Главная · Язва · Волна. Продольные и поперечные волны

Волна. Продольные и поперечные волны

В курсе физики 7 класса вы изучали механические колебания. Часто бывает так, что, возникнув в одном месте, колебания распространяются в соседние области пространства. Вспомните, например, распространение колебаний от брошенного в воду камешка или колебания земной коры, распространяющиеся от эпицентра землетрясения. В таких случаях говорят о волновом движении — волнах (рис. 17.1). Из этого параграфа вы узнаете об особенностях волнового движения.

Создаем механические волны

Возьмем довольно длинную веревку, один конец которой прикрепим к вертикальной поверхности, а второй будем двигать вниз-вверх (колебать). Колебания от руки распространятся по веревке, постепенно вовлекая в колебательное движение все более удаленные точки, — по веревке побежит механическая волна (рис. 17.2).

Механической волной называют распространение колебаний в упругой среде*.

Теперь закрепим горизонтально длинную мягкую пружину и нанесем по ее свободному концу серию последовательных ударов — в пружине побежит волна, состоящая из сгущений и разрежений витков пружины (рис. 17.3).

Описанные выше волны можно увидеть, однако большинство механических волн невидимы, например звуковые волны (рис. 17.4).

На первый взгляд, все механические волны абсолютно разные, но причины их возникновения и распространения одинаковы.

Выясняем, как и почему в среде распространяется механическая волна

Любая механическая волна создается колеблющимся телом — источником волны. Осуществляя колебательное движение, источник волны деформирует ближайшие к нему слои среды (сжимает и растягивает их либо смещает). В результате возникают силы упругости, которые действуют на соседние слои среды и заставляют их осуществлять вынужденные колебания. Эти слои, в свою очередь, деформируют следующие слои и заставляют их колебаться. Постепенно, один за другим, все слои среды вовлекаются в колебательное движение — в среде распространяется механическая волна.

Рис. 17.6. В продольной волне слои среды колеблются вдоль направления распространения волны

Различаем поперечные и продольные механические волны

Сравним распространение волны вдоль веревки (см. рис. 17.2) и в пружине (см. рис. 17.3).

Отдельные части веревки движутся (колеблются) перпендикулярно направлению распространения волны (на рис. 17.2 волна распространяется справа налево, а части веревки движутся вниз-вверх). Такие волны называют поперечными (рис. 17.5). При распространении поперечных волн происходит смещение одних слоев среды относительно других. Деформация смещения сопровождается возникновением сил упругости только в твердых телах, поэтому поперечные волны не могут распространяться в жидкостях и газах. Итак, поперечные волны распространяются только в твердых телах.

При распространении волны в пружине витки пружины движутся (колеблются) вдоль направления распространения волны. Такие волны называют продольными (рис. 17.6). Когда распространяется продольная волна, в среде происходят деформации сжатия и растяжения (вдоль направления распространения волны плотность среды то увеличивается, то уменьшается). Такие деформации в любой среде сопровождаются возникновением сил упругости. Поэтому продольные волны распространяются и в твердых телах, и в жидкостях, и в газах.

Волны на поверхности жидкости не являются ни продольными, ни поперечными. Они имеют сложный продольно-поперечный характер, при этом частицы жидкости движутся по эллипсам. В этом легко убедиться, если бросить в море легкую щепку и понаблюдать за ее движением на поверхности воды.

Выясняем основные свойства волн

1. Колебательное движение от одной точки среды к другой передается не мгновенно, а с некоторым опозданием, поэтому волны распространяются в среде с конечной скоростью.

2. Источник механических волн — колеблющееся тело. При распространении волны колебания частей среды — вынужденные, поэтому частота колебаний каждой части среды равна частоте колебаний источника волны.

3. Механические волны не могут распространяться в вакууме.

4. Волновое движение не сопровождается переносом вещества — части среды всего лишь колеблются относительно положений равновесия.

5. С приходом волны части среды приходят в движение (приобретают кинетическую энергию). Это означает, что при распространении волны происходит перенос энергии.


Перенос энергии без переноса вещества — важнейшее свойство любой волны.

