Главная · Правильное питание · Что происходит с мозгом. Какой отдел мозга отвечает за память. Существуют другие факторы, ведущие к депрессии

Что происходит с мозгом. Какой отдел мозга отвечает за память. Существуют другие факторы, ведущие к депрессии

Несмотря на то что исследователи изучают мозг уже более ста лет, они до сих нор не понимают, как этот полуторакилограммовый орган обеспечивает всю сознательную активность человека. Многие пытались решать эту проблему, изучая нервную систему простых организмов. Прошло уже 30 лет с тех пор. как были описаны вес соединения всех 302 нейронов у нематоды Caenorhabditls elegans. Тем не менее сама по себе та схема пока еще не позволила понять, как данные нейроны обеспечивают даже такое элементарное поведение, как питание и размножение. Чтобы выяснить, как активность нервных клеток формирует определенный тип поведения, не хватало данных.

У человека проблема выявления связи между нейроном и поведением стоит значительно более остро. Средства массовой информации регулярно сообщают о томографических исследованиях, показывающих, что. когда мы чувствeем себя отвергнутыми или говорим на иностранном языке, у нас активируются определенные области мозга. Эти новости создают впечатление, что современные научные технологии обеспечивают глубокое фундаментальное понимание принципов работы нервной системы. Однако это впечатление ошибочно.

Примечательный пример такого несоответствия - получившее широкое освещение в прессе исследование отдельных нейронов, которые возбуждались в ответ на предъявление изображения актрисы Дженнифер Энистон. На самом деле, несмотря на возникший ажиотаж, открытие нейронов Дженнифер Энистон было чем-то вроде сообщения от инопланетян: знак наличия разумной жизни по Вселенной, по без всякого намека на смысл этого послания. Мы до сих пор не понимаем, как активность данного нейрона влияет на способность не только узнавать лицо Энистон, но и соотносить его с фрагментом из сериала «Друзья». По-видимому, для того, чтобы мозг смог распознать лицо телезвезды, требуется работа большого нейронного ансамбля, все члены которого общаются с помощью какого-то нейронного кода, который нам еще только предстоит расшифровать.

Кроме того, открытие нейрона Дженнифер Энистон иллюстрирует уровень, которого достигла современная нейробиология. У нас уже есть методы для регистрации отдельных нейронов в мозге живого человека. Но для дальнейшего продвижения необходимы новые технологии, позволяющие исследователям наблюдать и управлять электрической активностью тысяч или даже миллионов нейронов и способные расшифровать те «непроходимые джунгли», в которых, по словам одного из основоположников современной нейробиологии испанского гистолога Сантьяго Рамона-и-Кахаля (Santiago Ramon у Cajal), -заблудились многие ученые.

Теоретически такой методический прорыв поможет преодолеть пропасть между электрической активностью нейрона и пониманием механизмов когнитивных функций мозга, таких как восприятие, эмоции, принятие решений, и в конечном счете сознание. Расшифровка активности мозга, обеспечивающей мышление и поведение, приведет и к пониманию того, что происходит, когда нейронные цепи начинают работать неправильно при психиатрических и неврологических нарушениях, например при шизофрении, аутизме, болезнях Альцгеймера и Паркинсона.

Наконец требования технологического скачка в изучении мозга были услышаны за пределами лабораторий. В прошлом году администрация президента США Барака Обамы объявила о создании крупномасштабного проекта по изучению мозга BRAIN (Brain Research through Advancing Innovative Neurotechnologies) Initiative. Это стало наиболее заметной научной инициативой президента за второй срок.

Этот проект, начальное финансирование которого в 2014 г. составило более S100 млн. направлен в первую очередь на разработку технологий, позволяющих регистрировать сигналы сразу от очень большого числа нейронов и даже от целых областей мозга. Американский проект BRAIN дополняет другие научные проекты за пределами США. Так, Европейский союз выделил $1.6 млрд на разработку компьютерной модели мозга человека (The Human Brain Project). Масштабные проекты в области нейронаук начаты в Китае. Израиле и Японии. Вложение средств в развитие наук о мозге по всему миру напоминает о других послевоенных научных и технических проектах, ориентированных на актуальные национальные приоритеты, такие как атомная энергетика, ядерное оружие, исследования космоса, создание компьютеров, альтернативные источники энергии и расшифровка генома. Наступила эра исследования мозга.

Проблема визуализации

Выясняя, как нейроны формируют представление о Дженнифер Энистон или о чем-то похожем в нашем субъективном опыте или в восприятии окружающего мира, мы сталкиваемся с непреодолимым препятствием. Оно заключается в переходе от измерения показателей одного нейрона к пониманию того, как группы нервных клеток могут участвовать в сложных взаимодействиях, из которых образуется большее единое целое. Такое свойство ученые называют эмерджентностью. Например, температура, прочность материала, намагниченность металла - все это возникает только вследствие взаимодействия множества атомов и молекул. Папример, для одних и тех же атомов углерода характерны и твердость алмаза, и мягкость графита, который так легко оставляет свои слои на бумаге. Твердость или мягкость - эмерджентное свойство, зависящее не от отдельных атомов, а от типа взаимодействий между ними.

По-видимому, мозг тоже проявляет эмерджентные свойства, которые остаются абсолютно непонятными ни входе наблюдения за отдельным нейроном, ни при оценке (с низкой разрешающей способностью) активности большой группы нейронов. Выявить в мозге восприятие цветка или детские воспоминания можно, только наблюдая за активностью нейронных сетей, которые проводят электрические сигналы по запутанным цепочкам из сотен и тысяч нервных клеток. Хотя эта проблема уже давно знакома нейрофизиологам, до сих пор нет возможности регистрировать активность отдельных нейронных цепочек, которые определяют восприятие, память, сложное поведение и другие когнитивные функции.

