Главная · Язва · Третья фаза митоза. Деление клетки — митоз. Стадии и схема митоза

Третья фаза митоза. Деление клетки — митоз. Стадии и схема митоза

Митоз (непрямое деление) - это деление соматических клеток (клеток тела). Биологическое значение митоза - размножение соматических клеток, получение клеток-копий (с тем же самым набором хромосом, с точно такой же наследственной информацией). Все соматические клетки организма получаются из одной исходной клетки (зиготы) путем митоза.


1) Профаза

  • хроматин спирализуется (скручивается, конденсируется) до состояния хромосом
  • ядрышки исчезают
  • ядерная оболочка распадается
  • центриоли расходятся к полюсам клетки, формируется веретено деления

2) Метафаза - хромосомы выстраиваются по экватору клетки, образуется метафазная пластинка


3) Анафаза - дочерние хромосомы отделяются друг от друга (хроматиды становятся хромосомами) и расходятся к полюсам


4) Телофаза

  • хромосомы деспирализуются (раскручиваются, деконденсируются) до состояния хроматина
  • появляются ядро и ядрышки
  • нити веретена деления разрушаются
  • происходит цитокинез - разделение цитоплазмы материнской клетки на две дочерних

Продолжительность митоза - 1-2 часа.

Клеточный цикл

Это период жизни клетки от момента её образования путем деления материнской клетки до собственного деления или смерти.


Клеточный цикл состоит из двух периодов:

  • интерфаза (состояние, когда клетка НЕ делится);
  • деление (митоз или ).

Интерфаза состоит из нескольких фаз:

  • пресинтетическая: клетка растет, в ней происходит активный синтез РНК и белков, увеличивается количество органоидов; кроме этого, происходит подготовка к удвоению ДНК (накопление нуклеотидов)
  • синтетическая: происходит удвоение (репликация, редупликация) ДНК
  • постсинтетическая: клетка готовится к делению, синтезирует необходимые для деления вещества, например белки веретена деления.

БОЛЬШЕ ИНФОРМАЦИИ: ,
ЗАДАНИЯ ЧАСТИ 2:

Тесты и задания

Выберите один, наиболее правильный вариант. Процесс размножения клеток организмов разных царств живой природы называют
1) мейозом
2) митозом
3) оплодотворением
4) дроблением

Ответ


Все приведенные ниже признаки, кроме двух, можно использовать для описания процессов интерфазы клеточного цикла. Определите два признака, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.
1) рост клетки
2) расхождение гомологичных хромосом
3) расположение хромосом по экватору клетки
4) репликация ДНК
5) синтез органических веществ

Ответ


Выберите один, наиболее правильный вариант. На каком этапе жизни клетки хромосомы спирализуются
1) интерфаза
2) профаза
3) анафаза
4) метафаза

Ответ


Выберите три варианта. Какие структуры клетки претерпевают наибольшие изменения в процессе митоза?
1) ядро
2) цитоплазма
3) рибосомы
4) лизосомы
5) клеточный центр
6) хромосомы

Ответ


1. Установите последовательность процессов, происходящих в клетке с хромосомами в интерфазе и последующем митозе
1) расположение хромосом в экваториальной плоскости
2) репликация ДНК и образование двухроматидных хромосом
3) спирализация хромосом
4) расхождение сестринских хромосом к полюсам клетки

Ответ


2. Установите последовательность процессов, происходящих в ходе интерфазы и митоза. Запишите соответствующую последовательность цифр.
1) спирализация хромосом, исчезновение ядерной оболочки
2) расхождение сестринских хромосом к полюсам клетки
3) образование двух дочерних клеток
4) удвоение молекул ДНК
5) размещение хромосом в плоскости экватора клетки

Ответ


3. Установите последовательность процессов, происходящих в интерфазе и в митозе. Запишите соответствующую последовательность цифр.
1) растворение ядерной мембраны
2) репликация ДНК
3) разрушение веретена деления
4) расхождение к полюсам клетки однохроматидных хромосом
5) образование метафазной пластинки

Ответ


4. Установите правильную последовательность процессов, происходящих во время митоза. Запишите цифры, под которыми они указаны.
1) распад ядерной оболочки
2) утолщение и укорочение хромосом
3) выстраивание хромосом в центральной части клетки
4) начало движения хромосом к центру
5) расхождение хроматид к полюсам клетки
6) формирование новых ядерных оболочек

Ответ


5. Установите последовательность процессов, происходящих в ходе митоза. Запишите соответствующую последовательность цифр.
1) спирализация хромосом
2) расхождение хроматид
3) образование веретена деления
4) деспирализация хромосом
5) деление цитоплазмы
6) расположение хромосом на экваторе клетки

Ответ

ФОРМИРУЕМ 6:
1) нити веретена деления прикрепляются к каждой хромосоме

2) формируется ядерная оболочка
3) происходит удвоение центриолей

4) исчезновение нитей веретена деления

Выберите один, наиболее правильный вариант. При делении клетки происходит формирование веретена деления в
1) профазе
2) телофазе
3) метафазе
4) анафазе

Ответ


Выберите один, наиболее правильный вариант. В профазе митоза НЕ происходит
1) растворения ядерной оболочки
2) формирования веретена деления
3) удвоения хромосом
4) растворения ядрышек

Ответ


Выберите один, наиболее правильный вариант. На каком этапе жизни клетки хроматиды становятся хромосомами
1) интерфаза
2) профаза
3) метафаза
4) анафаза

Ответ


Выберите один, наиболее правильный вариант. Деспирализация хромосом при делении клетки происходит в
1) профазе
2) метафазе
3) анафазе
4) телофазе

Ответ


Выберите один, наиболее правильный вариант. В какую фазу митоза пары хроматид прикрепляются своими центромерами к нитям веретена деления
1) анафазу
2) телофазу
3) профазу
4) метафазу

