Главная · Боли в желудке · Эпигенетические маркеры. Эпигенетика — Волновая Генетика Wave Genetics. Разработки и планы на будущее

Эпигенетические маркеры. Эпигенетика — Волновая Генетика Wave Genetics. Разработки и планы на будущее

Эпигенетика – направление генетики, сравнительно недавно оформившееся в самостоятельную область исследований. Но уже сегодня этамолодая динамичная наука предлагает революционный взгляд на молекулярные механизмы развития живых систем .

Одна из наиболее дерзких и вдохновляющих эпигенетических гипотез о том, что активность многих генов подвержена влиянию извне, сейчас находит подтверждение во множестве экспериментов на модельных животных. Исследователи осторожно комментируют их результаты, но не исключают, что и Homo sapiens не в полной мере зависит от наследственности, а значит может на нее целенаправленно воздействовать.

В перспективе, если ученые окажутся правы и им удастся подобрать ключи к механизмам управления генами, человеку станут подвластны физические процессы, происходящие в организме. В их числе вполне может оказаться и старение.

На рис. механизм РНК- интерференции.

Молекулы дцРНК могут представлять собой РНК-шпильку или две спаренные комплементарные друг другу цепи РНК.
Длинные молекулы дцРНК нарезаются (процессируются) в клетке на короткие ферментом Dicer : один из его доменов специфически связывает конец молекулы дцРНК (отмечен звездочкой), при этом другой — производит разрывы (отмечены белыми стрелками) в обеих цепях дцРНК.

В результате образуется двунитевая РНК длиной 20-25 нуклеотидов (siРНК), а Dicer переходит к следующему циклу разрезания дцРНК, связываясь с ее новообразованным концом.


Эти siРНК могут включаться в состав комплекса, содержащего белок Argonaute (AGO) . Одна из цепей siРНК в комплексе с белком AGO находит в клетке комплементарные ей молекулы матричной РНК (мРНК). AGO разрезает молекулы мРНК-мишени, в результате чего мРНК деградирует, или останавливает трансляцию мРНК на рибосоме. Короткие РНК могут также подавлять транскрипцию (синтез РНК) гомологичного им по нуклеотидной последовательности гена в ядре.
(рисунок, схема и комментарий / журнал «Природа» №1, 2007 г.)

Возможны и другие, пока не известные, механизмы.
Разница между эпигенетическими и генетическими механизмами наследования в их стабильности, воспроизводимости эффектов. Генетически обусловленные признаки могут воспроизводиться неограниченно долго, пока в соответствующем гене не возникает определенное изменение (мутация).
Индуцированные определенными стимулами эпигенетические изменения обычно воспроизводятся в ряду клеточных поколений в пределах жизни одного организма. Когда они передаются в следующие генерации, то могут воспроизводиться не более 3-4 поколений, а потом, если индуцировавший их стимул исчезает, постепенно сходят на нет.

А как это выглядит на молекулярном уровне? Эпигенетические маркеры , как принято называть эти химические комплексы, находятся не в нуклеотидах, образующих структурную последовательность молекулы ДНК, а на них и непосредственно улавливают определенные сигналы?

Совершенно верно. Эпигенетические маркеры действительно находятся не В нуклеотидах а НА них (метилирование) либо ВНЕ их (ацетилирование гистонов хроматина, микроРНК).
То, что происходит при передаче этих маркеров в следующие поколения, лучше всего объяснить, используя в качестве аналогии новогоднюю елку. Переходящие из поколения в поколение «игрушки» (эпигенетические маркеры) полностью снимаются с нее в процессе формирования бластоциста (8-клеточного зародыша), а потом, в процессе имплантации «надеваются» на те же места, где находились раньше. Это было известно уже давно. А вот то, что стало известно недавно, и что полностью перевернуло наши представления в биологии, имеет отношение к эпигенетическим модификациям, приобретенным на протяжении жизни данного организма.

Например, если у организма под влиянием определенного воздействия (теплового шока, голодания и т.д.), происходит устойчивая индукция эпигенетических изменений («покупка новой игрушки»). Как предполагалось раньше, подобные эпигенетические маркеры бесследно стираются при оплодотворении и образовании зародыша и, таким образом, не передаются потомкам. Оказалось, что это не так. В большом количестве работ последних лет эпигенетические изменения, индуцированные средовыми стрессами у представителей одного поколения, обнаруживались у представителей 3-4 последующих поколений. Это свидетельствует о возможности наследования приобретенных признаков, что до последнего времени считалось абсолютно невозможным.

Каковы важнейшие факторы, вызывающие эпигенетические изменения?

Это все факторы, действующие на протяжении чувствительных (сенситивных) этапов развития. У человека это весь период внутриутробного развития и первые три месяца после рождения. К важнейшим можно отнести питание, вирусные инфекции, курение матери во время беременности, недостаточная наработка витамина D (при инсоляции), материнский стресс.
То есть, они увеличивают адаптацию организма к изменяющимся условиям. А какие «мессенджеры» существуют между факторами окружающей среды и эпигенетическими процессами – пока никому не известно.

Но, кроме того, есть данные, говорящие о том, что наиболее «сенситивный» период, во время которого возможны основные эпигенетические модификации – периконцептуальный (первые два месяца после зачатия). Возможно, действенными могут оказаться попытки направленного вмешательства в эпигенетические процессы даже до зачатия, то есть на половые клетки еще до образования зиготы. Однако эпигеном остается достаточно пластичным и после окончания этапа эмбрионального развития, некоторые исследователи пытаются его корректировать и у взрослых людей.

Например, Мин Джу Фан (Ming Zhu Fang ) и ее коллеги из Университета Рутгерса в Нью-Джерси (США) обнаружили, что у взрослых людей при помощи определенного компонента зеленого чая (антиоксидант — эпигаллокатехингаллат (EGCG)) можно за счет деметилирования ДНК активизировать гены-супрессоры (подавители) опухолевого роста.

Сейчас в США и в Германии в стадии разработки уже находятся около десятка препаратов, в основу создания которых легли результаты недавних исследований эпигенетиков в диагностике раковых заболеваний.
А какие вопросы в эпигенетике сейчас являются ключевыми? Как их решение может продвинуть изучение механизмов (процесса) старения?

Я считаю, что процесс старения по своей сути является эпигенетическим (« как этап онтогенеза»). Исследования в этой области начались только в последние годы, но, если они увенчаются успехом, возможно, человечество получит новое мощное средство для борьбы с болезнями и продления жизни.
Ключевыми сейчас являются вопросы эпигенетической природы заболеваний (например, рака) и разработка новых подходов к их предупреждению и лечению.
Если удастся изучить молекулярные эпигенетические механизмы возрастных заболеваний, можно будет успешно противодействовать их развитию.

Ведь, например, рабочая пчела живет 6 недель, а пчеломатка – 6 лет.
При полной генетической идентичности они различаются только тем, что будущую пчеломатку во время развития кормят маточным молочком на несколько дней больше, чем обычную рабочую пчелу.

В результате у представителей этих пчелиных каст формируются несколько отличные эпигенотипы. И, несмотря на внешнее и биохимическое подобие, длительность их жизни различается в 50 раз!

В процессе исследований в 60-е годы было показано, что уменьшается с возрастом. Но удалось ли ученым продвинуться в ответе на вопрос: почему это происходит?

Есть масса работ, свидетельствующих о том, что особенности и темп старения зависят от условий раннего онтогенеза. Большинство связывает это именно с корригировкой эпигенетических процессов.

Метилирование ДНК действительно уменьшается с возрастом, почему это происходит – пока не известно. Одна из версий – что это следствие адаптации, попытка организма приспособиться как к внешним стрессам, так и ко внутреннему «сверхстрессу» — старению.

Возможно, что «включающиеся» при возрастном деметилировании ДНК – дополнительный адаптивный ресурс, одно из проявлений процесса витаукта (как его назвал выдающийся геронтолог Владимир Вениаминович Фролькис) — физиологического процесса, противодействующего старению.


Чтобы произвести изменения на генном уровне, нужно выявить и заменить мутировавшую «букву» ДНК, может быть участок генов. Пока наиболее перспективный путь для осуществления таких операций — биотехнологический. Но до сих пор это экспериментальное направление и особых прорывов в нем пока нет. Метилирование более пластичный процесс, его проще изменять — в том числе, с помощью фармакологических препаратов. Возможно ли научиться избирательно контролировать ? Что еще для этого еще предстоит сделать?

Метилирование – вряд ли. Оно неспецифично, действует на все «оптом». Можно научить обезьяну лупить по клавишам пианино, и она будет извлекать из него громкие звуки, но «Лунную сонату» исполнит вряд ли. Хотя есть примеры, когда при помощи метилирования удавалось изменить фенотип организма. Наиболее известен пример с мышами – носителями мутантного гена агути (я его уже приводил). Реверсия к нормальному цвету шерсти происходила у этих мышей, потому, что «дефектный» ген был у них «выключен» за счет метилирования.

Но избирательно влиять на экспрессию генов можно, и для этого прекрасно подходят интерферирующие РНК, которые действуют высокоспецифично, только на «собственные» . Такие работы уже проводятся.

Например, недавно американские исследователи пересаживали мышам, у которых была подавлена функция иммунной системы, опухолевые человеческие клетки, которые могли свободно размножаться и метастазировать в иммунодефицитных мышиных организмах. Ученым удалось определить экспрессированные в метастазирующих клетках и, синтезировав соответствующую интерферирующую РНК и введя ее мышам, заблокировать синтез «раковой» информационной РНК и, соответсвенно, подавить опухолевый рост и метастазирование.

То есть, исходя из современных исследований, можно говорить о том, что в основе различных процессов, происходящих в живых организмах, лежат эпигенетические сигналы. Что они из себя представляют? Какие факторы влияют на их формирование? Удается ли ученым эти сигналы дешифровать?

