Главная · Правильное питание · Как найти площадь сечения перпендикулярного оси цилиндра. Цилиндр как геометрическая фигура

Как найти площадь сечения перпендикулярного оси цилиндра. Цилиндр как геометрическая фигура

Как вычислить площадь поверхности цилиндра - тема данной статьи. В любой математической задаче начать нужно с ввода данных, определить, что известно и чем оперировать в дальнейшем, и лишь затем приступить непосредственно к расчету.

Данное объёмное тело представляет собой геометрическую фигуру цилиндрической формы, ограниченную сверху и снизу двумя параллельными плоскостями. Если приложить немного воображения, то можно заметить, что геометрическое тело образуется вращением прямоугольника вокруг оси, причем осью является одна из его сторон.

Отсюда вытекает, что описываемая кривая сверху и снизу цилиндра будет окружностью, основным показателем которой является радиус или диаметр.

Площадь поверхности цилиндра — онлайн калькулятор

Данная функция окончательно облегчает процесс расчета, и все сводится лишь автоматическому подставлению заданных значений высоты и радиуса (диаметра) основания фигуры. Единственное, что требуется - точно определить данные и не ошибиться при вводе цифр.

Площадь боковой поверхности цилиндра

Сначала нужно представить, как выглядит развертка в двухмерном пространстве.

Это не что иное, как прямоугольник, одна сторона которого равна длине окружности. Формула ее известна с незапамятных времен -2π * r , где r - радиус окружности. Другая сторона прямоугольника равна высоте h . Найти искомое не составит труда.

S бок = 2π * r * h ,

где число π = 3.14.

Площадь полной поверхности цилиндра

Для нахождения полной площади цилиндра нужно к полученной S бок добавить площади двух окружностей, верха и низа цилиндра, которые считаются по формуле S о = 2π * r 2 .

Конечная формула выглядит следующим образом:

S пол = 2π * r 2 + 2π * r * h.

Площадь цилиндра — формула через диаметр

Для облегчения расчетов иногда требуется произвести вычисления через диаметр. Например, имеется кусок полой трубы известного диаметра.

Не утруждая себя лишними расчетами, имеем готовую формулу. На помощь приходит алгебра за 5 класс.

S пол = 2 π * r 2 + 2 π * r * h = 2 π * d 2 /4 + 2 π * h * d /2 = π * d 2 /2 + π * d * h ,

Вместо r в полную формулу нужно вставить значение r = d/2 .

Примеры расчета площади цилиндра

Вооружившись знаниями, приступаем к практике.

Пример 1. Нужно вычислить площадь усеченного куска трубы, то есть цилиндра.

Имеем r = 24 mm, h = 100 mm. Использовать необходимо формулу через радиус:

S пол = 2 * 3.14 * 24 2 + 2 * 3.14 * 24 * 100 = 3617,28 + 15072 = 18689,28 (мм 2).

Переводим в привычные м 2 и получаем 0,01868928, приблизительно 0.02 м 2 .

Пример 2. Требуется узнать площадь внутренней поверхности печной асбестовой трубы, стенки которой облицованы огнеупорным кирпичом.

Данные следующие: диаметр 0,2 м; высота 2 м. Используем формулу через диаметр:

S пол = 3.14 * 0.2 2 /2 + 3,14 * 0.2 * 2 = 0,0628 + 1.256 = 1.3188 м 2 .

Пример 3. Как узнать, сколько материла нужно для пошива мешка, r = 1 м и высотой 1 м.

Один момент, есть формула:

S бок = 2 * 3.14 * 1 * 1 = 6.28 м 2 .

Заключение

В конце статьи назрел вопрос: а так ли необходимы все эти вычисления и переводы одних значений в другие. Зачем все это нужно и самое главное, для кого? Но не стоит пренебрегать и забывать простые формулы из средней школы.

Мир стоял и будет стоять на элементарных познаниях, из математики, в том числе. И, приступая к какой-нибудь важной работе, никогда не лишне освежить в памяти данные выкладки, применив их на практике с большим эффектом. Точность – вежливость королей.

