Главная · Правильное питание · Что происходит с мозгом. Нейробиология: Что происходит с мозгом, когда мы учимся. Как мозг принимает решения

Что происходит с мозгом. Нейробиология: Что происходит с мозгом, когда мы учимся. Как мозг принимает решения

Невероятные факты

Мозг - один из самых удивительных органов в человеческом теле. Он контролирует нашу центральную нервную систему, помогает нам ходить, разговаривать, дышать и думать. К тому же это невероятно сложная система, состоящая из 100 миллиардов нейронов .

В мозге происходит так много всего, что сразу несколько областей медицины и науки посвящены его изучению и лечению, включая неврологию, психологию и психиатрию.

Хотя люди изучали мозг с еще древних времен, многие аспекты мозга остаются до сих пор загадкой . Неудивительно, что мы склонны упрощать информацию о том, как работает мозг, чтобы лучше его понять. Это привело к появлению множества заблуждений о нашем мозге.

1. Цвет мозга: наш мозг серый

Вы когда-нибудь задумывались о цвете собственного мозга? Скорее всего - нет, если вы не работаете в медицинской сфере. Если у вас была возможность видеть мозг, сохраненный в банке, то он, как правило, имел белый или серый с желтоватым оттенок. Однако живой пульсирующий мозг в нашем черепе не такой тусклый на вид. В нем присутствует белый, черный и красный компонент .

Хотя большая часть мозга серая, так называемое серое вещество , которое представляет собой разные типы клеток, он содержит и белое вещество , содержащее нервные волокна, присоединенные к серому веществу.

В мозге также есть черная субстанция (Substantia nigra ), которая имеет черный цвет благодаря нейромеланину – особому виду пигмента, который окрашивает кожу и волосы и является частью базальных ганглиев.

И наконец, красный цвет появляется благодаря множеству кровеносных сосудов в мозге. Так почему же мозг имеет такой тусклый цвет? Это все благодаря формальдегиду, который сохраняет мозг в банке.

2. Эффект Моцарта: прослушивание классической музыки делает нас умнее

Многие родители покупают DVD, видео и другую продукцию классической музыки, искусства и поэзии для малышей, считая, что это полезно для умственного развития ребенка . Есть даже сборники классической музыки, разработанные для еще неродившихся детей в животе в матери. Эта идея стала настолько популярной, что ее назвали "эффектом Моцарта".

Откуда же появился этот миф? В 1950-х годах врач-отоларинголог Альберт Томатис (Albert Tomatis) заявил, что прослушивание музыки Моцарта помогло людям с речевыми и слуховыми нарушениями .

В 1960-х годах 36 студентов участвовали в исследовании Калифорнийского университета, прослушивая по 10 минут из сонаты Моцарта перед тем, как пройти тест IQ. Согласно психологу д-ру Гордону Шоу (Gordon Shaw), баллы студентов по IQ увеличились в среднем на 8 баллов и так родился "эффект Моцарта ".

Однако, как оказалось, исследователь, проводивший этот эксперимент, никогда не утверждал, что музыка может сделать кого-то умнее, а лишь показал, что она улучшает выполнение некоторых пространственно-временных задач. Другим исследователям не удалось повторить результаты, и сейчас нет данных о том, что прослушивание музыки Моцарта или другой классической музыки может сделать вас умнее.

Единственное, что известно, так этот то, что изучение игры на музыкальных инструментах улучшает концентрацию, уверенность в себе и координацию .

3. Извилины мозга: у нас появляются новые складки в мозге, когда мы учим что-то новое

Когда мы представляем себе, как выглядит мозг, мы рисуем себе картину закругленной серой массы из двух долей с множеством "морщин" или борозд.

По мере нашего развития, мозг стал больше, чтобы вместить все высшие функции, которые отличают нас от других животных. Но, чтобы мозг мог умещаться в череп, он должен находится в определенной пропорции к остальной части тела, и мозг начал морщиться .

Если бы можно было разгладить все извилины и борозды, мозг стал бы размером с подушку. Существуют различные виды извилин и борозд со своим названием, и они отличаются у разных людей.

Однако такой "морщинистый" вид появляется не сразу. У плода на раннем этапе развития очень гладкий небольшой мозг. По мере роста плода, растут нейроны, которые передвигаются к различным областям мозга, создавая впадины и борозды. Через 40 недель его мозг становится таким же складчатым (но меньше по размеру), как и мозг взрослого человека.

Таким образом новые складки не появляются по мере, того как мы учимся , и все складки, с которыми мы рождаемся остаются на всю жизнь, если конечно мы здоровы.

Во время обучения наш мозг действительно меняется, но не в плане извилин и борозд. Изучая мозг животных, ученые выяснили, что синапсы - связи между нейронами и кровяные клетки, которые поддерживают нейроны, растут и их количество увеличивается. Это явление называется нейропластичностью.

4. Мозг может выполнять несколько функций одновременно

5. 25-й кадр: Мы можем учиться, влияя на подсознание

25-й кадр – это сообщение, заключенное в картинку или звук, которое было сделано с целью внедрить его в подсознание и повлиять на поведение человека .

Первым человеком, кто ввел этот термин, стал Джеймс Вайкери (James Vicary), который заявил, что внедрил сообщения во время показа фильма в Нью-Джерси. Сообщение вспыхивало на экране на 1/3000 секунды, внушая зрителям "выпить Кока-колу" или "Съесть попкорн".

Согласно Вайкери, продажи колы в кинотеатре выросли на 18 процентов, а попкорна на 57 процентов , что подтверждало эффективность 25-го кадра. Результаты этого эксперимента стали использовать в телевизионной рекламе, чтобы убедить покупателей приобретать определенные продукты.

Но на самом ли деле 25-й кадр действовал? Как оказалось, Вайкери сфабриковал результаты исследования . Последующие исследования, как например, сообщение "Звони прямо сейчас", которое показывали на канадском телевидении, не оказало никакого действия на телезрителей. Однако многие люди до сих пор считают, что музыка и реклама содержит скрытые посылы.

И хотя прослушивание специальных записей для самовнушения, возможно, не повредит, вряд ли это поможет вам бросить курить.

6. Размер мозга: у человека самый большой мозг

Многие животные используют свой мозг, чтобы выполнять те же действия, что и люди, например, чтобы найти решение задачи, используя инструменты, и демонстрируя сопереживание. И хотя ученые не пришли к согласию относительно того, что делает человека умным, большинство все же согласны, что человек является самым умным существом на Земле . Возможно по этой причине, многие приходят к выводу, что у нас самый крупный мозг среди животных.

Но это не совсем так. Средний вес человеческого мозга составляет 1361 грамм . У дельфинов – очень умных животных, мозг имеет в среднем такой же вес. Тогда как у кашалота, который считается не таким умным, как дельфин, мозг весит около 7 800 грамм.

С другой стороны мозг гончих собак весит около 72 грамм, а мозг орангутана 370 грамм. И собаки и орангутаны считаются умными животными, но у них маленький мозг . А у птиц, как например, голубя, вес мозга составляет всего 1 грамм.

При этом, вес тела дельфина составляет в среднем 158, 8 кг, а кашалота 13 тонн. Обычно чем больше животное, тем крупнее его череп и соответственно мозг. Гончие относительно небольшие собаки, весом до 11,3 кг, и потому их мозг меньше. Другими словами важен не размер мозга, а соотношение веса мозга по отношению к общему весу тела . У людей такое соотношение составляет 1 к 50, и на мозг приходится больше веса, чем у других животных. Для большинства млекопитающих, соотношение составляет 1 к 220.

Интеллект также связан с разными составляющими мозга. У млекопитающих более развита кора больших полушарий, отвечающая за высшие функции , такие как память, общение и мышление, в отличие от птиц, рыб и рептилий. У человека самая большая мозговая кора по отношению к размеру мозга.

7. Мозг остается активным после обезглавливания

Когда-то, обезглавливание считалось одним из самых распространенных методов экзекуции, отчасти благодаря гильотине. Хотя многие страны отказались от этого метода казни, его все еще применяют среди террористов и других групп. При этом гильотина была выбрана в качестве быстрой и относительно гуманной смерти. Но насколько быстро она происходит?