Сигналы могут быть самыми разными. При развитии и стрессе – это сигналы прежде всего гормональной природы, но есть данные, что к экспрессии генов белков теплового шока (HSP70) в культуре клеток может приводить даже влияние низкочастотного электромагнитного поля определенной частоты, интенсивность которого в миллион (!) раз меньше естественного электромагнитного поля. В данном случае это поле, конечно же, действует не «энергетически», а является неким сигнальным «триггером», «запускающим» экспрессию гена. Тут многое еще загадочно.

Например, недавно открытый bystander effect («эффект свидетеля»).
Вкратце его суть такова. Когда мы облучаем культуру клеток, у них возникают реакции широкого спектра, от хромосомных аберраций до радиоадаптивных реакций (способности выдерживать большие дозы облучения). Но если мы удалим все облученные клетки и в оставшуюся питательную среду перенесем другие, необлученные, у них проявятся те же реакции, хотя их никто не облучал.


Предполагается, что облученные клетки выделяют в среду некие эпигенетические «сигнальные» факторы, которые и вызывают в необлученных клетках аналогичные изменения. Какова природа этих факторов – пока никто не знает.

Большие ожидания в улучшении качества жизни и продолжительности жизни связаны с научными достижениями в области изучения стволовых клеток. Удастся ли эпигенетике оправдать возлагающиеся на нее надежды в перепрограммировании клеток? Есть ли для этого серьезные предпосылки?

Если будет разработана надежная методика «эпигенетического перепрограммирования» соматических клеток в стволовые, это, безусловно, окажется революцией в биологии и медицине. Пока в этом направлении сделаны только первые шаги, но они обнадеживают.

Известная сентенция: человек — то, что он ест. Какой эффект оказывает еда на наши ? Например, генетики из Университета Мельбурна , изучавшие механизмы работы клеточной памяти, обнаружили, что после получения одноразовой дозы сахара, клетка в течение нескольких недель хранит соответствующий химический маркер.

Есть даже специальный раздел эпигенетики — Nutritional Epigenetics , занимающийся именно вопросом зависимости эпигенетических процессов от особенностей питания. Особенно важны эти особенности на ранних стадиях развития организма. Например, при вскармливании младенца не материнским молоком, а сухими питательными смесями на основе коровьего молока, в клетках его тела происходят эпигенетиеские изменения, которые, фиксируясь по механизму импринтинга (запечатления), приводят со временем к началу аутоиммунного процесса в бета-клетках поджелудочной железы и, как следствие, заболеванию диабетом I типа.


На рис. развитие диабета (рис. увеличивается при нажатии курсором). При таких аутоиммунных заболеваниях, как диабет 1-го типа, иммунная система человека атакует его собственные органы и ткани.
Некоторые из аутоантител начинают вырабатываться в организме задолго до появления первых симптомов болезни. Их выявление может помочь в оценке риска развития заболевания.

(рисунок из журнала «В МИРЕ НАУКИ» , июль 2007 № 7)

А неполноценное (ограниченное по количеству калорий) питание в период внутриутробного развития – прямой путь к ожирению во взрослом возрасте и диабету II типа.

Это означает, что человек все-таки несет ответственность не только за себя, но и за своих потомков: детей, внуков, правнуков?

Да, конечно, причем в значительно большей степени, чем это было принято считать раньше.

А какова эпигенетическая составляющая в, так называемом, геномном импринтинге?

При геномном импринтинге один и тот же ген фенотипически проявляется по-разному в зависимости от того, от отца или матери он попадает к потомку. То есть, если ген наследуется от матери, то он уже метилирован и не экспрессируется, тогда как ген, наследуемый от отца не метилирован, и экспрессируется.

Наиболее активно изучается геномный импринтинг при развитии различных наследственных заболеваний, которые передаются только от предков определенного пола. Например, ювенильная форма болезни Гентингтона проявляется только при наследовании мутантного аллеля от отца, а атрофическая миотония — от матери.
И это при том, что сами , вызывающие эти заболевания, абсолютно одинаковы независимо от того, наследуются ли они от отца или матери. Различия заключаются в «эпигенетической предыстории», обусловленной их пребыванием в материнском или, наоборот, отцовском, организмах. Другими словами, они несут «эпигенетический отпечаток» пола родителя. При нахождении в организме предка определенного пола они метилируются (функционально репрессируются), а другого – деметилируются (соответственно, экспрессируются), и в таком же состоянии наследуются потомками, приводя (или не приводя) к возникновению определенных заболеваний.

Вы занимались изучением влияния радиации на организм. Известно, что малые дозы радиации положительно влияют на продолжительность жизнь плодовых мушек дрозофил . Возможна ли тренировка человеческого организма малыми дозами облучения? Александра Михайловича Кузина , высказанному им еще в 70-х годах прошлго века, к стимулирующему эффекту приводят дозы, примерно на порядок большие фоновых.

В Керале, например, уровень фона не в 2, а в 7,5 раз превышает «среднеиндийский» уровень, но ни заболеваемость раком, ни смертность от него не отличаются от общей индийской популяции.

(См., напр., последнее на эту тему: Nair RR, Rajan B, Akiba S, Jayalekshmi P, Nair MK, Gangadharan P, Koga T, Morishima H, Nakamura S, Sugahara T. Background radiation and cancer incidence in Kerala, India-Karanagappally cohort study. Health Phys. 2009 Jan;96(1):55-66 )

В одном из исследований Вы проанализировали данные по датам рождения и смерти 105 тысяч киевлян, которые умерли в период с 1990 по 2000 гг. Какие выводы были сделаны?

Наибольшей оказалась продолжительность жизни людей, родившихся в конце года (особенно в декабре), наименьшей – у «апрельских-июльских». Различия между минимальными и максимальными среднемесячными значениями оказались очень велики и достигали 2,6 года у мужчин и 2,3 года у женщин. Результаты, полученные нами, говорят о том, что то, сколько человек проживет, в значительной степени зависит от сезона года, в который он родился.

Возможно ли прикладное применение полученной информации?

Какими могли бы быть рекомендации? Например, зачинать детей весной (лучше всего – в марте), чтобы они были потенциальными долгожителями? Но это абсурд. Природа не дает одним все, а другим – ничего. Так и с «сезонным программированием». Например, в исследованиях, осуществленных во многих странах (Италии, Португалии, Японии), выявлено, что наивысшими интеллектуальными возможностями обладают школьники и студенты, родившиеся в конце весны – начале лета (по нашим данным – «короткожители»). Эти исследования демонстрируют бессмысленность “прикладных” рекомендаций по рождению детей в определенные месяцы года. А вот серьезным поводом для дальнейшего научного исследования механизмов, определяющих «программирование», а также поиска средств направленной коррекции этих механизмов с целью продления жизни в будущем, эти работы, безусловно, являются.

Один из пионеров эпигенетики в России, профессор МГУ Борис Ванюшин в своей работе «Материализация эпигенетики или Небольшие изменения с большими последствиями» написал, что век прошлый был веком генетики, а нынешний — век эпигенетики.

Что позволяет оценивать позиции эпигинетики так оптимистично?

После завершения программы «Геном человека» ученое сообщество было в шоке: оказалось, что информация о строении и функционировании человека заключена в приблизительно 30 тысячах генов (по разным оценкам, это всего около 8-10 мегабайт информации). Специалисты, которые работают в сфере эпигенетики, называют ее «второй информационной системой» и считают, что расшифровка эпигенетических механизмов контроля развития и жизнедеятельности организма приведет к революции в биологии и медицине.

Например, в ряде исследований уже удалось выявить типичные закономерности в таких рисунках. На их основе врачи могут диагностировать формирование онкозаболеваний на ранней стадии.
Но осуществим ли такой проект?

Да, конечно, хотя он очень затратный и вряд ли может быть реализован во время кризиса. А вот в перспективе – вполне.

Еще в 1970 году группа Ванюшина в журнале „Nature“ опубликовала данные о том, что регулирует клеточную дифференцировку, приводя к различиям в экспрессии генов. И Вы об этом говорили. Но если у организма в каждой клетке содержится один и тот же геном, то эпигеном у каждого типа клеток — свой, соответственно и ДНК метилирована по-разному. Учитывая, что типов клеток в человеческом организме порядка около двухсот пятидесяти — объем информации может быть колоссальным.

Именно поэтому проект «Эпигеном человека» и является очень сложным (хоть и не безнадежным) для реализации.

Он считает, что самые незначительные явления могут оказывать огромное влияние на жизнь человека: «Если окружающая среда играет такую роль в изменении нашего генома, тогда мы должны построить мост между биологическими и социальными процессами. Это абсолютно изменит наш взгляд на вещи».

Все настолько серьезно?

Конечно. Сейчас в связи с последними открытиями в области эпигенетики многие ученые говорят о необходимости критического переосмысления многих положений, которые казались либо незыблемыми, либо навсегда отвергнутыми, и даже о необходимости смены основополагающих парадигм в биологии. Подобная революция мышления, безусловно, может сказаться самым существенным образом на всех аспектах жизни людей, начиная от мировоззрения и стиля жизни и заканчивая взрывом открытий в биологии и медицине.