Одной из смелых попыток преодолеть это ограничение стала коннектомика- построение карты всех связей (синапсов) между нейронами. Недавно в США стартовал проект по построению схемы связей мозга человека (Human Connectome Project). Однако, как и при изучении нервной системы нематоды, такая схема- всего лишь начальный пункт. Она не отражает постоянно меняющиеся электрические сигналы, определяющие конкретные когнитивные процессы.

Для осуществления такой регистрации нам необходимы новые способы измерения электрической активности мозга. Те методы, которые используются сейчас, либо позволяют получить точную картину работы отдельных нейронов на очень небольшом участке мозга, либо охватить большой объем, но с разрешением, недостаточным дли наблюдения за включением или выключением отдельных нейронных цепочек. Сейчас для точной регистрации нейронной активности в мозг лабораторных животных вживляют игольчатые электроды, регистрирующие электрические импульсы от нервной клетки, которые она генерирует, получая химический сигнал от соседней клетки. Когда на нейрон приходит сигнал, потенциал на его мембране меняется. Изменение напряжения вызывает открытие ионных каналов в мембране клетки, через которые в нейрон поступают положительно заряженные ионы, например ионы натрия. Приток ионов приводит к генерации электрического импульса- потенциала действия, или спайка, который распространяется дальше по аксону (длинный отросток нейрона), запуская на его конце передачу химического сигнала следующей клетке, и тем самым осуществляет передачу сигнала по нервной цепочке. Регистрация одного нейрона похожа на попытку посмотреть фильм, наблюдая только за одним пикселем экрана. Кроме того, поскольку это инвазивный метод, введение электрода может повредить нервную ткань.

С другой стороны, методы, позволяющие оценивать общую активность нейронов в целом мозге, тоже не подходят. Самый известный из них-электроэнцефалография (ЭЭГ)- метод, предложенный Гансом Бергером (Hans Berger) в 1920 г. На голове размещают электроды, каждый из которых регистрирует суммарную активность 100 тыс. нейронов, расположенных под ним. Запись ЭЭГ представляет собой колебание «воли» электрической активности, меняющих свою амплитуду за несколько миллисекунд, определить при этом, какой именно нейрон активен, невозможно. С помощью функциональной магнитно-резонансной томографии (фМРТ) можно определить, какие области работают интенсивнее, - они будут более яркими на изображении мозга (томограмме). Этот метод неинвазивный. т.е. не требует хирургических вмешательств, но имеет очень низкое временное и пространственное разрешение. На каждый элемент томограммы (воксель- трехмерный пиксель) приходится примерно 80 тыс. нейронов. Кроме этого. фМРТне регистрирует активность нейронов напрямую, а только по вторичным признакам - изменению кровотока в том или ином вокселе.

Чтобы получить представление об эмерджентной активности мозга, ученым требуются новые чувствительные датчики, которые позволяли бы одновременно регистрировать тысячи отдельных нейронов. Появлению таких приборов могут помочь нанотехнологии, создающие новые материалы, зачастую меньшего размера, чем некоторые молекулы. Уже создан прототип матрицы, содержащей более 100 тыс. электродов, расположенных на кремниевой подложке. Такое устройство может регистрировать тысячи нейронов па сетчатке. Дальнейшее развитие этой гехнологии предполагает сворачивание плоской матрицы в трехмерную структуру, укорочение электродов для уменьшения повреждений тканей мозга и удлинение соединительных элементов, позволяющих проникать в нижние слои коры головного мозга. У больных людей, например, такой прибор мог бы зарегистрировать активность десятков тысяч нейронов и вычленить в ней активность каждой клетки.

Использование электродов- лишь один из способов зарегистрировать активность нейронов. В лаборатории уже приходят технологии, оставившие далеко позади электрические датчики. Технологии, заимствованные из физики, химии и генетики, позволяют наблюдать за нейронами у бодрствующего животного в процессе его повседневной жизни.

Миша Арене из Медицинского института Говарда Хьюза в прошлом году приоткрыл завесу над технологиями будущего, сделав визуализацию под микроскопом целого мозга личинки рыбки данио. Данио- излюбленный объект нейробиологов. потому что в своей личиночной стадии эта рыбка совершенно прозрачна, что позволяет наблюдать ее внутренние органы, в том числе и мозг. В этом эксперименте нейроны личинки были генетически модифицированы так. что они флюоресцировали, когда в клетку входили ионы кальция при генерации нервного импульса. Иод микроскопом мозг освещали тонким пучком света, а камера шаг за шагом фотографировала светящиеся нейроны.

Один из нас (Рафаэль Юсте) с помощью такой технологии, получившей название «оптическая регистрация кальция», впервые зарегистрировал активность почти 80% нейронов данио (всего их порядка 100 тыс.). Оказалось, что даже когда личинка рыбки находится в состоянии покоя, многие области ее нервной системы включаются и выключаются, образуя загадочные светящиеся
узоры. О том. что нервная система всегда активна, исследователи знали еще со времен изобретения Бергером метода ЭЭГ. Эксперименты па данио внушают надежду, что новые технологии визуализации помогут понять стойкую спонтанную активность больших групп нейронов - один из важнейших вопросов нейробиологии.

