Главная · Паразиты в организме · Лекция "функциональная анатомия вегетативной нервной системы" мс. Словарь терминов Функциональная анатомия нервной системы

Лекция "функциональная анатомия вегетативной нервной системы" мс. Словарь терминов Функциональная анатомия нервной системы

| править код ]

Рис. 8.19 Спинной мозг на среднецервикальном уровне. Показаны главные пути белого вещества спинного мозга.

Спинной мозг является частью ЦНС и состоит из восходящих и нисходящих трактов, передающих информацию между головным мозгом и ПНС. Тракты связаны на различных уровнях короткими межнейронами, которые позволяют повысить степень интеграции и управления двигательной функцией и чувствительностью на спинальном уровне (рис. 8.19).

Рис. 8.20 Продолговатый мозг, мост и средний мозг, (а) Продолговатый мозг - это первая часть ствола мозга, в которой пересекаются двигательные волокна и некоторые сенсорные волокна, (б) Мост лежит между спинным мозгом и средним мозгом. Он может рассматриваться как релейная станция между мозжечком, головным мозгом и периферической нервной системой, (в) Верхние холмики среднего мозга позволяют отслеживать зрительные стимулы. (г) Нижние холмики среднего мозга обеспечивают селективное восприятие слуховых раздражителей.

Продолговатый мозг непосредственно связан со спинным мозгом и является его продолжением и первой частью ствола головного мозга (рис. 8.20а). Продолговатый мозг содержит ядра для черепномозговых нервов V, IX, X, XI и XII пар, где двигательные волокна и некоторые чувствительные волокна пересекаются.

Между продолговатым мозгом и средним мозгом находится мост . Он может рассматриваться как ретрансляционная станция между мозжечком, головным мозгом и ПНС. Мост содержит ядра для черепно-мозговых нервов V, VI, VII и VIII пар и моторные ядра в варолиевом мосту ретикулярной формации, которые участвуют в контроле положения тела, сердечно-сосудистом и дыхательном контроле (см. рис. 8.206).

Рис. 8.21 Латеральный вид мозга.

Мозжечок располагается за мостом (рис. 8.21) и имеет входящие и исходящие связи с чувствительными и двигательными трактами, восходящими и нисходящими от спинного мозга. Это самая большая моторная структура в головном мозге. Хотя функция мозжечка не полностью ясна, разнообразие его связей позволяет мозжечку контролировать движение и действовать как центр объединения сенсорной и моторной информации для исполнения сложных задач.

Выше моста находится средний мозг . Это наиболее примитивная часть головного мозга человека. Средний мозг заканчивается в двух огромных связках волокон, которые формируют ножки мозга, неся волокна к таламусу и полушариям и от них. Средний мозг также содержит верхние (зрительные) и нижние (слуховые) холмики (см. рис. 8.20в, 8.20г), ядра для черепно-мозговых нервов III и IV пар, два моторных ядра, красное ядро и черную субстанцию, которая связывается и действует как реле между основным ганглием и двигательной системой (см. рис. 8.20в).

Рис. 8.22 Промежуточный мозг. Состоит из гипоталамуса, субталамуса, эпиталамуса и таламуса.

Промежуточный мозг - центральное ядро головного мозга - состоит из гипоталамуса, субталамуса, эпиталамуса и таламуса (рис. 8.22):

  • гипоталамус содействует многим гомеостатическим функциям, например регулированию ВНС и эндокринной системы через гипофиз. Он также играет определенную роль в управлении основными инстинктами: чувством голода, жажды, усталости, самосохранения и сексуального влечения;
  • субталамус вовлечен в двигательную функцию и связан с базальными ганглиями, красными ядрами и черной субстанцией;
  • эпиталамус состоит из поводка и шишковидной железы (эпифиза). Ганглии поводка - центр интеграции обонятельных, висцеральных и соматических центростремительных путей, связанных с ретикулярной формацией. Функция шишковидной железы неясна, но известно, что она содержит высокие концентрации мелатонина и 5-окситриптофана, что может играть роль в регуляции циркадианных ритмов;
  • таламус - самая большая часть среднего мозга. Функционально и анатомически таламус тесно связан с корой головного мозга. Почти все волокна, идущие к полушариям головного мозга проходят через синапс в пределах таламуса. Он имеет исходящие связи фактически с каждой частью головного мозга. Функция таламуса, вероятно, состоит в интеграции поступающей сенсорной информации через ядра, связанные с ним. Затем информация посылается к коре головного мозга для интерпретации.

Рис. 8.23 Базальные ганглии. Двусторонние массы серого вещества формируют глубокие структуры. Полосатое тело состоит из хвостатого ядра и чечевицеобразного ядра, которые отделены внутренней капсулой, за исключением нижней части хвостатого ядра, головка которого непрерывно связана со скорлупой чечевицеобразного ядра. Чечевицеобразное ядро состоит из скорлупы и бледного шара.

Базальные ганглии - собирательный термин, данный билатеральным массам глубоко расположенного серого вещества (рис. 8.23). Базальные ганглии имеют центростремительные и эфферентные связи с корой головного мозга, таламусом, субталамусом и стволом головного мозга и управляют моторной функцией через полушария головного мозга.

Полушария головного мозга формируют конечный мозг . Сознание, способность адаптироваться и реагировать на изменяющиеся обстоятельства, абстрактно мыслить, обучаться, генерировать гипотезы, извлекать пользу не только из собственного опыта обусловлены сложностью и размерами полушарий. Это более высокое функционирование ведет к развитию богатой эмоциональной жизни, поэтому высок риск глубокой умственной болезни.

Отдельные функции больше связаны с определенными областями полушарий головного мозга

Полушария головного мозга подразделяют на лобную, височную, теменную и затылочную доли (см. рис. 8.21).

Точная локализация любой специфической функции в пределах мозга неизвестна, возможно потому, что никакая отдельная функция не локализуется исключительно в одной определенной области. Однако, как и в случае нижерасположенных частей ЦНС, отдельные функции больше связаны с определенными областями:

  • предцентральная извилина лобной доли - с произвольной двигательной функцией;
  • постцентральная извилина теменной доли - с сенсорной функцией;
  • часть доминирующей лобной доли, предположительно, играет приоритетную роль в развитии и использовании речи;
  • части лобных долей с двух сторон, вероятно, вовлечены в формирование индивидуальности, логики и интеллекта;
  • височные доли обеспечивают в большей пропорции функции памяти, интеграции, а также слуховых центров;
  • теменные доли, вероятно, обеспечивают комплексную интегративную функцию сенсорного, моторного и, в меньшей степени, эмоционального функционирования. Они также позволяют планировать и инициировать сложные действия и играют решающую роль в топографическом, предметном и словесном распознавании и их ассоциации с эмоцией;
  • затылочная зона коры получает и обрабатывает визуальную информацию.