Идея того, что после отсечения головы, вы какое-то время находитесь в сознании , появилась во времена Французской революции, когда была создана гильотина. В 1793 году француженка Шарлотта Корде была казнена при помощи гильотины за убийство радикального журналиста, политика и революционера Жана Поля Марата .

После отсечения головы женщины, один из помощников поднял ее голову и ударил по щеке. Согласно свидетелям, глаза Корде посмотрели на помощника, и на ее лице было выражение негодования. После этого инцидента, людей, которых обезглавливали, просили после казни моргнуть, и некоторые свидетели утверждали, что глаза продолжали моргать еще в течение 30 секунд .

Другим примером стал случай, описанный французским врачом д-ром Габриелем Бюри (Gabriel Beaurieux), который наблюдал за обезглавливанием мужчины по имени Лонгиль. Врач утверждал, что видел, как веки и губы ритмически сжимались в течение 5-6 секунд, а когда он назвал его по имени, веки жертвы медленно приподнялись, а его зрачки сфокусировались.

Все эти случаи могут заставить нас поверить в то, что после обезглавливания человек может оставаться в сознании даже на несколько секунд. Однако большинство современных врачей считают, что такая реакция является не чем иным, как рефлекторными подергиваниями мышц .

Мозг, отрезанный от сердца, сразу впадает в кому и начинает умирать, а сознание теряется в течение 2-3 секунд , из-за быстрого уменьшения внутричерепного кровотока. Что же касается безболезненности гильотины, то разделение головного и спинного мозга после рассечения окружающих тканей вызывает резкую и очень сильную боль. По этой причине, обезглавливание во многих странах не применяется.

8. Травма мозга необратима

Наш мозг очень хрупкий орган, который восприимчив к множеству травм . Повреждение мозга может вызвать что угодно, начиная от инфекций до автомобильной катастрофы, и часто ведет к смерти клеток мозга. У многих людей травма мозга ассоциируется с образами людей в вегетативном состоянии или с постоянными физическими или умственными нарушениями.

Но это не всегда так. Существует разные виды травм мозга, и то, как она повлияет на человека, зависит от места и тяжести повреждения . При легкой травме мозга, как например сотрясении , мозг отскакивает внутри черепа, что может привести к кровотечению и разрывам, но мозг при этом может хорошо восстановиться. При тяжелой травме мозга, иногда требуется операция, чтобы убрать скопление крови или уменьшить давление. В этом случае последствия, как правило, необратимые.

Однако некоторые люди с травмой мозга, могут частично восстановиться после повреждения . Если нейроны были повреждены или потеряны, они не могут снова вырасти, но синапсы - связи между ними, могут.

Часто мозг создает новые связи, и некоторые области мозга берут на себя новые функции и учатся заново делать какие-то вещи. Так пациенты, пережившие инсульт, восстанавливают речь или моторные навыки.

9. Действие наркотиков: при употреблении наркотиков в мозге образуются дыры

То, как наркотики влияют на мозг, до сих пор является предметом споров. Некоторые считают, что только при злоупотреблении наркотических веществ могут появиться долговременные последствия, другие – что эти последствия появляются сразу после первого употребления.

В одном исследовании выяснили, что потребление марихуаны приводит только к небольшой потере памяти , а в другом, что долгое и частое использование может сморщить части мозга. Некоторые люди даже считают, что использование таких наркотиков, как кокаин и экстези может привести к появлению дыр в мозге.

На самом деле, единственное, что может продырявить ваш мозг – это физическая травма .

Тем не менее, наркотические вещества действительно вызывают кратковременные и долговременные последствия в мозге. Они могут уменьшить воздействие нейромедиаторов – передатчиков нервных импульсов, таких как допамин. Это объясняет, почему наркоманам нужно потреблять все больше наркотиков , чтобы добиться тех же ощущений. Также это может привести к проблемам в функции нейронов.

В 2008 году исследование показало, что длительное потребление некоторых наркотиков может вызвать рост определенных структур мозга. По этой причине наркоманам бывает так сложно изменить свое поведение.

10. Алкоголь убивает клетки мозга

Один лишь взгляд на пьяного человека может убедить нас в том, что алкоголь напрямую воздействует на мозг. Среди последствия неумеренного потребления алкоголя наблюдается спутанность речи, нарушенная моторики и суждения . Также человек часто страдает от головной боли, тошноты и неприятного побочного эффекта – похмелья. Но может ли стаканчик другой убить клетки мозга? А что насчет запоев или постоянного употребления алкоголя?

На самом деле, даже у алкоголиков, потребление алкоголя не приводят к смерти клеток мозга . Однако, он действительно повреждает окончания нейронов, называемые дендридами. Это приводит к тому, что возникают проблемы при передаче сообщений между нейронами, хотя такое повреждение обратимо.

У алкоголиков может развиться неврологическое нарушение называемое синдром Гайе-Вернике , при котором происходит потеря нейронов в определенных частях мозга. Также этот синдром вызывает проблемы с памятью, спутанность сознания, паралич глаз, отсутствие мышечной координации и амнезию. Кроме того, это может привести к смерти.

Само нарушение вызвано не алкоголем, а недостатком тиамина или витамина В1. Дело в том, что алкоголики часто плохо питаются, а злоупотребление алкоголем мешает всасыванию тиамина.

И хотя алкоголь не убивает клетки мозга, в больших количествах он все равно повреждает мозг .

Бонус: Сколько процентов мозга использует человек?

Вы наверняка часто слышали о том, что мы используем только 10 процентов нашего мозга. В пример даже приводят цитаты известных людей, таких как Альберт Эйнштейн и Маргарет Мид.

Источником этого мифа стал американский психолог Уильям Джеймс , которые как-то сказал, что "средний человек редко достигает только малой доли своего потенциала". Каким-то образом эту фразу превратили в "10 процентов нашего мозга".

С первого взгляда это кажется нелогичным. Зачем нам такой большой мозг, если мы его полностью не используем? Появились даже книги, которые обещали научить людей использовать остальные 90 процентов их мозга .

Но, как можно было уже догадаться, такое мнение ошибочно. Кроме 100 миллиардов нейронов, мозг содержит разные типы клеток, которые мы постоянно используем. Человек может стать инвалидом, даже при повреждении небольшой области мозга, в зависимости от того, где она находится, и потому мы не можем существовать только на 10 процентах мозга.

Сканирование мозга показало, что, что бы мы не делали, наш мозг всегда остается активным . Одни области более активны, чем другие, но нет части, которая бы совсем не работала.

Так, например, если вы сидите за столом и едите бутерброд, вы не используете свои ноги. Вы сконцентрированы на том, чтобы поднести бутерброд ко рту, прожевать и проглотить его. Но это не значит, что ваши ноги не работают. В них сохраняется активность, как например кровоток, даже если вы ими не двигаете.

Другими словами у нас нет скрытого дополнительного потенциала , который можно было использовать. Но ученые до сих пор продолжают изучать мозг.

Для того чтобы достичь полного понимания биологических основ сознания, понадобится, возможно, еще несколько столетий. Но если всего лишь пару десятков лет назад к решению этой задачи приступать даже не решались, сегодня появились научные методы исследований в данной области.

Если отвечать вкратце, то ответ будет таков: наука пока не имеет удовлетворительного объяснения этого процесса. Удовлетворительного в том смысле, который имел в виду Ричард Фейнман, когда говорил: «То, что я не могу построить, я не могу понять». Мы не можем пока создать устройство, которое мыслит, и это в значительной степени связано не с техническими сложностями, а с тем, что мы не способны пока понять, как устроен мозг.

Что известно сейчас? Мы не можем сказать, как рождается мысль, но мы уже очень много знаем о том, что происходит в мозге при ее рождении, какие уникальные условия работы мозга создаются, когда возникает мысль. Исследуется это в специальных экспериментах, когда сравнивают предъявление мозгу каких-то осознаваемых ситуаций (рождающих мысль) и тех же ситуаций, которые он осознать не может. Например, если событие слишком коротко: зрительные и слуховые компоненты происходящего поступают в мозг, но до уровня сознания не доходят. Когда ученые сравнивают, что происходит в мозге при сознательной и неосознаваемой переработке информации, оказывается, что осознание связано с несколькими вещами.
Что происходит при осознании:

📎 во-первых, когда мы осознаем что-то, в коре головного мозга работает значительно больше нейронов в тех зонах, которые уже участвовали в обработке неосознанной информации.