Вспомните распространение волн по поверхности воды (рис. 17.7). Какие наблюдения подтверждают основные свойства волнового движения?

Вспоминаем физические величины, характеризующие колебания

Волна — это распространение колебаний, поэтому физические величины, характеризующие колебания (частота, период, амплитуда), также характеризуют и волну. Итак, вспомним материал 7 класса:

Физические величины, характеризующие колебания

Частота колебаний ν

Период колебаний T

Амплитуда колебаний A

Определе

количество колебаний за единицу времени

время одного колебания

максимальное расстояние, на которое отклоняется точка от положения равновесия

Формула для определения

N — количество колебаний за интервал времени t

Единица в СИ

секунда (с)

Обратите внимание! При распространении механической волны все части среды, в которой распространяется волна, колеблются с одинаковой частотой (ν), которая равна частоте колебаний источника волны, поэтому период

колебаний (T) для всех точек среды тоже одинаков, ведь

А вот амплитуда колебаний постепенно уменьшается с отдалением от источника волны.

Выясняем длину и скорость распространения волны

Вспомните распространение волны вдоль веревки. Пусть конец веревки осуществил одно полное колебание, то есть время распространения волны равно одному периоду (t = T). За это время волна распространилась на некоторое расстояние λ (рис. 17.8, а). Это расстояние называют длиной волны.

Длина волны λ — расстояние, на которое распространяется волна за время, равное периоду T:

где v — скорость распространения волны. Единица длины волны в СИ — метр:

Нетрудно заметить, что точки веревки, расположенные друг от друга на расстоянии одной длины волны, колеблются синхронно — имеют одинаковую фазу колебаний (рис. 17.8, б, в). Например, точки A и B веревки одновременно движутся вверх, одновременно достигают гребня волны, затем одновременно начинают двигаться вниз и т. д.

Рис. 17.8. Длина волны равна расстоянию, на которое распространяется волна за время одного колебания (это также расстояние между двумя ближайшими гребнями или двумя ближайшими впадинами)

Воспользовавшись формулой λ = vT, можно определить скорость распространения

получим формулу взаимосвязи длины, частоты и скорости распространения волны — формулу волны:

Если волна переходит из одной среды в другую, скорость ее распространения изменяется, а частота остается неизменной, поскольку частота определяется источником волны. Таким образом, согласно формуле v = λν при переходе волны из одной среды в другую длина волны изменяется.

Формула волны

Учимся решать задачи

Задача. Поперечная волна распространяется вдоль шнура со скоростью 3 м/с. На рис. 1 показано положение шнура в некоторый момент времени и направление распространения волны. Считая, что сторона клетки равна 15 см, определите:

1) амплитуду, период, частоту и длину волны;


Анализ физической проблемы, решение

Волна поперечная, поэтому точки шнура колеблются перпендикулярно направлению распространения волны (смещаются вниз-вверх относительно некоторых положений равновесия).

1) Из рис. 1 видим, что максимальное отклонение от положения равновесия (амплитуда A волны) равно 2 клеткам. Значит, A = 2 15 см = 30см.

Расстояние между гребнем и впадиной — 60 см (4 клетки), соответственно расстояние между двумя ближайшими гребнями (длина волны) вдвое больше. Значит, λ = 2 · 60 см = 120 см = 1,2м.

Частоту ν и период T волны найдем, воспользовавшись формулой волны:

2) Чтобы выяснить направление движения точек шнура, выполним дополнительное построение. Пусть за небольшой интервал времени Δt волна сместилась на некоторое небольшое расстояние. Поскольку волна смещается вправо, а ее форма со временем не изменяется, точки шнура займут положение, показанное на рис. 2 пунктиром.

Волна поперечная, то есть точки шнура движутся перпендикулярно направлению распространения волны. Из рис. 2 видим, что точка K через интервал времени Δt окажется ниже своего начального положения, следовательно, скорость ее движения направлена вниз; точка В переместится выше, следовательно, скорость ее движения направлена вверх; точка С переместится ниже, следовательно, скорость ее движения направлена вниз.

Ответ: A = 30 см; T = 0,4 с; ν = 2,5 Гц; λ = 1,2 м; K и С — вниз, В — вверх.