Информация о фенотипе содержится не только в геноме, но и в эпигеноме, который пластичен и может, изменяясь под воздействием определенных средовых стимулов, влиять на проявление генов – ПРОТИВОРЕЧИЕ ЦЕНТРАЛЬНОЙ ДОГМЕ МОЛЕКУЛЯРНОЙ БИОЛОГИИ, СОГЛАСНО КОТОРОЙ ПОТОК ИНФОРМАЦИИ МОЖЕТ ИДТИ ТОЛЬКО ОТ ДНК К БЕЛКАМ, НО НЕ НАОБОРОТ.
Индуцированные в раннем онтогенгезе эпигенетические изменения могут фиксироваться по механизму импринтинга и менять всю последующую судьбу человека (в том числе психотип, метаболизм, предрасположенность к заболеваниям и т.п.) – ЗОДИАКАЛЬНАЯ АСТРОЛОГИЯ.
Причиной эволюции, помимо случайных изменений (мутаций), отбираемых естественным отбором, являются направленные, адаптивные изменения (эпимутации) – КОНЦЕПЦИЯ ТВОРЧЕСКОЙ ЭВОЛЮЦИИ французского философа (Нобелевского лауреата по литературе, 1927 г.) Анри БЕРГСОНА.
Эпимутации могут передаваться от предков потомкам – НАСЛЕДОВАНИЕ ПРИОБРЕТЕННЫХ ПРИЗНАКОВ, ЛАМАРКИЗМ.

На какие актуальные вопросы предстоит ответить м в ближайшем будущем?

Как происходит развитие многоклеточного организма, какова природа сигналов, настолько точно определяющих время возникновения, структуру и функции различных органов тела?

Можно ли, влияя на эпигенетические процессы, изменять организмы в желательном направлении?

Можно ли за счет корректировки эпигенетических процессов предотвращать развитие эпигенетически обусловленных заболеваний, например, диабета и рака?

Какова роль эпигенетических механизмов в процессе старения, можно ли с их помощью продлевать жизнь?

Возможно ли, что непонятные в наше время закономерности эволюционирования живых систем (эволюция «не по Дарвину») объясняются вовлеченностью эпигенетических процессов?

Естественно, это только мой персональный перечень, у других исследователей он может отличаться.

Наука

Что если ваше решение сегодня съесть еще один пакет чипсов или выкурить еще одну сигарету может повлиять не только на ваше здоровье, но и на здоровье ваших детей? Более того, что если ваш образ жизни влияет на здоровье ваших детей, ваших внуков и правнуков? Как оказалось, от нашего повседневного выбора зависит намного больше, чем мы себе представляли.

Традиционный взгляд на ДНК заключается в том, что она выражает себя через наши гены, которые помогают нам выживать, размножаться, развиваться, а также, что ДНК – это постоянная величина, заложенная природой на протяжении многих тысячелетий. Теперь, однако, представляется, что условия окружающей среды, такие как стресс, питание и окружение оказывают влияние на то, как ведет себя не только наша ДНК, но и ДНК наших детей, даже если они еще только в проекте.

Все это относится к сравнительно новой науке, которая называется эпигенетика. Ниже мы рассмотрим пять самых значимых открытий эпигенетики, а также что они означают для нашего здоровья.

5. То, что ДНК может сделать намного важнее, чем ее структура

ДНК – это важная структура, однако, она не ответственна за все. Подобные надзорные функции принадлежат эпигеному. Как описывал Джон Клауд (John Cloud), эпигеном берет бразды правления в верхней части генома и говорит каждому гену работать или нет посредством эпигенетических маркеров. Это основа эпигенетики, изучение изменений в поведении наших генов, которые могут быть переданы, фактически не изменяя наш генетический код. Потенциально, это означает, что наш организм может обладать биологическими реакциями на условия окружающей среды, которые позитивно или негативно сказываются на нашем здоровье, не меняя при этом ДНК.

К примеру, Клауд предлагает проиллюстрировать эпигенетику, рассмотрев близнецов, которые обладают идентичным генетическим материалом. Почему же тогда близнецы не страдают от одних и тех же заболеваний, таких как, к примеру, астма или психические расстройства? Играет ли в данном случае роль эпигенетика? В настоящее время именно этими вопросами и занята наука. Кроме того, исследователи изучают, существуют ли лекарственные препараты или методы, которые можно использовать для того, чтобы в лучшую сторону изменить генетическое поведение.

4. Когда дело доходит до развития заболевания, эпигенетика задает тон

Хорошо, что можно использовать ДНК в качестве козла отпущения, однако, есть и другие факторы, увеличивающие наши шансы на развитие того или иного заболевания, среди которых: экологические проблемы, плохое питание, социальные взаимодействия и воздействия окружающей среды, которые способствуют эпигенетическим изменениям.

Как отмечает Сара Бальдауф (Sarah Baldauf), специалист по эпигенетике, выражение эпигенетических изменений в более позднем возрасте может быть причиной возрастных заболеваний, таких, как, к примеру, болезнь Альцгеймера. "С возрастом, стареют и наши гены, поэтому они могут просто отключиться, что и приводит к болезни", - говорит она. Что это может означать? Исследователи надеются разработать препараты, которые будут управлять эпигенетическими изменениями и которые защитят нас или остановят болезнь.

Далее она приводит один пример работы исследовательской команды, которая обнаружила эпигенетические изменения у мышей, приведшие к развитию у грызунов волчанки. Однако, им удалось полностью вылечить мышей, создав лекарственный препарат, который вызвал эпигенетические изменения.

3. Эпигенетика тесно связана с развитием рака

Ранее раковые заболевания уже были включены в список потенциальных болезней, связанных с эпигенетическими изменениями. Эта тема заслуживает дальнейшего обсуждения из-за вероятности ее близкой связи с наукой.

Исследователи рассматривают возможность того, что изменения в эпигеноме вызывают рост опухоли. Некоторое время назад эксперты полагали, что рак связан либо с мутациями, из-за которых наши клетки перестают нас защищать либо с потерей этой защиты при делении клеток. Это правда, однако, существует и третья причина. Опухоли могут расти, потому что хорошие клетки с отличной защитой получают эпигенетический сигнал не выполнять свою работу. С помощью лекарственных препаратов и даже меняя образ жизни, мы, возможно, в будущем сможем изменить эпигенетическое поведение, и вернуть эти защитные клетки к работе.

На недавней конференции американского института раковых исследований была рассмотрена связь между эпигенетикой и раком. К примеру, один из специалистов Родерик Дэшвуд (Roderick Dashwood) описывал исследование, которое показало, что с помощью определенных продуктов питания, таких как брокколи, удалось "выключить" работу особых белков, которые развиваются в организме человека вместе с раком и не позволяют клетками умереть естественным путем.

2. Дородовой уход необходим для того, чтобы следить за эпигенетическими изменениями

Что произойдет, если беременную крысу подвергать воздействию инсектицидов и фунгицидов? Повлияет ли это на ее потомство? Безусловно, да. В ходе исследования во время такого воздействия произошли эпигенетические изменения, которые привели к увеличению случаев мужского бесплодия или же способствовали очень слабому производству спермы. Более того, эти эпигенетические изменения сохранились на протяжении следующих четырех (!) поколений. Поэтому дородовой уход является ключом к здоровью наших потомков и будущих поколений.

Таким образом, если дородовой уход важен, есть ли определенный период беременности, во время которого нужен особый контроль? Похоже, что так. Проведенное колумбийским университетом исследование связывает недостаточное питание во время беременности с негативными последствиями для здоровья ребенка на протяжении всей его жизни. Однако, еще более интригующим оказался тот факт, что особенно опасно недоедание в первые 10 недель беременности.

1. Эпигенетика связана не только с экологией, но и социальными взаимодействиями

Когда дело доходит до эпигенетики, подсчет того, сколько раз в день вы обнимаете своего ребенка, обретает совершенно иной смысл. Похоже, что эпигенетические изменения также связаны с социальными и поведенческими взаимодействиями.

Одно из проведенных исследований показало, что от того, как крыса ухаживает за своими детенышами, зависит поведение малышей в будущем и их эпигенетические маркеры. Более того, команда исследователей показала, что они могут восполнить нехватку заботы при помощи специальных лекарственных препаратов, тем самым меняя эпигенетический фон.

Что касается людей, то когда в их жизни происходят стрессовые ситуации, они также накладывают свой отпечаток на то, как ведет себя наш геном. Кроме того, эпигенетические изменения сохраняются даже после того, как гормон стресса покидает наш организм.

Почему некоторые курильщики живут более ста лет, а люди, ведущие здоровый образ жизни, могут тяжело болеть? На эти вопросы может ответить эпигенетика - наука, исследующая изменение активности генов, не затрагивающих структуру ДНК. T&P публикует обзор книги немецкого нейробиолога Петера Шпорка об одной из самых перспективных научных дисциплин.

Появление эпигенетики

Петер Шпорк пишет о сравнительно молодой науке. Название «эпигенетика» появилось в 1942 году, когда Конрад Уоддингтон, биолог из Англии, заложивший основы системной биологии, предложил этот термин как среднее между «генетикой» и аристотелевским «эпигенезом» - учением о последовательном эмбриональном развитии. Мы знаем о классическом эксперименте Аристотеля с разбиванием куриных яиц - с помощью него философу удалось установить, что сначала в зародыше формируется сердце, а возникновение внутренних частей предшествует развитию наружных. В 40-х, когда ученым была еще непонятна физическая природа генома, предположение Уоддингтона о эпигенетическом ландшафте было революционным.

По аналогии с географическим ландшафтом, на котором есть реки, текущие от истока к устью, можно представить себе развитие организма как течение реки - исток в данном случае станет зачатием, а устье - зрелостью. Однако не стоит забывать о рельефе, по которому пролегает речное русло: этой метафорой можно обозначить внешние условия, которые влияют на развитие организма. Лавина, камнепад или даже землетрясение могут иначе направить течение реки. Приспосабливаясь к новым условиям, организм претерпевает мутации, что составляет основу изменчивости - важнейшую часть биологической эволюции.