Тем не менее необходимы еще более совершенные технологии, чтобы понять, как активность мозга порождает поведение, и эксперименты с данио только начало. Требуется разработка новых типов микроскопов для наблюдения за активностью нейронов в трехмерном пространстве. Кроме того, оптическая регистрация кальция- слишком медленный метод для наблюдения за высокочастотными разрядами нервных клеток и не позволяет выявить тормозные сигналы, которые снижают электрическую активность клеток.

Нейрофизиологи, работая вместе с генетиками, физиками и химиками, пытаются улучшить оптические методы, чтобы регистрировать не изменение уровня кальция в клетке, а непосредственно изменение потенциала на мембране. Можно ввести в нейрон или встроить с помощью генной инженерии в клеточную мембрану красители, которые меняют свои оптические свойства в зависимости от изменения потенциала: такой метод может оказаться более информативным, чем оптическая регистрация кальция. Этот альтернативный метод, получивший название оптической регистрации мембранного потенциала, в конечном счете позволит исследователям увидеть электрическую активность каждой клетки в целой сети нейронов.

Сейчас оптическая регистрация потенциала находится еще только на этане становления. Химики должны усовершенствовать способность красителей менять цвет или иные характеристики в ответ на генерацию нервного импульса. Красители должны быть безвредными для клетки. Молекулярные биологи уже сконструировали датчики напряжения, закодированные в геноме. Такие клетки считывают нуклеотидную последовательность и синтезируют флуоресцентный белок, который встраивается в наружную мембрану клетки. После этого он может менять степень своей флуоресценции в зависимости от потенциала нейрона.

Как и в случае с электродной регистрацией, современные нанобиологические технологии могут помочь и при оптической регистрации. Например, заменить органические красители или генетические датчики на квантовые точки- маленькие полупроводниковые частицы, демонстрирующие квантово-механические эффекты. Такие частицы могут очень точно регулировать свои оптические свойства, например цвет или яркость свечения. Другой современный материал- наноалмаз - пришел из квантовой оптики. Он высокочувствителен к колебаниям электрического поля вследствие изменения электрической активности клетки. Кроме того, можно создавать гибриды наночастиц и обычных органических или генно-инженерных красителей. В этом случае наночастица будет выступать в качестве антенны», усиливая флуоресцентные сигналы слабой интенсивности.

Проблема глубины

Другая техническая проблема, возникающая при визуализации нейронной активности, связана с тем что сложно регистрировать свет около нейронных цепочек, расположенных в глубине мозга. Для ее решения нейротехнологи тесно сотрудничают со специалистами в области вычислительной оптики, технологии материалов и медицины, которым также необходимо неинаазивно смотреть внутрь непрозрачных объектов, таких как кожа, череп или компьютерная микросхема. Ученым давно известно, что когда на твердое тело падает свет, какая-то часть его рассеивается и по рассеянным фотонам в принципе можно определить особенности отражающего объекта.

Например, свет от фонарика, проходящий сквозь руку, образует на другой ее стороне пятно диффузного света, в котором нет никаких намеков о месторасположении костей или сосудов под кожей. Однако информация о пути, которым свет прошел через препятствие, не утеряна окончательно. Волны света рассеиваются и затем могут интерферировать друг с другом. Если полученный световой рисунок снять на камеру, то с помощью новых вычислительных методов можно получить представление о структуре того, через что шел свет. Такая технология позволила Рафаэлю Пьеступу (Rafael Piestun) и его коллегам из Колорадского университета в Боулдере в прошлом году посмотреть сквозь непрозрачный объект. Эти методы можно объединить с другими оптическими технологиями, втом числе теми, которые используют астрономы для коррекции атмосферных искажений звездного света. Такая так называемая вычислительная оптика может помочь визуализировать флуоресцентные сигналы от потенциал-чувствительных красителей у нейронов, лежащих в глубине мозга.

Некоторые из таких новых оптических технологий были успешно использованы для наблюдения за процессами в мозге человека и животных: исследователи, сняв кусочек черепа, смогли увидеть процессы, протекающие на глубине более 1 мм от поверхности коры, Развитие данного метода позволит в будущем увидеть мозг сквозь кости черепа. Однако подобные оптические технологии не способны регистрировать структуры, лежащие глубоко в мозге. Эту проблему может решить еще одна новая разработка. В настоящее время нейрорадиологи используют микроэндоскопию, когда в бедренную артерию вводят тонкую и гибкую трубку с микроскопическим световодом, который по сосудам можно провести ко всем органам, в том числе и к мозгу. В 2010 г. группа ученых из Каролинского института в Стокгольме разработала устройство, позволяющее не нанося никакого вреда проникать через стенки артерий или иных сосудов, по которым идет эндоскоп, и таким образом создавать возможность для любой регистрации, в том числе и электрической активности, в любых участках мозга, не ограничиваясь только сосудистым руслом.