Ответ


Установите соответствие между процессами и фазами митоза: 1) анафаза, 2) телофаза. Запишите цифры 1 и 2 в правильном порядке.
А) образуется ядерная оболочка
Б) сестринские хромосомы расходятся к полюсам клетки
В) веретено деления окончательно исчезает
Г) хромосомы деспирализуются
Д) центромеры хромосом разъединяются

Ответ


Установите соответствие между характеристиками и фазами деления клетки: 1) анафаза, 2) метафаза, 3) телофаза. Запишите цифры 1-3 в порядке, соответствующем буквам.
А) деспирализация хромосом
Б) число хромосом и ДНК 4n4c
В) расположение хромосом по экватору клетки
Г) расхождение хромосом к полюсам клетки
Д) соединение центромер с нитями веретена деления
Е) образование ядерной мембраны

Ответ


Все приведенные ниже признаки, кроме двух, можно использовать для описания процессов, происходящих в интерфазе. Определите два признака, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.
1) репликация ДНК
2) формирование ядерной оболочки
3) спирализация хромосом
4) синтез АТФ
5) синтез всех видов РНК

Ответ


Все перечисленные ниже признаки, кроме двух, используются для описания изображенной на рисунке фазы митоза. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) исчезает ядрышко
2) образуется веретено деления
3) происходит удвоение молекул ДНК
4) хромосомы активно участвуют в биосинтезе белков
5) хромосомы спирализуются

Ответ


Выберите один, наиболее правильный вариант. Чем сопровождается спирализация хромосом в начале митоза
1) приобретением двухроматидной структуры
2) активным участием хромосом в биосинтезе белка
3) удвоением молекулы ДНК
4) усилением транскрипции

Ответ


Установите соответствие между процессами и периодами интерфазы: 1) постсинтетический, 2) пресинтетический, 3) синтетический. Запишите цифры 1, 2 ,3 в порядке, соответствующем буквам.
А) рост клетки
Б) синтез АТФ для процесса деления
В) синтез АТФ для репликации молекул ДНК
Г) синтез белков для построения микротрубочек
Д) репликация ДНК

Ответ


1. Все перечисленные ниже признаки, кроме двух, можно использовать для описания процесса митоза. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) лежит в основе бесполого размножения
2) непрямое деление
3) обеспечивает регенерацию
4) редукционное деление
5) увеличивается генетическое разнообразие

Ответ


2. Все приведенные признаки, кроме двух, можно использовать для описания процессов митоза. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) образование бивалентов
2) конъюгация и кроссинговер
3) неизменность числа хромосом в клетках
4) образование двух клеток
5) сохранение структуры хромосом

Ответ



Все перечисленные ниже признаки, кроме двух, используются для описания изображенного на рисунке процесса. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) дочерние клетки имеют одинаковый с родительскими клетками набор хромосом
2) неравномерное распределение генетического материала между дочерними клетками
3) обеспечивает рост
4) образование двух дочерних клеток
5) прямое деление

Ответ


Все перечисленные ниже процессы, кроме двух, происходят в процессе непрямого деления клетки. Определите два процесса, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) образуются две диплоидные клетки
2) образуются четыре гаплоидные клетки
3) происходит деление соматических клеток
4) происходит конъюгация и кроссинговер хромосом
5) делению клеток предшествует одна интерфаза

Ответ


1. Установите соответствие между этапами жизненного цикла клетки и процессами. Происходящими в ходе них: 1) интерфаза, 2) митоз. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) формируется веретено деления
Б) клетка растет, в ней происходит активный синтез РНК и белков
В) осуществляется цитокинез
Г) количество молекул ДНК удваивается
Д) происходит спирализация хромосом

Ответ


2. Установите соответствие между процессами и стадиями жизненного цикла клетки: 1) интерфаза, 2) митоз. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) спирализация хромосом
Б) интенсивный обмен веществ
В) удвоение центриолей
Г) расхождение сестринских хроматид к полюсам клетки
Д) редупликация ДНК
Е) увеличение количества органоидов клетки

Интерфаза – это период между двумя клеточными делениями. В интерфазе ядро компактное, не имеет выраженной структуры, хорошо видны ядрышки. Совокупность интерфазных хромосом представляет собой хроматин. В состав хроматина входят: ДНК, белки и РНК в соотношении 1: 1,3: 0,2, а также неорганические ионы. Структура хроматина изменчива и зависит от состояния клетки.

Хромосомы в интерфазе не видны, поэтому их изучение ведется электронно-микроскопическими и биохимическими методами. Интерфаза включает три стадии: пресинтетическую (G1), синтетическую (S) и постсинтетическую (G2). Символ G представляет собой сокращение от англ. gap – интервал; символ S – сокращение от англ. synthesis – синтез. Рассмотрим эти стадии подробнее.

Пресинтетическая стадия (G1). В основе каждой хромосомы лежит одна двуспиральная молекула ДНК. Количество ДНК в клетке на пресинтетической стадии обозначается символом 2с (от англ. content – содержание). Клетка активно растет и нормально функционирует.

Синтетическая стадия (S). Происходит самоудвоение, или репликация ДНК. При этом одни участки хромосом удваиваются раньше, а другие – позже, то есть репликация ДНК протекает асинхронно. Параллельно происходит удвоение центриолей (если они имеются).

Постсинтетическая стадия (G2). Завершается репликация ДНК. В состав каждой хромосомы входит две двойных молекулы ДНК, которые являются точной копией исходной молекулы ДНК. Количество ДНК в клетке на постсинтетической стадии обозначается символом 4с. Синтезируются вещества, необходимые для деления клетки. В конце интерфазы процессы синтеза прекращаются.