Найдите площадь осевого сечения, перпендикулярного основаниям цилиндра. Одна из сторон этого прямоугольника равна высоте цилиндра, вторая - диаметру окружности основания. Соответственно, площадь сечения в этом случае будет равна произведению сторон прямоугольника. S=2R*h, где S - площадь сечения, R – радиус окружности основания, заданный условиями задачи, а h - высота цилиндра, также заданная условиями задачи.

Если сечение перпендикулярно основаниям, но при этом не проходит через ось вращения, прямоугольника не будет равняться диаметру окружности. Ее нужно вычислить. Для этого в задачи должно быть сказано, на каком расстоянии от оси вращения проходит плоскость сечения. Для удобства вычислений постройте окружность основания цилиндра, проведите радиус и отложите на нем расстояние, на котором от центра окружности находится сечение. От этой точки проведите к перпендикуляры до их пересечения с окружностью. Соедините точки пересечения с центром. Вам нужно найти хорды. Найдите размер половины хорды по теореме Пифагора. Он будет равняться квадратному корню из разности квадратов радиуса окружности от центра до линии сечения. a2=R2-b2. Вся хорда будет, соответственно, равна 2а. Вычислите площадь сечения, которая равна произведению сторон прямоугольника, то есть S=2a*h.

Цилиндр можно рассечь , не проходящей через плоскости основания. Если поперечное сечение проходит перпендикулярно оси вращения, то оно будет представлять собой круг. Площадь его в этом случае равна площади оснований, то есть вычисляется по формуле S=πR2.

Полезный совет

Чтобы точнее представить себе сечение, сделайте чертеж и дополнительные построения к нему.

Источники:

  • сечение цилиндра площадь

Линия пересечения поверхности с плоскостью принадлежит одновременно поверхности и секущей плоскости. Линия пересечения цилиндрической поверхности секущей плоскостью, параллельной прямой образующей – прямая линия. Если секущая плоскость перпендикулярна к оси поверхности вращения – в сечении будет окружность. В общем случае линия пересечения цилиндрической поверхности с секущей плоскостью – кривая линия.

Вам понадобится

  • Карандаш, линейка, треугольник, лекала, циркуль, измеритель.

Инструкция

На фронтальной плоскости проекций П₂ линия сечения совпадает с проекцией секущей плоскости Σ₂ в виде прямой.
Обозначьте точки пересечения образующих цилиндра с проекцией Σ₂ 1₂, 2₂ и т.д. до точек 10₂ и 11₂.

На плоскости П₁ – это окружность. Отмеченные на плоскости сечения Σ₂ точки 1₂ , 2₂ и т.д. с помощью линии проекционной связи спроектируются на очерке этой окружности. Обозначьте их горизонтальные проекции симметрично относительно горизонтальной оси окружности.

Таким образом, проекции искомого сечения определены: на плоскости П₂ – прямая (точки 1₂, 2₂…10₂); на плоскости П₁ – окружность (точки 1₁, 2₁…10₁).

По двум постройте натуральную величину сечения данного цилиндра фронтально-проектирующей плоскостью Σ. Для этого используйте способ проекций.

Проведите плоскость П₄ параллельно проекции плоскости Σ₂. На этой новой оси x₂₄ отметьте точку 1₀. Расстояния между точками 1₂ – 2₂, 2₂ – 4₂ и т.д. с фронтальной проекции сечения отложите на оси x₂₄, проведите тонкие линии проекционной связи перпендикулярно оси x₂₄.

В данном способе плоскостью П₄ заменяется плоскость П₁, поэтому с горизонтальной проекции размеры от оси до точек перенесите на ось плоскости П₄.

Например, на П₁ для точек 2 и 3 это будет расстояние от 2₁ и 3₁ до оси(точка А) и т.д.