«То, что клетки передают по наследству только свой геном, больше не отвечает научной действительности»

Петер Шпорк

Нейрофизиолог

В 60-х и 70-х началось активное изучение генов. Теперь мы все знаем, что многие гены владеют информацией о структуре клетки и способах ее функционирования и активны в течение всей жизни человека. Однако ученые столкнулись с тем, что многие гены работают непостоянно, а режим их включения зависит от внешних факторов. Как раз такими механизмами и занимается эпигенетика - наука, исследующая изменение активности генов, не затрагивающее структуру ДНК. Таким образом, мнение о том, что все функции человеческого организма обусловлены последовательностью цепочки ДНК, опровергается эпигенетикой. Иными словами, эпигенетика может объяснить, как окружающая среда может влиять на включение и выключение наших генов. Первая Нобелевская премия за открытия в области эпигенетики была присуждена только в 2006 году - это были ученые из США.

Второй код

Шпорк сравнивает человеческие гены с компьютерным «железом». Хорошо иметь дорогую видеокарту и мощный процессор. Но что насчет софта? Разве без него можно выполнить самое элементарное действие - набрать текст, посмотреть изображение? Эпигенетики занимаются как раз программным обеспечением нашего организма. В ближайшей перспективе ученые намерены исследовать, как, изменяя свой образ жизни, мы можем научиться управлять нашими генами и продлевать жизнь - свою и наших потомков.

Генетика и ее печально известная прикладная отрасль, евгеника, предполагали, что только генетический материал влияет на состояние развития организма. Рэнди Джертл , биолог из Дюкского университета (Дарем, США), опровергнул это с помощью наглядного эксперимента: он давал генетически идентичным лабораторным мышам во время беременности различный корм. Мыши, родившиеся от матерей, употребляющих в пищу корм с биодобавками, были здоровыми и бурыми, а мыши, лишенные такого корма, рождались желтыми и болезненными. Эти изменения будут в дальнейшем влиять на всю последующую жизнь животных: плохое питание отключило в них некоторые гены, определяющие цвет шерсти и сопротивляемость болезням. Гены эмбрионов на момент кормления были уже сформированными и не подвергались воздействию - следовательно, воздействию подвергалось что-то еще. Как раз этими механизмами воздействия и занимается эпигенетика - «над-генетика», изучающая эпигеномы, расположенные как бы над геномом клеток.

«Благодаря эпигеному клетки обладают памятью»

Ренато Паро

Профессор Швейцарской высшей технической школы Цюриха

Правда в том, что если бы только геном, состоящий из всего лишь четырех различных компонентов, своего рода «монтажная схема», определял бы наше развитие, то мы бы были все примерно одинаковые. «Даже шимпанзе мало чем отличались бы от нас», - пишет Шпорк. Именно благодаря эпигеному, «второму коду», наш организм способен выстраивать клетки разных типов - волоса, печени, мозга, - хотя в них один и тот же геном. Эпигеном, таким образом, - это указания насчет того, как управлять геномом. Именно он отвечает за активацию и дезактивацию определенных генов и программирует скорость старения клеток. Очевидно, что, если бы каждая клетка одновременно считывала все свои гены и синтезировала все возможные белки, организм не смог бы функционировать. То, чему нас учили в школе, что клетки передают по наследству только свой геном, больше не отвечает научной действительности. На самом деле клетки наследуют и эпигеном.

«Эпигенетические переключатели определяют, какие именно гены клетка в принципе может использовать, а какие - нет. Таким образом эпигеном создает грамматику, структурирующую текст жизни».

Петер Шпорк

Нейрофизиолог

Влияние эпигенетики на геронтологию огромно. Теперь ученые знают, что несмотря на существование неизменного генома, судьба человека в большой степени в его собственных руках. «Измените стиль жизни - и вы положите начало цепочке биохимических изменений, которые станут незаметно, но неуклонно помогать и вам, и, возможно, всем вашим потомкам до конца их жизни на Земле», - предлагает Шпорк. И, несмотря на то, что это высказывание походит на то, что обещают все мировые религии, оно имеет под собой строгие биологические основания.

После того как в 2003 году эпохально завершился проект «Геном человека», ученые столкнулись с новыми проблемами. Фармацевты уже надеялись на новые генные препараты, но оказалось, что сбой функции какого-то определенного гена редко приводит к развитию болезни, которую можно диагностировать заранее. Все оказалось куда сложнее, чем выглядело в начале. Ученые узнали, что геном не устойчивый текст. Число генов может увеличиваться, например, в 16 раз, а сами гены - модифицироваться, дробиться и снова состыковываться: такие гены называются транспозонами .

Ученые делали ставки на своеобразном генном тотализаторе - они должны были угадать, сколько генов будет у человека по окончанию исследований. Оценки разнились - количество генов прыгало от 27 до 160 тысяч. После окончания секвенирования генома человека в 2003 году выяснилось, что генетический код амебы в двести раз длиннее человеческого, - последний составляет лишь примерно 22 тысячи генов. Почему же сложность организмов не отражается в их ДНК? Или, может быть, у более сложных организмов ДНК более компактная? Но что тогда делать с дрожжами, у которых ДНК в двести раз короче человеческой?

Эпигенетика ответила на вопрос о том, как у человека может быть генов меньше, чем у амебы или сорняка: высшие организмы способны синтезировать из одной «схемы» множество вариантов белков. Иными словами, все дело в генной регуляции - она появляется только у сложных организмов, и чем она сложнее, тем разнообразнее устроена его жизнедеятельность. Таким образом, несмотря на небольшое количество генов, человек, благодаря своему эпигеному, гораздо сложнее других организмов. Этот же тезис эпигенетиков отвечает и на другой популярный вопрос: почему мы мало отличаемся от шимпанзе, если совпадение наших геномов - 98,7%? Несмотря на то, что различия в генетическом материале минимальны, эпигенетические различия - огромны.

«Раз окружающая среда влияет на изменение наших эпигеномов, разрыв между биологическими и социальными процессами практически ликвидируется. И это в корне меняет наш взгляд на жизнь»

Ведущий специалист Университета МакДжил, Монреаль

Еще один вопрос, который можно было задать эволюционным биологам еще несколько десятилетий назад, - как человек приспосабливается к внешней среде в долгосрочной перспективе? Ранее наука знала только о двух крайностях - эволюции, которая требует тысяч лет, и гормональных изменениях, работающих сверхбыстро. Однако между ними оказался немаловажный срединный механизм - эпигенетические переключатели. Именно они формируют наше приспособление к окружающей среде на срок, соизмеримый со сроком человеческой жизни. Особенно важно, что изменения, произведенные ими, будут действовать долгосрочно - даже если в клетку не будут поступать новые сигналы. Так становится понятнее, почему питание нашей матери или ранние детские переживания могут влиять на всю дальнейшую жизнь. Но не стоит думать, что эпигеном - абсолютно неподвижная система. Человек способен менять свойства своего организма, как в лучшую, так и в худшую сторону.

Как эпигеном действует на
бабочек, муравьев и пчел

Нужно заметить, что эпигенетическая система - привилегия не только человека. Петер Шпорк описывает, как в детстве он наблюдал за превращениями гусеницы бражника. Примитивная гусеница смогла заново переродиться в прекрасную бабочку с помощью эпигенетических изменений. За зиму миллиарды клеток гусеницы трансформировались - изменились ее метильные и ацетильные группы, перестроилась РНК, изменилась форма гистонов - все эти изменения имели отношение не к генетике, а к эпигенетике. В ДНК каждой клетки бражника существуют генетические коды и гусеницы и бабочки. Но переключение между двумя этими схемами полностью зависит от эпигенетического кода.

«Геном и белки функционируют как одна огромная библиотека: ДНК содержит тексты, а эпигенетические структуры выполняют функции библиотекарей, каталогов и указателей, распоряжающихся информацией и упорядочивающих ее».

Петер Шпорк

Нейрофизиолог

Другой пример важности эпигенома - медоносные пчелы, развивающиеся поначалу как одинаковые личинки. На момент, когда они выбираются из яиц, природой еще не решено, кто из них будет маткой, а кто - рабочей пчелой. Все они обладают потенциалом стать пчелиной королевой. За три дня после вылупления, когда пчелы-няньки кормят личинок маточным молоком, особи дифференцируются. Это напрямую зависит от питания - некоторых личинок постепенно переводят на корм из обычной пыльцы и нектара. Но других вплоть до окукливания кормят «королевским желе», которое содержит витамины и фолиевую кислоту , влияющие на эпигеном. В 2008 году группе австралийских исследователей удалось получить пчелиных маток без молочка - они только манипулировали эпигенетическими переключателями.

Влияние внешней среды и эпигеном важны и для муравьев. Самые большие из них - солдаты - в триста раз больше, чем садовники, которые ухаживают за грибами. Несмотря на такие различия, все эти муравьи - один вид и, мало того, «единоутробные» братья и сестры. Ученые склоняются к тому, что температура и влажность места, в котором развивается личинка муравья, и есть решающий фактор, определяющий его будущую «касту». Восприимчивый эпигеном муравьев, считывая сигналы внешней среды, включает различные гены, и муравей развивается одним из возможных способов.

Как эпигенетика позволит прожить дольше

Впрочем, для всего человечества актуальнее всего вопрос о том, как открытия эпигенетики повлияют на продолжительность жизни человека. «Почему от рака умирают люди, которые регулярно занимались спортом, никогда не курили и всю жизнь придерживались здорового питания? Почему одни уже в семьдесят лет страдают болезнью Альцгеймера, а другие встречают свой столетний юбилей в здравом уме и трезвой памяти?» - задается вопросами Петер Шпорк. Важно, что эпигенетические исследования показали - очень редко один измененный, «неправильный» ген отвечает за заболевание. Роль генов в заболеваниях ожирением, диабетом или инфарктом сильно преувеличена - для расстройства должны сойтись множество факторов. Болезни возникают не только из-за плохой наследственности, но и из-за влияния окружающей среды - следовательно, то, что мы едим в течение жизни, может изменить эпигенетические системы. Мало того, эпигенетические переключатели могут обезвредить уже мутировавшие гены. С помощью такого «лечения» наш эпигеном (если он хорошо работает) снижает риск возникновения, к примеру, рака или сердечной недостаточности. Однако эпигеном может и навредить, выключая нужные гены.