Процесс митоза

Профаза – первая фаза митоза. Хромосомы спирализуются и становятся видны в световой микроскоп в виде тонких нитей. Центриоли (если они имеются) расходятся к полюсам клетки. В конце профазы ядрышки исчезают, ядерная оболочка разрушается, и хромосомы выходят в цитоплазму.

В профазе увеличивается объем ядра, и вследствие спирализации хроматина формируются хромосомы. К концу профазы видно, что каждая хромосома состоит из двух хроматид. Постепенно растворяются ядрышки и ядерная оболочка, и хромосомы оказываются беспорядочно расположенными в цитоплазме клетки. Центриоли расходятся к полюсам клетки. Формируется ахроматиновое веретено деления, часть нитей которого идет от полюса к полюсу, а часть - прикрепляется к центромерам хромосом. Содержание генетического материала в клетке остается неизменным (2n2хр).

Рис. 1. Схема митоза в клетках корешка лука

Рис. 2. Схема митоза в клетках корешка лука: 1- интерфаза; 2,3 - профаза; 4 - метафаза; 5,6 - анафаза; 7,8 - телофаза; 9 - образование двух клеток

Рис. 3. Митоз в клетках кончика корешка лука: а - интерфаза; б - профаза; в - метафаза; г - анафаза; л, е - ранняя и поздняя телофазы

Метафаза. Начало этой фазы называется прометафаза. В прометафазе хромосомы располагаются в цитоплазме довольно беспорядочно. Формируется митотический аппарат, в состав которого входит веретено деления и центриоли или иные центры организации микротрубочек. При наличии центриолей митотический аппарат называется астральным (у многоклеточных животных), а при их отсутствии – анастральным (у высших растений). Веретено деления (ахроматиновое веретено) – это система тубулиновых микротрубочек в делящейся клетке, обеспечивающая расхождение хромосом. В состав веретена деления входят два типа нитей: полюсные (опорные) и хромосомальные (тянущие).

После формирования митотического аппарата хромосомы начинают перемещаться в экваториальную плоскость клетки; это движение хромосом называется метакинез.

В метафазе хромосомы максимально спирализованы. Центромеры хромосом располагаются в экваториальной плоскости клетки независимо друг от друга. Полюсные нити веретена деления тянутся от полюсов клетки к хромосомам, а хромосомальные – от центромер (кинетохоров) – к полюсам. Совокупность хромосом в экваториальной плоскости клетки образует метафазную пластинку.

Анафаза. Происходит разделение хромосом на хроматиды. С этого момента каждая хроматида становится самостоятельной однохроматидной хромосомой, в основе которой лежит одна молекула ДНК. Однохроматидные хромосомы в составе анафазных групп расходятся к полюсам клетки. При расхождении хромосом хромосомальные микротрубочки укорачиваются, а полюсные – удлиняются. При этом полюсные и хромосомальные нити скользят вдоль друг друга.

Телофаза. Веретено деления разрушается. Хромосомы у полюсов клетки деспирализуются, вокруг них формируются ядерные оболочки. В клетке образуются два ядра, генетически идентичные исходному ядру. Содержание ДНК в дочерних ядрах становится равным 2c.

Цитокинез. В цитокинезе происходит разделение цитоплазмы и формирование мембран дочерних клеток. У животных цитокинез происходит путем перешнуровывания клетки. У растений цитокинез происходит иначе: в экваториальной плоскости образуются пузырьки, которые сливаются с образованием двух параллельных мембран.

На этом митоз завершается, и наступает очередная интерфаза.



Митоз, его фазы, биологическое значение

Важнейшим компонентом клеточного цикла является митотический (пролиферативный) цикл. Он представляет собой комплекс взаимосвязанных и согласованных явлений во время деления клетки, а также до и после него. Митотический цикл - это совокупность процессов, происходящих в клетке от одного деления до следующего и заканчивающихся образованием двух клеток следующей генерации. Кроме этого, в понятие жизненного цикла входят также период выполнения клеткой своих функций и периоды покоя. В это время дальнейшая клеточная судьба неопределенна: клетка может начать делиться (вступает в митоз) либо начать готовиться к выполнению специфических функций.

Основные стадии митоза.

1.Редупликация (самоудвоение) генетической информации материнской клетки и равномерное распределение ее между дочерними клетками. Это сопровождается изменениями структуры и морфологии хромосом, в которых сосредоточено более 90% информации эукариотической клетки.

2.Митотический цикл состоит из четырех последовательных периодов: пресинтетического (или постмитотического) G1, синтетического S, постсинтетического (или премитотического) G2 и собственно митоза. Они составляют автокаталитическую интерфазу (подготовительный период).

Фазы клеточного цикла:

1) пресинтетическая (G1). Идет сразу после деления клетки. Синтеза ДНК еще не происходит. Клетка активно растет в размерах, запасает вещества, необходимые для деления: белки (гистоны, структурные белки, ферменты), РНК, молекулы АТФ. Происходит деление митохондрий и хлоропластов (т. е. структур, способных к ауторепродукции). Восстанавливаются черты организации интерфазной клетки после предшествующего деления;

2) синтетическая (S). Происходит удвоение генетического материала путем репликации ДНК. Она происходит полуконсервативным способом, когда двойная спираль молекулы ДНК расходится на две цепи и на каждой из них синтезируется комплементарная цепочка.

В итоге образуются две идентичные двойные спирали ДНК, каждая из которых состоит из одной новой и старой цепи ДНК. Количество наследственного материала удваивается. Кроме этого, продолжается синтез РНК и белков. Также репликации подвергается небольшая часть митохонд-риальной ДНК (основная же ее часть реплицируется в G2 период);

3) постсинтетическая (G2). ДНК уже не синтезируется, но происходит исправление недочетов, допущенных при синтезе ее в S период (репарация). Также накапливаются энергия и питательные вещества, продолжается синтез РНК и белков (преимущественно ядерных).