Отложив с горизонтальной проекции указанные расстояния, получите точки 2₀, 3₀, 6₀, 7₀, 10₀, 11₀. Затем для большей точности построения, определяются остальные, промежуточные, точки.

Соединив лекальной кривой все точки, получите искомую натуральную величину сечения цилиндра фронтально-проектирующей плоскостью.

Источники:

  • как заменить плоскость

Совет 3: Как найти площадь осевого сечения усеченного конуса

Чтобы решить данную задачу, необходимо вспомнить, что такое усеченный конус и какими свойствами он обладает. Обязательно сделайте чертеж. Это позволит определить, какую геометрическую фигуру представляет собой сечение . Вполне возможно, что после этого решение задачи уже не будет представлять для вас сложности.

Инструкция

Круглый конус – тело, полученное путем вращения треугольника вокруг одного из его катетов. Прямые, исходящие из вершины конуса и пересекающие его основание, называются образующими. Если все образующие равны, то конус является прямым. В основании круглого конуса лежит круг. Перпендикуляр, опущенный на основание из вершины, является высотой конуса . У круглого прямого конуса высота совпадает с его осью. Ось – это прямая, соединяющая с центром основания. Если горизонтальная секущая плоскость кругового конуса , то его верхнее основание представляет собой круг.

Поскольку в условии задачи не оговорено, именно конус дается в данном случае, можно сделать вывод, что это прямой усеченный конус, горизонтальное сечение которого параллельно основанию. Его осевое сечение, т.е. вертикальная плоскость, которая через ось круглого конуса , представляет собой равнобочную трапецию. Все осевые сечения круглого прямого конуса равны между собой. Следовательно, чтобы найти площадь осевого сечения , требуется найти площадь трапеции, основаниями которой диаметры оснований усеченного конуса , а боковые стороны – его образующие. Высота усеченного конуса является одновременно высотой трапеции.

Площадь трапеции определяется по формуле:S = ½(a+b) h, где S – площадь трапеции;a – величина нижнего основания трапеции;b – величина ее верхнего основания;h – высота трапеции.

Поскольку в условии не оговорено, какие именно даны, можно , что диаметры обеих оснований усеченного конуса известны: AD = d1 – диаметр нижнего основания усеченного конуса ;BC = d2 – диаметр его верхнего основания; EH = h1 – высота конуса .Таким образом, площадь осевого сечения усеченного конуса определяется: S1 = ½ (d1+d2) h1

Источники:

  • площадь усеченного конуса

Цилиндр является пространственной фигурой и состоит из двух равных оснований, которые представляют собой круги и боковой поверхности, соединяющей линии, ограничивающие основания. Чтобы вычислить площадь цилиндра , найдите площади всех его поверхностей и сложите их.

Стереометрия − это раздел геометрии, в котором изучаются фигуры в пространстве. Основными фигурами в пространстве являются точка, прямая и плоскость. В стереометрии появляется новый вид взаимного расположения прямых: скрещивающиеся прямые. Это одно из немногих существенных отличий стереометрии от планиметрии, так как во многих случаях задачи по стереометрии решаются путем рассмотрения различных плоскостей, в которых выполняются планиметрические законы.

В окружающей нас природе существует множество объектов, являющихся физическими моделями указанной фигуры. Например, многие детали машин имеют форму цилиндра или представляют собой некоторое их сочетание, а величественные колонны храмов и соборов, выполненные в форме цилиндров, подчеркивают их гармонию и красоту.

Греч. − кюлиндрос. Античный термин. В обиходе − свиток папируса, валик, каток (глагол − крутить, катать).

У Евклида цилиндр получается вращением прямоугольника. У Кавальери − движением образующей (при произвольной направляющей − "цилиндрика").

Цель данного реферата рассмотреть геометрическое тело – цилиндр.

Для достижения данной цели необходимо рассмотреть следующие задачи:

− дать определения цилиндра;

− рассмотреть элементы цилиндра;

− изучить свойства цилиндра;

− рассмотреть виды сечения цилиндра;

− вывести формулу площади цилиндра;

− вывести формулу объема цилиндра;

− решить задачи с использованием цилиндра.