Несмотря на то что электроны и фотоны на первый взгляд - самые очевидные кандидаты на способы регистрации активности мозга, они не единственные. В ближайшем будущем важную роль могут сыграть генетические технологии. Один из нас (Джордж Черч) вдохновился идеями синтетической биологии, обращающемся с биологическим материалом как с деталями механизма. Недавние исследования показали, что с помощью генной инженерии можно так изменить лабораторных животных, что их нейроны начнут синтезировать молекулу-тикер, которая будет особым и заметным образом изменять что-то в клетке всякий раз. когда нейрон возбуждается. Например, тикер может создаваться ДНК-полимеразой которая считывает последовательность нуклеотидов в одной цепочке ДНК и собирает вторую, комплементарную первой. Приток ионов кальция после генерации импульса нейроном приведет к тому, что полимераза будет синтезировать другую последовательность нуклеотидов. т.е. совершать ошибки. Далее для каждого нейрона мозга экспериментального животного может быть определена полученная последовательность нуклеотидов в молекуле ДНК. Современная инновационная технология, называющаяся флуоресцентным секвенированием in situ, позволяет выявить изменения и ошибки по сравнению с оригинальной последовательностью нуклеотидов. соответствующие интенсивности или временным характеристикам электрической активности нейрона. В 2012 г. лаборатория Черча сообщила о возможном практическом применении метода ДНК тикера для работы с ионами машин, марганца и кальция.

В будущем посредством методов синтетической биологии предполагается создание искусственных клеток, которые будут выступать в роли наблюдателей, патрулирующих тело человека. Генно-инженерные клетки могут служить и биологическими электродами размером тоньше волоса, которые могут размещаться рядом с нейроном и улавливать его разряды. Электрическая активность может быть зарегистрирована с помощью миниатюрнейших интегральных наносхем расположенных внутри синтетической клетки, способных передавать информацию по беспроводной связи на ближайший компьютер. Это гибридное наноустройство, состоящее из биологических и электронных частей, сможет получать энергию с помощью внешнего ультразвукового передатчика или даже из самой клетки, используя глюкозу. АТФ (аденозин-трифосфат) и другие молекулы.

Включать или выключать

Чтобы понять, что же происходит в огромной паутине мозга, исследователи должны уметь больше, чем просто делать снимки активности. Необходимо иметь возможность включить или выключить выбранную группу нейронов, чтобы узнать, за что она отвечает. В последние годы в нейробиологии получили широкое распространение методы оптогенетики при которых используют животных, генетически измененных так. что их нейроны способны синтезировать светочувствительные белки, взятые у водорослей и бактерий. Когда через оптоволокно приходит свет определенной длины волны, эти белки могут активировать или. наоборот, выключать нейрон. Исследователи используют такой метод для активации нейронных цепей для создания чувства удовольствия и других компонентов реакции па подкрепление или для улучшения моторных навыков при болезни Паркинсона. С помощью онтогенетических методов удалось даже создать ложные воспоминания мышам.

Прежде чем оптогенетические методы могут быть применены для лечения человека они. как и положено продуктам, полученным с помощью генной инженерии, должны пройти долгие процедуры согласования. Для ряда случаев существует более удобная альтернатива. Например, нейротрансмиттер (вещество, регулирующее активность нейрона) можно упаковать в светочувствительную молекулу, как в клетку. Как только на нейрон поступает свет, молекул а-клетка распадается, нейротрансмиттер высвобождается и начинает действовать. Стивен Ротман (Steven Rothman) из Миннесотского университета вместе с лабораторией Юсте в 2012 г. провел исследование, в котором вводил крысам ГЛМК (гамма-аминомасляная кислота - нейротрансмиттер. подавляющий нейронную активность), упакованную в клетку из рутения. У животных химическим образом вызывали эпилептический припадок. Включение импульсного освещения мозга синим светом приводило к высвобождению ГАМК и прекращению судорог. Подобные оптохимические технологии сейчас используются, чтобы определить функцию отдельных нейронных цепочек. В дальнейшем, если эти методы будут развиваться, их можно использовать для лечения некоторых неврологических и психических заболеваний.

От фундаментальных исследований доклинического использования лежит долгий путь. Каждую новую идею о том как можно измерить или изменить активность всей нервной системы, сначала проверяют на дрозофилах, нематодах, грызунах и только потом используют для людей. Предположительно через пять лет напряженной работы ученые получат возможность наблюдать и управлять большинством из 100 тыс. нейронов дрозофилы. Методы регистрации и модуляции нейронной активности мозга мышей вряд ли появятся в ближайшее десятилетие. Некоторые технологии, как, например, тонкие электроды, с помощью которых можно скорректировать нарушенные нервные цепочки, могут появиться в медицинской практике уже через несколько лет, в то время как для других методик понадобятся десятилетия.

По мере роста сложности нейротехнологий потребуются и более совершенные средства хранения и обработки огромного массива накопленных данных. Регистрация активности всех нейронов в коре больших полушарий у мыши может занимать 300 терабайт в час. Но не следует считать эту задачу невыполнимой. Развитые научно-исследовательские базы, такие как астрономические обсерватории, геномные центры, ускорители элементарных частиц, могут получать, объединять и распределять и такой тип данных. Новая научная дисциплина нейроинформатика сможет расшифровать работу нервных систем так же. как и в свое время биоинформатика помогла справиться сданными секвеннрования. полученными в результате проекта по изучению человеческого генома (Human Genome Project).

Умение анализировать петабайты информации поможет не только навести порядок в огромном потоке новых данных. Оно может заложить основы для новых объяснений того, как какофония нервных импульсов преобразуется в восприятие, обучение и память. Анализ огромного массива данных также поможет подтвердить или опровергнуть теории, которые нельзя было проверить раньше. Одна любопытная теория утверждает, что у многих нейронов, образующих нейронную сеть, возникают определенные последовательности разрядов, называемые аттракторами, которые могут отражать различные состояния мозга, такие как мышление, память или принятие решений. В недавнем исследовании мышь должна была принять решение, какой из отсеков виртуального лабиринта, проецируемого на экран, пересечь, В это действие вовлекались десятки нейронов, которые демонстрировали динамические изменения активности, схожие с аттрактором.