📎 во-вторых, в момент осознания активируются те зоны, которые раньше не участвовали в неосознаваемой обработке сенсорных данных. Это зоны, связанные с передними областями мозга.

📎 в-третьих, между зонами, которые активируются в момент появления сознания (мысли), и зонами, которые связаны с нашим восприятием окружающего мира, начинают устанавливаться быстрые циклические взаимодействия - реверберации.

📎 в-четвертых, только после того как начинается циркуляция возбуждений по этой сети, появляется момент осознания. Мы не всегда понимаем это, но наше сознание очень сильно отстает от момента реакции мозга на какие-то события. Если точно известно, в какую миллисекунду предъявлена на экране фотография или слово, можно убедиться, что осознание появляется примерно через полсекунды (200–400 миллисекунд) после показа. А реакция областей мозга, которые воспринимают информацию неосознанно (ранняя реакция), возникает заметно раньше, то есть через 60–100 миллисекунд. Все эти четыре компонента складываются в общую картину. Когда у нас появляется вспышка сознания, это происходит из-за того, что разные области мозга - и те, которые связаны с умственным напряжением, вниманием (передние), и те, которые связаны с восприятием внешнего мира - синхронизуются вместе в специальных циклах циркуляции информации. Синхронизация устанавливается на поздних фазах действия внешнего сигнала (через полсекунды), и в этот момент появляется сознание.

Тайны нервного кода
Мы также знаем, что воздействие на разные этапы этих четырех компонентов (иногда они наблюдаются в медицине, при травмах, кроме того, их можно вызывать искусственно при магнитной симуляции) способно разрушить сознание, и человек окажется в области подсознательного либо попросту в коме.

Мозг часто сравнивают с компьютером, но это очень грубая и неточная аналогия. Нервный код устроен совсем по-другому, нежели коды Тьюринговской машины. Мозг не работает на бинарной логике, он не работает как тактовый процессор, он функционирует как массивная параллельная сеть, где основным элементом кода является момент синхронизации разных клеток с их опытом, в результате чего и возникает то субъективное ощущение, мысль или действие, которые занимают в этот миг театр сознания, поле нашего внимания. Это код синхронизации многих элементов, а не ход пошаговых вычислений.

Нейроны и образы
В момент образования связей между клетками не передается что-то похожее на психическую информацию. Между ними передаются химические вещества, которые позволяют нейронам объединиться в ту или иную систему. Каждая из этих систем уникальна, потому что клетки специализированы. Например, это клетки, воспринимающие образ синего неба, белой оконной рамы, лица и т. д. Все вместе они дают на какое-то короткое время тот осознаваемый образ, который и занимает наше внимание. Такие «кадры» могут очень быстро меняться, и следующие несколько десятков миллисекунд в мозгу появится другая конфигурация клеток, которая связана с другим набором нейронов. И это постоянный поток, лишь небольшая часть которого осознается посредством возникающих синхронизаций. Есть масса вещей, которые работают при этом параллельно центральному звену. Они не осознаются и построены на автоматизированных процессах. Я сижу, балансирую, поддерживаю температуру тела, давление, дыхание. Это всё управляется массой функциональных систем, которые не должны идти в широковещание на весь мозг.

Мозг под управлением ОС
Однако при всей несхожести нервного и бинарного кодов некие параллели между мозгом и компьютером все же можно провести.

Мозг обладает подобием операционной системы, и на этот счет существует несколько гипотез. В одной из них - теории функциональных систем - существует понятие операционной архитектоники системы. Это некий синтез сенсорных и мотивационных сигналов, извлечений из памяти, который вовлекает все эти компоненты в единое рабочее пространство - то, где ставится цель и принимается решение. Есть также теория сознания как глобального рабочего пространства. Согласно ей существует определенная операциональная архитектура, которая как операционная система способна вовлекать разные клетки в процессы осознания. Она вовлекает нейроны передних областей коры, которые имеют длинные проекции во все остальные области коры, и когда происходит «зажигание» этих нейронов, они начинают «крутить» информацию по всем остальным областям. Это некий центральный процессор, и он включается, только когда есть сознание. Во всем остальном мозг может работать автоматически. Вы можете вести машину, а ваше сознание будет занято некими внутренними вопросами, и «процессор» будет работать для них. И лишь в тот момент, когда происходит что-то неожиданное (кто-то перебегает дорогу, например), операционная система начинает работать на режим внешнего мира.

Константин Владимирович Анохин, российский ученый, нейробиолог, профессор, член-корреспондент РАН и РАМН. Лауреат премий Ленинского комсомола, имени Де Вида Нидерландской академии наук, Президиума Российской академии медицинских наук и Национальной премии «Человек года» в номинации «Потенциал и перспектива в науке»

Самым главным в центральной-нервной системе является головной мозг. Он контролирует работу всех систем организма. Состоит он из клеток нейронов, которые связаны между собой.

Они связываются между собой посредством импульсов. Все происходящие процессы в мозге изучены не до конца. Некоторые из них уже хорошо известны науке, а некоторые остаются полной загадкой.

Общие сведения

Размеры мозга достаточно невелики, по отношению ко всему организму он занимает всего два процента. Мозг человека самый развитый. Несмотря на его маленькие размеры, он управляет всем организмом.

Мозг человека находится в прочной оболочке, между которыми находятся сосуды. Внутри оболочки находится мозговая жидкость. Он делится на два полушария. Каждое полушарие отвечает за определенные системы организма. Без определенных сигналов головного мозга организм человека функционирует неправильно.

Любые изменения в тканях и структурах мозга могут привести к необратимым процессам. Смерть головного мозга может привести к смерти организма в целом. Его системы могут останавливать свою работу не так стремительно, как мозг. Но чаще всего результат будет неутешительный.

Нарушения в работе мозга имеют много воплощений

Таких заболеваний достаточно много. Одним из них называется абсцесс. Определенная полость головного мозга заполняется гноем. Обычно его может спровоцировать инфекция, которая попала внутрь.

Произойти это может в результате травмы или хирургического вмешательства, а также через кровь. Инкубационный период может длиться довольно долго. Для лечения обычно проводят операцию. Предсказать результат сложно.

Арахноидит – это когда воспаляются соединительные ткани и сосуды. Такие проявления вызывает инфекция или расстройства в работе центральной нервной системы. Имеет много второстепенных эффектов. Полное выздоровление может не наступить.

Атаксия – это нарушение привычных движений, речи. В этой ситуации нарушается связь между спинным и головным мозгом. Такое заболевание может говорить об возможных изменениях и осложнениях в головном мозге человека. Лечится обязательно с участием специалиста.

Атеросклероз сосудов. Становиться заметным, как ухудшение памяти, общим ухудшением состояния, головными болям.

Афазия – несет с собой нарушение работы речевого аппарата.

Бессонница – это заболевание связано с изменениями в работе центральной-нервной системы. Такие проявления могут вызвать стресс, перенапряжение, болевых ощущений в организме.

Разновидности параличей. Они могут появиться вместе с атеросклерозом. В процессе болезни меняется речь. Наблюдается резкая смена настроения. Вегетососудистые изменения могут быть в разных проявлениях.

Лечению они поддаются, но необходимо приложить определенные усилия. Протекает само заболевание довольно долго и в серьезной форме. Головная боль может говорить о, возможно, протекающих заболеваниях в мозге человека. Боли возникают в результате раздражения оболочки головного мозга.

Гипертония стала довольно молодым заболеванием. Когда боль концентрируется в затылке и выражается в ломящих проявлениях, давление может быть пониженным или повышенным. Выяснить это довольно просто. Нужно измерить давление тонометром.

Головокружение может начать проявляться неожиданно. Причины могут быть самые разнообразные. Это связано с нарушением работы вестибулярного аппарата. Резкие движения могут привести к таким ощущениям. Если такие явления не часты и возникают при определенных обстоятельствах можно не беспокоиться. Но когда головокружение сопровождается болями и повторяется с определенной периодичностью, необходимо обязательно посетить врача.