S и G2 непосредственно связаны с митозом, поэтому их иногда выделяют в отдельный период - препрофазу.

После этого наступает собственно митоз, который состоит из четырех фаз. Процесс деления включает в себя несколько последовательных фаз и представляет собой цикл. Его продолжительность различна и составляет у большинства клеток от 10 до 50 ч. При этом у клеток тела человека продолжительность самого митоза составляет 1-1,5 ч, G2-периода интерфазы - 2-3 ч, S-периода интерфазы - 6-10 ч.

Стадии митоза.

Процесс митоза принято подразделять на четыре основные фазы: профазу, метафазу, анафазу и телофазу (рис. 1–3). Так как он непрерывен, смена фаз осуществляется плавно - одна незаметно переходит в другую.

В профазе увеличивается объем ядра, и вследствие спирализации хроматина формируются хромосомы. К концу профазы видно, что каждая хромосома состоит из двух хроматид. Постепенно растворяются ядрышки и ядерная оболочка, и хромосомы оказываются беспорядочно расположенными в цитоплазме клетки. Центриоли расходятся к полюсам клетки. Формируется ахроматиновое веретено деления, часть нитей которого идет от полюса к полюсу, а часть - прикрепляется к центромерам хромосом. Содержание генетического материала в клетке остается неизменным (2n2хр).

Характеристика фаз митоза

К основным событиям профазы относят конденсацию хромосом внутри ядра и образование веретена деления в цитоплазме клетки. Распад ядрышка в профазе является характерной, но не обязательной для всех клеток особенностью.

Условно за начало профазы принимается момент возникновения микроскопически видимых хромосом вследствие конденсации внутриядерного хроматина. Уплотнение хромосом происходит за счёт многоуровневой спирализации ДНК. Данные изменения сопровождаются повышением активности фосфорилаз, модифицирующих гистоны, непосредственно участвующие в компоновке ДНК. Как следствие, резко снижается транскрипционная активность хроматина, инактивируются ядрышковые гены, большая часть ядрышковых белков диссоциирует. Конденсирующиеся сестринские хроматиды в ранней профазе остаются спаренными по всей своей длине с помощью белков-когезинов, однако к началу прометафазы связь между хроматидами сохраняется лишь в области центромер. К поздней профазе на каждой центромере сестринских хроматид формируются зрелые кинетохоры необходимые хромосомам для присоединения к микротрубочкам веретена деления в прометафазе.

Наряду с процессами внутриядерной конденсации хромосом в цитоплазме начинает формироваться митотическое веретено - одна из главных структур аппарата клеточного деления, ответственная за распределение хромосом между дочерними клетками. В образовании веретена деления у всех эукариотических клеток принимают участие полярные тельца, микротрубочки и кинетохоры хромосом.

С началом формирования митотического веретена в профазе сопряжены разительные изменения динамических свойств микротрубочек. Время полужизни средней микротрубочки уменьшается примерно в 20 раз от 5 минут до 15 секунд. Однако скорость их роста увеличивается примерно в 2 раза по сравнению с теми же интерфазными микротрубочками. Полимеризующиеся плюс-концы являются «динамически нестабильными» и резко переходят от равномерного роста к быстрому укорочению, при котором часто деполимеризуется вся микротрубочка. Примечательно, что для правильного функционирования митотического веретена необходим определенный баланс между процессами сборки и деполимеризации микротрубочек, так как ни стабилизированные, ни деполимеризованные микротрубочки веретена не в состоянии перемещать хромосомы.

Наряду с наблюдаемыми изменениями динамических свойств микротрубочек, слагающих нити веретена, в профазе закладываются полюса деления. Реплицированные в S-фазе центросомы расходятся в противоположных направлениях за счёт взаимодействия полюсных микротрубочек, растущих навстречу друг другу. Своими минус-концами микротрубочки погружены в аморфное вещество центросом, а процессы полимеризации протекают со стороны плюс-концов, обращенных к экваториальной плоскости клетки. При этом вероятный механизм расхождения полюсов объясняется следующим образом: динеино-подобные белки ориентируют в параллельном направлении полимеризующиеся плюс-концы полюсных микротрубочек, а кинезино-подобные белки в свою очередь расталкивают их в направлении к полюсам деления.

Параллельно конденсации хромосом и формированию митотического веретена, во время профазы происходит фрагментация эндоплазматического ретикулума, который распадается на мелкие вакуоли, расходящиеся затем к периферии клетки. Одновременно рибосомы теряют связи с мембранами ЭПР. Цистерны аппарата Гольджи также меняют свою околоядерную локализацию, распадаясь на отдельные диктиосомы, без особого порядка распределенные в цитоплазме.

Прометафаза

Прометафаза

Окончание профазы и наступление прометафазы, как правило, знаменуется распадом ядерной мембраны. Целый ряд белков ламины фосфорилируется, вследствие чего ядерная оболочка фрагментируется на мелкие вакуоли, а поровые комплексы исчезают. После разрушения ядерной мембраны хромосомы без особого порядка располагаются в области ядра. Однако вскоре все они приходят в движение.

В прометафазе наблюдается интенсивное, но беспорядочное перемещение хромосом. Поначалу отдельные хромосомы стремительно дрейфуют к ближайшему полюсу митотического веретена со скоростью, достигающей 25 мкм/мин. Вблизи полюсов деления повышается вероятность взаимодействия новосинтезированных плюс-концов микротрубочек веретена с кинетохорами хромосом. В результате такого взаимодействия кинетохорные микротрубочки стабилизируются от спонтанной деполимеризации, а их рост отчасти обеспечивает отдаление соединенной с ними хромосомы в направлении от полюса к экваториальной плоскости веретена. С другой стороны хромосому настигают тяжи микротрубочек, идущие от противоположного полюса митотического веретена. Взаимодействуя с кинетохором, они также участвуют в движении хромосомы. В результате сестринские хроматиды оказываются связанными с противоположными полюсами веретена. Усилие, развиваемое микротрубочками от разных полюсов, не только стабилизирует взаимодействие этих микротрубочек с кинетохорами, но также, в конечном счёте, приводит каждую хромосому в плоскость метафазной пластинки.