Подводим итоги

Распространение колебаний в упругой среде называют механической волной. Механическую волну, в которой части среды колеблются перпендикулярно направлению распространения волны, называют поперечной; волну, в которой части среды колеблются вдоль направления распространения волны, называют продольной.

Волна распространяется в пространстве не мгновенно, а с некоторой скоростью. При распространении волны происходит перенос энергии без переноса вещества. Расстояние, на которое распространяется волна за время, равное периоду, называют длиной волны — это расстояние между двумя ближайшими точками, которые колеблются синхронно (имеют одинаковую фазу колебаний). Длина λ, частота ν и скорость v распространения волны связаны формулой волны: v = λν.

Контрольные вопросы

1. Дайте определение механической волны. 2. Опишите механизм образования и распространения механической волны. 3. Назовите основные свойства волнового движения. 4. Какие волны называют продольными? поперечными? В каких средах они распространяются? 5. Что такое длина волны? Как ее определяют? 6. Как связаны длина, частота и скорость распространения волны?

Упражнение № 17

1. Определите длину каждой волны на рис. 1.

2. В океане длина волны достигает 270 м, а ее период равен 13,5 с. Определите скорость распространения такой волны.

3. Совпадают ли скорость распространения волны и скорость движения точек среды, в которой распространяется волна?

4. Почему механическая волна не распространяется в вакууме?

5. В результате взрыва, произведенного геологами, в земной коре распространилась волна со скоростью 4,5 км/с. Отраженная от глубоких слоев Земли, волна была зафиксирована на поверхности Земли через 20 с после взрыва. На какой глубине залегает порода, плотность которой резко отличается от плотности земной коры?

6. На рис. 2 изображены две веревки, вдоль которых распространяется поперечная волна. На каждой веревке показано направление колебаний одной из ее точек. Определите направления распространения волн.

7. На рис. 3 изображено положение двух шнуров, вдоль которых распространяется волна, показано направление распространения каждой волны. Для каждого случая а и б определите: 1) амплитуду, период, длину волны; 2) направление, в котором в данный момент времени движутся точки А, В и С шнура; 3) количество колебаний, которые совершает любая точка шнура за 30 с. Считайте, что сторона клетки равна 20 см.

8. Человек, стоящий на берегу моря, определил, что расстояние между соседними гребнями волн равно 15 м. Кроме того, он подсчитал, что за 75 с до берега доходит 16 волновых гребней. Определите скорость распространения волн.

Это материал учебника

Волна – процесс распространения колебаний в упругой среде.

Механическая волна – механические возмущения, распространяющиеся в пространстве и несущие энергию.

Виды волн :

    продольные – частицы среды совершают колебания по направлению распространения волны – во всех упругих средах;

x

направление колебаний

точек среды

    поперечные – частицы среды совершают колебания перпендикулярно направлению распространения волны – на поверхности жидкости.

X

Виды механических волн:

    упругие волны – распространение упругих деформаций;

    волны на поверхности жидкости.

Характеристики волн:

Пусть А колеблется по закону:
.

Тогда В колеблется с запаздыванием на угол
, где
, т.е.

    Энергия волны.

- полная энергия одной частицы. Если частицN, то, где- эпсилон,V– объём.

Эпсилон – энергия в единице объёма волны – объёмная плотность энергии.

Поток энергии волн равен отношению энергии, переносимой волнами через некоторую поверхность, к времени, в течение которого этот перенос осуществлён:
, ватт; 1 ватт = 1Дж/с.

    Плотность потока энергии – интенсивность волны – поток энергии через единицу площади - величина, равная средней энергии, переносимой волной в единицу времени за единицу площади поперечного сечения.

[Вт/м 2 ]

.

Вектор Умова – векторI, показывающий направление распространения волн и равный потоку энергии волн, проходящему через единичную площадь, перпендикулярную этому направлению:

.

Физические характеристики волны :

    Колебательные:

    1. амплитуда

    Волновые:

    1. длина волны

      скорость волны

      интенсивность

Сложные колебания (релаксационные) – отличающиеся от синусоидальных.

