноцитов. Колонковый принцип организации эпидермиса играет роль в регенерации ткани.

Многослойный плоский неороговевающий эпителий покрывает поверхность роговицы глаза, слизистой оболочки полости рта, пищевода, влагалища. Он образован тремя слоями: базальным, шиповатым и поверхностным. Базальный слой аналогичен по строению и функции соответствующему слою ороговевающего эпителия. Шиповатый слой образован крупными полигональными клетками, которые по мере приближения к поверхностному слою уплощаются. Их цитоплазма заполняется многочисленными тонофиламентами, которые располагаются диффузно. Поверхностный слой состоит из полигональных плоских клеток. Ядро с плохо различимыми гранулами хроматина (пикнотическое). При десквамации клетки этого слоя постоянно удаляются с поверхности эпителия.

Благодаря доступности и легкости получения материала многослойный плоский эпителий слизистой оболочки полости рта является удобным объектом для цитологических исследований. Клетки получают методом соскоба, мазка или отпечатка. Далее переносят на предметное стекло и готовят постоянный или временный цитологический препарат. Наибольшее распространение получило диагностическое цитологическое исследование этого эпителия с целью выявления генетического пола индивидуума; нарушения нормального течения процесса дифференцировки эпителия при развитии воспалительных, предопухолевых или опухолевых процессов ротовой полости.

3. Переходный эпителий – особый вид многослойного эпителия, который выстилает большую часть мочевыводящих путей. Он образован тремя слоями: базальным, промежуточным и поверхностным. Базальный слой образован мелкими клетками, имеющими на срезе треугольную форму и своим широким основанием прилежат к базальной мембране. Промежуточный слой состоит из удлиненных клеток, более узкой частью прилежащих к базальной мембране. Поверхностный слой образован крупными одноядерными полиплоидными или двуядерными клетками, которые в наибольшей степени изменяют свою форму при растяжении эпителия (от округлой до плоской). Этому способствует формирование в апикальной части цитоплазмы этих клеток в состоянии покоя многочисленных инвагинаций плазмолеммы и особых дисковидных пузырьков – резервов плазмолеммы, которые встраиваются в нее по мере растяжения органа и клеток.

Регенерация покровных эпителиев . Покровный эпителий, занимая пограничное положение, постоянно испытывает влияние внешней среды, поэтому эпителиальные клетки быстро изнашиваются и погибают. В однослойном эпителии большинство клеток способны к делению, а в многослойном такой способностью обладают только клетки базального и частично шиповатого слоев. Покровные эпителии характеризуются высокой степенью способности к регенерации, а также в связи с этим до 90% всех опухолей в организме развивается из этой ткани.

Гистогенетическая классификация покровных эпителиев (по Н.Г. Хлопину): выделяют 5 основных типов эпителия, развивающихся в эмбриогенезе из различных тканевых зачатков:

1) Эпидермальный – образуется из эктодермы, имеет многослойное или многорядное строение, выполняет барьерную и защитную функции. Например – эпителий кожи.

2) Энтеродермальный – развивается из кишечной энтодермы, является по строению однослойным цилиндрическим, осуществляет процессы всасывания веществ. Например, эпителий кишечника.

3) Целонефродермальный – имеет мезодермальное происхождение (целомическая выстилка, нефротом), по строению он однослойный, плоский или призматический, выполняет главным образом барьерную или экскреторную функцию. Например, эпителий почек.

4) Ангиодермальный – включает в себя эндотелиальные клетки, имеющие мезенхимное происхождение (ангиобласт).

5) Эпендимоглиальный тип представлен специальным видом ткани нейрального происхождения (нервная трубка), выстилающим полости мозга и имеющий строение сходное с эпителием. Например, эпендимные глиоциты.

ЖЕЛЕЗИСТЫЕ ЭПИТЕЛИИ

Железистые эпителиальные клетки могут располагаться поодиночке, но чаще формируют железы. Клетки железистого эпителия — гландулоциты или железистые клетки, процесс секреции в них протекает циклически, называется секреторным циклом и включает в себя пять стадий:

1. Фаза поглощения исходных веществ (из крови или межклеточной жидкости), из которых образуются конечный продукт (секрет);

2. Фаза синтеза секрета связана с процессами транскрипции и трансляции, деятельностью грЭПС и агрЭПС, комплекса Гольджи.

