Главная · Правильное питание · Мрт речевых зон. Магнитно-резонансная и компьютерная томография. Магнитно-резонансная томография проводится для всех органов и тканей

Мрт речевых зон. Магнитно-резонансная и компьютерная томография. Магнитно-резонансная томография проводится для всех органов и тканей

С июня 2009 года в Центре лучевой диагностики ЛРЦ работает группа функциональной МРТ (фМРТ) головного мозга. Специалисты группы проводят как научные исследования так и прием пациентов. Группой разработан целый ряд проб для пациентов, которым предстоит пройти нейрохирургическую операцию или программу реабилитации. Пробы позволяют картировать моторные, речевые, перцептивные и управляющие функции.

Результаты, полученные в рамках фундаментальных и прикладных исследований, проводимых группой функциональной МРТ головного мозга, докладывались на:

  • Московском семинаре по когнитивной науке (Москва, 2011, 2014);
  • ежегодном съезде Радиологического сообщества Северной Америки (RSNA, Чикаго, 2011, 2014);
  • Европейской радиологической конференции (ECR, Вена, 2012, 2013, 2014, 2015);
  • конференции «Когнитивная наука в Москве: новые исследования» (Москва, 2011, 2013);
  • II конференции по функциональному нейроимиджингу (Москва, 2012);
  • Конгрессе Российской Ассоциации Радиологов (Москва, 2014);
  • ESLP Conference in Rotterdam (Netherlands, 2014);
  • 2nd International Workshop "Neuro-cognitive mechanisms of conscious and unconscious visual perception" (Delmenhorst, 2014);
  • Конференции пользователей магнитно-резонансных томографов компании SIEMENS «MAGNETOM Club» (2012);
  • V и VI Международной конференции по когнитивной науке (Калининград, 2012, 2014);
  • V, VI и VIII Всероссийском национальном конгрессе лучевых диагностов и терапевтов «Радиология-2011, 2012, 2014» (Москва, 2011, 2012, 2014);
  • «Национальном съезде радиологов» (Москва, 2012);
  • 6th Annual Fulbright Conference (Moscow, 2013);
  • Московском международном конгрессе, посвященном 110-летию со дня рождения Александра Романовича Лурия» (2012 год);
  • Европейской конференции по зрительному восприятию (Alghero, Sardinia, Italy, 2012 год);
  • Ежегодной встрече Общества наук о зрении (VSS-2012);
  • XIV Международных чтениях памяти Л.С. Выготского;
  • Научной конференции по афазиологии (SoA – 2014);
  • Конференции «Современные проблемы нейропсихологии и психофизиологии», посвящённая 85-летию со дня рождения Евгении Давыдовны Хомской;
  • «Великая иллюзия сознания - 4: феномены, эксперименты, модели» (Санкт-Петербург, 2014);
  • серии тематических семинаров «фМРТ-исследования речи: от дизайна эксперимента до анализа данных» (Москва, 2013);
  • «Введение в BOLD-фМРТ и DTI» (Москва, 2013);
  • «Функциональная МРТ головного мозга: наука и практика» (Москва, 2014).

22 апреля в 2014 году в ФГБУ «ЛРЦ» Минздрава был проведен однодневный семинар «Функциональная МРТ головного мозга: наука и практика».Кроме участия в научных конференциях сотрудники группы фМРТ ведут активную преподавательскую деятельность.Прочитаны курсы лекций и практических занятий , посвященных фМРТ головного мозга:

  • Печенкова Е.В. Спецпрактикум в рамках курса «Теоретические и методологические проблемы когнитивной науки» в программе магистратуры РГГУ «Психология познания и когнитивные науки» (2009-2012)
  • Печенкова Е.В, Румшиская А.Д. Современные возможности методов лучевой диагностики Элективный курс для студентов ФФМ МГУ на базе Центре лучевой диагностики (ЦЛД) ФГБУ «Лечебно-реабилитационный центр» МЗ РФ http://www.fbm.msu.ru/stud/lechdelo/el/2013_autumn/xray.php
  • Власова Р.М. Курс «Нейропсихологические аспекты методов нейровизуализации»на кафедре нейро- и патопсихологии МГУ имени М.В. Ломоносова (2014)
  • Печенкова Е.В., Власова Р.М. «Функциональная МРТ в исследовательской и клинической работе психолога» -- курсы, организованные «Всероссийским сообществом молодых психологов» (2012, 2013)
  • Печенкова Е.В. Научно-популярная лекция в «Гиперионе»: «Функциональная магнитно-резонансная томография, или работа мозга в картинках» (Москва, 2013)