1.1. Определение цилиндра

Рассмотрим какую-либо линию (кривую, ломаную или смешанную) l, лежащую в некоторой плокости α, и некоторую прямую S, пересекающую эту плоскость. Через все точки данной линии l проведем прямые, параллельные прямой S; образованная этими прямыми поверхность α называется цилиндрической поверхностью. Линия l называется направляющей этой поверхности, прямые s 1 , s 2 , s 3 ,... − ее образующими.

Если направляющая является ломаной, то такая цилиндрическая поверхность состоит из ряда плоских полос, заключенных между парами параллельных прямых, и называется призматической поверхностью. Образующие, проходящие через вершины направляющей ломаной, называются ребрами призматической поверхности, плоские полосы между ними − ее гранями.

Если рассечь любую цилиндрическую поверхность произвольной плоскостью, не параллельной ее образующим, то получим линию, которая также может быть принята за направляющую данной поверхности. Среди направляющих выделяется та, которая, получается, от сечения поверхности плоскостью, перпендикулярной образующим поверхности. Такое сечение называется нормальным сечением, а соответствующая направляющая − нормальной направляющей.

Если направляющая − замкнутая (выпуклая) линия (ломаная или кривая), то соответствующая поверхность называется замкнутой (выпуклой) призматической или цилиндрической поверхностью. Из цилиндрических поверхностей простейшая имеет своей нормальной направляющей окружность. Рассечем замкнутую выпуклую призматическую поверхность двумя плоскостями, параллельными между собой, но не параллельными образующим.

В сечениях получим выпуклые многоугольники. Теперь часть призматической поверхности, заключенная между плоскостями α и α", и две образовавшиеся при этом многоугольные пластинки в этих плоскостях ограничивают тело, называемое призматическим телом − призмой.

Цилиндрическое тело − цилиндр определяется аналогично призме:
Цилиндром называется тело, ограниченное с боков замкнутой (выпуклой) цилиндрической поверхностью, а с торцов двумя плоскими параллельными основаниями. Оба основания цилиндра равны, также равны между собой и все образующие цилиндра, т.е. отрезки образующих цилиндрической поверхности между плоскостями оснований.

Цилиндром (точнее, круговым цилиндром) называется геометрическое тело, которое состоит из двух кругов, не лежащих в одной плоскости и совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих кругов (рис. 1).

Круги называются основаниями цилиндра, а отрезки, соединяющие соответствующие точки окружностей кругов, − образующими цилиндра.

Так как параллельный перенос есть движение, то основания цилиндра равны.

Так как при параллельном переносе плоскость переходит в параллельную плоскость (или в себя), то у цилиндра основания лежат в параллельных плоскостях.

Так как при параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и то же расстояние, то у цилиндра образующие параллельны и равны.

Поверхность цилиндра состоит из оснований и боковой поверхности. Боковая поверхность составлена из образующих.

Цилиндр называется прямым, если его образующие перпендикулярны плоскостям оснований.

Прямой цилиндр наглядно можно представить себе как геометрическое тело, которое описывает прямоугольник при вращении его около стороны как оси (рис. 2).

Рис. 2 − Прямой цилиндр

В дальнейшем мы будем рассматривать только прямой цилиндр, называя его для краткости просто цилиндром.

Радиусом цилиндра называется радиус его основания. Высотой цилиндра называется расстояние между плоскостями его оснований. Осью цилиндра называется прямая, проходящая через центры оснований. Она параллельна образующим.

Цилиндр называется равносторонним, если его высота равна диаметру основания.

Если основания цилиндра плоские (и, следовательно, содержащие их плоскости параллельны), то цилиндр называют стоящим на плоскости. Если основания стоящего на плоскости цилиндра перпендикулярны образующей, то цилиндр называется прямым.

В частности, если основание стоящего на плоскости цилиндра − круг, то говорят о круговом (круглом) цилиндре; если эллипс − то эллиптическом.