Преобразование Фурье – любую сложную периодическую функцию можно представить суммой нескольких простых (гармонических) функций, периоды которых кратны периоду сложной функции – это гармонический анализ. Происходит в анализаторах. Итог – гармонический спектр сложного колебания:

А

0

Звук – колебания и волны, которые действуют на ухо человека и вызывают слуховое ощущение.

Звуковые колебания и волны – частный случай механических колебаний и волн. Виды звуков :

    Тоны – звук, являющийся периодическим процессом:

    1. простой – гармонический - камертон

      сложный – ангармонический – речь, музыка

Сложный тон может быть разложен на простые. Наименьшая частота такого разложения – основной тон, остальные гармоники (обертоны) – имеют частоты, равные 2и другие. Набор частот с указанием их относительной интенсивности – акустический спектр.

        Шум – звук со сложной неповторяющейся временной зависимостью (шорох, скрип, аплодисменты). Спектр – сплошной.

Физические характеристики звука :


Характеристики слухового ощущения :

    Высота – определяется частотой звуковой волны. Чем больше частота, тем выше тон. Звук большей интенсивности – более низкий.

    Тембр – определяется акустическим спектром. Чем больше тонов, тем богаче спектр.

    Громкость – характеризует уровень слухового ощущения. Зависит от интенсивности звука и частоты. Психофизическийзакон Вебера-Фехнера : если увеличивать раздражение в геометрической прогрессии (в одинаковое число раз), то ощущение этого раздражения возрастёт в арифметической прогрессии (на одинаковую величину).

, где Е – громкость (измеряется в фонах);
- уровень интенсивности (измеряется в белах). 1 бел – изменение уровня интенсивности, которое соответствует изменению интенсивности звука в 10 раз.K– коэффициент пропорциональности, зависит от частоты и интенсивности.

Зависимость между громкостью и интенсивностью звука – кривые равной громкости , построенные на экспериментальных данных (создают звук частотой 1 кГц, меняют интенсивность, пока не возникнет слуховое ощущение, аналогичное ощущению громкости исследуемого звука). Зная интенсивность и частоту можно найти фон.

Аудиометрия – метод измерения остроты слуха. Прибор – аудиометр. Полученная кривая – аудиограмма. Определяется и сравнивается порог слухового ощущения на разных частотах.

Шумометр – измерение уровня шума.

В клинике : аускультация – стетоскоп/фонендоскоп. Фонендоскоп – полая капсула с мембраной и резиновыми трубками.

Фонокардиография – графическая регистрация фонов и шумов сердца.

Перкуссия.

Ультразвук – механические колебания и волны с частотой выше 20кГц до 20 МГц. УЗ-излучатели – электромеханические излучатели, основанные на пьезоэлектрическом эффекте (переменный ток к электродам, между которыми - кварц).

Длина волны УЗ меньше длины волны звука: 1,4 м – звук в воде (1 кГц), 1,4 мм – ультразвук в воде (1 МГц). УЗ хорошо отражается на границе кость-надкостница – мышца. УЗ в тело человека не проникнет, если не смазать маслом (воздушный слой). Скорость распространения УЗ зависит от среды. Физические процессы: микровибрации, разрушение биомакромолекул, перестройка и повреждение биологических мембран, тепловое действие, разрушение клеток и микроорганизмов, кавитация. В клинике: диагностика (энцефалограф, кардиограф, УЗИ), физиотерапия (800 кГц), ультразвуковой скальпель, фармацевтическая промышленность, остеосинтез, стерилизация.

Инфразвук – волны с частотой меньше 20 Гц. Неблагоприятное действие – резонанс в организме.

Вибрации . Полезное и вредное действие. Массаж. Вибрационная болезнь.

Эффект Доплера – изменение частоты волн, воспринимаемых наблюдателем (приёмником волн), вследствие относительного движения источника волн и наблюдателя.

1 случай: Н приближается к И.

2 случай: И приближается к Н.

3 случай: приближение и отдаление И и Н друг от друга:

Система: генератор УЗ – приёмник – неподвижна относительно среды. Движется объект. Он принимает УЗ с частотой
, отражает её, посылая на приёмник, который получает УЗ волну с частотой
. Разница частот –доплеровский сдвиг частоты :
. Используется для определения скорости кровотока, скорости движения клапанов.