Лимбическая система имеет решающее значение в формировании памяти и эмоций

Лимбическая система - совокупность связанных структур, включая разнообразные глубокие структуры (например, миндалевидное тело), избранные области коры мозга (например, поясок) и сегменты других структур (например, гипоталамус) (табл. 8.9; рис. 8.24). Основной компонент лимбической системы - контур. По этой петле гиппокамп передает информацию через своды к сосковидным телам гипоталамуса, которые переносят ее к переднему ядру таламуса через мамиллоталамические тракты. Затем она посылается через внутреннюю капсулу назад к гиппокампу. Точные функции лимбической системы остаются неясными, но повреждения определенных частей различных петель ведут к:

  • Миндалина (базолатеральный комплекс, центромедиальный комплекс, части терминальных полосок и гипоталамус)
  • Хвостатые ядра
  • Мамиллярные тела
  • Переднее и дорсомедиальное ядра таламуса (некоторые включают и другие кортикальные области: орбитофронтальную область, височные поля и островок)

Симптомы галлюцинаций и бреда у психических пациентов могут быть результатом дисфункции лимбической системы.

Ретикулярная формация имеет неспецифическую сигнальную функцию приведения в готовность и вносит вклад в моторную, сенсорную (болевую) и автономную функции

Ретикулярная формация - сеть нейронов с разбросанными дендритными связями, которая занимает середину ствола мозга и простирается вверх от субстанции интермедиа до спинного мозга к интраламинарным ядрам таламуса. Она свободно организована в три продольных ядерных столба (медиальный, средний и латеральный), каждый из которых подразделяется на три вентрокаудальных (мезенцефальный, варолиевый и медуллярный).

Ретикулярная формация имеет вход от восходящих сенсорных нейронов, мозжечка, базальных ядер, гипоталамуса и коры мозга и выходы к гипоталамусу, таламусу и спинному мозгу.

Неспецифическая функция ретикулярной формации приведения в готовность может быть связана с восходящими ретикулоталамокортикальными путями (восходящая ретикулярная активирующая система). Ретикулярная формация также вносит вклад в моторную, сенсорную (болевую) и автономную функции, особенно действуя на дыхание и вазомоторную функцию.

Пояснительная записка

Анатомия центральной нервной системы является обязательным предметом в ряду естественнонаучных дисциплин, обеспечивающих базовую систему знаний, необходимую для овладения высшим профессиональным образованием по специальности «Психология». Курс «Анатомия центральной нервной системы» предназначен для создания у студентов необходимой основы последующего изучения психологии. В результате его освоения будущие психологи должны четко уяснить неразрывную взаимосвязь структуры и функции, а также иметь представление о морфологических основах психики человека. Основная задача курса «Анатомия центральной нервной системы» - это формирование представлений об общих принципах и особенностях структурной организации центральной нервной системы человека, функциональным проявлением которой являются все формы его психической деятельности.

Автором использован интегративный подход к разработке содержания курса, позволивший комплексно рассмотреть вопросы общей анатомии, развития и строения органов центральной нервной системы (головного и спинного мозга), а также анатомических образований периферической нервной системы, включая общие принципы и особенности структурной организации вегетативной нервной системы. При изучении интегративных систем мозга особое внимание уделяется вопросам построения сенсорных и пирамидных проводящих путей, а также морфо-функциональным особенностям экстрапирамидной и лимбической систем, рассматривается их роль в формировании психики человека. Учебный курс предусматривает изучение анатомии черепных нервов и структурно-функциональной организации органов чувств, обеспечивающих дистантное взаимодействие с окружающей средой. В нем также рассмотрены вопросы кровоснабжения головного и спинного мозга, строения мозговых оболочек и ликворной системы в целом. Автор стремился к тому, чтобы учебный курс сочетал в себе описание строения нервной системы человека и понятное изложение общих и индивидуальных психофизиологических особенностей ее функционирования, что очень важно для будущих психологов.

Соответствие программы требованиям ГОС.

Учебный курс «Анатомия центральной нервной системы» относится к числу фундаментальных дисциплин, направленных на формирование материалистических представлений о человеческом организме, о его морфо-функциональной целостности, а также биосоциальной сущности. Лежащая в основе учебного курса идея нервизма позволяет сформировать у студентов-психологов современное представление о нервной системе как о важнейшей управляющей интегративной системе, имеющей у человека наиболее сложное анатомическое строение. Учебный курс позволит студентам-психологам получить необходимые сведения об иерархической структуре нервной системы, отвечающей задачам не только управления жизнедеятельностью организма и координации его функций, но и осуществления разносторонних связей его с внешним миром, накопления и использования новой информации, реализации адаптационных возможностей и регуляции поведения в целом.

В результате изучения дисциплины студенты будут знать о:

  • процессах филогенеза и онтогенеза центральной нервной системы человека на основе эволюционного подхода;
  • современных методах изучения анатомии нервной системы;
  • микроструктурной организации нервной ткани и строении нервных клеток;
  • анатомическое строение и развитие головного и спинного мозга;
  • строение и топографию серого и белого вещества; функциональное значение нервных центров;
  • морфо-функциональной организации стрио-паллидарной, лимбической, активационной систем мозга, обеспечивающих жизнедеятельность и адаптационные возможности психической деятельности, а также регуляции поведения в целом;
  • строении и функциях проводящих путей, их роли в управлении поведением человека;
  • строении и областях иннервации черепных нервов;
  • особенностях структурной организации соматической и вегетативной частей периферической нервной системы;
  • анатомии и функциональных особенностях органов чувств.

В результате изучения дисциплины студенты будут уметь:

  • находить на анатомических моделях и изображениях анатомических препаратов детали строения спинного и головного мозга;
  • определять на таблицах и изображениях анатомических препаратов топографию черепных, спинномозговых и вегетативных нервов, их сплетений, нервных узлов;
  • находить на анатомических моделях и изображениях анатомических препаратов детали строения органов чувств.

Тема 1. Введение в анатомию нервной системы

Роль нервной системы в жизнедеятельности человека. Анатомия нервной системы как раздел анатомии человека. Значение анатомии нервной системы для психологической практики. Уровни структурной организации организма: клетка, ткань, орган, система органов, аппарат. Методы изучения анатомии нервной системы. Составные разделы анатомии нервной системы.

Тема 2. Нейрон. Нервная ткань

Нейронная теория строения нервной системы. Морфологические типы нейронов, их анатомо-функциональные особенности, классификация и локализация в нервной системе. Нейрон как элементарная структурно-функциональная единица нервной ткани. Понятие об интегративной структурно-функциональной единице нервной ткани: нейронные ансамбли (модули) и локальные нейронные сети.

Строение нейроцита. Нейрофибриллы, их функциональное значение. Дендриты и аксоны, направленность проведения нервного импульса в нейроне. Структурная организация синапсов, классификация синапсов. Строение разных типов нервных волокон (миелиновых и безмиелиновых). Виды нервных окончаний, их классификация.

Строение нервной ткани. Дифференцировка и созревание нейронов. Структурно-функциональные особенности и созревание макро- и микроглии. Регенерация и пластичность нервной ткани.

Тема 3. Развитие нервной системы

Развитие нервной системы в фило- и онтогенезе. Нервная трубка как производное эктодермы. Локализация в нервной трубке двигательных (базальная пластинка), ассоциативных (крыльная пластинка) и чувствительных нейронов (ганглионарная пластинка). Сегментарная закладка компонентов нервной системы; характеристика невромера. Особенности нервной системы плода. Критические периоды в развитии нервной системы. Развитие нервной системы в постнатальный период онтогенеза.