Когда ухудшается кровообращение головного мозга может наступить апоплексическая кома. Происходит разрыв сосудов и кровоизлияние. Этот процесс называют инсультом. В таких случаях нужно обязательно вызвать скорую помощь.

Менингит – это воспаление оболочки мозга. Возникает он по нескольким причинам. Очень сильная головная боль, высокая температура. Лечат его в стационаре. Для установки точного диагноза необходимо сделать пункцию. Выздоровление происходит долго, прогноз неоднозначный.

Мигрень проявляется в виде головной боли. Установить такой диагноз возможно, только после полного медицинского обследования.

Невралгические заболевания головного мозга могут причинить невосполнимый ущерб всему организму. После такого заболевания организм может восстановиться не в полной мере.

Прекращение работы функций головного мозга может происходить когда остальные органы еще работают. Происходит работа сердца и осуществляется дыхание. Обычно при искусственной поддержке. Но в момент остановки работы мозга происходят необратимые процессы, отмирание клеток. Организм еще как бы живет, но отсутствует реакция на все происходящее вокруг. Причин тому очень много. Специалисты называют такое состояние – запредельной комой.

Изменения головного мозга могут происходить не в связи с заболеваниями, а просто с возрастом. Организм в целом и со временем стареет. Все системе постепенно меняют свою работу. Происходят патологические изменения. Обычно в первую очередь это касается лобных долей головного мозга, но постепенно затрагивают и другие его части.

Можно сказать, что это наиболее распространенные и сложные заболевания головного мозга. Процесс течения любого из них может зависеть от множества факторов и индивидуальных особенностей организма. Прислушивайтесь к ритму его работы. Медики называют этот процесс – кортикальной атрофией. Такие изменения происходят в течение нескольких лет.

Что может привести к церебральной атрофии мозга?

Чаще всего существует предрасположенность к такому заболеванию. Происходит разрушение клеток головного мозга. Они могут разрушаться под воздействием алкоголя, никотина, токсичных и наркотических веществ. Употребление наркотических веществ приносит вред всему организму в целом. Все эти вещества накапливаются в головном мозге и во всем организме.

Спровоцировать их реакцию может травма, опухоли головного мозга, гематома или киста. Также послужить началом церебральной атрофии мозга может неврологическое заболевание, плохое кровообращение, ишемия сердца, недостаточное количество кислорода в крови. Эти процессы приводят к снижению умственных способностей, а это влечет деградацию.

Первые признаки церебральной атрофии головного мозга проявляются в расстройстве памяти, забывчивости, рассеянному вниманию. Со временем они начинают прогрессировать. Больному присущи резкие вспышки гнева и агрессии, возможно, длительное депрессивное состояние. Работа всех функций головного мозга нарушена.

Очень характерный признак для заболевания изменения почерка. Речь становится неразборчивой, мысли путаются, словарный запас резко уменьшается. В дальнейшем больной может потерять дееспособность и будет нуждаться в постоянном уходе. Принести продукты, приготовить еду, убрать квартиру – это станет для него непосильным.

Для проведения лечения и профилактических мер необходимо:

  • сократить употребление алкоголя, никотина, наркотических веществ до минимума;
  • при работе с токсичными веществами соблюдать меры собственной безопасности;
  • стараться употреблять здоровую и полезную пищу;
  • заниматься физкультурой и спортом;
  • проводить медикаментозную терапию, строго по назначению врача;
  • стараться избегать стрессовых ситуаций.

Причины остановки работы мозга

Головной мозг прекращает свою работу в результате травмы. Чаще всего это дорожно-транспортные происшествия, ушибы при падении. В такой ситуации травмируется непосредственно сам головной мозг. Если же прямой травмы не было могло произойти кровоизлияние в полость головного мозга.

В этот момент мозг повреждается, как и при прямой травме. Еще мозг может прекратить свою деятельность когда возникла острая сердечная недостаточность. Когда кровь не поступает в мозг в течение получаса, начинают погибать клетки, которые уже не подлежат реанимации. Происходит это в момент резкого повышения давления внутри черепа и из-за остановки сердца, проводится прямой массаж.

Признаки, остановки работы головного мозга.

  • отсутствует дыхание;
  • зрачок не реагирует;
  • реакция на боль отсутствует;
  • непроизвольные движения шеи и рук, без помощи работы головного мозга.

Как диагностируют смерть головного мозга?

Можно провести электроэнцефалограмму головного мозга и если на ней не видна биологическая активность, можно констатировать остановку работы. Когда отсутствует кровообращение в головном мозге нужно провести исследования ультразвуком или магниторезонансную ангиографию, скрининговые исследования.

При этом, желательно, знать причину наступления остановки работы сердца. При проведении обследования может быть выяснено, что борозды сглажены, желудочки уменьшены и наблюдается отек головного мозга. Обязательно проводится тест на проверку работы системы дыхания.

Констатация факта смерти мозга происходит в случае:

  • отсутствие реакции зрачка на световые раздражители;
  • остановки работы системы дыхания;
  • терминальная кома.

Атрофия головного мозга

Так, называют церебральную атрофию, в процессе которой происходит постепенное отмирание нервных клеток в головном мозге. Разрушаются нейроны и их соединения, кора головного мозга. Этому заболеванию подвержены люди в возрасте старше пятидесяти лет. Принято считать, что женщины болеют чаще, чем мужчины. Очень часто в результате наступает полное слабоумие.

Медицина утверждает, что это заболевание заложено на генетическом уровне. Влияние окружающих факторов, может повлиять на форму заболевания или ее течение.

Существует несколько видов атрофии:

  • болезнь Пика;
  • болезнь Альцгеймера.

Атрофия мозга выражается в отношении ко всему происходящему. Человек становится равнодушным, теряет интерес к жизни. Может наступить переоценка моральных ценностей. Мыслительные процессы замедляются, речь становится бессвязной, непоследовательной.

Нарушается робота опорно-двигательного аппарата. Больной может не узнавать людей и предметы. Происходит нарушение ориентации и он может повторять чьи-то поступки или действия. С течением определенного времени может наступить полный маразм. Диагностируют, такое заболевание при обследовании головного мозга и проведении МРТ.

Лечение носит больше профилактический характер. Необходим уход и большое внимание. В медикаментозных процедурах присутствуют лекарства, которые снимают симптомы или облегчают их проявления.

В такие моменты очень важно, чтобы больной находился в спокойной психологической обстановке и привычном образе жизни. Медики не рекомендуют содержать таких больных в клинике. Очень сможет помочь обычные домашние хлопоты, внимание и забота близких.

Из лекарственных препаратов назначают что-то успокоительное и снимающее депрессию. В таком случае желательно разработать специальный режим дня для больного. Он должен чувствовать себя нужным окружающим. Нагрузки обычно небольшие просто требующие определенного времени и занятости. Обязательно должен присутствовать отдых днем.

В процессе заболевания может развиться субатрофия коры головного мозга. Профилактика атрофии головного мозга практически невозможна. Рекомендуется вести здоровый образ жизни и прислушиваться к своему организму.

Подведение итогов

Головной мозг один из важнейших органов нашего организма. Все изменения в работе мозга приводят к сбою в работе всего организма. Каждая клетка головного мозга отвечает за определенную функцию.

При получении травмы, заболевании головного мозга могут происходить необратимые процессы. Отмирание клеток мозга происходит довольно быстро, а восстановление не наступает.

Многие заболевания головного мозга заложены на генетическом уровне. Поэтому очень важны внешние факторы воздействия. Положительные эмоции и здоровый образ жизни могут свести возможность развития сутатрофии головного мозга к минимуму.

При наступлении смерти головного мозга, организм человека прекращает свою деятельность. В зависимости от поврежденных участков мозга могут сохраниться рефлекторные инстинкты, которые происходят неосознанно.

При проявлении любых симптомов мозговых заболеваний необходимо обязательно обращаться к врачу. Пройти полное медицинское обследование.

Профилактика заболеваний головного мозга может принести положительные результаты. Ею нужно заниматься как перенесшим заболевания мозга, так и всем пациентам, имеющим к ним генетическую расположенность.