Для существования волны необходим источник колебания и материальная среда или поле, в которых эта волна распространяется. Волны бывают самой разнообразной природы, но они подчиняются аналогичным закономерностям.

По физической природе различают:

По ориентации возмущений различают:

Продольные волны -

Смещение частиц происходит вдоль направления распространения;

необходимо наличие в среде силы упругости при сжатии;

могут распространяться в любых средах.

Примеры: звуковые волны


Поперечные волны -

Смещение частиц происходит поперек направления распространения;

могут распростаняться только в упругих средах;

необходимо наличие в среде силы упругости при сдвиге;

могут распространяться только в твердых средах (и на границе двух сред).

Примеры: упругие волны в струне, волны на воде

По характеру зависимости от времени различают:

Упругие волны - механические возмещения (деформации), распространяющиеся в упругой среде. Упругая волна называется гармонической (синусоидальной), если соответствующие ей колебания среды являются гармоническими.

Бегущие волны - волны, переносящие энергию в пространстве.

По форме волновой поверхности : плоская, сферическая, цилиндрическая волна.

Волновой фронт - геометрическое место точек, до которых дошли колебания к данному моменту времени.

Волновая поверхность - геометрическое место точек, колеблющихся в одной фазе.

Характеристики волны

Длина волны λ - расстояние, на которое волна распространяется за время, равное периоду колебаний

Амплитуда волны А - амплитуда колебаний частиц в волне

Скорость волны v - скорость распространения возмущений в среде

Период волны Т - период колебаний

Частота волны ν - величина, обратная периоду

Уравнение бегущей волны

В процессе распространения бегущей волны возмущения среды доходят до следующих точек пространства, при этом волна переносит энергию и импульс, но не переносит вещество (частицы среды продолжают колебаться в том же месте пространства).

где v – скорость, φ 0 – начальная фаза, ω – циклическая частота, A – амплитуда

Свойства механических волн

1. Отражение волн механические волны любого происхождения обладают способностью отражаться от границы раздела двух сред. Если механическая волна, распространяющаяся в среде, встречает на своем пути какое-либо препятствие, то она может резко изменить характер своего поведения. Например, на границе раздела двух сред с разными механическими свойствами волна частично отражается, а частично проникает во вторую среду.

2. Преломление волн при распространении механических волн можно наблюдать и явление преломления: изменение направления распространения механических волн при переходе из одной среды в другую.

3. Дифракция волн отклонение волн от прямолинейного распространения, то есть огибание ими препятствий.

4. Интерференция волн сложение двух волн. В пространстве, где распространяются несколько волн, их интерференция приводит к возникновению областей с минимальным и максимальным значениями амплитуды колебаний

Интерференция и дифракция механических волн.

Волна, бегущая по резиновому жгуту или струне отражается от неподвижно закрепленного конца; при этом появляется волна, бегущая во встречном направлении.

При наложении волн может наблюдаться явление интерференции. Явление интерференции возникает при наложении когерентных волн.

Когерентными называют волны , имеющие одинаковые частоты, постоянную разность фаз, а колебания происходят в одной плоскости.

Интерференцией называется постоянное во времени явление взаимного усиления и ослабления колебаний в разных точках среды в результате наложения когерентных волн.

Результат суперпозиции волн зависит от того, в каких фазах накладываются друг на друга колебания.

Если волны от источников А и Б придут в точку С в одинаковых фазах, то произойдет усиление колебаний; если же – в противоположных фазах, то наблюдается ослабление колебаний. В результате в пространстве образуется устойчивая картина чередования областей усиленных и ослабленных колебаний.


Условия максимума и минимума

Если колебания точек А и Б совпадают по фазе и имеют равные амплитуды, то очевидно, что результирующее смещение в точке С зависит от разности хода двух волн.

Условия максимума


Если разность хода этих волн равна целому числу волн (т. е. четному числу полуволн) Δd = kλ , где k = 0, 1, 2, ..., то в точке наложения этих волн образуется интерференционный максимум.

Условие максимума :

А = 2x 0 .