Отдельные лекции в рамках учебных семинаров и научных школ :

  • на семинаре «фМРТ-исследования речи: от дизайна эксперимента до анализа данных», организованном Центром патологии речи и нейрореабилитации и Высшей школой экономики (26-29 марта 2013 года);
  • на семинаре «Введение в BOLD-фМРТ и DTI», организованном НИИ неотложной детской хирургии и травматологии при поддержке компании Neurobotics (29 октября 2013 года);
  • на Летней нейролингвистической школе (1-5 сентября 2014 года);
  • на Летней школа по когнитивной психологии памяти Карла Дункера (1 сентября 2014);
  • на школе “Active and passive methods of the brain mapping”, организованной Национальной Сетью Аспирантур по Биотехнологиям в Нейронауках (BioN), 1-4 ноября, 2014 года;
  • на летней школе «Русского Репортера» 2014, мастерская «Язык-Мозг»;
  • на Всероссийской Зимней Психологической Школе РГГУ (Москва, 2011).

> Функциональная МРТ (магнитно-резонансная томография)

Данная информация не может использоваться при самолечении!
Обязательно необходима консультация со специалистом!

Что выявляет функциональная МРТ?

Функциональная МРТ - это одна из разновидностей магнитно-резонансной томографии, специализирующаяся на фиксации изменений в работе головного мозга в зависимости от его активности.

При активизации работы определенных отделов мозга насыщение тканей кислородом и скорость тока крови в них усиливаются, и, соответственно, возрастает интенсивность сигнала, улавливаемого томографом. В результате фиксации этих изменений удается получить изображения, которые затем накладываются на снимки, полученные в результате обычной МРТ. Сочетание трехмерной компьютерной графики и данного метода дают возможность составить развернутую на плоскости функциональную карту практически всей коры головного мозга.

Функциональная МРТ дает возможность оценить и сравнить активность определенной зоны головного мозга в период покоя с активностью, вызванной влиянием отдельных факторов, например, умственной деятельности или двигательной активности.

При помощи данного вида диагностики можно определить индивидуально для каждого пациента расположение мозговых центров - речевых, двигательных, сенсорных и других. Хирурги на основании результатов исследования могут составить план предстоящей операции на мозге, максимально предотвратив различные осложнения, например, повреждения разговорного и двигательного центров. Радиологи имеют возможность точно рассчитать дозу облучения при лечении раковых новообразований.

Показания к проведению функциональной МРТ

Показаниями к проведению функциональной МРТ являются опухоли головного мозга, в особенности, если последние располагаются вблизи функционально значимых областей коры мозга. Этот метод помогает также выявить очаги эпилепсии. В нейропсихологии его применяют для изучения нарушений памяти, внимания, речи и других изменений когнитивных функций.

При помощи данного вида МРТ можно выявить некоторые заболевания на ранних стадиях, например, определить участки ишемии (недостаточного поступление кислорода) и предотвратить тем самым инсульт. Также она позволяет выявить первые признаки болезней Паркинсона и Альцгеймера.

Направляют на данную процедуру чаще всего неврологи, нейрохирурги, психиатры, онкологи.

Где пройти функциональную МРТ?

Для прохождения функциональной МРТ недостаточно найти медицинский центр, оснащенный магнитно-резонансным томографом. Диагностический аппарат должен быть высокочувствительным, то есть иметь необходимые для данного обследования технические характеристики (мощность магнитного поля, постоянное и временное разрешение).

Для расшифровки полученных результатов специалист должен обладать знаниями как структурной, так и функциональной организации мозга.