В современной медицине широко используются препараты, которые улучшаю работу и кровообращение головного мозга. Это прирацетам, церепро, цераксон. Существуют лекарства, которые принимают в профилактических целях – их называют антиоксидантами. Они способны ускорить и улучшить процесс вывода токсичных веществ из организма. «Трентал» предназначен для расширения сосудов и улучшения кислородного обмена.

Но вы должны всегда помнить, что заниматься самолечением категорически запрещено. Тем более, если у вас заболевания головного мозга такие, как: церебральная атрофия головного мозга и субатрофия коры головного мозга и клеток.

Симптомы очень схожи между собой и с другими мозговыми заболеваниями. Правильно поставить диагноз и выбрать терапию, может только специалист. Обязательно проводя полное обследование всего организма и головного мозга.

В профилактических целях, после курса медикаментозного лечения обязательно обратите внимание на народные методы профилактики мигрени или обычной головной боли. Но всегда все процедуры проводите только после согласования со специалистом.

Процесс выздоровления во многом зависит от своевременности обращения в клинику. Это во многом обуславливает положительный эффект лечения. Остановка работы головного мозга нуждается в срочных реанимационных действиях. Потерянное время может оказаться основной причиной невозможности и бесполезности их проведения.

Экология сознания: Жизнь. Совершенно точно доказано, что наш мозг - дико пластичная штука, и индивидуальное обучение серьезно на него влияет - в значительно большей степени, чем врожденные предрасположенности.

Если сравнивать с детенышами других животных, можно сказать, что человек рождается с недоразвитым мозгом: его масса у новорожденного составляет всего 30% массы мозга взрослого. Эволюционные биологи предполагают, что мы должны рождаться недоношенными, чтобы наш мозг развивался, взаимодействуя с внешней средой. Научный журналист Ася Казанцева в лекции «Зачем мозгу учиться?» в рамках программы «Арт-образование 17/18» рассказала

О процессе обучения с точки зрения нейробиологии

и объяснила, как мозг меняется под влиянием опыта, а также чем во время учебы полезны сон и лень.

Кто изучает феномен обучения

Вопросом, зачем мозгу учиться, занимаются как минимум две важные науки - нейробиология и экспериментальная психология. Нейробиология, изучающая нервную систему и происходящее в мозге на уровне нейронов в момент обучения, работает чаще всего не с людьми, а с крысами, улиточками и червячками. Специалисты по экспериментальной психологии пытаются понять, какие вещи влияют на обучаемость человека: например, дают ему важное задание, проверяющее его память или обучаемость, и смотрят, как он с ним справляется. Эти науки интенсивно развивались в последние годы.

Если смотреть на обучение с точки зрения экспериментальной психологии, то полезно вспомнить, что эта наука - наследница бихевиоризма, а бихевиористы считали, что мозг - черный ящик, и их принципиально не интересовало, что в нем происходит. Они воспринимали мозг как систему, на которую можно воздействовать стимулами, после чего в ней случается какая-то магия, и она определенным образом на эти стимулы реагирует. Бихевиористов интересовало, как может выглядеть эта реакция и что на нее способно влиять. Они считали, что обучение - это изменение поведения в результате освоения новой информации

Это определение до сих пор широко применяется в когнитивных науках. Скажем, если студенту дали почитать Канта и он запомнил, что есть «звездное небо над головой и моральный закон во мне», озвучил это на экзамене и ему поставили пятерку, значит, произошло обучение.

С другой стороны, такое же определение применимо и к поведению морского зайца (аплизии). Нейробиологи часто ставят опыты с этим моллюском. Если бить аплизию током в хвостик, она начинает бояться окружающей реальности и втягивать жабры в ответ на слабые стимулы, которых она раньше не боялась. Таким образом, у нее тоже происходит изменение поведения, обучение. Это определение можно применять и к еще более простым биологическим системам. Представим себе систему из двух нейронов, соединенных одним контактом. Если мы подадим на нее два слабых импульса тока, то в ней временно изменится проводимость и одному нейрону станет легче подавать сигналы другому. Это тоже обучение на уровне этой маленькой биологической системы. Таким образом, от обучения, которое мы наблюдаем во внешней реальности, можно построить мостик к тому, что происходит в мозге. В нем есть нейроны, изменения в которых влияют на нашу реакцию на среду, т. е. на произошедшее обучение.

Как работает мозг

Но чтобы говорить о мозге, нужно иметь базовое представление о его работе. В конце концов, у каждого из нас в голове есть эти полтора килограмма нервной ткани. Мозг состоит из 86 миллиардов нервных клеток, или нейронов. У типичного нейрона есть тело клетки со множеством отростков. Часть отростков - дендриты, которые собирают информацию и передают ее на нейрон. А один длинный отросток, аксон, передает ее следующим клеткам. Под передачей информации в рамках одной нервной клетки подразумевается электрический импульс, который идет по отростку, как по проводу. Один нейрон взаимодействует с другим через место контакта, которое называется «синапс», сигнал идет с помощью химических веществ. Электрический импульс приводит к высвобождению молекул - нейромедиаторов: серотонина, дофамина, эндорфинов. Они просачиваются через синаптическую щель, воздействуют на рецепторы следующего нейрона, и он изменяет свое функциональное состояние - например, у него на мембране открываются каналы, через которые начинают проходить ионы натрия, хлора, кальция, калия и т. д. Это приводит к тому, что на нем, в свою очередь, тоже формируется разность потенциалов, и электрический сигнал идет дальше, на следующую клетку.

Но когда клетка передает сигнал другой клетке, этого чаще всего недостаточно для каких-то заметных изменений в поведении, ведь один сигнал может получиться и случайно из-за каких-то возмущений в системе. Для обмена информацией клетки передают друг другу много сигналов. Главный кодирующий параметр в мозге - это частота импульсов: когда одна клетка хочет что-то передать другой клетке, она начинает посылать сотни сигналов в секунду. Кстати, ранние исследовательские механизмы 1960–70-х годов формировали звуковой сигнал. В мозг экспериментальному животному вживляли электрод, и по скорости треска пулемета, который слышался в лаборатории, можно было понять, насколько активен нейрон.

Система кодирования с помощью частоты импульсов работает на разных уровнях передачи информации - даже на уровне простых зрительных сигналов. У нас на сетчатке есть колбочки, которые реагируют на разные длины волн: короткие (в школьном учебнике они называются синие), средние (зеленые) и длинные (красные). Когда на сетчатку поступает волна света определенной длины, разные колбочки возбуждаются в разной степени. И если волна длинная, то красная колбочка начинает интенсивно подавать сигнал в мозг, чтобы вы поняли, что цвет красный. Впрочем, тут все не так просто: у колбочек перекрывается спектр чувствительности, и зеленая тоже делает вид, что она что-то такое увидела. Дальше мозг самостоятельно это анализирует.

Как мозг принимает решения

Принципы, аналогичные тем, что используются в современных механических исследованиях и опытах на животных с вживленными электродами, можно применять и к гораздо более сложным поведенческим актам. Например, в мозге есть так называемый центр удовольствия - прилежащее ядро. Чем более активна эта область, тем сильнее испытуемому нравится то, что он видит, и выше вероятность, что он захочет это купить или, например, съесть. Эксперименты с томографом показывают, что по определенной активности прилежащего ядра можно еще до того, как человек озвучит свое решение, допустим, относительно покупки кофточки, сказать, будет он ее покупать или нет. Как говорит прекрасный нейробиолог Василий Ключарев, мы делаем все, чтобы понравиться нашим нейронам в прилежащем ядре.