Ответ на вопрос о том, почему люди, ведущие здоровый образ жизни, могут тяжело болеть, кроется в особенностях эпигенетических переключателей: большинство из них действуют уже в утробе матери или в первые годы жизни. Самые первые решения эпигенетической системы могут влиять на человека всю его жизнь, так как на ранней стадии эпигеном как бы закладывает «русло» эпигенетического ландшафта, обуславливая свой дальнейший путь развития.

«Долины эпигенетического ландшафта со временем только углубляются. Это означает, что в преклонных годах на наше здоровье порой гораздо сильнее влияет рацион нашей матери в период беременности, чем пища в текущий момент жизни. А смесь сигнальных веществ, поступавших в наш мозг за несколько месяцев до рождения и уже после нашего появления на свет, часто определяет личность сильнее, чем воспитание, которое мы получаем в течение многих последующих лет».

Петер Шпорк

Нейрофизиолог

Ученые выяснили, что главная цель эпигеномов - сразу качественно «заморозить» реакции на окружающую среду, чтобы решения, когда-то принятые организмом, сохранялись как можно дольше. Примером может послужить развитие потовых желез - у всех людей есть одинаковое их количество, но все потеют по-разному. Это происходит из-за того, что первые три года жизни потовые железы не активны, а сколько из них активируется, зависит от температуры окружающей среды. Те, кто родился, например, в Африке, будут больше потеть на протяжении жизни - где бы они ни жили, - чем рожденные в Германии. Но когда даже в теплую погоду родители кутают детей, природный механизм нарушается, и дети на всю жизнь остаются потливыми.

Так происходит эпигенетическое программирование в раннем детстве, но не стоит думать, что человек обречен, если не предпринять позитивные шаги в самом раннем возрасте. Для людей, что не обладают хорошим иммунитетом, полезно предпринимать большие усилия, чтобы перепрограммировать свой «софт». К примеру, врачи, для того, чтобы избежать врожденной болезни детей Spina bifida - синдрома расщепленного позвоночника - советуют женщинам еще до зачатия начать принимать фолиевую кислоту, которую добавляют в соль. В США и Канаде ее даже предписано законом добавлять в муку. Позитивное воздействие фолиевой кислоты связано с тем, что она стимулирует работу эпигенетического фермента: так, помогая своей эпигенетической системе, можно подавить предрасположенность к болезням.

Петер Шпорк не советует впадать в панику, пообедав однажды в фастфуде: здоровая еда должна стать нормой, но не обязательно делать из нее культ. Пищевое разнообразие куда лучше витаминных препаратов: свежие овощи и фрукты быстрее обогатят наш организм. Но если говорить о природных стимуляторах эпигенома, то можно составить своеобразное «эпигенетическое меню». В него обязательно будут входить соя, куркума и зеленый чай. Именно эти продукты лучше всего стимулируют систему ферментов эпигенома так, чтобы он производил позитивные изменения в наших клетках. Впрочем, не стоит забывать о токсинах, которые однозначно вредны для эпигенетической системы, особенно на ранних этапах развития. Это, безусловно, пестициды, никотин, алкоголь и большие дозы кофеина, а также соединение бисфенол-А, содержащееся в пластиковых бутылках и во внутреннем покрытии жестяных банок. Это вещество переходит из полимеров прямо в продукты питания.

Острова долголетия

Ученые-эпигенетики, сравнивая биографии долгожителей, обнаружили интересную закономерность. Например, что общего между 122-летней Жанной-Луизой Кальман из Франции, которая бросила курить в 119 (только из-за того, что не могла самостоятельно закурить) и пила портвейн, и жителями японского архипелага Рюкю, живущих до ста лет? Как выясняется, почти все долгожители обитали в местах с мягким климатом, много времени проводили на свежем воздухе, двигались и питались здоровой пищей. Еще один фактор - зачастую долгожители едят маленькими порциями, и скорее немного недоедают, уходя из-за стола чуть-чуть голодными. Вкупе с физической и умственной активностью такая стратегия может сделать из человека не только долгожителя, но и здорового: такие люди не болеют даже в старости, и умирают в основном от износа органов. Нужно заметить, что среди долгожителей было мало фанатиков здоровья: никто из них не вел аскетический образ жизни, а некоторые из них, такие как Кальман, даже курили - впрочем, эта привычка не смогла ей повредить скорее из-за силы ее эпигенетической системы.

Подытоживая свою книгу, Петер Шпорк напоминает об исследованиях, проводимых среди голодающих во время Второй мировой в Нидерландах. Благодаря метрическим книгам мы знаем, что многие дети, которых вынашивали в голодное время, рождались с меньшей продолжительностью жизни и низким ростом. Цепочка продолжалась: эти дети, вырастая, рожали, в свою очередь, тоже очень маленьких детей, хотя жили в условиях изобилия. Эпигенетические изменения не стоит недооценивать: нужно помнить, что весь вред, что мы причиняем себе, будет действовать и на последующие поколения, передаваясь через эпигенетическую систему, поэтому каждый из нас несет колоссальную ответственность.

Но как же тогда нужно жить? Шпорк предупреждает фанатиков здорового образа жизни: алкоголь, картошка фри и ленивые вечера перед компьютером не нужно вычеркивать из жизни, так как это может привести к более вредным стрессам. Главное, чтобы все это не стало привычкой и образом жизни. Эпигенетика не культ вегетарианства или абстиненции; она лишь указывает на то, что в жизни есть критические периоды развития, когда наши эпигеномы очень чутко откликаются на раздражители внешней среды. Поэтому беременным женщинам нужно особенно внимательно относиться к своему здоровью, больным людям - положительно влиять на свое здоровье при помощи физических и умственных усилий, а здоровым - следить за собой и своими близкими и думать о здоровье внуков.

«Нам самим и нашим родителям в значительной мере предоставлено решать, куда направить свой геном - а возможно, даже геном своих потомков».

Петер Шпорк

Статья на конкурс «био/мол/текст»: Эпигенетика — это бурно развивающееся в последние годы направление современной науки. Наиболее очевидна роль эпигенетических механизмов в процессах развития, когда из клеток раннего зародыша, ДНК которых совершенно одинакова, возникает множество различающихся между собой специализированных клеток взрослого организма. Оказалось, однако, что эта роль не исчерпывается только развитием и может проявляться и после его завершения. Исследования последних лет показали, что здоровье человека может в значительной степени зависеть от того, в каких условиях происходило его раннее развитие. Выявлено также, что эпигенетические модификации могут передаваться и последующим поколениям, влияя на различные фенотипические проявления у детей и даже внуков.


Стремительное изучение эпигенетики приближает нас к пониманию самых фундаментальных принципов устройства и функционирования внутренних систем всех живых организмов.

Знаете ли вы, что наши клетки обладают памятью? Они помнят не только то, что вы обычно едите на завтрак, но и чем питались во время беременности ваши мама и бабушка. Клетки хорошо помнят, занимаетесь ли вы спортом и как часто употребляете алкоголь. Память клеток хранит в себе ваши встречи с вирусами* и то, насколько сильно вас любили в детстве. Клеточная память решает, будете ли вы склонны к ожирению и депрессиям. И во многом благодаря клеточной памяти мы отличаемся от шимпанзе, хотя имеем с ним примерно одинаковый состав генома. Эту удивительную особенность наших клеток помогла понять наука эпигенетика .

* — Наиболее виртуозно это делает иммунная система, сохраняя антитела к большинству вирусов, когда-либо вторгавшихся в организм. Именно индивидуальные профили этих антител теперь можно «читать» с помощью метода ВироСкан, причем зафиксировать всю историю иммунных баталий можно по одному микролитру крови: «Следствие ведет ВироСкан. Новый подход выявляет большинство вирусов, с которыми сталкивался человек»

Эпигенетические ландшафты

Эпигенетика — довольно молодое направление современной науки. И пока она не так широко известна, как ее «родная сестра» — генетика. В переводе с греческого приставка «эпи-» означает «над», «выше», «поверх». Если генетика изучает процессы, которые ведут к изменениям в наших генах, в ДНК, то эпигенетика исследует изменения активности генов, при которых первичная структура ДНК остается прежней. Эпигенетика похожа на «командира», который в ответ на внешние стимулы (такие, как питание, эмоциональные стрессы, физические нагрузки) отдает приказы нашим генам усилить или, наоборот, ослабить их активность.*


* — Подробно об эпигенетических процессах и связанных с ними явлениях рассказано в статьях: «Развитие и эпигенетика, или история о минотавре» , «Эпигенетические часы: сколько лет вашему метилому?» , «Обо всех РНК на свете, больших и малых» , «Шестое ДНК-основание: от открытия до признания» .

Пожалуй, самое ёмкое и в то же время точное определение принадлежит выдающемуся английскому биологу, нобелевскому лауреату Питеру Медавару : «Генетика предполагает, а эпигенетика располагает».

Развитие эпигенетики как отдельного направления молекулярной биологии началось в сороковых годах прошлого столетия. Тогда английский генетик Конрад Уоддингтон сформулировал концепцию «эпигенетического ландшафта» (рис. 1), объясняющую процесс формирования организма . Прошло несколько десятилетий, прежде чем эпигенетику стали воспринимать серьезно, как новую научную дисциплину. Такое положение сохранялось долго потому, что эпигенетика своими выводами подрывала устоявшиеся в генетике догмы. Например, относительно наследования приобретенных признаков. Почти зеркально повторилась ситуация с открытием Б. Мак-Клинток мобильных элементов генома, в которые полвека мало кто хотел верить. Но после серии определяющих работ, проведенных в 70-х годах прошлого века Джоном Гёрдоном , Робином Холлидеем, Борисом Ванюшиным и другими, эпигенетику стали наконец воспринимать всерьез . И уже недавно, на рубеже тысячелетий, был проведен ряд блестящих экспериментов, после которых стало ясно, что эпигенетические механизмы влияния на геном не только играют важнейшую роль в работе систем организма, но и могут наследоваться несколькими поколениями. Сразу в нескольких лабораториях были получены свидетельства, заставившие генетиков сильно задуматься.