Условие минимума


Если разность хода этих волн равна нечетному числу полуволн, то это означает, что волны от точек А и Б придут в точку С в противофазе и погасят друг друга.

Условие минимума:

Амплитуда результирующего колебания А = 0 .

Если Δd не равно целому числу полуволн, то 0 < А < 2х 0 .

Дифракция волн.

Явление отклонения от прямолинейного распространения и огибание волнами препятствий называется дифракцией.

Соотношение между длиной волны (λ) и размерами препятствия (L) определяет поведение волны. Дифракция наиболее отчетливо проявляется, если длина набегающей волны больше размеров препятствия. Опыты показывают, что дифракция существует всегда, но становится заметной при условии d<<λ , где d – размер препятствия.

Дифракция – общее свойство волн любой природы, которая происходит всегда, но условия её наблюдения разные.

Волна на поверхности воды распространяется в сторону достаточно большого препятствия, за которым образуется тень, т.е. волнового процесса не наблюдается. Такое свойство используется при устройстве волноломов в портах. Если же размеры препятствия сравнимы с длиной волны, то за препятствием будет наблюдаться волнение. Позади него волна распространяется так, как будто препятствия не было вовсе, т.е. наблюдается дифракция волны.

Примеры проявления дифракции . Слышимость громкого разговора за углом дома, звуки в лесу, волны на поверхности воды.

Стоячие волны

Стоячие волны образуются при сложении прямой и отраженной волны, если у них одинаковая частота и амплитуда.

В струне, закрепленной на обоих концах, возникают сложные колебания, которые можно рассматривать как результат наложения (суперпозиции ) двух волн, распространяющихся в противоположных направлениях и испытывающих отражения и переотражения на концах. Колебания струн, закрепленных на обоих концах, создают звуки всех струнных музыкальных инструментов. Очень похожее явление возникает при звучании духовых инструментов, в том числе органных труб.

Колебания струны . В закрепленной с обоих концов натянутой струне при возбуждении поперечных колебаний устанавливаются стоячие волны , причем в местах закрепления струны должны располагаться узлы. Поэтому в струне возбуждаются с заметной интенсивностью только такие колебания, половина длины волны которых укладывается на длине струны целое число раз.

Отсюда вытекает условие

Длинам волн соответствуют частоты

n = 1, 2, 3... Частоты v n называются собственными частотами струны.

Гармонические колебания с частотами v n называются собственными или нормальными колебаниями . Их называют также гармониками. В общем случае колебание струны представляет собой наложение различных гармоник.

Уравнение стоячей волны :

В точках, где координаты удовлетворяют условию (n = 1, 2, 3, …), суммарная амплитуда равна максимальному значению – это пучности стоячей волны. Координаты пучностей :

В точках, координаты которых удовлетворяют условию (n = 0, 1, 2,…), суммарная амплитуда колебаний равна нулю – это узлы стоячей волны . Координаты узлов:

Образование стоячих волн наблюдают при интерференции бегущей и отраженных волн. На границе, где происходит отражение волны, получается пучность, если среда, от которой происходит отражение, менее плотная (a), и узел – если более плотная (б).

Если рассматривать бегущую волну , то в направлении ее распространения переносится энергия колебательного движения. В случае же стоячей волны переноса энергии нет , т.к. падающая и отраженная волны одинаковой амплитуды несут одинаковую энергию в противоположных направлениях.

Стоячие волны возникают, например, в закреплённой с обоих концов натянутой струне при возбуждении в ней поперечных колебаний. Причём в местах закреплений располагаются узлы стоячей волны.

Если стоячая волна устанавливается в воздушном столбе, открытом с одного конца (звуковая волна), то на открытом конце образуется пучность, а на противоположном – узел.

Механическая или упругая волна - это процесс распространения колебаний в упругой среде. Например, вокруг колеблющейся струны или диффузора динамика начинает колебаться воздух - струна или динамик стали источниками звуковой волны.

Для возникновения механической волны необходимо выполнение двух условий - наличие источника волны (им может быть любое колеблющееся тело) и упругой среды (газа, жидкости, твердого вещества).