Сложность в том, что у нас в мозге нет единства суждений, каждый отдел может иметь свое мнение о происходящем. История, похожая на спор колбочек в сетчатке, повторяется и с более сложными вещами. Допустим, вы увидели кофточку, она вам понравилась, и ваше прилежащее ядро издает сигналы. С другой стороны, эта кофточка стоит 9 тысяч рублей, а зарплата еще через неделю - и тогда ваша амигдала, или миндалевидное тело (центр, связанный в первую очередь с негативными эмоциями), начинает издавать свои электрические импульсы: «Слушай, остается мало денег. Если мы сейчас купим эту кофточку, у нас будут проблемы». Лобная кора принимает решение в зависимости от того, кто громче орет - прилежащее ядро или амигдала. И тут еще важно, что каждый раз впоследствии мы способны проанализировать последствия, к которым это решение привело. Дело в том, что лобная кора общается и с амигдалой, и с прилежащим ядром, и с отделами мозга, связанными с памятью: они ей рассказывают, что произошло после того, как в прошлый раз мы принимали такое решение. В зависимости от этого лобная кора может более внимательно отнестись к тому, что говорят ей амигдала и прилежащее ядро. Так мозг способен меняться под влиянием опыта.

Почему мы рождаемся с маленьким мозгом

Все человеческие дети рождаются недоразвитыми, буквально недоношенными в сравнении с детенышами любого другого вида. Ни у одного животного нет настолько длинного детства, как у человека, и у них не бывает потомства, которое рождалось бы с настолько маленьким мозгом относительно массы мозга взрослого: у человеческого новорожденного она составляет лишь 30%.

Все исследователи сходятся во мнении, что мы вынуждены рождать человека незрелым из-за внушительного размера его мозга. Классическое объяснение - это акушерская дилемма, то есть история конфликта между прямохождением и большой головой. Чтобы родить детеныша с такой головой и крупным мозгом, нужно иметь широкие бедра, но невозможно их бесконечно расширять, потому что это будет мешать ходить. По подсчетам антрополога Холли Дансуорт, чтобы рожать более зрелых детей, достаточно было бы увеличить ширину родового канала всего на три сантиметра, но эволюция все равно в какой-то момент остановила расширение бедер. Эволюционные биологи предположили: вероятно, мы и должны рождаться недоношенными, чтобы наш мозг развивался во взаимодействии с внешней средой, ведь в матке в целом довольно мало стимулов.

Есть знаменитое исследование Блэкмора и Купера. Они в 70-е годы проводили опыты с котятами: большую часть времени держали их в темноте и на пять часов в день сажали в освещенный цилиндр, где они получали не совсем обычную картину мира. Одна группа котят в течение нескольких месяцев видела только горизонтальные полосы, а другая - только вертикальные. В итоге у котят возникли большие проблемы с восприятием реальности. Одни врезались в ножки стульев, потому что не видели вертикальных линий, другие таким же образом игнорировали горизонтальные - например, не понимали, что у стола есть край. С ними проводили тесты, играли с помощью палочки. Если котенок рос среди горизонтальных линий, то горизонтальную палочку он видит и ловит, а вертикальную просто не замечает. Затем вживляли электроды в кору головного мозга котят и смотрели, каким должен быть наклон палочки, чтобы нейроны начали издавать сигналы. Важно, что со взрослым котом во время такого эксперимента ничего бы не случилось, а вот мир маленького котенка, чей мозг только учится воспринимать информацию, вследствие подобного опыта может быть навсегда искажен. Нейроны, которые никогда не подвергались воздействию, перестают функционировать.

Мы привыкли считать, что чем больше связей между разными нейронами, отделами человеческого мозга, тем лучше. Это так, но с определенными оговорками. Нужно не просто чтобы связей было много, а чтобы они имели какое-то отношение к реальной жизни. У полуторагодовалого ребенка синапсов, то есть контактов между нейронами в мозге, гораздо больше, чем у профессора Гарварда или Оксфорда. Проблема в том, что эти нейроны связаны хаотично. В раннем возрасте мозг быстро созревает, и его клетки формируют десятки тысяч синапсов между всем и всем. Каждый нейрон раскидывает отростки во все стороны, и они цепляются за все, до чего смогли дотянуться. Но дальше начинает работать принцип «Используй, или потеряешь». Мозг живет в окружающей среде и пытается справляться с разными задачами: ребенка учат координировать движения, хватать погремушку и т. д. Когда ему показывают, как есть ложкой, у него в коре остаются связи, полезные, чтобы есть ложкой, так как именно через них он гонял нервные импульсы. А связи, которые отвечают за то, чтобы расшвыривать кашу по всей комнате, становятся менее выраженными, потому что родители такие действия не поощряют.

Процессы роста синапсов довольно хорошо изучены на молекулярном уровне. Эрику Канделу дали Нобелевскую премию за то, что он догадался изучать память не на людях. У человека 86 миллиардов нейронов, и, пока ученый разобрался бы в этих нейронах, ему пришлось бы извести сотни испытуемых. А поскольку никто не позволяет вскрывать мозги стольким людям ради того, чтобы посмотреть, как они научились держать ложку, Кандел придумал работать с улиточками. Аплизия - суперудобная система: с ней можно работать, изучив всего четыре нейрона. На самом деле у этого моллюска больше нейронов, но на его примере гораздо проще выявить системы, связанные с обучением и памятью. В ходе экспериментов Кандел понял, что кратковременная память - это временное усиление проводимости уже существующих синапсов, а долговременная заключается в росте новых синаптических связей.

Это оказалось применимо и к человеку - похоже на то, как мы ходим по траве . Сначала нам все равно, куда идти на поле, но постепенно мы протаптываем тропинку, которая потом превращается в грунтовую дорогу, а затем в асфальтированную улицу и трехполосное шоссе с фонарями. Похожим образом нервные импульсы протаптывают себе дорожки в мозге.

Как формируются ассоциации

Наш мозг так устроен: он формирует связи между событиями, происходящими одновременно. Обычно при передаче нервного импульса выделяются нейромедиаторы, которые воздействуют на рецептор, и электрический импульс идет на следующий нейрон. Но есть один рецептор, который работает не так, он называется NMDA. Это один из ключевых рецепторов для формирования памяти на молекулярном уровне. Его особенность в том, что он работает в том случае, если сигнал пришел с обеих сторон одновременно.

Все нейроны куда-то ведут. Один может привести в большую нейронную сеть, которая связана со звучанием модной песенки в кафе. А другие - в другую сеть, связанную с тем, что вы пошли на свидание. Мозг заточен на то, чтобы связывать причину и следствие, он на анатомическом уровне способен запомнить, что между песней и свиданием есть связь. Рецептор активируется и пропускает через себя кальций. Он начинает вступать в огромное количество молекулярных каскадов, которые приводят к работе некоторых до этого не работавших генов. Эти гены проводят синтез новых белков, и вырастает еще один синапс. Так связь между нейронной сетью, отвечающей за песенку, и сетью, отвечающей за свидание, становится более прочной. Теперь даже слабого сигнала достаточно, чтобы пошел нервный импульс и у вас сформировалась ассоциация.

Как обучение влияет на мозг

Есть знаменитая история о лондонских таксистах. Не знаю, как сейчас, но буквально несколько лет назад для того, чтобы стать настоящим таксистом в Лондоне, нужно было сдать экзамен по ориентации в городе без навигатора - то есть знать как минимум две с половиной тысячи улиц, одностороннее движение, дорожные знаки, запреты на остановку, а также уметь выстроить оптимальный маршрут. Поэтому, чтобы стать лондонским таксистом, люди несколько месяцев ходили на курсы. Исследователи набрали три группы людей. Одна группа - поступившие на курсы, чтобы стать таксистами. Вторая группа - те, кто тоже ходил на курсы, но бросил обучение. А люди из третьей группы вообще не думали становиться таксистами. Всем трем группам ученые сделали томограмму, чтобы посмотреть плотность серого вещества в гиппокампе. Это важная зона мозга, связанная с формированием памяти и пространственным мышлением. Обнаружилось, что если человек не хотел становиться таксистом или хотел, но не стал, то плотность серого вещества в его гиппокампе оставалась прежней. А вот если он хотел стать таксистом, прошел тренинг и действительно овладел новой профессией, то плотность серого вещества увеличилась на треть - это очень много.

И хотя до конца не ясно, где причина, а где следствие (то ли люди действительно овладели новым навыком, то ли у них изначально была хорошо развита эта область мозга и поэтому им было легко научиться), совершенно точно наш мозг - дико пластичная штука, и индивидуальное обучение серьезно на него влияет - в значительно большей степени, чем врожденные предрасположенности. Важно, что и в 60 лет обучение оказывает воздействие на мозг. Конечно, не так эффективно и быстро, как в 20, но целом мозг в течение всей жизни сохраняет некоторую способность к пластичности.