Тема 4. Анатомия спинного мозга

Разделение нервной системы на центральную (спинной и головной мозг) и периферическую (нервы, нервные сплетения, нервные узлы); соматическую (анимальная) и вегетативную (автономная) части. Нейронный состав рефлекторных дуг. Виды рецепции: экстероцепция, интероцепция и проприоцепция. Понятие о нервном центре. Нервные центры ядерного и экранного (коркового) типов.

Анатомия спинного мозга. Белое и серое вещество: топография, строение и функциональная характеристика. Сегменты спинного мозга и сегментарные рефлексы. Проводящие пути в спинном мозге: локализация и функции.

Тема 5. Спинномозговые нервы. Вегетативная нервная система

Спинномозговой нерв; передние и задние корешки спинномозговых нервов; спинномозговые узлы и их строение. Ветви спинномозговых нервов, состав нервных волокон; области иннервации. Формирование соматических нервных сплетений, их функции. Шейное, плечевое и пояснично-крестцовое сплетения. Иннервация опорно-двигательного аппарата и покровов тела.

Симпатическая и парасимпатическая части вегетативной нервной системы. Особенности рефлекторной дуги в вегетативной нервной системе. Вегетативные узлы (ганглии), пре- и постганглионарные нервные волокна. Центры симпатической нервной системы в спинном мозгу. Симпатический ствол, его отделы и ветви. Центры парасимпатической нервной системы в головном и спинном мозгу. Вегетативные (висцеральные) сплетения, их функции.

Тема 6. Анатомия головного мозга. Ствол мозга и мозжечок

Развитие головного мозга: стадия трех мозговых пузырей (передний мозг, средний мозг, ромбовидный мозг). Стадия пяти мозговых пузырей (конечный мозг, промежуточный мозг, средний мозг, задний мозг, продолговатый мозг). Отделы головного мозга. Топография серого и белого вещества в головном мозгу.

Ствол мозга. Сходство и различие в строении со спинным мозгом. Отделы ствола мозга и их строение. Желудочки мозга.

Продолговатый мозг: расположение, строение, связи с другими отделами центральной нервной системы. Сосудодвигательный и дыхательный центры. Мост: расположение, строение, роль в осуществлении связей между полушариями головного мозга и мозжечком. Средний мозг: расположение, отделы (крыша, покрышка, базис), топография серого и белого вещества, связи с другими отделами центральной нервной системы. Подкорковые центры зрения и слуха в крыше среднего мозга. Локализация и функциональное значение красного ядра и черной субстанции. Ретикулярная формация ствола мозга и ее функциональное значение. Мозжечок: строение, связи с другими отделами центральной нервной системы; функции мозжечка.

Тема 7. Черепные нервы

Черепные нервы. Особенности строения черепных нервов, их сходство и различие со спинномозговыми нервами, области иннервации и функциональная характеристика. I, II и VIII пары черепных нервов, особенности их строения и связи с органами чувств. III, IV и VI пары черепных нервов, иннервирующих глазодвигательные мышцы. V пара – тройничный нерв, его ветви, области иннервации. VII пара – лицевой нерв; иннервация мимических мышц. X пара – блуждающий нерв; области иннервации. IX, XI и XII пары черепных нервов, области иннервации.

Тема 8. Промежуточный мозг

Промежуточный мозг. Отделы (таламус, эпиталамус, метаталамус, гипоталамус, субталамус), особенности их развития и строения, основные группы ядер, связи с другими отделами центральной нервной системы. Функции промежуточного мозга. Шишковидная железа и ее роль в развитии и старении организма. Гипоталамус как высший подкорковый центр регуляции вегетативных функций и формирования эмоций. Локализация питьевого, пищевого и полового центров и центров биоритмальной активности организма в ядрах гипоталамуса. Гипофиз, его передняя и задняя доли; роль гипофиза в управлении эндокринной системой организма.

Тема 9. Большой мозг

Конечный мозг. Отделы, особенности развития в связи с формированием высших психических функций и сознательной деятельности человека. Топография серого и белого вещества в конечном мозге. Полушария головного мозга (большой мозг): серое и белое вещество полушарий, доли, борозды и извилины. Мозолистое тело, передняя спайка, свод. Кора большого мозга. Понятие о цито-, фибро- и миелоархитектонике коры. Модульная организация коры большого мозга. Локализация центров анализаторов в коре полушарий головного мозга. Речевые центры и центры, участвующие в организации сложных психических функций (восприятия, внимания, психо-эмоционального поведения). Роль лобных долей большого мозга в регуляции поведения человека. Латерализация функций в полушариях мозга человека.

Базальные ядра большого мозга. Хвостатое ядро и чечевицеобразное ядро: локализация, строение, связи с другими отделами центральной нервной системы. Стрио-паллидарная система, ее роль в регуляции движений.

Базальная часть большого мозга. Миндалевидное тело, ограда и связанные с ними структуры: локализация, строение, связи с другими отделами центральной нервной системы. Лимбическая система как комплекс образований конечного, промежуточного и среднего мозга. Основные структурные компоненты, роль в мотивации поведения, механизмах памяти и обучения.

Тема 10. Проводящие пути центральной нервной системы

Проводящие пути головного и спинного мозга. Ассоциативные, комиссуральные и проекционные волокна. Афферентные (восходящие пути): экстероцептивные пути (пути болевой и температурной чувствительности, пути тактильной чувствительности); проприоцептивные пути (мышечно-суставное чувство, чувство давления и веса). Эфферентные (нисходящие) двигательные пути. Пирамидная система и ее роль в регуляции сознательных движений; локализация ее центров в предцентральной извилине и парацентральной дольке. Передний корково-спинномозговой и боковой корково-спинномозговой пути. Экстрапирамидная система и ее роль в координации движений; локализация ее центров в разных отделах головного мозга (ретикулярные ядра и нижние оливы продолговатого мозга, вестибулярные и ретикулярные ядра моста, мозжечок, красные ядра, верхние и нижние холмики крыши четверохолмия среднего мозга, базальные ядра конечного мозга). Красноядерно-спинномозговой нервный путь как основной эфферентный путь экстрапирамидной системы.

Анатомические особенности центральной нервной системы ребенка. Возрастные этапы развития головного мозга человека.

Тема 11. Анатомия анализаторов

Кожная чувствительность. Рецепторы в коже; проводящие пути кожного анализатора; корковый центр анализатора общей чувствительности в области постцентральной извилины (соматосенсорная кора).

Проприоцептивная чувствительность. Рецепторы в мышцах и в связочно-суставном аппарате; проприоцептивные нервные пути мозжечкового и коркового направления; корковые центры проприоцептивной чувствительности (соматосенсорная и сенсомоторная кора).

Обонятельный анализатор. Локализация обонятельных рецепторов в области верхнего носового хода; пути проведения обонятельной чувствительности; центр в коре головного мозга в области парагиппокампальной извилины и крючка.

Вкусовой анализатор. Локализация рецепторов в сосочках языка; проводящие пути вкусовой чувствительности; центры в коре головного мозга в области покрышки, парагиппокампальной извилины и крючка.

Зрительный анализатор. Строение сетчатки. Подкорковые, корковые центры, проводящие пути зрительного анализатора; центр в коре головного мозга в области шпорной борозды.

Слуховой анализатор. Локализация слуховых рецепторов и механизм восприятия звуковых колебаний. Подкорковые центры, проводящие пути слухового анализатора; центры в коре головного мозга в области верхней височной извилины.