В клетках млекопитающих прометафаза протекает, как правило, в течение 10-20 минут. В нейробластах кузнечика данная стадия занимает всего 4 минуты, а в эндосперме Haemanthus и в фибробластах тритона - около 30 минут.

Метафаза

Метафаза

В завершении прометафазы хромосомы располагаются в экваториальной плоскости веретена примерно на равном расстоянии от обоих полюсов деления, образуя метафазную пластинку. Морфология метафазной пластинки в клетках животных, как правило, отличается упорядоченным расположением хромосом: центромерные участки обращены к центру веретена, а плечи - к периферии клетки. В растительных клетках хромосомы зачастую лежат в экваториальной плоскости веретена без строгого порядка.

Метафаза занимает значительную часть периода митоза, и отличается относительно стабильным состоянием. Все это время хромосомы удерживаются в экваториальной плоскости веретена за счёт сбалансированных сил натяжения кинетохорных микротрубочек, совершая колебательные движения с незначительной амплитудой в плоскости метафазной пластинки.

В метафазе, также как и в течение других фаз митоза, продолжается активное обновление микротрубочек веретена путём интенсивной сборки и деполимеризации молекул тубулина. Несмотря на некоторую стабилизацию пучков кинетохорных микротрубочек, происходит постоянная переборка межполюсных микротрубочек, численность которых в метафазе достигает максимума.

К окончанию метафазы наблюдается чёткое обособление сестринских хроматид, соединение между которыми сохраняется лишь в центромерных участках. Плечи хроматид располагаются параллельно друг другу, и становится отчетливо заметной разделяющая их щель.

Анафаза - самая короткая стадия митоза, которая начинается внезапным разделением и последующим расхождением сестринских хроматид в направлении противоположных полюсов клетки. Хроматиды расходятся с равномерной скоростью достигающей 0,5-2 мкм/мин., при этом они часто принимают V-образную форму. Их движение обусловлено воздействием значительных сил, оценочно 10 дин на хромосому, что в 10 000 раз превышает усилие, необходимое для простого продвижения хромосомы через цитоплазму с наблюдаемой скоростью.

Как правило, расхождение хромосом в анафазе состоит из двух относительно независимых процессов называемых анафазой А и анафазой В.

Анафаза А характеризуется расхождением сестринских хроматид к противоположным полюсам деления клетки. За их движение при этом отвечают те же силы, что ранее удерживали хромосомы в плоскости метафазной пластинки. Процесс расхождения хроматид сопровождается сокращением длины деполимеризующихся кинетохорных микротрубочек. Причем их распад наблюдается преимущественно в области кинетохоров, со стороны плюс-концов. Вероятно, деполимеризация микротрубочек у кинетохоров либо в области полюсов деления является необходимым условием для перемещения сестринских хроматид, так как их движение прекращается при добавлении таксола или тяжёлой воды, оказывающих стабилизирующее воздействие на микротрубочки. Механизм, лежащий в основе расхождения хромосом в анафазе А, пока остается неизвестным.

Во время анафазы В расходятся сами полюса деления клетки, и, в отличии от анафазы А, данный процесс происходит за счёт сборки полюсных микротрубочек со стороны плюс-концов. Полимеризующиеся антипараллельные нити веретена при взаимодействии отчасти и создают расталкивающее полюса усилие. Величина относительного перемещения полюсов при этом, также как и степень перекрывания полюсных микротрубочек в экваториальной зоне клетки сильно варьирует у особей разных видов. Помимо расталкивающих сил, на полюса деления воздействуют тянущие силы со стороны астральных микротрубочек, которые создаются в результате взаимодействия с динеино-подобными белками на плазматической мембране клетки.

Последовательность, продолжительность и относительный вклад каждого из двух процессов, слагающих анафазу, могут быть крайне различны. Так в клетках млекопитающих анафаза В начинается сразу вслед за началом расхождения хроматид к противоположным полюсам и продолжается вплоть до удлинения митотического веретена в 1,5-2 раза по сравнению с метафазным. В некоторых других клетках анафаза В начинается только после того как хроматиды достигают полюсов деления. У некоторых простейших в процессе анафазы В веретено удлиняется в 15 раз по сравнению с метафазным. В растительных клетках анафаза В отсутствует.

Телофаза

Телофаза

Телофаза рассматривается как заключительная стадия митоза; за её начало принимается момент остановки разделённых сестринских хроматид у противоположных полюсов деления клетки. В ранней телофазе наблюдается деконденсация хромосом и, следовательно, увеличение их в объёме. Вблизи сгруппированных индивидуальных хромосом начинается слияние мембранных пузырьков, что дает начало реконструкции ядерной оболочки. Материалом для построения мембран новообразованных дочерних ядер служат фрагменты изначально распавшейся ядерной мембраны материнской клетки, а также элементы эндоплазматического ретикулума. При этом отдельные пузырьки связываются с поверхностью хромосом и сливаются воедино. Постепенно восстанавливается наружная и внутренняя ядерные мембраны, восстанавливаются ядерная ламина и ядерные поры. В процессе восстановления ядерной оболочки дискретные мембранные пузырьки, вероятно, соединяются с поверхностью хромосом без распознавания специфических последовательностей нуклеотидов, так как в результате проведенных экспериментов было выявлено, что восстановление ядерной мембраны происходит вокруг молекул ДНК, заимствованных у любого организма, даже у бактериального вируса. Внутри заново сформировавшихся клеточных ядер хроматин переходит в дисперсное состояние, возобновляется синтез РНК, и становятся различимыми ядрышки.