Зачем мозгу лениться и спать

Когда мозг чему-то учится, он выращивает новые связи между нейронами. А это процесс медленный и дорогостоящий, на него нужно тратить много калорий, сахара, кислорода, энергии. Вообще, человеческий мозг, притом что его вес составляет всего 2% от веса всего тела, потребляет около 20% всей энергии, которую мы получаем. Поэтому при любой возможности он старается ничему не учиться, не тратить энергию. На самом деле это очень мило с его стороны, ведь если бы мы запоминали все, что видим каждый день, то мы довольно быстро сошли бы с ума.

В обучении, с точки зрения мозга, есть два принципиально важных момента. Первый заключается в том, что, когда мы осваиваем любой навык, нам становится легче действовать правильно, чем неправильно. Например, вы учитесь водить машину с механической коробкой передач, и вам сначала все равно, переключать передачу с первой на вторую или с первой на четвертую. Для вашей руки и мозга все эти движения равновероятны; вам неважно, в какую сторону гнать нервные импульсы. А когда вы уже более опытный водитель, то вам физически проще переключать передачи правильно. Если вы попадете в машину с принципиально другой конструкцией, вам снова придется задумываться и контролировать усилием воли, чтобы импульс не пошел по проторенной дорожке.

Второй важный момент:

главное в обучении - это сон

У него много функций: поддержание здоровья, иммунитета, обмена веществ и разных сторон работы мозга. Но все нейробиологи сходятся в том, что самая главная функция сна - это работа с информацией и обучением. Когда мы освоили какой-то навык, то хотим сформировать долговременную память. Новые синапсы растут несколько часов, это долгий процесс, и мозгу удобнее всего это делать именно тогда, когда вы ничем не заняты. Во время сна мозг обрабатывает информацию, полученную за день, и стирает то, что из этого надо забыть.

Есть эксперимент с крысами, где их учили ходить по лабиринту с вживленными в мозг электродами и обнаружили, что во сне они повторяли свой путь по лабиринту, а на следующий день ходили по нему лучше. Во многих тестах на людях показано, что то, что мы выучили перед сном, вспомнится лучше, чем выученное с утра. Выходит, что студенты, которые принимаются за подготовку к экзамену где-то ближе к полуночи, все делают правильно. По той же причине важно думать о проблемах перед сном. Конечно, заснуть будет сложнее, но мы загрузим вопрос в мозг, и, может быть, наутро придет какое-то решение. Кстати, сновидения - это, скорее всего, просто побочный эффект обработки информации.

Как обучение зависит от эмоций

Обучение в большой степени зависит от внимания , потому что оно направлено на то, чтобы снова и снова прогонять импульсы по конкретным путям нейронной сети. Из огромного количества информации мы на чем-то фокусируемся, берем это в рабочую память. Дальше то, на чем мы удерживаем внимание, попадает уже в память долговременную. Вы могли понять всю мою лекцию, но это не означает, что вам будет легко ее пересказать. А если вы прямо сейчас на листке бумаги нарисуете велосипед, то это не значит, что он будет хорошо ездить. Люди склонны забывать важные детали, особенно если они не специалисты по велосипедам.

У детей всегда были проблемы с вниманием. Но сейчас в этом смысле все становится проще. В современном обществе уже не так нужны конкретные фактические знания - просто их стало невероятно много. Гораздо важнее оказывается способность быстро ориентироваться в информации, отличать достоверные источники от недостоверных. Нам уже почти и не нужно долго концентрироваться на одном и том же и запоминать большие объемы информации - важнее быстро переключаться. Кроме того, сейчас появляется все больше профессий как раз для людей, которым сложнее концентрироваться.

Есть еще один важный фактор, влияющий на обучение, - эмоции. На самом деле это вообще главное, что у нас было на протяжении многих миллионов лет эволюции, еще до того, как мы нарастили всю эту огромную лобную кору. Ценность овладения тем или иным навыком мы оцениваем с точки зрения того, радует он нас или нет. Поэтому здорово, если удается наши базовые биологические эмоциональные механизмы вовлекать в обучение. Например, выстраивать такую систему мотивации, в которой лобная кора не думает о том, что мы должны выучить что-то с помощью усидчивости и целенаправленности, а в которой прилежащее ядро говорит, что ему просто чертовски нравится это занятие.

Они учились на одном курсе. Долгое время Ира не обращала на него никакого внимания. До того самого семинара. Олег вызвался прочитать доклад про теорию происхождения речи у первобытных людей. Сама тема уже навевала скуку. Пробудил ее от грез громкий смех соучеников. Прислушавшись, она внезапно увлеклась - Олег говорил складно, интересно, много шутил и держался перед целой сотней однокурсников очень уверенно. Взгляд Иры невольно оценивающе скользнул по его фигуре - широкие плечи, развитая мускулатура. Он повернулся, чтобы что-то нарисовать на доске, и в этот момент Ира стыдливо поймала себя на том, что смотрит на его ягодицы...

К щекам прилила кровь, а руки внезапно вспотели. Ира вспомнила, что совсем недавно читала свежее исследование , где говорилось, что женщин в мужчинах привлекает прежде всего атлетическое телосложение, очевидные признаки физической силы. "Хм, но это не про меня. Мне главное, чтобы был умным, веселым, добрым, нежным и заботливым". И тут Олег повернулся - и посмотрел именно на нее, прямо в глаза, долго, взяв солидную паузу. Вокруг его глаз собрались озорные морщинки, а лицо как будто осветилось теплым светом.

Единственный из всех

"Почему Олег не выходит у меня из головы? - именно этот вопрос мучил Иру уже неделю. - Чем бы я ни занималась, мысли постоянно возвращаются к нему снова и снова. Более того, мне кажется, что он самый лучший среди всех парней! Единственный и неповторимый!"

"Да все просто, - пришла на выручку лучшая подруга Иры отличница Люба. - Сейчас я тебе все объясню.

Ученые полагают, что в основе любви лежат три фактора: отбор предпочитаемого партнера, установление с ним близости и сексуальное влечение. Сейчас у тебя доминирует первый фактор. Наш мозг в ходе эволюции обрел способность выделять одного потенциального партнера из многих. Почему так произошло? Существует множество гипотез, которые это объясняют, - например, про "эффект бабушек".

В какой-то момент (в позднем палеолите или раннем неолите) продолжительность жизни женщин увеличилась, пожилые дамы стали помогать заботиться о потомстве своим дочерям, что позволило последним иметь больше детей. Это в свою очередь закрепило "долгожительство" в человеческой популяции и привело также к росту продолжительности жизни мужчин. Но тут возникла опасная ситуация - старики уже были неспособны эффективно охотиться, а потому не покидали поселений, зато еще вполне могли иметь детей. В итоге из-за "эффекта бабушек" количество фертильных женщин по отношению к числу способных к продолжению рода мужчин уменьшилось (моделирование показывает , что пропорция могла достигать 156 мужчин к 100 женщинам в детородном возрасте). Все это привело к резкому обострению конкуренции за женщин, усугубленной долговременным отсутствием молодых мужчин в селениях.

Закономерным ответом стало чувство ревности - молодые мужья предпочитали вместо охоты сторожить своих жен от посягательств престарелых "ловеласов". Такие общины быстро оставались без ресурсов, хирели и погибали. Выживали только те сообщества, где между мужчинами и женщинами устанавливались крепкие романтические отношения - любовь, взаимное доверие и верность, исключающие измены. Но эти чувства невозможны, если партнер не будет казаться особенным и единственно возможным из всех. Так и у тебя!

А отвечает за такую реакцию нейромедиатор дофамин. Это особое вещество, выделяемое нейронами мозга, главным образом в нашей внутренней "системе вознаграждения" (вентральной области покрышки), где оно вызывает чувство удовольствия и удовлетворения. Но в данном случае важно другое: дофамин также влияет на процессы внимания, заставляя его концентрироваться на одном человеке. Так происходит потому, что данный медиатор воздействует на поясную извилину, главным образом ее заднюю часть. Эта область мозга, в частности, отвечает за способность переводить внимание с одного объекта на другой, видеть выбор, переключаться между разными мыслями. Как показали знаменитые исследования Хелены Фишер и Артура Арона, чем меньше по времени длятся романтические отношения, тем сильнее активность в задней части поясной извилины. Однако постепенно - месяц за месяцем - активность в этой области снижается".