Анализатор равновесия. Локализация вестибулярных рецепторов и механизм восприятия вестибулярных раздражений. Подкорковые, корковые центры, проводящие пути анализатора равновесия.

If you are from UK and looking to learn about Adderall or to buy adderall online have a look at this website where you can order Adderall online from United Kingdom

(Шпаргалка)

  • Шпаргалка по анатомии ЦНС (Шпаргалка)
  • Козлов В.И., Цехмистренко Т.А. Анатомия нервной системы (Документ)
  • Козлов В.И., Кривский И.Л. Анатомия лимфоидной системы и путей оттока лимфы (Документ)
  • Лекции по патофизиологии нервной системы (Лекция)
  • Конспект лекции по анатомии. Нормальная анатомия (Лекция)
  • Ответы на билеты по Физиологии ЦНС (Шпаргалка)
  • Бадалян Л.О. Невропатология (Документ)
  • Смирнов В.М. Нейрофизиология и высшая нервная деятельность детей и подростков (Документ)
  • n1.docx








































    [Введите название организации]



    [Введите имя автора]

    [Выберите дату]

    УДК 611(075.8)

    ББК 28.706 Ф77

    Фонсова Н.А., Дубынин В.А.

    Ф77 Функциональная анатомия нервной системы: Учебное пособие для вузов / Н.А. Фонсова, В.А. Дубынин. - М.: Издательство «Экзамен», 2004. - 192 с.

    ISBN 5-94692-848-1

    Настоящее пособие дает базовые сведения об устройстве организма человека, анатомии и физиологии нервной системы. В пособии приводятся наиболее употребительные латинские понятия, дан краткий латинско-русский словарь, глоссарий с основными биологическими терминами.

    Для проверки полученных знаний в Приложении помещены тесты.

    Для студентов-психологов, педагогов, медиков, биологов.

    УДК 611(075.8) ББК 28.706

    ISBM 5-94692-848-1

    © Фонсова Н.А., Дубынин В.А., 2004 © Издательство «ЭКЗАМЕН», 2004

    Введение 5

    Список сокращений 8

    1. Строение организма 9

    1.1. Клетка 9


    1. Клеточные органоиды 12

    2. Обмен веществ в клетке 15

    1. Ткани животных 17

    2. Физиологические системы органов 19
    1.3.1. Регуляция функций организма 23

    2. Нервная ткань 30


    1. Общие положения 30

    2. Микроскопическое строение нейрона 33

    3. Отростки нейрона 38

    4. Классификация нейронов 42

    5. Нейроглия 45

    1. Онтогенез нервной системы 51

    2. Вспомогательные аппараты нервной системы 57

    1. Оболочки ЦНС 57

    2. Полости центральной нервной системы 58

    3. Кровоснабжение мозга 60
    5. Общие представления об устройстве

    И работе нервной системы 64


    1. Части нервной системы 64

    2. Серое и белое вещество нервной системы 66

    3. Рефлекторный принцип работы
    нервной системы 68
    6. Спинной мозг 73

    1. Общее строение спинного мозга 73

    2. Рефлекторные дуги спинного мозга 77

    3. Серое вещество спинного мозга 81

    4. Белее вещество спинного мозга 83
    7. Головной мозг 90

    1. Общий обзор головного мозга 90

    2. Ствол мозга 93
    7.2.1. Черепные нервы и их ядра 93

    7.2.2. Продолговатый мозг 99

    7.2.3. Варолиев мост 104


    1. Четвертый мозговой желудочек 106

    2. Средний мозг 107

    3. Ретикулярная формация 112
    7.3. Мозжечок 115

    1. Общее строение 115

    2. Кора мозжечка 120

    3. Белое вещество мозжечка 123
    7.4. Передний мозг 124

    1. Промежуточный мозг 124

    2. Конечный мозг 136

    1. Вегетативная (автономная) нервная система 155

    2. Лимбическая система 163
    Приложение 165

    Ответы на тесты 174

    Глоссарий 175

    Список основных терминов, относящихся к анатомии

    Нервной системы (с латинским переводом) 176

    Краткий список латинских терминов, относящихся

    Основная 189

    Дополнительная 189

    ВВЕДЕНИЕ

    Изучением человека во всем его многообразии занимаются как гуманитарные, так и естественные (в первую очередь, биологические) науки. Соответственно, в случае целого ряда специальностей полноценное образование студентов-гуманитариев требует серьезного знакомства с такими разделами биологии, как анатомия, физиология, генетика. Эта книга - первая в серии учебных пособий по биологическим дисциплинам для небиологических факультетов. Такие дисциплины преподаются, как правило, на 1 - 2 курсах и формируют естественнонаучную базу, на которую в дальнейшем опирается образование будущего психолога, педагога и т.п.

    То, как устроен наш организм, эволюционно определено выполняемыми им функциями. В связи с этим анатомия - наука, которая изучает строение тканей, органов, систем органов, тесно взаимодействует с физиологией - наукой о жизнедеятельности целостного организма и отдельных его составляющих (клеток, органов, функциональных систем). Знание функций тех или иных структурных образований позволяет сделать изучение анатомии (в том числе - анатомии нервной системы) более эффективным, использовать полученные знания на практике. Поэтому в представленное пособие включены не только анатомические, но и физиологические сведения, что отражено в названии книги.

    Анатомия и физиология нервной системы являются основополагающими предметами прежде всего для будущих специалистов-психологов. Действительно, с функционированием нервной системы связано большинство психических процессов, и мозг является их материальным субстратом. С другой стороны, разнообразные нарушения психики обычно обусловлены патологией именно нервной системы.

    Существующие в настоящее время учебники по анатомии нервной системы рассчитаны главным образом на тех, кто имеет глубокие базовые знания по биологии. Однако в последнее время нам приходится иметь дело с большим количеством студентов-гуманитариев (особенно в случае вечерней и заочной форм обучения), которые относительно давно окончили среднюю школу и утратили далее те биологические знания, которые были в ней получены. В связи с этим восприятие информации, изложенной в классических учебниках по анатомии человека, оказывается затруднено. Наше учебное пособие учитывает проблемы таких студентов. Так, для облегчения понимания представленного материала в первой главе приведены базовые сведения об устройстве организма человека. Составляющая содержание этой главы сводка данных о строении клеток, тканей, систем органов не может являться предметом отдельного глубокого изучения; она представлена лишь в там объеме, который необходим для понимания основного материала учебного пособия. Кроме того, первая глава не снабжена всеми необходимыми рисунками, и студентам предлагается обращаться к иллюстрациям в стандартных школьных учебниках и справочниках по биологии для поступающих в вузы.

    Международный язык анатомии - латинский. Каждый анатомический объект имеет латинское наименование, которое приводится в большинстве соответствующих учебников. Тем не менее мы не считаем целесообразным перегружать пособие латынью и в основном тексте приводим лишь наиболее употребительные латинские понятия, широко используемые даже в русской транскрипции. Латинские эквиваленты используемых терминов даны в Приложении. Там же можно найти краткий латинско-русский словарь основных понятий, имеющих отношение к нервной системе. В Приложение входит, кроме того, глоссарий с основными биологическими терминами, употребляемыми в пособии. Для проверки полученных знаний рекомендуется «решить» представленные в Приложении тесты.