Рисунок 1. К.Х. Уоддингтон и его рисунок «эпигенетического ландшафта». Шарик вверху обозначает первоначальные неспециализированные клетки зародыша. Под воздействием генетических и эпигенетических сигналов клетке будет задана траектория онтогенеза (развития), и она станет специализированной — клеткой сердца, печени и т.д. Рисунок с сайтаwww.computerra.ru .


Так, в 1998 году Р. Паро и Д. Кавалли проводили опыты с трансгенными линиями дрозофил, подвергая их тепловому воздействию. После этого дрозофилы меняли цвет глаз, и этот эффект — уже без внешнего влияния — сохранялся у нескольких поколений (рис. 2). Как обнаружилось, хромосомный элемент Fab-7 передавал эпигенетическую наследственность в процессе как митоза, так и мейоза .

Рисунок 2. Глаза двух дрозофил.
Разная окраска глаз обусловлена
эпигенетическими изменениями.

Рисунок с сайтаwww.ethlife.ethz.ch .


В 2003 году американские ученые из Дюкского университета Р. Джиртл и Р. Уотерленд провели эксперимент с беременными трансгенными мышами агути (yellow agouti (Avy) mouse), которые имели желтую шерсть и предрасположенность к ожирению (рис. 3). Они добавляли в корм мышам фолиевую кислоту, витамин В12, холин и метионин. В результате этого появилось нормальное потомство без отклонений . Пищевые факторы, выступавшие донорами метильных групп, путем метилирования ДНК нейтрализовали ген агути, вызывавший отклонения: фенотип их Avy-потомства изменялся за счет метилирования CpG-динуклеотидов в локусе Avy. Причем воздействие диеты сохранялось и в нескольких последующих поколениях: детеныши мышей агути, родившиеся нормальными благодаря пищевым добавкам, и сами рожали нормальных мышей. Хотя питание у них было уже обычное, не обогащенное метильными группами.

Рисунок 3. Подопытные мыши из лаборатории Рэнди Джиртла.
Видно, как происходит изменение в окрасе шерсти детенышей в зависимости
от приема матерью доноров метильных групп — фолиевой кислоты,
витамина В 12 , холина и метионина.Рисунок из .


Вслед за этим, в 2005 году, журнал Science опубликовал работу Майкла Скиннера и его коллег из Вашингтонского университета. Они обнаружили, что, если в пищу беременным самкам крыс добавлять пестицид винклозолин, у их потомков мужского пола резко снижается количество и жизнеспособность сперматозоидов. И эти эффекты сохранялись на протяжении четырех поколений. Была четко установлена их связь с эпигеномом: ухудшение репродуктивной функции коррелировало с изменениями метилирования ДНК в зародышевой линии .

Ученые были вынуждены сделать сенсационный вывод: вызванные стрессом эпигенетические изменения, не затронувшие последовательность нуклеотидов ДНК, могут закрепляться и передаваться следующим поколениям!

Судьба записана не только в генах

Позже выяснилось, что и у людей влияние эпигенетических механизмов (рис. 4, 5) так же велико. Исследования, о которых дальше пойдет речь, приобрели широкую известность — они упоминаются почти в каждой научной работе по эпигенетике. Ученые из Голландии и США в конце 2000-х годов обследовали пожилых голландцев, родившихся сразу после Второй мировой войны. Период беременности их матерей совпал с очень тяжелым временем, когда в Голландии зимой 1944-1945 гг. был настоящий голод. Ученым удалось установить: сильный эмоциональный стресс и полуголодный рацион матерей самым негативным образом повлиял на здоровье будущих детей. Родившись с малым весом, они во взрослой жизни в несколько раз чаще были подвержены болезням сердца, ожирению и диабету, чем их соотечественники, родившиеся на год-два позже (или раньше) .

Анализ их генома показал отсутствие метилирования ДНК именно в тех участках, где оно обеспечивает сохранность хорошего здоровья. Так, у пожилых голландцев, чьи матери пережили голод, существенно снижалось метилирование гена инсулиноподобного фактора роста 2 (ИФР-2), из-за чего количество ИФР-2 в крови повышалось. А этот фактор, как известно, имеет обратную связь с продолжительностью жизни: чем выше в организме уровень ИФР, тем жизнь короче .

Рисунок 4. Структура хроматина и механизмы эпигенетических модификаций. Хроматин — комплекс белков и нуклеотидов, обеспечивающий надежное хранение и нормальную работу ДНК. В наших клетках упаковка ДНК похожа на склад бижутерии . Иначе никак невозможно уложить спираль ДНК длиной в два метра в одно маленькое клеточное ядро. Нить ДНК наматывается в полтора оборота на многочисленные «бусинки», которые называются нуклеосомами. Этинуклеосомы , в свою очередь, состоят из нескольких специальных белков,гистонов . Гистоны имеют «хвостики» — белковые наросты, которые могут удлиняться или укорачиваться особыми ферментами. Длина такого «хвоста» напрямую влияет на уровень активности генов, находящихся вблизи него.Рисунок из .


Новозеландским ученым П. Глюкману и М. Хансону удалось сформулировать логическое объяснение взаимосвязи количества пищи во время беременности матери со здоровьем ребенка. В 2004 году в журнале Science вышла их статья, в которой они сформулировали «гипотезу несоответствия» (mismatch hypothesis) . В соответствии с ней в развивающемся организме на эпигенетическом уровне может происходить прогностическая адаптация к условиям обитания, которые ожидаются после рождения. Если прогноз подтверждается — это увеличивает шансы организма на выживание в мире, где ему предстоит жить, если нет — адаптация становится дезадаптацией, то есть болезнью. Например, если во время внутриутробного развития плод получает недостаточное количество пищи, в нем происходят метаболические перестройки, направленные на запасание пищевых ресурсов впрок, «на черный день».

Если после рождения пищи действительно мало, это помогает организму выжить. Если же мир, в который попадает человек, оказывается более благополучным, чем прогнозировалось, такой «запасливый» характер метаболизма может привести к ожирению и диабету 2-го типа на поздних этапах жизни. Именно этот вариант мы сегодня чаще всего и наблюдаем.

Рисунок 5. Рентгеновская кристаллическая структура нуклеосомы. Гистоны показаны желтым, красным, синим и зеленым цветами. Рисунок из .


В целом, можно уверенно сказать, что период беременности и первых месяцев жизни является самым важным в жизни всех млекопитающих, в том числе и человека. Все имеющиеся сегодня данные говорят, что именно в этот период закладываются все основы не только физического, но и психического здоровья человека. И влияние этого начального периода жизни настолько велико, что не исчезает до самой глубокой старости, формируя — так или иначе — судьбу человека. Как метко выразился немецкий нейробиолог Петер Шпорк, «в преклонных годах на наше здоровье порой гораздо сильнее влияет рацион нашей матери в период беременности, чем пища в текущий момент жизни» . В это трудно поверить, но факты прямо говорят об этом.

Эпигенетика помогла сделать очень важный вывод: от того, что ела мама во время беременности, в каком психологическом состоянии она находилась и сколько времени уделяла малышу в первые годы после его рождения, будет зависеть буквально вся дальнейшая жизнь ребенка. В это время закладываются основы всего.

Метилирование ДНК

Рисунок 6. Метилирование цитозинового основания ДНК. Схема метилированного цитозина. Зеленым овалом со стрелкой показан главный фермент метилирования — ДНК-метилтрансфера́за (DNMT), красным кругом — метильная группа (—СН 3). Рисунок с сайта www.myshared.ru .


Наиболее изученным механизмом эпигенетической регуляции активности генов является процесс метилирования, который заключается в добавлении метильной группы (одного атома углерода и трех атомов водорода, —CH3) к цитозиновым основаниям ДНК, находящимся в составе CpG-динуклеотида (рис. 6). Уже известно, что метилирование ДНК у эукариот видоспецифично, и у беспозвоночных степень метилирования генома очень незначительна по сравнению с позвоночными и растениями. Основы понимания функций метилирования были заложены еще полвека назад профессором МГУ Б.Ф. Ванюшиным и его коллегами. Хотя обычно считается (и вполне правильно), что метилирование «выключает» ген, не давая возможности регуляторным белкам связаться с ДНК, было обнаружено и обратное явление. Иногда метилирование ДНК выступает обязательным условием взаимодействия с белками — были описаны специальные m5CрG-связывающие белки .

Метилирование ДНК имеет наибольшее прикладное значение из всех эпигенетических механизмов, так как оно напрямую связано с рационом, эмоциональным статусом, мозговой деятельностью и другими факторами. Так что об этом стоит рассказать поподробнее. И начнем мы с рациона.

Сегодня уже известно, что многие пищевые продукты содержат компоненты, которые определенным образом влияют на эпигенетические процессы. Почти все женщины знают, что во время беременности очень важно потреблять достаточно фолиевой кислоты. Эпигенетика помогает понять исключительную важность этой кислоты в рационе: ведь всё дело в том самом метилировании ДНК. Фолиевая кислота вместе с витамином В12 и аминокислотой метионином является донором («поставщиком») метильных групп, необходимых для нормального метилирования. Метилирование непосредственно участвует во многих процессах, связанных с развитием и формированием всех органов и систем ребенка: и в инактивации Х-хромосомы у эмбриона, и в геномном импринтинге, и в клеточной дифференцировке*. Соответственно, принимая фолиевую кислоту, будущая мама имеет неплохие шансы выносить здорового ребенка без отклонений.