Выясним причину возникновения волны. Почему частицы среды, окружающие любое колеблющееся тело, тоже приходят в колебательное движение?

Простейшей моделью одномерной упругой среды является цепочка шариков, соединенных пружинками. Шарики - модели молекул, соединяющие их пружины моделируют силы взаимодействия между молекулами.

Допустим, первый шарик совершает колебания с частотой ω. Пружина 1-2 деформируется, в ней возникает сила упругости, меняющаяся с частотой ω. Под действием внешней периодически меняющейся силы второй шарик начинает совершать вынужденные колебания. Поскольку вынужденные колебания всегда происходят с частотой внешней вынуждающей силы, частота колебаний второго шарика будет совпадать с частотой колебаний первого. Однако вынужденные колебания второго шарика будут происходить с некоторым запаздыванием по фазе относительно внешней вынуждающей силы. Другими словами, второй шарик придет в колебательное движение несколько позже, чем первый шарик.

Колебания второго шарика вызовут периодически меняющуюся деформацию пружины 2-3, которая заставит колебаться третий шарик и т.д. Таким образом, все шарики в цепочке будут поочередно вовлекаться в колебательное движение с частотой колебаний первого шарика.

Очевидно, причиной распространения волны в упругой среде является наличие взаимодействия между молекулами. Частота колебания всех частиц в волне одинакова и совпадает с частотой колебаний источника волны.

По характеру колебаний частиц в волне волны делят на поперечные, продольные и поверхностные.

В продольной волне колебание частиц происходит вдоль направления распространения волны.

Распространение продольной волны связано с возникновением в среде деформации растяжения-сжатия. В растянутых участках среды наблюдается уменьшение плотности вещества - разрежение. В сжатых участках среды, наоборот, происходит увеличение плотности вещества -так называемое сгущение. По этой причине продольная волна представляет собой перемещение в пространстве областей сгущения и разрежения.

Деформация растяжения - сжатия может возникать в любой упругой среде, поэтому продольные волны могут распространяться в газах, жидкостях и твердых телах. Примером продольной волны является звук.


В поперечной волне частицы совершают колебания перпендикулярно направлению распространения волны.

Распространение поперечной волны связано с возникновением в среде деформации сдвига. Этот вид деформации может существовать только в твердых веществах, поэтому поперечные волны могут распространяться исключительно в твердых телах. Примером поперечной волны является сейсмическая S-волна.

Поверхностные волны возникают на границе раздела двух сред. Колеблющиеся частицы среды имеют как поперечную, перпендикулярную поверхности, так и продольную составляющие вектора смещения. Частицы среды описывают при своих колебаниях эллиптические траектории в плоскости, перпендикулярной поверхности и проходящей через направление распространения волны. Примером поверхностных волн являются волны на поверхности воды и сейсмические L - волны.

Волновым фронтом называют геометрическое место точек, до которых дошел волновой процесс. Форма волнового фронта может быть разной. Наиболее распространенными являются плоские, сферические и цилиндрические волны.

Обратите внимание - волновой фронт всегда располагается перпендикулярно направлению распространения волны! Все точки волнового фронта начнут колебаться в одной фазе .

Для характеристики волнового процесса вводят следующие величины:

1. Частота волны ν - это частота колебания всех частиц в волне.

2. Амплитуда волны А - это амплитуда колебания частиц в волне.

3. Скорость волны υ - это расстояние, на которое распространяется волновой процесс (возмущение) в единицу времени.

Обратите внимание - скорость волны и скорость колебания частиц в волне - это разные понятия! Скорость волны зависит от двух факторов: вида волны и среды, в которой волна распространяется.

Общая закономерность такова: скорость продольной волны в твердом веществе больше, чем в жидкостях, а скорость в жидкостях, в свою очередь, больше скорости волны в газах.

Понять физическую причину этой закономерности несложно. Причина распространения волны - взаимодействие молекул. Естественно, возмущение быстрее распространяется в той среде, где взаимодействие молекул более сильное.

В одной и той же среде закономерность другая - скорость продольной волны больше скорости поперечной волны.

Например, скорость продольной волны в твердом теле , где Е - модуль упругости (модуль Юнга) вещества, ρ - плотность вещества.