Бабочки в животе

"Эх, тебе бы под все научную базу подвести! Неужели все дело в простой химии? - Ира была возмущена холодным прагматизмом подруги. - Я вот как никогда раньше себя прекрасно чувствую: такой восторг, столько энергии, хотя, с другой стороны, совсем перестала спать по ночам и есть не особо хочется. Да и когда? Я весь день предаюсь мечтам об Олеге, вспоминаю всякие милые мелочи и наши встречи - как мы лазали по питерским крышам ночью или сидели в том уютном кафе возле факультета. Господи, как же хорошо-то было!"

"Всё так, - продолжала Люба. - И здесь тоже "виноват" дофамин. Помимо воздействия на центральные отделы мозга этот нейромедиатор усиливает выработку тестостерона, связанного с усилением сексуального желания. Он также обостряет наши чувства - небо кажется более голубым, а прикосновения - волнующими. Но самое главное - дофамин вызывает общее эмоциональное возбуждение и эйфорию, потому у тебя такие переживания душевного подъема. А помогают ему в этом еще гормон и нейромедиатор норадреналин и другое вещество - фенилэтиламин. Оба этих вещества являются естественными стимуляторами. Другой их важный аспект - они заставляют иначе работать твою память и восприятие. Ты подмечаешь и запоминаешь малейшие детали об объекте своей любви.

Параллельно твой мозг еще и значительно снижает выработку другого нейромедиатора - серотонина. По данным исследований целого ряда нейрофизиологов, его количество за полгода романа падает до такого же уровня, как у больных обсессивно-компульсивным расстройством - синдромом навязчивых состояний. Поэтому ты не можешь больше ни о ком и ни о чем думать, пока Олег твой не будет рядом, а даже если вы и вместе, то насытиться обществом друг друга все равно не получается. Секс дает разрядку лишь на время. А потом все повторяется вновь и вновь.

Кстати, серотонин играет важную роль в структурах мозга, ответственных за оценку и сравнение, поэтому с уменьшением его выработки притупляется и способность объективно судить о человеке. Ты видишь только лучшие стороны возлюбленного, в упор не замечая плохие".

Он больше не звонит

Любу разбудил звонок в три часа ночи. Всхлипывая и запинаясь, Ира рассказала, что Олег уехал на полевую практику и вот уже три дня ей не звонит.

"Успокойся, может там сотовых вышек нет, - рассудительно заключила Люба. - А вообще… Все это обратная сторона мощного выброса дофамина, норадреналина и фенилэтиламина. Ты настолько зациклена на своем любимом, что малейший разлад или невнимание кажутся тебе катастрофой. Эйфория тут же сменяется негативными эмоциями: тревогой, паникой, чувством отчаяния, заброшенности и бесконечного одиночества. А все потому, что ты постоянно балансируешь на краю - и внутреннее возбуждение интерпретируешь положительно только тогда, когда твоя "любовь" рядом, в противном случае те же переживания мгновенно становятся отрицательными. И да, при этом понижается выработка фенилэтиламина, а мозг, снятый со стимуляторов, тут же впадает в депрессивное состояние. Все это называется эмоциональной нестабильностью...

В общем, я понимаю твои чувства, но будь уверена: скорее всего, он просто не может дозвониться".

Расставания - маленькая смерть

"Знаешь, чем больше вот таких ситуаций - когда он пропадает, не звонит или что-то нам мешает, тем все сильнее я влюбляюсь в Олега, - рассказывала очередным вечером Ира. - Вот скажи, Люба, а что твоя наука по этому поводу говорит?"

"Ну, тут все просто... Дело в том, что, как я уже говорила, главную роль в формировании чувства любви играет "система вознаграждения" в нашем мозге. А работает она очень хитро . Как только мы не можем получить желаемого, достижение цели откладывается, продуцирующие дофамин нейроны становятся все более активными, мотивируя нас все больше и больше. Соответственно, после невзгод и преодоленных препятствий усиливается и удовольствие.

Параллельно в другой области мозга, в лобных долях, происходит подсчет рисков - что мы приобретем, а что потеряем в той или иной ситуации. И субъективный проигрыш от потери возлюбленного всегда кажется чересчур высоким, что вновь приводит в действие "систему вознаграждения", заставляя упорно добиваться любви и идти на любой риск. Так что любые трудности в романтических отношениях лишь усиливают чувства!"

Раствориться друг в друге

"Ох, Люба, у нас сейчас так все хорошо! Страсти бурлят так, что ночью и поспать, бывает, не удается. А потом мы вместе лежим и мечтаем, как поедем в совместное путешествие, снимем нам на двоих квартиру, заведем собаку, а потом, может быть, и малыша. И я всегда так переживаю за Олега, все его неудачи и боль чувствую как свои. Хочется все бросить и помочь ему".

"Ну что же, дорогая, вы перешли на стадию близости и максимального сексуального влечения!

Здесь уже центральную роль играют гормоны: как всем известные условно женский гормон эстроген и условно мужской тестостерон, обеспечивающие силу плотского желания, так и два более хитрых - окситоцин и вазопрессин. Оба этих гормона отвечают помимо своих прямых физиологических функций и за формирование чувства привязанности и взаимосвязи. А вырабатываются они главным образом при физической близости, начиная от объятий, поцелуев, заканчивая максимальным выбросом при оргазмической разрядке.

Чем больше пара занимается любовью, тем больше у них вырабатывается гормонов привязанности и сильнее взаимная любовь. Кстати, тут вот два петербургских исследователя и параллельно практика йоги - физиолог Ринад Минвалеев и математик Анатолий Иванов - поставили эксперимент, в котором установили, что у женщин есть два типа профиля тонуса вегетативной нервной системы и кровообращения во время секса. При этом один из них приводит к истощению сил женщины (условно - симпатический профиль), а второй, парасимпатический, наоборот, дает энергию и жизненные силы. При этом если женщина достигает такой реакции в процессе полового акта, то и мужчина вслед за ней также "перестраивает" свой профиль реакции на парасимпатический. И после соития оба партнера не только чувствуют нежность друг к другу, но и полны сил и энергии. А зависит достижение этого профиля от продолжительности полового акта - чем дольше, тем лучше. Проблема с этой работой только в том - впрочем, серьезная проблема, - что она не была опубликована в рецензируемом научном журнале и не была повторена какой-либо другой группой ученых".

Любовь - навсегда?

"Эх, а мне бы так хотелось, чтобы любили друг друга до конца жизни", - мечтательно проговорила Ира.

"Ну, это почти возможно!

Смотри, американские ученые показали, что чем дольше был процесс ухаживаний, тем сильнее будет привязанность друг к другу в отношениях, а значит, и продлятся они дольше. Однако такая страстная любовь не может длиться больше двух-трех лет по одной простой причине - организм не может поддерживать столь высокий уровень выработки дофамина, норадреналина и фенилэтиламина на протяжении длительного времени. Вы волей-неволей взгляните друг на друга трезвыми глазами, поймете взаимные недостатки. И вот тут на первый план выйдет не страсть, а привязанность.

Здесь также важны будут гормоны окситоцин и вазопрессин, но одновременно и совсем нематериальные вещи. Так, психологи показали, что чем больше мы идеализируем того, кого любим, тем прочнее связи на этапе, когда привязанности важнее страсти. В этом случае мы легче прощаем обнаруженные недостатки, так как образ в нашей голове сильнее.

Более того, та же Хелена Фишер и Артур Арон обнаружили пары, прожившие вместе в среднем около 21 года и утверждавшие, что все еще сохраняют романтичный настрой. Исследование их мозга показало, что, как и у влюбленных юных пар, у них сохраняется высокая активность в "системе вознаграждения" при мыслях о супруге и даже активизируется задняя часть поясной извилины! Иными словами, они сохранили, как это не удивительно, новизну и концентрацию внимания на партнере сквозь десятилетия".

Даниил Кузнецов