Более глубокое понимание работы нейронных цепочек поможет объяснить причины многих заболеваний мозга, от болезни Альцгеймера до аутизма, и улучшить их диагностику. Врачи, получив возможность наблюдать за изменениями в активности отдельных нейронных цепочек, смогут направить усилия на исправление именно этих отклонений, а не просто на борьбу с симптомами. И, естественно, знание о причинах заболеваний даст экономические преимущества медицине и биотехнологиям. Надо рассмотреть и этические и правовые вопросы, как это было и для проекта по расшифровке генома человека, особенно если исследователи получат возможность определять и изменять психические состояния человека. Такие результаты потребуют тщательной защиты личной информации пациента.

Для того чтобы различные программы по изучению мозга были успешны, ученые и их спонсоры должны сконцентрироваться именно на наблюдении и управлении нейронными цепочками. Идея программы DRAIN родилась из публикации в журнале Neuron в июне 2012 г. В ней мы и наши коллеги предложили проект долговременного сотрудничества физиков, химиков, нанотехнологов, молекулярных биологов и нейробиологов для разработки «карты активности мозга- с помощью новых методов регистрации и управления электрической активностью нейронных цепочек.

По данным Всемирной организации здравоохранения, около 400 миллионов человек всех возрастов страдают от депрессии. Эти шокирующие цифры делают недуг основной причиной инвалидности.

В борьбе за потребителя все средства хороши

Фармацевтические компании не могли пройти мимо столь лакомого куска прибыли. Огромный целевой рынок антидепрессантов является золотой жилой для производителей. Помимо удовлетворения нужд потребителя, фармакологи идут на различные маркетинговые ухищрения, еще более обогащая собственную казну. Доказать прегрешения компаний, выпускающих антидепрессанты, несложно. Стоит лишь ознакомиться с результатами многочисленных мониторингов. Так, недавнее исследование, результаты которого опубликованы в журнале British Medical Journal, обнаружило сокрытие истинной информации касательно медицинских препаратов.

Когда слепо доверяешь лечащему врачу

Когда у человека диагностирована депрессия, он не станет интересоваться результатами клинических испытаний того или иного препарата. Он слепо доверяет врачу, идет и покупает лекарство. Ученые подняли архивы 70 различных слепых плацебо-контролируемых испытаний селективных ингибиторов обратного захвата серотонина и обнаружили, что ни в одном отчете не сообщалось о серьезном вреде препаратов. А это значит, что разработчикам есть что скрывать, и они не хотят афишировать возможные серьезные побочные эффекты.

При депрессии в первую очередь страдает гиппокамп

Мы знаем, что депрессию нельзя оставлять без лечения. Если человек постоянно чувствует себя подавленным, это отражается не только на эмоциональном состоянии или вызывает те или иные физические недуги. На самом деле оставленная без внимания депрессия может вызвать реальные изменения в структуре головного мозга пациента. В первую очередь страдает гиппокамп, отдел, отвечающий за формирование и регулирование эмоций и памяти. Эта тенденция особенно катастрофична для подростков, ведь их мозг все еще находится на стадии развития. Учителя и родители сразу же поспешат списать проблемы ребенка с вниманием, памятью и всплески агрессии на переходный возраст. Только вот реальная причина кроется в другом.

На какой стадии происходит повреждение головного мозга?

Сразу несколько научных исследований выявили, что при периодических или постоянных депрессивных расстройствах уменьшается важный отдел головного мозга. А это значит, что перед нами достоверная информация. Профессор Ян Хикки из университета Сиднея заявил, что уменьшение размера гиппокампа напрямую связано с количеством депрессивных вспышек. Чем больше таких состояний за свою жизнь испытает человек, тем хуже. Именно поэтому так важно не оставлять свое состояние без внимания и заботы близких. Что же наступает раньше: уменьшение гиппокампа или психическое расстройство? Эксперты утверждают, что повреждение головного мозга происходит от рецидива болезни.

Способность к восстановлению

Некоторые другие исследования выявили уникальность этого отдела. Вы будете удивлены, но гиппокамп способен полностью восстанавливаться в размерах. Обратимость связана со способностью быстро образовывать новые связи между клетками. Ученые выяснили, что при уменьшении размеров гиппокампа теряются не сами клетки, а только лишь нарушаются клеточные соединения. Но не только депрессия может уменьшить размер гиппокампа. Например, человек, привыкший сидеть дома, не участвуя в социальных мероприятиях, также подвергает себя определенному риску. Эксперты полагают, что взаимодействие в социуме является неотъемлемой частью построения крепких связей между клетками головного мозга. Также существуют альтернативные способы повышения нейрозащиты, например употребление рыбьего жира.

Как депрессия кодирует информацию

Психические расстройства воздействуют не только на мозг, в первую очередь страдает сердце. Однако эти два органа напрямую взаимосвязаны между собой. Если человек опечален и постоянно находится в угнетенном состоянии, сердечные электромагнитные волны кодируют полученную информацию и отправляют сигналы в мозг. Таким образом, нервная система находится в условиях постоянного хаоса.