    К сожалению, формат учебного пособия не позволяет нам привести иллюстративный материал в исчерпывающе полном виде. Поэтому рекомендуем параллельно с «погружением» в представленный текст пособия пользоваться одним из многочисленных атласов нервной системы либо его Internet-эквивалентом.

    Усвоение материала пособия позволит вам успешно сдать экзамен по анатомии нервной системы и заложит серьезную основу для изучения таких дисциплин, как «Физиология нервной системы», «Физиология сенсорных систем», «Нейропсихология», «Психофизиология» и др.
    СПИСОК СОКРАЩЕНИЙ

    BHC - вегетативная нервная система

    ГМ - головной мозг

    ЛС - лимбическая система

    НС - нервная система

    РФ - ретикулярная формация

    СМ - спинной мозг

    ЦНС - центральная нервная система

    1. Строение организма

    Любой живой организм состоит из биологических макромолекул- нуклеиновых кислот, белков, полисахаридов и др. Отдельные молекулы организуются в клетки - элементарные единицы живого. В многоклеточных организмах группы сходных клеток образуют ткани, из тканей формируются органы, а из них системы органов. Последние в своей совокупности создают целостный организм.

    Принципы строения и функционирования на всех этих уровнях организации (молекулярном, клеточном, тканевом, системном, организменном) у живых существ разной степени сложности во многом схожи. В этой главе мы рассмотрим общие закономерности устройства клеток, тканей и систем органов.


      1. Клетка
    Клетка - элементарная структурно-функциональная единица живого, обладающая всеми признаками организма: ростом, размножением, обменом веществ, раздражимостью. Изучением строения клетки и принципов ее жизнедеятельности занимается наука цитология. Большинство клеток можно увидеть только при помощи микроскопа (средние по размеру клетки имеют диаметр от 20 до 100 мкм).

    Основные принципы построения всех клеток едины. Все многоклеточные организмы и большинство одноклеточных относятся к эукариотам - ядерным, т.е. имеющим клеточное ядро. В группу прокариот- безъядерных- входят главным образом бактерии.

    Рассмотрим строение эукариотической клетки. Каждая такая клетка состоит из цитоплазматической мембраны, цитоплазмы и ядра (рис. 1).

    Рис. 1. Строение животной клетки:

    1 - цитоплазматическая мембрана; 2 - гиалоплазма; 3 - лизосома;

    4 - эндоцитоз; 5 - центриоль; 6 - экзоцитоз; 7 - секреторная гранула; 8 - рибосомы; 9 - митохондрия; 10 - аппарат Гольджи;

    11 - ядро; 12 - ядрышко; 13 - цитоскелет; 14 - шероховатая эндоплазматическая сеть; 15 - гладкая эндоплазматическая сеть

    Цитоплазматическая (плазматическая) мембрана толщиной 8-12 нм покрывает клетку и отделяет ее от окружающей среды. Эта мембрана построена из двух слоев липидов. Липиды - жироподобные вещества, основным свойством которых является гидрофобность (водонепроницаемость). Основная функция мембраны - барьерная: она не дает содержимому клетки растекаться и препятствует проникновению в клетку опасных для нее веществ. В липиды погружены многочисленные молекулы белков. Одни из них находятся на внешней стороне мембраны, другие на внутренней, а третьи пронизывают мембрану насквозь. Мембранные белки также

    Выполняют целый ряд важнейших функций. Некоторые белки являются рецепторами, с помощью которых клетка ощущает различные воздействия на свою поверхность. Другие белки образуют каналы, по которым осуществляется транспорт различных ионов в клетку и из нее. Третьи белки являются ферментами, обеспечивающими процессы жизнедеятельности в клетке. Пищевые частицы пройти через мембрану не могут; они проникают в клетку путем фагоцитоза (твердые частицы) или пиноцитоза (жидкие частицы). Общее название фаго- и пиноцитоза - эндоцитоз. Существует и обратный эндоцитозу процесс - экзоцитоз. В ходе экзоцитоза вещества, синтезированные в клетке (например, гормоны), упаковываются в мембранные пузырьки. Эти пузырьки затем подходят к клеточной мембране, встраиваются в нее и выбрасывают свое содержимое из клетки в межклеточную среду. Таким же образом клетка может избавляться от ненужных ей отходов обмена веществ.

    Находящаяся под мембраной цитоплазма содержит гиалоплазму, органоиды и включения. Гиалоплазма (цитозоль) - это основное полужидкое вещество (матрикс) цитоплазмы, объединяющее все клеточные структуры и обеспечивающее их взаимодействие. Здесь протекает и ряд биохимических процессов (гликолиз, синтез некоторых белков и др.). Органоиды - постоянно присутствующие в клетке структуры, выполняющие определенные функции. Органоиды делятся на мембранные (они отграничены от гиалоплазмы мембранами, сходными по строению с цитоплазматической) и немембранные (не имеющие мембраны). К первым относятся ядро, эндоплазматическая сеть, аппарат Гольджи, лизосомы, митохондрии, ко вторым - рибосомы, клеточный центр, цитоскелет. Включения - непостоянные компоненты клетки, возникающие и исчезающие в зависимости от уровня обмена веществ, например гранулы полисахаридов или капельки жира.

    1.1.1. Клеточные органоиды

    Ядро - важнейшая структура в клетках эукариот. Оно осуществляет хранение, реализацию и передачу наследственной информации. Носителем этой информации является ДНК (дезоксирибонуклеиновая кислота), большая часть которой сосредоточена в ядре. ДНК в ядре связана с белками, это соединение называется хроматином. Благодаря такому соединению ДНК принимает более компактную форму (в растянутом виде ее длина у человека может достигать 5 см).

    В ДНК закодировано строение всех белков организма. Белки, в свою очередь, играют ведущую роль в обменных процессах. Участок ДНК, хранящий информацию о строении одного белка, имеет название ген. Когда в процессе обмена веществ возникает необходимость в каком-либо белке, соответствующий ген активируется и в клетке начинается синтез этого белка. Нарушения в строении ДНК (мутации) могут приводить к тяжелым, а иногда и летальным, последствиям.

    Для синтеза белка, который происходит в цитоплазме на рибосомах, необходимы молекулы РНК (рибонуклеиновой кислоты). Они образуются в ядре в ходе процесса, представляющего собой транскрипцию (копирование) участков ДНК. Существуют три вида РНК- информационная (иРНК), транспортная (тРНК) и рибосомальная (рРНК). иРНК и тРНК непосредственно участвуют в синтезе белка: иРНК являются «копиями» генов, тРНК осуществляют перенос мономеров белков (аминокислот) к рибосомам. рРНК вместе с белками входят в состав рибосом. Место сборки рибосом (ядрышко) находится в ядре. В одной клетке может функционировать от одного до семи ядрышек.

    Передача наследственной информации происходит во время деления клетки. Перед этим ДНК удваивается, и в каждую дочернюю клетку переходит одинаковое количество идентичной по составу ДНК. Перед делением клетки ДНК спирализуется (плотно скручивается и укорачивается), образуя хромосомы.

    Для каждого биологического вида характерен совершенно определенный набор хромосом.