Подготовка, противопоказания и методика проведения функциональной МРТ

Перед проведением диагностики необходимо снять с тела и одежды все металлические предметы. Если имеются какие-либо имплантаты или неснимаемые протезы, вопрос о возможности проведения процедуры решается специалистом-радиологом в индивидуальном порядке. Не рекомендуется проведение МРТ во время беременности.

Пациент помещается внутрь тоннеля томографа в положении лежа. Он должен точно выполнять все рекомендации лучевого диагноста. В отличие от обычной МРТ, когда от пациента требуется просто неподвижно лежать во время обследования, при функциональной МРТ его просят выполнять какие-либо задания. Передаются команды обычно через переговорное устройство.

Расшифровка результатов, как правило, проводится совместно специалистом-радиологом и нейрохирургом или неврологом.

Перспективы применения функциональной МРТ

На основании проведенных исследований ученые считают, что функциональную МРТ можно будет использовать в будущем даже для чтения мыслей и визуализации снов. Теоретически с ее помощью можно создать условия для общения с парализованными людьми. Эта методика имеет безграничные перспективы в медицине, психологии и многих других областях.

Функциональная магнитно-резонансная томография, или Ф-я МРТ , является методом для изучения мозговой деятельности. Он работает путем обнаружения изменений в оксигенации крови и её потоке , который возникают в ответ на нервную деятельность – это когда области мозга более активно потребляют больше кислорода и чем больше активна та или иная область мозга, тем больше она требует притока крови. Функциональная МРТ может быть использована для получения активной карты мозга, показывающей, какая часть мозга участвует в тех или иных психических процессах.

Развитие функциональной МРТ в 1990-х, обычно приписывают Сейджи и Кен Огава Квонгу, они является последним в длинной череде нововведений, в том числе в области позитронно-эмиссионной томографии (ПЭТ) и инфракрасной спектроскопии (НИРС) , которые используют кровотока и кислородный обмена, чтобы захватить мозговую деятельность. В качестве методики визуализации головного мозга, функциональная МРТ имеет несколько значительных преимуществ:

1. Это неинвазивный метод и не влечет за собой излучения, что делает его безопасным для субъекта.
2. Он имеет отличное пространственное и временное разрешение.
3. Его легко для использовать для исследований.

Исключительность функциональной МРТ сделала его популярным инструментом для работы с изображениями нормальной функции мозга — особенно для психологов. За последнее десятилетие метод функциональной МРТ предоставил новый взгляд на исследование того, как формируются воспоминания, язык, боль, обучение и эмоции, этот список можно продолжить. Функциональная МРТ также применяется в клинической практике и в коммерческих условиях.

Как функциональная МРТ работает?

В цилиндрической трубке томографа находится очень мощный электромагнит. Типичное сканирование имеет напряженность поля 3 тесла (Т), это около 50 000 раз больше, чем магнитное поле Земли. Магнитное поле сканера влияет на ядра атомов. Обычно атомные ядра ориентированы случайным образом, но под влиянием магнитного поля ядра становятся совмещенными с направлением поля. Чем сильнее поле, тем больше степень согласованности. При наведении в том же направлении, крошечные магнитные сигналы от отдельных ядер когерентно складываются, в результате чего сигнал становится достаточно большим, чтобы его измерить. В МРТ именно магнитный сигнал от ядер водорода в водной среде (H2O), может его обнаружить.

Механизмом действия МРТ является то , что сигнал от ядер водорода изменяется в силу в зависимости от его окружения. Это обеспечивает возможность рассмотреть серое вещество, белое вещество и спинномозговую жидкость в виде структурных изображений мозга.

Кислород поступает в нейроны с помощью гемоглобина из капиллярной сети. Когда активность нейронов увеличивается, возникает повышенный спрос на кислород и это проявляется в виде местной реакции, как увеличение притока крови к области, где происходит повышенная нервная деятельность.

Гемоглобин изменяет магнитное поле когда он насыщен кислородом, и когда нет. Это различие в магнитных свойствах приводит к небольшим изменениям в сигнале МРТ в зависимости от степени оксигенации. Так как оксигенация крови изменяется в зависимости от уровня нейронной активности, эти различия могут быть использованы для фиксирования деятельности мозга. Эта форма МРТ известна как оксигенация крови в зависимости от уровня насыщения кислородом.