Идея химического дисбаланса в прошлом

Джозеф Койл, нейробиолог из Гарвардской медицинской школы, подводит итоги всего вышесказанного. На самом деле пресловутая идея химического дисбаланса в мозге является пережитком прошлого. Влияние психических расстройств на главные органы человека - намного более тонкое и сложное. По словам эксперта, механизм депрессии не может быть сведен к общепринятому представлению о недостатке серотонина, норадреналина и допамина. Представленная на суд общественности еще в 50-х годах прошлого столетия теория о недостатке нейромедиаторов пользовалась огромной популярностью в течение полувека. Большая часть населения земного шара восприняла эту теорию как единственно верную. Однако с большей долей вероятности депрессия связана с другими аномальными воздействиями.

Полвека наука была на ложном пути

Итак, люди часто говорят, что к психическим расстройствам ведет химический дисбаланс, но в реальности эта болезнь намного сложнее, и далеко не каждый препарат, восстанавливающий недостаток нейромедиаторов, поможет избавиться от недуга. А вот что говорит известный британский психиатр и писатель доктор Джоанна Монкриефф: «В то время как человек чувствует себя подавленным, в мозге происходят какие-то процессы. Однако до сих пор ни одно исследование не установило корреляцию между нехваткой определенных нейромедиаторов и депрессивным расстройством. Во всех случаях опыты дают довольно противоречивые результаты. Ни одна работа не смогла выявить реальную причину возникновения недуга. Тот факт, что более 50 лет столь интенсивные научные поиски не дали никаких результатов, может свидетельствовать только о двух вещах: либо учеными не разработана правильная технология, либо они идут по ложному следу».

Антидепрессанты не в состоянии полностью справиться с проблемой

В поддержку теории химического дисбаланса часто выдвигается версия о том, что антидепрессанты значительно увеличивают уровни серотонина и других нейромедиаторов в синапсах. Но, как мы говорили ранее, лекарства в состоянии лишь на время локализовать процессы. Решение основных проблем (не говоря уже о полном излечении) видится практически невозможным. Тот факт, что настроение может зависеть от медицинских препаратов, не дает основания считать, что указанная теория верна. К тому же ни одни доктор не может заглянуть в черепную коробку пациента и с точностью определить, какие именно химические нейромедиаторы участвуют в данном конкретном заболевании. Именно поэтому теория так и остается теорией, а доктора по-прежнему «вслепую» выписывают рецепты.

В теле происходят миллионы химических реакций

Как внутри, так и снаружи наших нервных клеток происходят миллионы различных химических реакций. Все вместе это составляет единую динамическую систему, регулирующую наше настроение, восприятие тех или иных процессов, ощущение счастья или печали. Именно поэтому точная причина психических расстройств по-прежнему остается неизвестной. Тем не менее, идея дисбаланса нейротрансмиттеров активно поддерживается фармацевтическими компаниями совместно с врачами-психотерапевтами.

Существуют другие факторы, ведущие к депрессии

На данный момент ученые обнаружили, что к психическим расстройствам может привести целый ряд биологических факторов, среди которых хроническое воспаление, недостаток витамина D, несбалансированность кишечной флоры или избыток сахара в организме. Также существуют альтернативные способы борьбы с депрессией. Возможно, идея о нейропластичности мозга даст некоторые разгадки. Многие из нас слышали, что силой мысли можно влиять на ту или иную ситуацию. Это подтверждают различные научные исследования. Хорошим способом побороть депрессию является правильное сбалансированное питание и физические упражнения. Ну а самое удивительное разнообразие неврологических преимуществ имеет медитация.

Смирнова Ольга Леонидовна

Невропатолог, образование: Первый Московский государственный медицинский университет имени И.М. Сеченова. Стаж работы 20 лет.

Написано статей

Какая часть мозга отвечает за память и что влияет на этот процесс, важно знать всем. Каждый день мы получаем массу информации, часть из которой запоминается. Почему одни воспоминания остаются в памяти, а другие нет, какой механизм действия памяти?

Памятью называют способность к запоминанию, накоплению и извлечению полученных сведений. Сколько может запомнить человек, зависит от его внимания.

Память формируется несколькими участками головного мозга: корой мозга, мозжечком, лимбической системой. Но в большей степени на нее влияют височные доли мозга. Процесс запоминания происходит в гиппокампе. Если повреждена височная область с одной стороны, то память становится хуже, но при нарушениях в обеих височных долях процесс запоминания полностью прекращается.

Функционирование памяти зависит от состояния нейронов и нейромедиаторов, обеспечивающих связь между нервными клетками. Они концентрируются в области гиппокампа. К нейромедиаторам относят и ацетилхолин. Если этих веществ не хватает, то память значительно ухудшается.

Уровень ацетилхолина зависит от количества энергии, производимой в процессе окисления жиров и глюкозы. Нейромедиаторы концентрируются в органе в меньших количествах, если человек переживает стресс или страдает от депрессивных состояний.

Механизм запоминания

Мозг человека работает, как компьютер. Чтобы сохранить текущую информацию он использует оперативную память, а для длительного хранения не обойтись без жесткого диска. В зависимости от того насколько долго часть мозга отвечающая за память хранит информацию, выделяют:

  • непосредственную память;
  • кратковременную;
  • долговременную.

Интересно, что в зависимости от вида, память хранится в разных участках мозга. Кратковременные воспоминания концентрируются в , а долговременные – в гиппокампе.

Способность к запоминанию считается важной частью интеллекта. Поэтому от ее развития зависит и объем информации, которой владеет человек.

Работа памяти состоит из запоминания, сохранения и воспроизведения. Когда люди получают информацию, она поступает от одной нервной клетки к другой. Эти процессы происходят в области коры головного мозга. Данные нервные импульсы приводят к созданию нейронных связей. По этим путям в дальнейшем человек извлекает, то есть, вспоминает полученные сведения.