    Ядро отделено от цитоплазмы оболочкой, состоящей из двух мембран. Наружная мембрана в некоторых участках переходит в каналы эндоплазматической сети. В ядерной оболочке имеется множество пор, по которым из ядра в цитоплазму выходят молекулы РНК, а в ядро из цитоплазмы проникают ферменты, молекулы АТФ, неорганических ионов и т.д.

    Эндоплазматическая сеть (ЭПС), или эндоплазматический ретикулум (ЭПР), представляет собой систему трубочек и полостей, пронизывающих всю цитоплазму клетки. Различают гладкую (агранулярную) и шероховатую (гранулярную) ЭПС. На шероховатой ЭПС расположено множество рибосом. Здесь синтезируется большинство белков. На поверхности гладкой ЭПС идет синтез углеводов и липидов. Внутри ее полостей накапливаются ионы кальция - важные регуляторы всех функций клеток и целого организма. Вещества, синтезированные на мембранах ЭПС, переносятся внутрь трубочек ретикулума и по ним транспортируются к местам хранения или использования в биохимических реакциях.

    Аппарат (комплекс) Гольджи - это система цистерн, в которых накапливаются вещества, синтезированные клеткой. Здесь же эти вещества претерпевают дальнейшие биохимические превращения, упаковываются в мембранные пузырьки и переносятся в те места цитоплазмы, где они необходимы, или же транспортируются к клеточной мембране и путем экзоцитоза выводятся за пределы клетки.

    Лизосомы - это маленькие мембранные пузырьки, содержащие до 50 разных видов пищеварительных ферментов, способных расщеплять белки, углеводы, липиды, нуклеиновые кислоты. Формируются лизосомы в комплексе Гольджи, где модифицируются и накапливаются пищеварительные ферменты. Лизосомы и их ферменты используются клеткой также в тех случаях, когда необходимо заменить поврежденные участки клетки. При этом поврежденный участок окружается со всех сторон мембраной, а затем с этой мембраной сливается лизосома. Таким образом, ферменты проникают внутрь изолированного участка и разрушают его, чтобы на его месте мог быть построен новый. Этот процесс получил название аутофагии.

    Митохондрии - это органоиды клетки, участвующие в процессе клеточного дыхания и запасающие для клетки энергию (см. далее). Количество митохондрий в клетке варьирует от единиц (сперматозоиды, некоторые водоросли и простейшие) до тысяч. Особенно много митохондрий в тех клетках, которые нуждаются в больших количествах энергии (клетки печени, мышечные клетки).

    Митохондрии (и пластиды растений) в отличие от других органоидов клетки имеют собственную генетическую систему, обеспечивающую их самовоспроизводство. В митохондриях имеется собственная ДНК, РНК и особые рибосомы. Если клетке предстоит деление или она интенсивно расходует энергию, митохондрии начинают делиться и их число возрастает. Если же потребность в энергии снижена, то число митохондрий в клетках заметно уменьшается.

    Рибосомы - очень мелкие органоиды, необходимые для синтеза белка. В клетке их насчитывается несколько миллионов. Рибосомы состоят из белка и рРНК, формируются в ядре в области ядрышка и через ядерные поры выходят в цитоплазму. Рибосомы могут находиться в цитоплазме во взвешенном состоянии, но чаще они располагаются группами на поверхности эндоплазматической сети.

    У всех эукариот в цитоплазме имеется сложная опорная система - цитоскелет. Он состоит в основном из микротрубочек и микрофиламентов.

    Микротрубочки пронизывают всю цитоплазму и представляют собой полые трубки диаметром 20 - 30 нм. Их стенки образованы спирально закрученными нитями, построенными из белка тубулина. Микротрубочки прочны и образуют опорную основу цитоскелета. Кроме механической, микротрубочки выполняют транспортную функцию, участвуя в переносе по цитоплазме различных веществ. Микрофиламенты - белковые нити диаметром около 4 нм. Их основа - белок актин. Микрофиламенты располагаются вблизи от плазматической мембраны и способны менять ее форму, что очень важно для процессов фагоцитоза и пиноцитоза.

    Клеточный центр (центросома) расположен в цитоплазме вблизи от ядра. Он образован двумя центриолями - цилиндрами, расположенными перпендикулярно друг к другу и состоящими из микротрубочек, и расходящимися от центриолей микротрубочками. Клеточный центр играет важную роль в делении клетки.

    1.1.2. Обмен веществ в клетке

    В любой живой клетке постоянно происходят сложнейшие химические и физические реакции. Они необходимы для того, чтобы обеспечить постоянство внутренней среды как в самой клетке, так и в многоклеточном организме, находящемся под воздействием меняющихся внешних факторов. Поддержание постоянства внутренней среды биологических систем получило название гомеостаза. Если гомеостаз не может быть достигнут, то клетки и организм в целом повреждаются или даже гибнут. Для поддержания гомеостаза клетка осуществляет сложные и многообразные реакции синтеза и расщепления веществ, а также реакции превращения энергии. Так, получаемые извне белки, жиры, углеводы, витамины и микроэлементы используются клетками для образования необходимых им химических соединений и клеточных структур. Вся совокупность реакций биосинтеза веществ и их последующей сборки в более крупные структуры называется ассимиляцией, или анаболизмом, или пластическим обменом. Примером такого рода процессов может служить образование белка.

    Наряду с процессами биосинтеза в клетках (главным образом в процессе клеточного дыхания) постоянно происходят реакции распада запасенных или полученных извне органических соединений. При участии ферментов такие соединения расщепляются на более простые вещества. При этом выделяется энергия, часть которой запасается в химических связях молекулы АТФ (аденозинтрифосфорной кислоты). Энергия в форме АТФ доступна для использования всеми структурами клетки. С целью синтеза АТФ чаще всего расщепляется глюкоза, которая хранится в животной клетке в виде полисахарида гликогена. Процесс расщепления идет в

    Два этапа:

    1) гликолиз - анаэробное (бескислородное) дыхание; проходит в гиалоплазме и приносит клетке небольшое количество энергии. При этом глюкоза расщепляется до молочной или пировиноградной кислоты;

    2) аэробное дыхание, в ходе которого запасается в 18 раз больше энергии, чем во время гликолиза; осуществляется в митохондриях. В результате образуется СО2 и Н2О.

    Совокупность реакций распада веществ, сопровождающихся запасанием энергии, называется диссимиляцией, или катаболизмом, или энергетическим обменом.

    Реакции ассимиляции и диссимиляции - это две стороны единого процесса обмена веществ и энергии в клетке, который называется метаболизмом. Ассимиляция и диссимиляция строго сбалансированы и скоординированы, и нарушение этого баланса приводит к развитию каких-либо заболеваний как отдельных клеток, так и целого организма.

    Реакции метаболизма в живой клетке протекают очень быстро. Это обусловливается участием в них ферментов. Ферменты - это вещества белковой природы. Каждый фермент может избирательно регулировать ту или иную химическую реакцию, протекающую в клетке. Будучи биологическими катализаторами, ферменты могут увеличивать скорости реакций в миллионы раз, но сами в этих реакциях не изменяются. Активность ферментов очень высока, и для обеспечения нормальной скорости метаболических процессов требуется малое количество молекул ферментов. Но поскольку ферменты действуют избирательно, клетке необходимо очень много видов ферментов.