МРТ BOLD(отчётливый) Эффект

Еще один момент: это направление изменения оксигенации с повышенной активностью. Можно было бы ожидать, что оксигенации крови уменьшается с её активацией магнитным полем, но реальность намного сложнее. Существует мгновенное снижение уровня оксигенации крови сразу же после того, как нейронная активность возрастает, она известна как «начальный провал» в гемодинамическом ответе. За этой фазой следует период, когда увеличивает приток крови, не только к месту, где потребность в кислороде удовлетворяется, но и к окружающим тканям. Это означает, что оксигенации крови на самом деле увеличивает последующую нейронную активацию.

Как МРТ сканирования выглядит?

МРТ сканирование

Изображение, показанное здесь является результатом простой функциональной МРТ . В то время, как человек лежит в томографе за ним наблюдает экран, который чередуется визуальными показами и становится темным каждые 30 секунды. Между тем томограф отслеживает сигнал по всему мозгу. Визуализируются области мозга, которые реагируют на стимулы, когда сигнал идет вверх и вниз, и они как бы включается и выключается, хотя и становятся немного размытыми из-за задержки в ответе кровотока.

Исследователи смотрят на активность при сканировании в виде вокселов — или объемных пикселей, наименее различимой коробчатой части трехмерного изображения. Активность в вокселях определяется, как насколько близко ход сигнал от этого вокселя соответствует ожидаемому времени.

    МРТ изображение головы человека Магнитно резонансная томография (МРТ, MRT, MRI) томографический метод исследования внутренних органов и тканей с использованием физического явления ядерного магнитного резонанса … Википедия

    - (др. греч. τομή сечение) метод неразрушающего послойного исследования внутренней структуры объекта посредством его многократного просвечивания в различных пересекающихся направлениях. Содержание 1 Терминологические вопросы … Википедия

    - … Википедия

    Наука, изучающая связь активности головного мозга и других сторон нервной системы с познавательными процессами и поведением. Особое внимание когнитивная нейробиология уделяет изучению нейронной основы мыслительных процессов. Когнитивная… … Википедия

    фМРТ - функциональная магнитно резонансная томография фМРТ ФМРТ функциональная магнитно резонансная томография … Словарь сокращений и аббревиатур

    1. Полушарие большого мозга (Конечный мозг) 2. Таламус (… Википедия

    Электроэнцефалограф медицинский электроизмерительный прибор, с помощью которого измеряют и регистрируют разность потенциалов между точками головного мозга, располагающимися в глубине или на его поверхности. Образование и колебание… … Википедия

    Эта статья должна быть полностью переписана. На странице обсуждения могут быть пояснения … Википедия

    ФМРТ функциональная магнитно резонансная томография. Метод ФМРТ базируется на возможности использования магнитного резонанса не только для изучения анатомической структуры головного мозга, но и для оценки кровообращения, изменение которого… … Википедия

Дает исследователю очень много информации об анатомическом строении органа, ткани или другого объекта, который попадает в поле видимости. Однако, чтобы сложилась целостная картина происходящих процессов, не хватает данных о функциональной активности. И для этого как раз существует BOLD-функциональная магнитно-резонансная томография (BOLD - blood oxygenation level dependent contrast, или контрастность, зависящая от степени насыщения крови кислородом).

BOLD фМРТ - это один из наиболее применимых и широко известных способов определять мозговую активность. Активация приводит к усилению местного кровотока с изменением относительной концентрации оксигенированного (обогащенного кислородом) и дезоксигенированного (бедного кислородом) гемоглобина в местном кровотоке.

Рис.1. Схема реакции мозгового кровотока в ответ на возбуждение нейронов.

Дезоксигенированная кровь является парамагнетиком (веществом, способным намагничиваться) и ведет к падению уровня сигнала МРТ. Если же в области мозга больше оксигенированной крови – уровень МРТ-сигнала увеличивается. Таким образом, кислород в крови выполняет роль эндогенного контрастного вещества.