На то, как успешно и надолго запомнится информация, влияет то, с каким вниманием человек относится к объекту. Если это ему интересно, то он сильнее концентрируется на интересующем его предмете и процесс запоминания происходит на высоком уровне.

Вниманием и концентрацией называют такую функцию психики, которая позволяет сфокусировать все мысли на определенном объекте.

Не менее важным, чем запоминание, является забывание информации. Благодаря этому нервная система разгружается и освобождается место для новых сведений, начинают образовываться новые нейронные связи.

Какое полушарие отвечает за память, точно сказать нельзя, так как оба эти участка играют важную роль в процессе обработки и запоминания информации.

Объем памяти

Согласно недавним результатам исследований, ученым удалось выяснить, что объем памяти человеческого мозга составляет около миллиона гигабайт.

Если способности к запоминанию хорошо развиты, то творческим личностям это может доставлять много проблем.

В составе головного мозга около сотни миллиардов нервных клеток, между каждой из которых существуют тысячи нейронных связей. Информация передается в синапсе. Так называют точку, в которой контактируют нейроны. Во время взаимодействия двух нейронов, происходит формирование прочных синапсов. На ветвящихся отростках нервных клеток есть дендриты, которые увеличиваются в размерах во время получения новой информации. Эти отростки позволяют контактировать с другими клетками, во время увеличения он может воспринимать большее количество сигналов, поступающих в мозг.

Некоторые ученые сравнивают дендриты с битами компьютерного кода, но вместо цифр применяют описательные характеристики их размеров.

Но раньше не знали и том, каких размеров способны достигать эти отростки. Ограничивались только определением маленьких, средних и больших дендритов.

Ученые из Калифорнии столкнулись с интересной особенностью, которая заставила их пересмотреть известную информацию о размерах отростков. Это произошло во время изучения гиппокампа крысы. Это отдел мозга отвечающий за память по отношению к зрительным образам.

Исследователи заметили, что один, из отростков нервной клетки, отвечающий за передачу сигналов способен взаимодействовать с двумя дендритами, принимающими информацию.

Ученые выдвинули предположение о способности дендритов принимать одинаковую информацию, если она происходит от одного аксона. Поэтому размер и прочность их должны быть идентичными.

Было произведено измерение объектов, отвечающих за формирование синаптических связей. В ходе исследования удалось выяснить, что разница между дендритами, получающими информацию от одного аксона составляет около восьми процентов. Всего удалось выявить 26 возможных размеров отростков.

Основываясь на результатах исследований, была выдвинута гипотеза о способности человеческой памяти сохранять квадриллион байт информации. Чтобы сравнить мозг с компьютером достаточно знать, что размер средней оперативной памяти устройства не больше восьми гигабайт. Тогда как мозг может сохранить миллион гигабайт.

Каждый человек знает, что полностью использовать весь объем памяти нельзя. Многие хоть раз забывали о днях рождениях друзей и родственников, испытывали трудности с изучением стихотворений или запоминанием параграфов по истории. Это явление считается нормальным. Но, если человек помнит абсолютно все, то это считается феноменом. Миру известны лишь единицы людей, которые помнили большую часть полученных сведений.

Нейроучёные не так давно начали изучать, какие процессы происходят в мозге в ходе различных видов медитации. Венди Хэзенкамп (Wendy Hasenkamp) и её коллеги из Университета Эмори изучали МРТ-сканы мозга медитирующих, пытаясь понять, какие нейронные сети активируются в процессе медитации концентрации. Участники исследования фокусировали своё внимание на дыхании.

Как правило, в процессе этой медитации ум отвлекается, и медитирующий может заметить это и вернуть внимание обратно - к наблюдению за вдохами и выдохами. Поэтому в ходе исследования, когда медитирующий понимал, что его ум блуждает, он нажимал на кнопку. Исследователи обнаружили цикл, состоящий из 4 фаз, или этапов: 1) момент, когда ум отвлекается; 2) момент, когда медитирующий начинает осознавать это отвлечение; 3) момент, когда медитирующий перенаправляет внимание обратно; и 4) возобновление концентрации внимания.

Каждая из четырёх фаз задействует определенные нейронные сети. На первом этапе, при появлении отвлечений, увеличивается активность обширной «заданной сети» (default mode network, DMN). Эта сеть включает в себя медиальную префронтальную кору, кору задней части поясной извилины, предклинье, нижнюю теменную долю и боковую височную кору. Как известно, «заданная сеть» начинает активироваться тогда, когда наш ум блуждает, а также она играет главную роль в формировании внутренней модели мира, которая строится на базе долговременных воспоминаний о себе и других.

Вторая фаза - осознание того, что ум отвлёкся - активирует другую область мозга: переднюю островковую долю большого мозга и переднюю поясную кору, также известную как «сеть выявления значимости» (salience network, SN). Эта сеть отвечает за субъективное восприятие чувств, из-за которых, к примеру, мы отвлекаемся в ходе практики, а также за нашу способность находить и замечать новые объекты и события. Похоже, что в процессе медитации именно эта сеть регулирует активность нейронных ансамблей, из которых состоят крупные нейронные сети мозга. К примеру, благодаря ей мы можем заметить, что ум блуждает, и выйти из этого состояния.

Третья фаза задействует дополнительную область, в которую входит дорсолатеральная префронтальная кора и боковая нижняя теменная доля, и медитирующий отрывается от отвлекающих стимулов и «возвращает» внимание обратно.