1. 3. Сечения цилиндра

Сечение цилиндра плоскостью, параллельной его оси, представляет собой прямоугольник (рис. 3, а). Две его стороны − образующие цилиндра, а две другие − параллельные хорды оснований.

а)б)

в) г)

Рис. 3 – Сечения цилиндра

В частности, прямоугольником является осевое сечение. Это − сечение цилиндра плоскостью, проходящей через его ось (рис. 3, б).

Сечение цилиндра плоскостью, параллельной основанию − круг (рис 3, в).

Сечение цилиндра плоскостью не параллельной основанию и его оси − овал (рис. 3г).

Теорема 1. Плоскость, параллельная плоскости основания цилиндра, пересекает его боковую поверхность по окружности, равной окружности основания.

Доказательство. Пусть β − плоскость, параллельная плоскости основания цилиндра. Параллельный перенос в направлении оси цилиндра, совмещающий плоскость β с плоскостью основания цилиндра, совмещает сечение боковой поверхности плоскостью β с окружностью основания. Теорема доказана.


Площадь боковой поверхности цилиндра.

За площадь боковой поверхности цилиндра принимается предел, к которому стремится площадь боковой поверхности правильной призмы, вписанной в цилиндр, когда число сторон основания этой призмы неограниченно возрастет.

Теорема 2. Площадь боковой поверхности цилиндра равна произведению длины окружности его основания на высоту (S бок.ц = 2πRH, где R − радиус основания цилиндра, Н − высота цилиндра).

А) б)
Рис. 4 − Площадь боковой поверхности цилиндра

Доказательство.

Пусть P n и Н соответственно периметр основания и высота правильной n-угольной призмы, вписанной в цилиндр (рис. 4, а). Тогда площадь боковой поверхности этой призмы S бок.ц − P n H. Предположим, что число сторон многоугольника, вписанного в основание, неограниченно растет (рис. 4, б). Тогда периметр P n стремится к длине окружности С = 2πR, где R- радиус основания цилиндра, а высота H не изменяется. Таким образом, площадь боковой поверхности призмы стремится к пределу 2πRH, т. е. площадь боковой поверхности цилиндра равна S бок.ц = 2πRH. Теорема доказана.

Площадь полной поверхности цилиндра.

Площадью полной поверхности цилиндра называется сумма площадей боковой поверхности и двух оснований. Площадь каждого основания цилиндра равна πR 2 , следовательно, площадь полной поверхности цилиндра S полн вычисляется по формуле S бок.ц = 2πRH+ 2πR 2 .

r
T 1
T
F
F 1
F
T
а)
F
б)

Рис. 5 − Площадь полной поверхности цилиндра

Если боковую поверхность цилиндра разрезать по образующей FT (рис. 5, а) и развернуть так, чтобы все образующие оказались в одной плоскости, то в результате мы получим прямоугольник FTT1F1, который называется разверткой боковой поверхности цилиндра. Сторона FF1 прямоугольника есть развертка окружности основания цилиндра, следовательно, FF1=2πR, а его сторона FT равна образующей цилиндра, т. е. FT = Н (рис. 5, б). Таким образом, площадь FT∙FF1=2πRH развертки цилиндра равна пло­щади его боковой поверхности.

1.5. Объем цилиндра

Если геометрическое тело простое, то есть допускает разбиение на конечное число треугольных пирамид, то его объем равен сумме объемов этих пирамид. Для произвольного тела объем определяется следующим образом.

Данное тело имеет объем V, если существует содержащие его простые тела и содержащиеся в нем простые тела с объемами, сколько угодно мало отличающимися от V.

Применим это определение к нахождению объема цилиндра с радиусом основания R и высотой Н.

При выводе формулы для площади круга были построены такие два n-угольника (один − содержащий круг, другой − содержащийся в круге), что их площади при неограниченном увеличении n неограниченно приближались к площади круга. Построим такие многоугольники для круга в основании цилиндра. Пусть Р − многоугольник, содержащий круг, а Р" − многоугольник, содержащийся в круге (рис. 6).