* — Подробно об этом написано в статьях на «биомолекуле»: «Загадочное путешествие некодирующей РНК Xist по X-хромосоме» и «Истории из жизни Х-хромосомы круглого червя-гермафродита» .

Витамин В12 и метионин почти невозможно получить из вегетарианского рациона, так как они содержатся преимущественно в животных продуктах. И дефицит витамина В12 и метионина, вызванный разгрузочными диетами беременной женщины, может иметь для ребенка самые неприятные последствия. Не так давно было обнаружено, что недостаток в рационе этих двух веществ, а также фолиевой кислоты, может стать причиной нарушения расхождения хромосом у плода. А это сильно повышает риск рождения ребенка с синдромом Дауна, что обычно считается простой трагической случайностью . В свете этих фактов ответственность родителей сильно увеличивается, и списывать всё на несчастный случай теперь будет затруднительно.

Также известно, что недоедание и стресс в период беременности меняют в «худшую сторону» концентрацию целого ряда гормонов в организмах матери и плода: глюкокортикоидов, катехоламинов, инсулина, гомона роста и др. Из-за этого у зародыша происходят негативные эпигенетические изменения (ремоделирование хроматина) в клетках гипоталамуса и гипофиза . Чем это чревато? Тем, что малыш появится на свет с искаженной функцией гипоталамо-гипофизарной регуляторной системы. Из-за этого он будет хуже справляться со стрессом самой различной природы: с инфекциями, физическими и психическими нагрузками и т.д. Вполне очевидно, что, плохо питаясь и переживая во время вынашивания, мама делает из своего будущего ребенка уязвимого со всех сторон неудачника.

Пластичность эпигенома: опасности и возможности

Выяснилось, что так же, как стресс и недоедание, на здоровье плода могут влиять многочисленные вещества, искажающие нормальные процессы гормональной регуляции (рис. 7). Они получили название «эндокринные дизрапторы» (разрушители). Эти вещества, как правило, имеют искусственную природу: человечество получает их промышленным способом для своих нужд. Самым ярким и негативным примером, пожалуй, является бисфенол А, который уже много лет применяется в качестве отвердителя при изготовлении изделий из пластмасс. Он содержится во всей пластиковой таре, которая используется сегодня в пищевой промышленности: в пластиковых бутылках для воды и напитков, в пищевых контейнерах и многом другом. Бисфенол А присутствует в жестяных банках консервов и напитков (им выстилают внутренний слой банок), а также в стоматологических пломбах.

Рисунок 7. Молекулярные составляющие развития отклонений под воздействием «эндокринных разрушителей»:бисфенола А (А) и фталатов (В) . Рисунок из . Нажмите на рисунок, чтобы просмотреть его в полном размере.


Негативные воздействия даже небольших концентраций бисфенола А многочисленны и разнообразны, а распространение его таково, что сегодня почти невозможно найти человека без бисфенола А в организме. Его постоянно обнаруживают не только в крови, но и в грудном молоке и пуповинной крови беременных. Причем в амниотической жидкости (жидкости, окружающей эмбрион) концентрация бисфенола А в несколько раз превышает его содержание в сыворотке крови матери . В 2003-2004 гг. американскими исследователями из Центра по контролю и профилактике заболеваний были получены такие результаты распространенности бисфенола А: из 2517 обследованных человек у 92% в моче содержался бисфенол, и его концентрация была значительно выше в организмах детей и подростков, у которых еще плохо сформированы «очистные системы» организма .

Очевидно, что, так или иначе, в результате контактов пищи с пластиком какая-то часть бисфенола попадает в организм человека. Последствия такого «обогащения» находятся сегодня в стадии активного изучения. Но уже всплывают тревожные факты.

Так, биологи с медицинского факультета Гарварда — Кэтрин Раковски и ее коллеги — обнаружили способность бисфенола А тормозить созревание яйцеклетки и тем самым приводить к бесплодию. Бисфенол сильно увеличивал частоту хромосомных аномалий в яйцеклетках. Вывод ученых был однозначным: «Поскольку соприкосновение с этим веществом происходит повсеместно, медикам надо знать, что бисфенол А может вызывать значительные нарушения в репродуктивной системе» .

Их коллеги из Колумбийского университета в экспериментах с животными выявили еще один тревожный факт. Они обнаружили способность бисфенола А стирать различия между полами и стимулировать рождение потомства с гомосексуальными наклонностями. Под воздействием бисфенола нарушалось нормальное метилирование генов, кодирующих рецепторы к эстрогенам — женским половым гормонам. Из-за этого мыши-самцы рождались с «женским» характером — покладистыми и спокойными. Исчезала разница в поведении самцов и самок. Профессор Ф. Шемпейн и его коллеги вынуждены были сказать: «Мы показали, что воздействие малых доз бисфенола А вызывает неизгладимые эпигенетические нарушения в головном мозге, что, возможно, лежит в основе прочных воздействий бисфенола А на функции мозга и поведение — особенно в отношении межполовых различий» .

Другие проведенные исследования показывают, что бисфенол А обладает очень сильно выраженной эстрогенной активностью (не зря его называют «вездесущим ксеноэстрогеном») и способен изменять во время развития эмбриона профиль метилирования, а значит, и активность некоторых генов (например, Hoxa10) . Последствия этого для здоровья человека могут быть самыми неблагоприятными — во взрослом возрасте повышается риск развития некоторых болезней (ожирения, диабета, нарушений репродукции и др.) .

Но, к счастью, есть и противоположные примеры. Так, известно, что регулярное употребление зеленого чая может снижать риск онкозаболеваний, поскольку в нём содержится вещество эпигаллокатехин-3-галлат, которое может активизировать гены — супрессоры (подавители) опухолевого роста, деметилируя их ДНК. Очень популярным в последние годы модулятором эпигенетических процессов является генистеин, содержащийся в продуктах из сои. Многие исследователи напрямую связывают содержание сои в рационе жителей азиатских стран с их меньшей подверженностью некоторым возрастным болезням.

Характер — это судьба?

Эпигенетика также помогла понять, почему одни люди отличаются психологической устойчивостью и оптимизмом, а другие склонны к паническим настроениям и депрессии*. Как это заведено в научном мире, вначале были проведены эксперименты с животными. Эта серия работ приобрела широкую известность и название «licking and grooming» (вылизывание и уход). Канадские биологи из Университета Макгилла — Майкл Мини и его коллеги — начали изучать влияние материнской заботы у крыс в первые месяцы жизни потомства . Разделив крысят на две группы, они отнимали одну часть выводка у матерей сразу после рождения. Не получавшие материнской заботы в виде вылизывания, такие крысята все поголовно вырастали «неадекватными»: нервными, необщительными, агрессивными и трусливыми.

* — Дополнительно об этом — в статьях на «биомолекуле»: «Развитие и эпигенетика, или история о минотавре» и «Эпигенетика поведения: как бабушкин опыт отражается на ваших гена» .

Все детеныши в группе, получавшей материнскую заботу в полном объеме, развивались так, как это и положено крысам: энергичными, хорошо обучаемыми и социально активными. В чём же причина такого разительного отличия? Почему материнский уход оказал решающее влияние на развитие психических особенностей у потомства? Анализ ДНК помог ответить на эти вопросы.

Исследовав ДНК крыс, ученые выяснили, что у детенышей, которых не вылизывали матери, произошли негативные эпигенетические изменения в области мозга под названием гиппокамп. В гиппокампе оказалось уменьшено количество рецепторов к стрессовым гормонам. И именно из-за этого наблюдалась неадекватная реакция нервной системы на внешние раздражители: гипофиз подавал команду на избыточное производство стрессовых гормонов. Другими словами, те ситуации, которые переносились спокойно обычными крысами, у потомства, не получившего материнского ухода, вызывали неадекватно сильный стресс.

Как оказалось, всё вышеописанное абсолютно точно подходит и к человеческому развитию. Были проведены многочисленные исследования детей, которые в раннем детстве лишались родительской заботы или подвергались какому-либо насилию. Все эти дети без исключения вырастали потом с той или иной искаженной функцией нервной системы. И эти искажения были эпигенетически закреплены в клетках мозга. Всем таким детям была свойственна неадекватная реакция даже на слабые раздражители, которые нормально воспринимались благополучными детьми. Всё это формировало во взрослом возрасте склонность к алкоголизму, наркомании, суицидам и прочим неадекватным поступкам . Вот почему первые годы после рождения являются решающими в формировании социального поведения и закладывают все основы характера. От того, сколько времени родители уделяли своему малышу в этот период, будет зависеть всё его будущее: будет ли он психологически устойчивым, коммуникабельным и успешным или же склонным депрессиям и расстройствам.

Очевидно, что влияние эпигенома распространяется и на процессы, связанные со старением . С возрастом можно наблюдать общее понижение метилирования, в том числе загадочных участков генома, которые составляют почти половину всей последовательности ДНК, — мобильных генетических элементов (МГЭ). Они были открыты полвека назад нобелевским лауреатом Барбарой Мак-Клинток как последовательности, способные — в отличие от обычных генов — удивительным образом перемещаться по ДНК*. Излишне активизируясь с возрастом из-за деметилирования, МГЭ дестабилизируют геном, вызывая нежелательные хромосомные перестройки .

Также с возрастом становятся отчетливыми изменения в метилировании генов, связанных с возрастными заболеваниями: атеросклерозом, гипертонией, диабетом, болезнью Альцгеймера и др. . Кроме этого, была обнаружена прямая связь изменений эпигенома с продукцией активных форм кислорода, а также с функцией одного из белков, к которым приковано большое внимание геронтологов: белка p66Shc, названного академиком В.П. Скулачёвым «посредником запрограммированной гибели организма» . И потому знание эпигенетических основ возрастных изменений может принести нам существенную пользу в борьбе за продление жизни и здоровую старость.