Наконец, в последней, четвертой фазе, дорсолатеральная префронтальная кора продолжает сохранять высокий уровень активности, в то время как внимание медитирующего остаётся направленным прямо на объект - в данном случае на дыхание.

Затем в лаборатории в Висконсине были рассмотрены различные паттерны мозговой активности, которые зависели от того, насколько опытным был медитатор. «Ветераны» медитации с более чем 10 000 часами практики демонстрировали большую активность в областях мозга, связанных с вниманием, по сравнению с начинающими практиками. Парадоксально, но самые опытные из них показывали меньшую активность этих областей.

Это говорит о том, что продвинутые практики обрели тот уровень мастерства, который позволяет им сохранять внимание сконцентрированным без лишних усилий. Это похоже на мастерство профессиональных музыкантов и атлетов, способных «быть в потоке» - и им не требуется дополнительных усилий, чтобы сохранять это состояние.

В ходе изучения влияния медитации концентрации на человеческий мозг также были исследованы добровольцы до и после трёхмесячного ретрита, в течение которого они посвящали практике по меньшей мере 8 часов в день. После завершения ретрита участникам выдали наушники и попросили концентрироваться на звуках, которые в течение 10 минут играли в одном ухе и довольно часто прерывались вкраплениями высокочастотных тонов.

В результате сравнения этих результатов с их же результатами до ретрита и с результатами контрольной группы немедитирующих, было обнаружено, что прошедших ретрит почти не отвлекали внезапно возникающие резкие звуки. Это означает, что у медитирующих растёт способность сохранять бдительность. Электрический ответ мозга на высокочастотные звуки оставался более стабильным только у медитирующих, что позволяло им сохранять более устойчивое внимание.

Согласно результатам исследований, мыслительные процессы осуществляются в префронтальной коре, расположенной в передней части мозга. Здесь локализована наша способность анализировать прошлое и планировать будущее, контролировать свое поведение и решать задачи, ставить цели и осознавать, что мы чувствуем . Логический анализ, планирование и критическое мышление осуществляются в дорсолатеральной зоне ПК. Если же в процесс мышления вовлечены эмоции, активируется интериорно-орбитальная зона, расположенная на уровне глаз и непосредственно связанная с лимбической системой, где формируются наши эмоции и привязанности.

Мысль рождается как электрический импульс в отдельном нейроне или группе нейронов. Затем возбуждение распространяется по аксонам связанных нейронов через синапсы. Направление и локализация нейронного пути зависят от предмета мыслительного процесса и согласуются с принципом межполушарной асимметрии. Так, при вербальном мышлении, когда вы «думаете словами», составляете список дел или готовите речь для презентации, наибольшая активность наблюдается в , где статистически чаще всего располагаются центры языка и речи.

Когда вы представляете предмет размышлений в образах, будь то настоящее воспоминание или плод воображения, активируются нейронные структуры , нашей «встроенной художественной галереи». Здесь, в правом , совершается таинство творческого процесса, здесь рождаются герои наших рассказов и сюжеты для картин.

Нейромедиаторы, внимание и влюбленность

Обдумывая некую проблему, решая задачу, вы стараетесь сосредоточиться. При этом активируются базальные ядра – глубинные структуры центральной части мозга, отвечающие за внимание и концентрацию. Клетки черного вещества базальных ганглиев синтезируют нейромедиатор дофамин, который оказывает тормозящее действие на перцептивные структуры, «приглушая» отвлекающие раздражители извне или от внутренних органов. Дофамин также участвует в системе вознаграждения в мозге, благодаря ему вы чувствуете удовлетворение или радость, найдя удачное решение.

Если вы думаете об объекте привязанности, гипоталамус и гипофиз выделяют окситоцин, который способствует закреплению образа любимого человека и связанных с ним ассоциаций. При этом, согласно законам нейропластичности, соответствующие нейрокарты увеличиваются в размерах, занимая всё большую площадь в коре головного мозга, и активно дифференцируются. На сознательном уровне мы воспринимаем это как детализацию опыта , когда мы способны помнить буквально каждую минуту, проведенную вместе, и ценить мельчайшие нюансы поведения и привычек любимого человека.

Принятие решений и мысленная пробежка

Нейропластические изменения в мозге происходят не от случая к случаю. Этот процесс безостановочный и беспощадный. По словам нейрофизиолога Майкла Мерцениха, нейрокарта, созданная сегодня, завтра уже недействительна. Это означает, что в процессе мышления непрерывно укрепляются существующие нейронные связи, создаются новые, ослабевают и исчезают неиспользуемые. Например, когда вы лихорадочно ищете решение какой-либо проблемы, просчитывая возможные варианты, в вашем мозге в это время бушует настоящая электрическая буря, происходят интенсивные межклеточные и внутриклеточные биохимические изменения, образуются и исчезают сотни новых связей между нейронами. Когда решение принято, и вы выбрали один вариант из многих, «в живых» остаются только те связи, которые отвечают за этот конкретный вариант. И, чем больше вы думаете о принятом решении, тем сильнее становятся новые нейронные пути за счет образования дополнительных аксонов.

В процессе мышления помимо префронтальной коры задействованы также зрительная и двигательная кора мозга. Нейроны этих зон активируются, когда вы представляете различные объекты визуально или самого себя в движении. Для мозга нет разницы, бегаете ли вы по дорожке или только в своем воображении, сканер SPECT всё равно зафиксирует возбуждение в нейронах соответствующих участков двигательной коры.