      1. Ткани животных
    В многоклеточном организме клетки объединяются в ткани. Ткань - эволюционно сложившаяся система клеток и межклеточного вещества, объединенная общим происхождением, сходным строением и специализирующаяся на выполнении определенных функций в организме. Выделяют четыре основные группы животных тканей: эпителиальные, соединительные, мышечные и нервную.

    Эпителиальные ткани (эпителий) - слой или слои клеток, из которых состоят покровы тела, слизистые оболочки всех внутренних органов и полостей, а также большинство желез. Клетки эпителия плотно прилегают друг к другу. В эпителии очень мало межклеточного вещества, он не имеет сосудов и обладает высокой способностью к регенерации. Клетки желез специализируются на синтезе веществ, подлежащих секреции.

    Эпителиальные ткани выполняют защитную (кожный эпителий), трофическую (кишечный), выделительную (почечный), секреторную (железистый), обменную (дыхательный) функции.

    Соединительные ткани - обширная группа тканей, образующих скелет, внутренние органы, подкожную жировую клетчатку, кровь, лимфу. Межклеточное вещество в этих тканях хорошо развито. В нем обычно расположены белковые волокна (коллагеновые, эластические, ретикулярные). Соединительные ткани обладают высокой способностью к регенерации. Различают следующие виды соединительных тканей: хрящевую, костную, жидкую (кровь, лимфа), жировую, рыхлую волокнистую (заполняет пространства между органами), плотную волокнистую (образует связки, сухожилия, твердую мозговую оболочку и т.п.).

    Соединительные ткани выполняют трофическую, защитную, опорную, транспортную, кроветворную, запасающую (жировая), терморегуляторную и др. функции.

    Мышечные ткани - группа тканей, которые входят в состав опорно-двигательного аппарата, стенок внутренних органов, кровеносных и лимфатических сосудов. Мышечные ткани обладают свойствами возбудимости и сократимости.

    Образующие их клетки (миоциты) имеют вытянутую форму и способны сокращаться благодаря наличию в цитоплазме миофиламентов - длинных продольных нитей сократительных белков актина и миозина. При сокращении мышечной клетки нити актина и миозина скользят друг относительно друга. Этот процесс происходит в присутствии ионов СА 2+ и требует затрат энергии АТФ.

    Различают три вида мышечных тканей:

    А) гладкая мышечная ткань образована мелкими (диаметр 2-10 мкм, длина - 50-400 мкм) веретеновидными миоцитами, которые имеют одно ядро и проходящие по всей длине миофиламенты; эта ткань образует стенки внутренних органов, сосудов и иннервируется вегетативной нервной системой;

    Б) поперечно-полосатая сердечная мышечная ткань (миокард) образована клетками (кардиомиоцитами), которые имеют множество крупных митохондрий, 1 - 2 ядра, расположенных в центре и окруженных миофибриллами; эта ткань также иннервируется вегетативной нервной системой;

    В) поперечно-полосатая скелетная мышечная ткань образована многоядерными клетками длиной до 10 - 12 см (мышечные волокна), содержащими большое количество митохондрий; миофиламенты этой ткани чередуются в определенном порядке, образуя светлые и темные поперечные полосы; скелетная ткань образует скелетные (прикрепленные к костям скелета) мышцы, мышцы языка, глотки, верхнего отдела пищевода, диафрагму, мимические мышцы и иннервируется соматической НС.

    Гладкую и сердечную мышечные ткани называют непроизвольными, так как человек не может по собственной воле без специальной тренировки управлять работой этих мышц. Скелетная мускулатура, наоборот, произвольная, поскольку возможно ее сознательное сокращение или расслабление.

    Основные функции мышечной ткани - двигательная и защитная.

    Нервная ткань является основной тканью нервной системы. В ее состав входят клетки двух типов: собственно нервные (нейроны) и вспомогательные нейроглиальные (нейроглия).

    Подробно строение нервной ткани будет рассмотрено в главе 2.

    1.3. Физиологические системы органов

    Орган - это обособленная часть организма, имеющая определенную форму, строение, расположение и выполняющая определенные специфические функции. Орган образован системой тканей, в которой преобладает одна (две) из них. Группы органов, связанных друг с другом анатомически, имеющих общий план строения, единство происхождения и выполняющих определенную физиологическую функцию, образуют систему органов.

    В организме человека обычно выделяют следующие системы органов: нервную, эндокринную, опорно-двигательную, кровеносную (сердечно-сосудистую), дыхательную, пищеварительную, выделительную, покровную, половую. Иногда из сердечно-сосудистой системы отдельно выделяют лимфатическую систему.

    Опорно-двигательная система. Состоит из пассивной части (скелета) и активной части (мышц). Кроме опорной и двигательной, эта система выполняет защитную функцию (защищает от внешних механических воздействий ЦНС и внутренние органы) и кроветворную функцию (орган кроветворения - красный костный мозг).

    Кровеносная система состоит из сердца и сосудов. Функция этой системы - обеспечение движения крови по сосудам. Это осуществляется, в первую очередь, за счет сокращений

    Сосуды, по которым кровь течет от сердца, называются артериями, а по которым кровь течет к сердцу - венами. Из сердца выходят крупные артерии, они делятся на все более мелкие и переходят в капилляры, а те, в свою очередь, переходят в мелкие вены, объединяющиеся во все более крупные, которые впадают в сердце.

    Кровь (жидкая соединительная ткань) выполняет транспортную и защитную функции. Транспортная функция заключается в том, что кровь, во-первых, переносит к тканям кислород, питательные вещества, биологически активные вещества, различные ионы и т.д. и, во-вторых, уносит от тканей отходы обмена веществ, например углекислый газ. Защитная функция состоит, во-первых, в обеспечении иммунитета (борьбы с чужеродными веществами, попадающими в организм, а также бактериями, вирусами и т.п.) и, во-вторых, в обеспечении свертывания крови, благодаря чему прекращается кровотечение при травмах сосудов.

    разработана в соответствии с ФГОС
    Для специальности «Фармация»
    Преподавателем: Завершинской Л.А.1. Значение, классификация нервной системы. Общие
    принципы строения центральной нервной системы – серое
    вещество, белое вещество. Нервный центр – понятие. Виды
    нервных волокон, нервы – строение, виды.
    2. Рефлекторная дуга как система нейронов и их отростков,
    контактирующих посредством синапсов. Структуры
    рефлекторной дуги. Синапсы, их строение, функции,
    значение.
    3. Краткие данные: спинной мозг. Рефлексы спинного мозга.
    Рефлекторные дуги простых и сложных соматических
    рефлексов.
    4. Головной мозг, функциональная анатомия отделов мозга.
    Физиологические свойства коры.
    5. Оболочки мозга, полости головного мозга. Ликвор.

    Нервная система осуществляет нервную регуляцию организма,
    обеспечивая быструю перестройку функций органов и организма в
    целом. Это становится возможным, так как скорость движения
    нервных импульсов достигает 140 м/с. Нервная регуляция
    подчиняет себе гуморальную регуляцию. Нервная система
    обеспечивает связь организма с внешней средой.
    Структурной единицей нервной системы является нервная клетка –
    нейрон.