Итоги и перспективы

Изучение эпигенетических механизмов помогло понять очень важную истину: человеческая судьба формируется большей частью не астрологическими прогнозами, а поведением самогό человека и его родителей. Эпигенетика совершенно ясно показывает, что очень многое в жизни зависит от нас, и в наших силах поменять жизнь к лучшему.

Эпигенетика также стирает границы между человеком и внешней средой. Очевидно, что никто не может чувствовать себя в безопасности, пока практикуется масштабное использование опасных химических веществ. Пестициды винклозолин и метоксихлор, применяющиеся в сельском хозяйстве и действующие как «эндокринные разрушители», ртуть из промышленных отходов и бисфенол А из разлагающегося пластика проникают в почву и в воду рек и морей. А потом вместе с продуктами и водой попадают в организм человека. И это — реальная угроза для человечества.

Но есть и хорошие новости. В отличие от относительно стабильной генетической информации, эпигенетические «метки» при определенных условиях могут быть обратимыми. И это позволяет разработать принципиально новые стратегии и методы борьбы с самыми распространенными болезнями: методы, нацеленные на устранение* тех эпигенетических модификаций, которые возникли у человека при воздействии неблагоприятных факторов. Не случайно нынешнее столетие некоторые ученые называют веком эпигенетики. При изучении истории развития естественных наук, биологии и генетики в частности, может сложиться впечатление, что все предыдущие годы были большим подготовительным этапом, накоплением сил перед открытиями действительно сверхважного значения. И, вероятно, мы сегодня стоим на пороге этих открытий.

* — Как это может реализовываться (и реализуется ужé), описано в статье «Пилюли для эпигенома»

За последние десятилетия исследования показали, что прогрессивные изменения в эпигенетической информации сопровождают процесс старения делящихся и неделящихся клеток.

Функциональные исследования простых организмов и сложных как человек показывают, что эпигенетические изменения оказывают огромное влияние на процесс старения. Эти эпигенетические изменения происходят на различных уровнях, в том числе снижение массового уровня основных гистонов.

Гистоны – белки, связывающие непосредственно ДНК

У ребенка клетки в пределах каждого типа аналогичны. Во время жизни спорадически эпигенетическая информация меняется в зависимости от экзогенных и эндогенных факторов (внешних условий). В результате ненормального состояния хроматина характерны различные варианты изменения ДНК, включая мутации ДНК.

Биологическая предрасположенность старения

Старение организма – сложный многофакторный биологический процесс, общий для всех живых организмов. Он проявляется постепенным снижением нормальных физиологических функций в зависимости от времени. Биологическое старение организма имеет важное значение для здоровья человека, потому что с возрастом увеличивается восприимчивость ко многим болезням, включая рак, метаболические расстройства, такие как диабет, сердечно-сосудистые нарушения и нейродегенеративные заболевания. С другой стороны, старение клеток, также называемое репликативная деградация, является специализированным процессом и рассматривается как потенциальный эндогенный противоопухолевый механизм при котором происходит необратимый рост потенциальных онкогенных стимулов. Клеточное старение носит много общего с процессом старения, но и показывает отличительные черты. Хотя причины старения недостаточно изучены, продолжаются усилия, чтобы очертить пути долголетия.

В последние годы большие успехи достигнуты в ходе многочисленных исследований, что эффективно проявляется на клеточных и молекулярных признаках старения. Среди этих признаков эпигенетические изменения являются одними из важнейшим механизмов ухудшения функции клеток, наблюдаемые при старении и возраст-зависимых заболеваний.

Эпигенетика изучает закономерности изменения генов

По определению эпигенетика представляет обратимый наследственный механизм который происходит без какого-либо изменения базовой последовательности ДНК, а также происходит репарация ДНК.

Репарация ДНК – способность исправлять повреждения

Хотя хромосомы в геноме несут в себе генетическую информацию, эпигеном, ответственным за функциональное использование и стабильность является генотип с фенотипом – общими характеристиками. Эти эпигенетические изменения могут быть спонтанными или под влиянием внешних или внутренних воздействий. Эпигенетика потенциально служит недостающим звеном, чтобы объяснить, почему картина деградации отличается от двух генетически идентичных особей, таких, как однояйцовые близнецы, или же, в животном мире, между животными с одинаковой генетической структурой, например, матки и рабочих пчел.

Исследования долголетия населения показали, что генетические факторы могут объяснить от 20 до 30% различий наблюдаемых в продолжительности жизни близнецов, большинство остального разброса возникло через эпигенетическое изменение в течение своей жизни – различное влияние окружающей среды, включая питание.

Например, различные дифференциальные изменения хранимой эпигенетической информации создает поразительный контраст во внешности, репродуктивном поведении и продолжительности жизни рабочих пчел и матки, несмотря на идентичное содержание ДНК.

Таким образом, эпигенетика открывает большие перспективы для выбора лечебных мероприятий при генетических изменениях, которые в настоящее время технически необратимы в организме человека. Соответственно, определение и понимание эпигенетики и эпигенетических изменений, которые происходят во время старения, является основной областью исследования, которое может проложить путь к разработке новых терапевтических подходов к задержке старения и возрастных заболеваний.

Эпигенетические изменения при старении

Существуют различные типы эпигенетической информации, закодированной в наш эпигеном, включая, но не ограничиваясь наличием или отсутствием гистонов на какой-либо конкретной последовательности ДНК.

Эти различные типы эпигенетической информации составляют наш эпигеном и являются важными определяющими факторами функционирования и судьбу всех клеток и тканей организма как одноклеточных, так и многоклеточных организмов. Несомненно, каждый из этих различных видов эпигенетической информации является функционально значимым для процесса старения.

Все больше свидетельств в последние годы также явно указывают на структуру хроматина, который несет много эпигенетической информации, как основного игрока в процессе старения. Основная единица структуры хроматина является нуклеос, который состоит из 147 пар оснований ДНК обернутых вокруг гистонов. Упаковка геномной ДНК в высокоорганизованную структуру хроматина регулирует все геномные процессов в ядре, в том числе репликацию ДНК, транскрипцию, рекомбинацию и репарацию ДНК, контролируя доступ к ДНК.

Хроматин – вещество хромосом

Исследования на людях и различных моделей деградации свидетельствуют о прогрессирующей потери конфигурации при старении хромосомной архитектуры, целостность генома и экспрессия генов. Исследования подтвердили, что все эти эффекты в основном сохраняется на всем пути от одноклеточных организмов, таких как дрожжи, до сложных многоклеточных как человек. Эти сохраняющиеся механизмы помогают получить более четкое представление о процессе старения. Эпигенетические изменения в значительной степени влияют на процесс старения для последующих достижений в области эпигенетики и выявления возможных перспективных направлений.

Сокращение гистона при старении

Репликативное нарушение сопровождается потерей примерно половина основных гистоновых белков.

Гистоны – белки ДНК

Резкое снижение основных гистоновых белков обусловлено снижением синтеза белков гистонов. У человека, снижение синтеза новых гистонов во время деградации является следствием роста укороченной , которые активируются в ответ на повреждение ДНК, потенциально объясняя механизм укорочения теломер ограничением числа делений клеток. Следовательно, потери основных гистонов может быть более обобщенное явление, наблюдаемое с возрастом у многих организмов.

Процесс старения, несомненно, является сложным. В организме жизни, старение клетки претерпевает множество изменений и происходит накопление повреждений макромолекул. Фенотип старения проявляется путем суммирования изменений различных сигналов.

Генетические и экологические изменения однозначно важно расшифровать для действия конкретного фактора на процесс долголетия. Становится очевидным механистически, что многие из тех факторов, которые влияют на продолжительность жизни, действуют главным образом путем модификации эпигенома. Несомненно, эпигенетическое влияние на процессы старения должны быть включены в нашем нынешнем понимании старения.

Старение клетки

Молодые здоровые клетки поддерживают эпигенетическое состояние, что способствует образованию компактной структуры гистона и регуляции основных биологических процессов. Однако старение клетки испытывают изменения во всех аспектах. Обратимый характер эпигенетических механизмов позволяет восстановить или обратить вспять некоторые из этих фенотипов для достижения более молодой клетки. В то время как некоторые молекулярные изменения при старении могут быть классифицированы как причина старения, другие изменения просто сопровождают процесс старения. Однако, характеризуя причины и последствия деградации, нужно внимательно проанализировать экспериментальные результаты, поскольку большинство соответствующих путей взаимосвязаны.

Постоянное сочетание функционального анализа и молекулярного анализа в разных возрастных группах, у разных организмов и разных типах тканей даст всю необходимую информацию чтобы постичь этот эволюционно законсервированный основной процесс с целью разработки терапевтических мероприятий, чтобы противодействовать возраст-индуцированным осложнениям. Центральное понятие складывается для разработки эпигенетических препаратов или даже эпигенетического питания.

Таким образом, основные проблемы, которые будут доминировать на поле в ближайшем будущем будет достижение иерархического понимания того, как эпигенетика влияет на процесс старения и понимание долгосрочных эффектов лечебных вмешательств на эпигеном в стареющем человеке, учитывая взаимосвязанность эпигенетических механизмов.
Несколько важные выводы вытекают из этих исследований: генетическая предрасположенность старения 20-30 %, а остальное в нашей жизни во многом определяется питанием и другими воздействиями внешней среды.

Результаты обеспечивают лучшее понимание механизмов вовлеченных в процесс старения. Учитывая обратимый характер эпигенетической информации, исследования подчеркивают огромные возможности для терапевтического вмешательства при старении и возраст-ассоциированных заболеваний, включая рак.