Рис. 7 − Цилиндр с описанной и вписанной в него призмой

Построим две прямые призмы с основаниями Р и Р" и высотой Н, равной высоте цилиндра. Первая призма содержит цилиндр, а вторая призма содержится в цилиндре. Так как при неограниченном увеличении n площади оснований призм неограниченно приближаются к площади основания цилиндра S, то их объемы неограниченно приближаются к SН. Согласно определению объем цилиндра

V = SH = πR 2 H.

Итак, объем цилиндра равен произведению площади основания на высоту.

Задача 1.

Осевое сечение цилиндра − квадрат, площадь которого Q.

Найдите площадь основания цилиндра.

Дано: цилиндр, квадрат − осевое сечение цилиндра, S квадрата = Q.

Найти: S осн.цил.

Сторона квадрата равна . Она равна диаметру основания. Поэтому площадь основания равна .

Ответ: S осн.цил. =

Задача 2.

В цилиндр вписана правильная шестиугольная призма. Найдите угол между диагональю ее боковой грани и осью цилиндра, если радиус основания равен высоте цилиндра.

Дано: цилиндр, правильная шестиугольная призма вписанная в цилиндр, радиус основания = высоте цилиндра.

Найти: угол между диагональю ее боковой грани и осью цилиндра.

Решение: Боковые грани призмы − квадраты, так как сторона правильного шестиугольника, вписанного в окружность, равна радиусу.

Ребра призмы параллельны оси цилиндра, поэтому угол между диагональю грани и осью цилиндра равен углу между диагональю и боковым ребром. А это угол равен 45°, так как грани − квадраты.

Ответ: угол между диагональю ее боковой грани и осью цилиндра = 45°.

Задача 3.

Высота цилиндра 6см, радиус основания 5см.

Найдите площадь сечения, проведенного параллельно оси цилиндра на расстоянии 4см от нее.

Дано: Н = 6см, R = 5см, ОЕ = 4см.

Найти: S сеч.

S сеч. = КМ×КС,

ОЕ = 4 см, КС = 6 см.

Треугольник ОКМ − равнобедренный (ОК = ОМ = R = 5 см),

треугольник ОЕК − прямоугольный.

Из треугольника ОЕК, по теореме Пифагора:

КМ = 2ЕК = 2×3 = 6,

S сеч. = 6×6 = 36 см 2 .

Цель данного реферата выполнена, рассмотрено такое геометрическое тело, как цилиндр.

Рассмотрены следующие задачи:

− дано определение цилиндра;

− рассмотрены элементы цилиндра;

− изучены свойства цилиндра;

− рассмотрены виды сечения цилиндра;

− выведена формула площади цилиндра;

− выведена формула объема цилиндра;

− решены задачи с использованием цилиндра.


1. Погорелов А. В. Геометрия: Учебник для 10 – 11 классов общеобразовательных учреждений, 1995.

2. Бескин Л.Н. Стереометрия. Пособие для учителей средней школы, 1999.

3. Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б., Киселева Л. С., Позняк Э. Г. Геометрия: Учебник для 10 – 11 классов общеобразовательных учреждений, 2000.

4. Александров А.Д., Вернер А.Л., Рыжик В.И. Геометрия: учебник для 10-11 классов общеобразовательных учреждений, 1998.

5. Киселев А. П., Рыбкин Н. А. Геометрия: Стереометрия: 10 – 11 классы: Учебник и задачник, 2000.

Цилиндр – это фигура, состоящая из цилиндрической поверхности и двух окружностей, расположенных параллельно. Расчет площади цилиндра – это задача геометрического раздела математики, которая решается достаточно просто. Существует несколько методов ее решения, которые в результате всегда сводятся к одной формуле.