Параллельно с процессами образования ядер дочерних клеток в телофазе начинается и заканчивается разборка микротрубочек веретена деления. Деполимеризация протекает в направлении от полюсов деления к экваториальной плоскости клетки, от минус-концов к плюс-концам. При этом дольше всего сохраняются микротрубочки в средней части веретена деления, которые образуют остаточное тельце Флеминга.

Окончание телофазы преимущественно совпадает с разделением тела материнской клетки - цитокинезом. При этом образуются две или более дочерние клетки. Процессы, ведущие к разделению цитоплазмы, берут свое начало еще в середине анафазы и могут продолжаться после завершения телофазы. Митоз не всегда сопровождается разделением цитоплазмы, поэтому цитокинез не классифицируется в качестве отдельной фазы митотического деления и обычно рассматривается в составе телофазы.

Различают два основных типа цитокинеза: деление поперечной перетяжкой клетки и деление путём образования клеточной пластинки. Плоскость деления клетки детерминируется положением митотического веретена и проходит под прямым углом к длинной оси веретена.

При делении поперечной перетяжкой клетки место разделения цитоплазмы закладывается предварительно ещё в период анафазы, когда в плоскости метафазной пластинки под мембраной клетки возникает сократимое кольцо из актиновых и миозиновых филаментов. В дальнейшем, вследствие активности сократимого кольца, образуется борозда деления, которая постепенно углубляется вплоть до полного разделения клетки. По окончании цитокинеза сократимое кольцо полностью распадается, а плазматическая мембрана стягивается вокруг остаточного тельца Флеминга, состоящего из скопления остатков двух групп полюсных микротрубочек, тесно упакованных вместе с материалом плотного матрикса.

Деление путём образования клеточной пластинки начинается с перемещения мелких ограниченных мембраной пузырьков по направлению к экваториальной плоскости клетки. Здесь они сливаются, образуя дисковидную, окружённую мембраной структуру - раннюю клеточную пластинку. Мелкие пузырьки происходят в основном из аппарата Гольджи и перемещаются к экваториальной плоскости вдоль остаточных полюсных микротрубочек веретена деления, образующих цилиндрическую структуру, называемую фрагмопластом. По мере расширения клеточной пластинки микротрубочки раннего фрагмопласта попутно перемещаются к периферии клетки, где за счёт новых мембранных пузырьков продолжается рост клеточной пластинки вплоть до её окончательного слияния с мембраной материнской клетки. После окончательного разделения дочерних клеток в клеточной пластинке откладываются микрофибриллы целлюлозы, завершая образование жёсткой клеточной стенки.

Митоз - это наиболее распространенный способ деления эукариотических клеток. При митозе геномы каждой из двух образовавшихся клеток идентичны между собой и совпадают с геномом исходной клетки.

Митоз является последним и обычно самым коротким по времени этапом клеточного цикла. С его окончанием жизненный цикл клетки заканчивается и начинаются циклы двух новообразовавшихся.

Диаграмма иллюстрирует длительность этапов клеточного цикла. Буквой M - обозначен митоз. Наибольшая скорость митоза наблюдается в зародышевых клетках, наименьшая - в тканях с высокой степенью дифференциации, если их клетки вообще делятся.

Хотя митоз рассматривают независимо от интерфазы, состоящей из периодов G 1 , S и G 2 , подготовка к нему происходит именно в ней. Самым важным моментом является репликация ДНК, происходящая в синтетическом (S) периоде. После репликации каждая хромосома состоит уже из двух идентичных хроматид. Они сближены по всей своей длине и соединены в области центромеры хромосомы.

В интерфазе хромосомы находятся в ядре и представляют собой клубок тонких очень длинных хроматиновых нитей, которые видны лишь под электронным микроскопом.

В митозе выделяют ряд последовательных фаз, которые также могут называться стадиями или периодами. При классическом упрощенном варианте рассмотрения выделяют четыре фазы. Это профаза, метафаза, анафаза и телофаза . Часто выделяют больше фаз: прометафазу (между профазой и метафазой), препрофазу (характерна для растительных клеток, предшествует профазе).

С митозом связан другой процесс – цитокинез , который протекает в основном в период телофазы. Можно сказать, что цитокинез является как бы составной частью телофазы, или оба процесса идут параллельно. Под цитокинезом понимают разделение цитоплазмы (но не ядра!) родительской клетки. Деление ядра называют кариокинезом , и оно предшествует цитокинезу. Однако при митозе как такового деления ядра не происходит, т. к. сначала распадается одно – родительское, потом образуются два новых – дочерних.

Бывают случаи, когда кариокинез происходит, а цитокинез - нет. В таких случаях образуются многоядерные клетки.

Длительность самого митоза и его фаз индивидуальна, зависит от типа клеток. Обычно профаза и метафаза является самыми длительными периодами.

Средняя продолжительность митоза около двух часов. Животные клетки обычно делятся быстрее, чем клетки растений.

При делении клеток эукариот обязательно образуется двухполюсное веретено деления, состоящее из микротрубочек и связанных с ними белков. Благодаря ему происходит равное распределение наследственного материала между дочерними клетками.

Ниже будет дано описание процессов, которые происходят в клетке в различные фазы митоза. Переход в каждую следующую фазу контролируется в клетке специальными биохимическими контрольными точками, в которых «проверяется», все ли необходимые процессы были правильно завершены. В случае наличия ошибок деление может остановиться, а может - и нет. В последнем случае возникают аномальные клетки.