3. Фаза созревания секрета происходит в аппарате Гольджи: происходит дегидратация и присоединение дополнительных молекул.

4. Фаза накопления синтезируемого продукта в цитоплазме железистых клеток обычно проявляется нарастанием содержания секреторных гранул, которые могут заключаться в мембраны.

5. Фаза выведения секрета может осуществляться несколькими путями: 1) без нарушения целостности клетки (мерокриновый тип секреции), 2) с разрушением апикальной части цитоплазмы (апокриновый тип секреции), с полным нарушением целостности клетки (голокриновый тип секреции).

Железы делятся на две группы: 1) железы внутренней секреции, или эндокринные, которые продуцируют гормоны – вещества, обладающие высокой биологической активностью. Выводные протоки отсутствуют, секрет поступает через капилляры в кровь;

и 2) железы внешней секреции, или экзокринные, секрет в которых выделяется во внешнюю среду. Экзокринные железы состоят из концевых (секреторных отделов) и выводных протоков.

Строение экзокринных желёз

Концевые (секреторные) отделы состоят из железистых клеток (гландулоцитов), которые продуцируют секрет. Клетки расположены на базальной мембране, для них характерна выраженная полярность: плазмолемма имеет различное строение на апикальных (микроворсинки), базальных (взаимодействие с базальной мембраной) и латеральных (межклеточные контакты) поверхностях клеток. В апикальной части клеток присутствуют секреторные гранулы. В клетках, которые вырабатывают секреты белкового характера (например: пищеварительные ферменты), хорошо развита грЭПС. В клетках, синтезируемых небелковые секреты (липиды, стероиды), выражена аЭПС.

В некоторых железах, образованных эпителиями эпидермального типа (например, потовых, молочных, слюнных), концевые отделы помимо железистых клеток содержат миоэпителиальные клетки – видоизмененные эпителиоциты с развитым сократительным аппаратом. Миоэпителиальные клетки своими отростками охватывают снаружи железистые клетки и, сокращаясь, способствуют выделению секрета из клеток концевого отдела.

Выводные протоки связывают секреторные отделы с покровными эпителиями и обеспечивают выделение синтезированных веществ на поверхность тела или в полость органов.

Разделение на концевые отделы и выводные протоки затруднено в некоторых железах (например, желудка, матки), так как все участки этих простых желез способны к секреции.

Классификация экзокринных желез

I. Морфологическая классификация экзокринных желез основана на структурном анализе их концевых отделов и выводных протоков.

В зависимости от формы секреторного (концевого) отдела различают альвеолярные, трубчатые и смешанные (альвеолярно-трубчатые) железы;

В зависимости от ветвления секреторного отдела различают разветвленные и неразветвленные железы.

Ветвление выводных протоков определяет деление желез на простые (проток не ветвится) и сложные (проток ветвится).

II. По химическому составу вырабатываемого секрета различают серозные (белковые), слизистые, смешанные (белково-слизистые), липидные и др. железы.

III. По механизму (способу) выведения секрета экзокринные железы делят на апокриновые (молочная железа), голокриновые (сальная железа) и мерокриновые (большинство желез).

Примеры классификации желез. Классификационная характеристика сальной железы кожи: 1) простая альвеолярная железа с разветвленными концевыми отделами, 2) липидная – по химическому составу секрета, 3) голокриновая – по способу выведения секрета.

Характеристика лактирующей (вырабатывающей секрет) молочной железы : 1) сложная разветвленная альвеолярно-трубчатая железа, 2) со смешанным секретом, 3) апокриновая.

Регенерация желёз . Секреторные клетки мерокриновых и апокриновых желез относятся к стабильным (долгоживущим) популяциям клеток, в связи с чем для них характерна внутриклеточная регенерация. В голокриновых железах восстановление осуществляется за счет размножения камбиальных (стволовых) клеток, т.е. характерна клеточная регенерация: вновь образовавшиеся клетки дифференцируются в зрелые клетки.