Как найти площадь цилиндра – правила вычисления

  • Чтобы узнать площадь цилиндра, необходимо две площади основания сложить с площадью боковой поверхности: S= Sбок.+ 2Sосн. В более развернутом варианте данная формула выглядит так: S= 2 π rh+ 2 π r2= 2 π r(h+ r).
  • Площадь боковой поверхности данного геометрического тела можно высчитать, если известны его высота и радиус окружности, лежащей в основании. В данном случае можно выразить радиус из длины окружности, если она дана. Высота может быть найдена, если в условии задано значение образующей. В этом случае образующая будет равна высоте. Формула боковой поверхности данного тела выглядит так: S= 2 π rh.
  • Площадь основания считается по формуле нахождения площади круга: S osn= π r 2 . В некоторых задачах может не даваться радиус, но задаваться длина окружности. С данной формулы радиус выражается достаточно легко. С=2π r, r= С/2π. Нужно также помнить о том, что радиус – это половина диаметра.
  • При выполнении всех этих расчетов число π обычно не переводится в 3,14159… Его нужно просто дописывать рядом с числовым значением, которое было получено в результате проведения вычислений.
  • Далее необходимо лишь умножить найденную площадь основания на 2 и прибавить к полученному числу вычисленную площадь боковой поверхности фигуры.
  • Если в задаче указывается, что в цилиндре есть осевое сечение и это – прямоугольник, то решение будет немного другим. В таком случае ширина прямоугольника будет являться диаметром окружности, лежащей в основании тела. Длина фигуры будет равна образующей или высоте цилиндра. Необходимо высчитать нужные значения и подставить в уже известную формулу. В данном случае ширину прямоугольника нужно разделить на два, чтобы найти площадь основания. Для нахождения боковой поверхности длина умножается на два радиуса и на число π.
  • Можно высчитать площадь данного геометрического тела через его объем. Для этого нужно из формулы V=π r 2 h вывести недостающую величину.
  • В вычислении площади цилиндра нет ничего сложного. Нужно только знать формулы и уметь выводить из них величины, необходимые для проведения расчетов.
Площадь каждого основания цилиндра равна πr 2 , площадь обоих оснований составит 2πr 2 (рис.).

Площадь боковой поверхности цилиндра равна площади прямоугольника, основание которого равно 2πr , а высота равна высоте цилиндра h , т. е. 2πrh .

Полная поверхность цилиндра составит: 2πr 2 + 2πrh = 2πr (r + h ).


За площадь боковой поверхности цилиндра принимается площадь развертки его боковой поверхности.

Поэтому площадь боковой поверхности прямого кругового цилиндра равна площади соответствующего прямоугольника (рис.) и вычисляется по формуле

S б.ц. = 2πRH, (1)

Если к площади боковой поверхности цилиндра прибавить площади двух его оснований, то получим площадь полной поверхности цилиндра

S полн. =2πRH + 2πR 2 = 2πR (H + R).

Объем прямого цилиндра

Теорема. Объем прямого цилиндра равен произведению площади его основания на высоту , т. е.

где Q - площадь основания, а Н - высота цилиндра.

Так как площадь основания цилиндра равна Q, то существуют последовательности описанных и вписанных многоугольников с площадями Q n и Q’ n таких, что

\(\lim_{n \rightarrow \infty}\) Q n = \(\lim_{n \rightarrow \infty}\) Q’ n = Q.

Построим последовательности призм, основаниями которых являются рассмотренные выше описанные и вписанные многоугольники, а боковые ребра параллельны образующей данного цилиндра и имеют длину H. Эти призмы являются описанными и вписанными для данного цилиндра. Их объемы находятся по формулам

V n = Q n H и V’ n = Q’ n H.

Следовательно,

V= \(\lim_{n \rightarrow \infty}\) Q n H = \(\lim_{n \rightarrow \infty}\) Q’ n H = QH.

Следствие.
Объем прямого кругового цилиндра вычисляется по формуле

V = π R 2 H

где R - радиус основания, а H - высота цилиндра.

Так как основание кругового цилиндра есть круг радиуса R, то Q = π R 2 , и поэтому