Фазы митоза

В профазе происходят следующие процессы (в основном параллельно):

    Хромосомы конденсируются

    Ядрышки исчезают

    Ядерная оболочка распадается

    Формируются два полюса веретена деления

Митоз начинается с укорочения хромосом. Составляющие их пары хроматид спирализуются, в результате чего хромосомы сильно укорачиваются и утолщаются. К концу профазы их можно увидеть в световой микроскоп.

Ядрышки исчезают, т. к. образующие их части хромосом (ядрышковые организаторы) находятся уже в спирализованном виде, следовательно, неактивны и не взаимодействуют между собой. Кроме того распадаются ядрышковые белки.

В клетках животных и низших растений центриоли клеточного центра расходятся по полюсам клетки и выступают центрами организации микротрубочек . Хотя у высших растений центриолей нет, микротрубочки также образуются.

От каждого центра организации начинают расходиться короткие (астральные) микротрубочки. Формируется структура похожая на звезду. У растений она не образуется. Их полюса деления более широкие, микротрубочки выходят не из малой, а из относительно широкой области.

Распад ядерной оболочки на мелкие вакуоли знаменует конец профазы.


Справа на микрофотографии зеленым цветом подсвечены микротрубочки, синим - хромосомы, красным – центромеры хромосом.

Также следует отметить, что в период профазы митоза происходи фрагментация ЭПС, она распадается на мелкие вакуоли; аппарат Гольджи распадается на отдельные диктиосомы.

Ключевые процессы прометафазы идут большей часть последовательно:

    Хаотичное расположение и движение хромосом в цитоплазме.

    Соединение их с микротрубочками.

    Движение хромосом в экваториальную плоскость клетки.

Хромосомы оказываются в цитоплазме, они беспорядочно двигаются. Оказавшись на полюсах, у них больше шансов скрепиться с плюс-концом микротрубочки. В конце концов нить прикрепляется к кинетохоре.


Такая кинетохорная микротрубочка начинает нарастать, чем отдаляют хромосому от полюса. В какой-то момент к кинетохоре сестринской хроматиды крепится другая микротрубочка, нарастающая с другого полюса деления. Она тоже начинает толкать хромосому, но уже в противоположном направлении. В результате хромосома становится на экваторе.

Кинетохоры представляют собой белковые образования на центромерах хромосом. Каждая сестринская хроматида имеет свой кинетохор, который «созревает» в профазе.

Кроме астральных и кинетохорных микротрубочек есть те, которые идут от одного полюса к другому, как бы распирают клетку в перпендикулярном экватору направлении.

Признаком начала метафазы является расположение хромосом по экватору , образуется так называемая метафазная, или экваториальная, пластинка . В метафазу хорошо видны количество хромосом, их отличия и то, что они состоят из двух сестринских хроматид, соединенных в районе центромеры.

Хромосомы удерживаются за счет сбалансированных сил натяжения микротрубочек разных полюсов.


    Сестринские хроматиды разделяются, каждая двигается к своему полюсу.

    Полюса удаляются друг от друга.


Анафаза самая короткая фаза митоза. Она начинается, когда центромеры хромосом разделяются на две части. В результате каждая хроматида становится самостоятельной хромосомой и оказывается прикреплена к микротрубочке одного полюса. Нити «тянут» хроматиды к противоположным полюсам. На самом деле микротрубочки разбираются (деполимеризуются), т. е. укорачиваются.

В анафазе животных клеток двигаются не только дочерние хромосомы, но и сами полюса. За счет других микротрубочек они расталкиваются, астральные микротрубочки прикрепляются к мембранам и тоже «тянут».

    Движение хромосом останавливается

    Хромосомы деконденсируются

    Появляются ядрышки

    Восстанавливается ядерная оболочка

    Большая часть микротрубочек исчезает


Телофаза начинается, когда хромосомы перестают двигаться, остановившись у полюсов. Они деспирализуются, становятся длинными и нитевидными.

Микротрубочки веретена деления разрушаются от полюсов к экватору, т. е. со стороны своих минус-концов.

Вокруг хромосом образуется ядерная оболочка путем слияния мембранных пузырьков, на которые в профазе распалось материнское ядро и ЭПС. На каждом полюсе формируется свое дочернее ядро.

Поскольку хромосомы деспирализуются, ядрышковые организаторы становятся активными и появляются ядрышки.

Возобновляется синтез РНК.

Если на полюсах центриоли еще не парные, то около каждой достраивается парная ей. Таким образом на каждом полюсе воссоздается свой клеточный центр, который отойдет в дочернюю клетку.

Обычно телофаза заканчивается разделением цитоплазмы, т. е. цитокинезом.

Цитокинез может начаться еще в анафазе. К началу цитокинеза клеточные органеллы распределяются относительно равномерно по полюсам.

Разделение цитоплазмы растительных и животных клеток происходит по-разному.

У животных клеток благодаря эластичности цитоплазматическая мембрана в экваториальной части клетки начинает впячиваться во внутрь. Образуется борозда, которая в конце концов смыкается. Другими словами, материнская клетка делится перешнуровкой.


В растительных клетках в телофазе нити веретена не исчезают в области экватора. Они сдвигаются ближе к цитоплазматической мембране, их количество увеличивается, и они образуют фрагмопласт . Он состоит из коротких микротрубочек, микрофиламентов, частей ЭПС. Сюда перемещаются рибосомы, митохондрии, комплекс Гольджи. Пузырьки Гольджи и их содержимое на экваторе образуют срединную клеточную пластинку, клеточные стенки и мембрану дочерних клеток.

Значение и функции митоза

Благодаря митозу обеспечивается генетическая стабильность: точное воспроизводство генетического материала в ряду поколений. Ядра новых клеток содержат столько же хромосом, сколько их содержала родительская клетка, и эти хромосомы являются точными копиями родительских (если, конечно, не возникли мутации). Другими словами, дочерние клетки генетически идентичны материнской.