Скорость поперечной волны в твердом теле , где N - модуль сдвига. Поскольку для всех веществ , то . На отличии скоростей продольных и поперечных сейсмических волн основан один из методов определения расстояния до очага землетрясения.

Скорость поперечной волны в натянутом шнуре или струне определяется силой натяжения F и массой единицы длины μ:

4. Длина волны λ - минимальное расстояние между точками, которые колеблются одинаково.

Для волн, бегущих по поверхности воды, длина волны легко определяется как расстояние между двумя соседними горбами или соседними впадинами.

Для продольной волны длина волны может быть найдена как расстояние между двумя соседними сгущениями или разрежениями.

5. В процессе распространения волны участки среды вовлекаются в колебательный процесс. Колеблющаяся среда, во-первых, двигается, следовательно, обладает кинетической энергией. Во-вторых, среда, по которой бежит волна, деформирована, следовательно, обладает потенциальной энергией. Нетрудно видеть, что распространение волны связано с переносом энергии к невозбужденным участкам среды. Для характеристики процесса переноса энергии вводят интенсивность волны I .

Механическая волна в физике - это явление распространения возмущений, сопровождающееся передачей энергии колеблющегося тела от одной точки к другой без транспортировки вещества, в некоторой упругой среде.

Среда, в которой между молекулами существует упругое взаимодействие (жидкость, газ или твёрдое вещество) - обязательное условие для возникновения механических возмущений. Они возможны только тогда, когда молекулы вещества сталкиваются друг с другом, передавая энергию. Одним из примеров таких возмущений является звук (акустическая волна). Звук может распространяться в воздухе, в воде или в твёрдом теле, но не в вакууме.

Для создания механической волны необходима некоторая начальная энергия, которая выведет среду из положения равновесия. Эта энергия затем и будет передаваться волной. Например, камень, брошенный в небольшое количество воды, создаёт волну на поверхности. Громкий крик создаёт акустическую волну.

Основные виды механических волн:

  • Звуковые;
  • На поверхности воды;
  • Землетрясения;
  • Сейсмические волны.

Механические волны имеют пики и впадины как все колебательные движения. Их основными характеристиками служат:

  • Частота. Это количество колебаний, совершающихся за секунду. Единицы измерения в СИ: [ν] = [Гц] = [с -1 ].
  • Длина волны. Расстояние между соседними пиками или впадинами. [λ] = [м].
  • Амплитуда. Наибольшее отклонение точки среды от положения равновесия. [Х max ] = [м].
  • Скорость. Это расстояние, которое преодолевает волна за секунду. [V] = [м/с].

Длина волны

Длиной волны называют расстояние между ближайшими друг к другу точками, колеблющимися в одинаковых фазах.

Волны распространяются в пространстве. Направление их распространения называют лучом и обозначают линией, перпендикулярной волновой поверхности. А их скорость вычисляют по формуле:

Граница волновой поверхности, отделяющая часть среды, в которой уже происходят колебания, от части среды, в которой колебания ещё не начались, - волновой фронт .

Продольные и поперечные волны

Одним из способов классификации механического типа волн является определение направления движения отдельных частиц среды в волне по отношению к направлению её распространения.

В зависимости от направления движения частиц в волнах, выделяют:

  1. Поперечные волны. Частицы среды в таком типе волн колеблются под прямым углом к волновому лучу. Рябь на пруду или вибрирующие струны гитары помогут представить поперечные волны. Такой тип колебания не может распространяться в жидкости или газовой среде, потому что частицы этих сред движутся хаотично и невозможно организовать их движение перпендикулярно направлению распространения волны. Поперечный тип волн движется намного медленнее, чем продольный.
  2. Продольные волны. Частицы среды колеблются в том же направлении, в котором распространяется волна. Некоторые волны такого типа называют компрессионными или волнами сжатия. Продольные колебания пружины - периодичные сжатия и растяжения - представляют хорошую визуализацию таких волн. Продольные волны являются самыми быстрыми волнами механического типа. Звуковые волны в воздухе, цунами и ультразвук - продольные. К ним можно отнести и определённый тип сейсмических волн, распространяющихся под землёй и в воде.