Рис.2. Объём мозгового кровоснабжения (а ) и BOLD- ответ фМРТ (b ) при активации первичной моторной коры человека . Сигнал проходит в 4 стадии . 1 стадия вследствие активации нейронов повышается потребление кислорода , увеличивается количество дезоксигенированной крови , BOLD сигнал немного уменьшается (на графике не показано , уменьшение незначительное ). Сосуды расширяются , вследствие чего несколько уменьшается кровоснабжение мозговой ткани . Стадия 2 длительное увеличение сигнала . Потенциал действия нейронов заканчивается , но поток оксигенированной крови увеличивается инерционно , возможно вследствие воздействия биохимических маркеров гипоксии . Стадия 3 длительное снижение сигнала вследствие нормализации кровоснабжения . 4 стадия постстимульный спад вызван медленным восстановлением первоначального кровоснабжения.

Для активации работы нейронов в определённых областях коры существуют специальные активирующие задания. Дизайн заданий, как правило, бывает двух видов: «block» и «event-related». Каждый вид предполагает наличие двух чередующихся фаз - активного состояния и покоя. В клинической фМРТ чаще используются задания вида «block». Выполняя такие упражнения, испытуемый чередует так называемые ON- (активное состояние) и OFF- (состояние покоя) периоды одинаковой или неравной продолжительности. Например, при определении области коры, отвечающей за движения рук, задания состоят из чередующихся движений пальцами и периодов бездействия, продолжительностью в среднем около 20 секунд. Действия повторяют несколько раз для увеличения точности результата фМРТ. В случае задания «event-related» испытуемый выполняет одно короткое действие (например, глотание или сжатие кулака), за которым следует период покоя, при этом действия, в отличие от блокового дизайна, чередуются неравномерно и непоследовательно.

На практике BOLD фМРТ используется при предоперационном планировании резекции (удаления) опухолей, диагностике сосудистых мальформаций, при операциях при тяжелых формах эпилепсии и других поражений головного мозга. В ходе операции на головном мозге важно максимально точно удалить участок поражения, в то же время избегая излишнего повреждения соседних фунционально важных участков головного мозга.


Рис.3.

а трёхмерное МРТ изображение головного мозга . Стрелкой указано расположение моторной коры в прецентральной извилине .

b карта фМРТ активности мозга в прецентральной извилине при движении рукой.

Метод очень эффективен при изучении дегенеративных заболеваний, например, болезней Альцгеймера и Паркинсона, особенно на ранних стадиях. Он не предполагает использования ионизирующего излучения и рентгеноконтрастных веществ, к тому же, он неинвазивен. Поэтому его можно считать довольно безопасным для пациентов, которые нуждаются в длительных и регулярных фМРТ-обследованиях. ФМРТ можно применять для исследования механизмов формирования эпилептических приступов и позволяет избежать удаления функциональной коры у больных с трудноизлечимой эпилепсией лобной доли. Наблюдение за восстановлением мозга после инсультов, изучение влияния лекарственных средств или другой терапии, наблюдение и контроль лечения психиатрических заболеваний – это далеко не полный перечень возможного применения фМРТ. Кроме этого, существует еще фМРТ покоя, в которой сложная обработка данных позволяет увидеть сети мозга, функционирующие в состоянии покоя.

Источники:

  1. How well do we understand the neural origins of the fMRI BOLD signal? Owen J.Arthur, Simon Boniface. TRENDS in Neurosciences Vol.25 No.1 January 2002
  2. The physics of functional magnetic resonance imaging (fMRI) R. B. Buxton. Rep. Prog. Phys. 76 (2013)
  3. Применение функциональной магнитно-резонансной томографии в клинике. Научный обзор. Беляев А., Пек Кюнг К., Бреннан Н., Холодный А. Russian electronic journal of radiology. Том 4 №1 2014г.
  4. Мозг, познание, разум: введение в когнитивные нейронауки. Часть2 . Б. Баарс, Н. Гейдж. М.: Бином. 2014г. С. 353-360.

Текст: Дарья Прокудина