Однако митоз выполняет и ряд других немаловажных функций:

    рост многоклеточного организма,

    бесполое размножение,

    замещение клеток различных тканей у многоклеточных организмов,

    у некоторых видов может происходить регенерация частей тела.

Размножение клеток – один из важнейших биологических процессов, является необходимым условием существования всего живого. Репродукция осуществляется путем деления исходной клетки.

Клетка – это наименьшая морфологическая единица строения любого живого организма, способная к самопроизводству и саморегуляции. Время ее существования от деления до гибели или же последующей репродукции называется клеточным циклом.

Ткани и органы состоят из различных клеток, которые имеют свой период существования. Каждая из них растет и развивается, чтобы обеспечивать жизнедеятельность организма. Длительность митотического периода различна: клетки крови и кожи входят в процесс деления каждые 24 часа, а нейроны способны к репродукции только у новорожденных, а затем вовсе утрачивают способность к размножению.

Существует 2 вида деления — прямое и непрямое . Соматические клетки размножаются непрямым путем, гаметам или половым клеткам присущ мейоз (прямое деление).

Митоз — непрямое деление

Митотический цикл

Митотический цикл включает 2 последовательных этапа: интерфазу и митотическое деление.

Интерфаза (стадия покоя) – подготовка клетки к дальнейшему разделению, где совершается дублирование исходного материала, с последующим его равномерным распределением между новообразованными клетками. Она включает 3 периода:

    • Пресинтетический (G-1) G – от английского gar, то есть промежуток, идет подготовка к последующему синтезу ДНК, выработка ферментов. Экспериментально проводилось ингибирование первого периода, вследствие чего клетка не вступала в следующую фазу.
    • Синтетический (S) — основа клеточного цикла. Происходит репликация хромосом и центриолей клеточного центра. Только после этого клетка может перейти к митозу.
    • Постсинтетический (G-2) или премитотический период — происходит накопление иРНК, которая нужна для наступления собственно митотического этапа. В G-2 периоде синтезируются белки (тубулины) – основная составляющая митотического веретена.

После окончания премитотического периода начинается митотическое деление . Процесс включает 4 фазы:

  1. Профаза – в этот период разрушается ядрышко, растворяется мембрана ядра (нуклеолема), центриоли располагаются на противоположных полюсах, формируя аппарат для деления. Имеет две подфазы:
    • ранняя — видны нитеобразные тела (хромосомы), они еще не четко отделены друг от друга;
    • поздняя — прослеживаются отдельные части хромосом.
  2. Метафаза – начинается с момента разрушения нуклеолемы, когда хромосомы хаотично лежат в цитоплазме и только начинают двигаться к экваториальной плоскости. Между собой все пары хроматид связаны в месте центромеры.
  3. Анафаза – в один момент разобщаются все хромосомы и движутся к противоположным точкам клетки. Это короткая и очень важная фаза, поскольку именно в ней происходит точный раздел генетического материала.
  4. Телофаза – хромосомы останавливаются, снова образуется ядерная мембрана, ядрышка. Посередине образуется перетяжка, она делит тело материнской клетки на две дочерние, завершая митотический процесс. В новообразованных клетках снова начинается G-2 период.

Мейоз — прямое деление


Мейоз — прямое деление

Существует особый процесс репродукции, встречающийся только в половых клетках (гаметах) – это мейоз (прямое деление) . Отличительной чертой для него является отсутствие интерфазы. Мейоз из одной исходной клетки дает четыре, с гаплоидным набором хромосом. Весь процесс прямого деления включает два последовательных этапа, которые состоят из профазы, метафазы, анафазы и телофазы.

Перед началом профазы у половых клетках происходит удвоение исходного материала, таким образом, она становится тетраплоидной.

Профаза 1:

  1. Лептотена — хромосомы просматриваются в виде тоненьких ниток, происходит их укорочение.
  2. Зиготена — стадия конъюгации гомологичных хромосом, как следствие образуются биваленты. Конъюгация важный момент мейоза, хромосомы максимально сближаются друг с другом, чтобы осуществить кроссинговер.
  3. Пахитена — происходит утолщение хромосом, их все большее укорочение, идет кроссинговер (обмен генетической информацией между гомологичными хромосомами, это основа эволюции и наследственной изменчивости).
  4. Диплотена – стадия удвоенных нитей, хромосомы каждого бивалента расходятся, сохраняя связь только в области перекреста (хиазмы).
  5. Диакинез — ДНК начинает конденсироваться, хромосомы становятся совсем короткими и расходятся.

Профаза заканчивается разрушением нуклеолемы и формированием веретена деления.

Метафаза 1 : биваленты расположены посередине клетки.

Анафаза 1 :к противоположным полюсам движутся удвоенные хромосомы.

Телофаза 1 :завершается процесс деления, клетки получают по 23 бивалента.

Без последующего удвоения материала клетка вступает во второй этап деления.

Профаза 2 : снова повторяются все процессы, которые были в профазе 1,а именно конденсация хромосом, что хаотично располагаются между органеллами.

Метафаза 2 : две хроматиды, соединенные в месте перекреста (униваленты), располагаются в экваториальной плоскости, создавая пластинку, названную метафазной.

Анафаза 2: — унивалент разделяется на отдельные хроматиды или монады, и они направляются к разным полюсам клетки.

Телофаза 2 : процесс деления завершается, формируется ядерная оболочка, и каждая клетка получает по 23 хроматиды.

Мейоз – важный механизм в жизни всех организмов. В результате такого деления мы получаем 4 гаплоидные клетки, которые имеют половину нужного набора хроматид. Во время оплодотворения две гаметы образуют полноценную диплоидную клетку, сохраняя присущей ей кариотип.

Сложно представить наше существования без мейотического деления, иначе все организмы с каждым последующим поколение получали бы удвоенные наборы хромосом.