    Нейроны

    Нейроны
    Направление передачи
    нервного импульса
    Особенности
    чувствительные
    от органов к ЦНС
    скопления тел образуют
    спинно-мозговые нервные
    узлы
    двигательные
    от ЦНС к мышцам и
    внутренним органам
    очень длинные отростки
    вставочные
    связывают другие типы
    нейронов
    тела и отростки не выходят
    за пределы ЦНС
    Функции нейроглии: опорная, трофическая, защитная, разграничительная.
    Она выстилает полости головного мозга и спинно-мозговой канал, образует опорный
    аппарат ЦНС и окружает тела нейронов и их отростки.
    Функции нервной ткани:
    осуществляет связь с окружающей средой,
    регулирует все процессы в организме.

    Анатомическая классификация нервной системы
    ЦНС
    ПНС
    головной мозг
    (encephalons)
    продолговатый мозг
    спинной мозг
    (medulla spinalis)
    задний
    мозг
    средний
    мозг
    12 пар черепно-мозговых нервов
    31 пара спинно-мозговых нервов
    периферические ганглии
    промежуточный мозг
    конечный
    (большой) мозг

    Нервная система
    автономная (вегетативная)
    непроизвольная регуляция
    обеспечивает работу
    внутренних органов (гладкой
    мускулатуры и желез)
    Симпатическая
    соматическая
    произвольная регуляция
    обеспечивает работу
    скелетной мускулатуры
    Парасимпатическая

    Путь, по которому проходит нервный импульс от
    рецептора до эффектора называется
    рефлекторной дугой.
    1.
    2.
    3.
    4.
    5.
    Рефлекторная дуга состоит из 5 звеньев:
    рецептор,
    чувствительное (афферентное) волокно,
    которое проводит импульсы от рецептора к
    нервному центру,
    нервный центр – происходит переключение
    возбуждения с чувствительного волокна на
    двигательное,
    двигательное (эфферентное) волокно –
    передает нервный импульс от центра на
    периферию,
    эффектор – рабочий орган (мышца или железа).
    Чтобы получить рефлекс, должны быть целыми
    все звенья рефлекторной дуги.
    Если повреждено хотя бы одно звено, то ответной
    реакции не получится. Это используют в
    медицине (виды наркозов).
    Рефлекторную деятельность открыл в 17 веке
    французский ученый Декарт. продолжили ее
    изучение: Сеченов, Павлов.

    10.

    Строение синапсов:
    Синапсы состоят из
    синаптической бляшки,
    пресинаптической мембраны,
    синаптической щели
    постсинаптической мембраны.
    В синаптической бляшке в мелких пузырьках содержится
    медиатор.
    Под действием нервного импульса наступает деполяризация
    окончаний аксона, что вызывает повышение концентрации
    ионов кальция и содержимое синаптического пузырька
    выбрасывается в синаптическую щель.
    Медиатор диффундирует через синаптическую щель и
    связывается с рецепторными белками
    постсинаптической мембраны, вызывая в ней
    возбуждение или торможение.
    Медиаторы делятся на медиаторы возбуждения и
    торможения. Медиаторы торможения - -аминомасляная
    кислота. Медиаторы возбуждения – ацетилхолин,
    норадреналин, серотонин, дофамин.
    Особенности нервного центра – быстрое утомление,
    высокий обмен веществ и потребность в кислороде,
    избирательная чувствительность к ядам.

    11. Спинной мозг

    Спинной мозг расположен в позвоночном
    канале. Он имеет длину 41-45 см.
    Вверху он переходит в продолговатый мозг,
    внизу переходит в мозговой конус на уровне
    2-го поясничного позвонка. От него отходит
    терминальная нить.
    Спинной мозг имеет два утолщения: верхнее и
    нижнее. Они соответствуют местам выхода
    нервов, идущих к верхним и нижним
    конечностям.
    Спинной мозг передней срединной щелью и
    задней срединной бороздой делится на 2
    половины.
    Каждая половина имеет 2 продольные борозды.
    Этими бороздами она делится на 3 канатика.

    12.

    Спинной мозг состоит из серого и белого
    вещества.
    Серое вещество расположено внутри, белое – по
    периферии.
    Серое вещество образует два неправильной
    формы тяжа(столба), которые
    заканчиваются выступами. Они называются
    рогами – передние и задние.
    Столбы соединяются между собой перемычками, в
    центре которых проходит спинномозговой
    канал, заполненный спинномозговой
    жидкостью.
    Передние рога дают начало передним –
    двигательным корешкам спинно-мозговых
    нервов,
    а задние рога – задним – чувствительным
    корешкам.
    В грудном и поясничном отделах имеются
    боковые рога.
    Боковые рога являются центром симпатической
    нервной системы.
    Белое вещество представлено передними,
    боковыми и задними канатиками. Они
    состоят из продольных волокон, которые
    соединяются в проводящие пучки.

    13.

    От спинного мозга, образуясь от передних и задних корешков, отходит 31
    пара спинно-мозговых нервов – смешанных по функции. Из них 8 пар –
    шейных, 12 пар грудных, 5 поясничных, 5 крестцовых и 1 копчиковая.
    Участок спинного мозга, который соответствует выходу спинно-мозговых
    нервов, называется сегментом. В спинном мозге 31 сегмент.
    Спинно – мозговые нервы выходят через межпозвоночные отверстия.
    Место выхода корешков не соответствует уровню межпозвоночных
    отверстий, и корешки, прежде чем выйти из канала, направляются в
    стороны и вниз, в поясничном отделе они идут параллельно
    терминальной нити и образуют «конский хвост».
    Спинно-мозговые нервы:
    Спинно- мозговые нервы при выходе из межпозвоночных отверстий
    делится на 4 ветви:
    переднюю (иннервирует переднюю стенку туловища и конечностей),
    заднюю (иннервирует мышцы спины и затылка),
    соединительную (идет к узлу симпатического ствола),
    менингиальную (возвращается в спинной мозг и иннервирует оболочки
    мозга).

    14.

    Функции спинного мозга - рефлекторная и проводниковая.
    Рефлекторная функция -двигательные нейроны иннервируют все мышцы туловища,
    конечностей, шеи, а также дыхательные мышцы и диафрагму, осуществляется
    благодаря цепочке нейронов, формирующих рефлекторную дугу.
    Чувствительные нервные окончания (рецепторы), например рецепторы кожи,
    воспринимают раздражение и превращают его в нервный импульс.
    Чувствительные нервные волокна проводят нервный импульс к телам нейронов
    спинномозговых узлов, откуда по аксонам он передается на тела нервных клеток заднего
    рога серого вещества спинного мозга (вставочные нейроны).
    В спинном мозге вставочные нейроны передают нервное возбуждение двигательным
    нейронам (мотонейронам) передних рогов.
    Мотонейроны передних рогов спинного мозга воспринимают нервный импульс и проводят
    его по своим аксонам- Двигательным нервным волокнам, которые заканчиваются
    двигательными нервными окончаниями в рабочем органе.
    Рабочий орган под влиянием нервного импульса совершает какое-либо действие, мышца,
    например, сокращается.
    Благодаря рефлексам в организме человека выполняются защитные функции. Причем
    рефлексы осуществляются намного быстрее, чем сознательные движения.
    Проводниковая функция – за счет восходящих и нисходящих пути, которые проходят в белом
    веществе спинного мозга. Эти пути связывают отдельные сегменты друг с другом, а также
    с головным мозгом.

    15. Головной мозг

    Головной мозг имеет вес 1300-1500 гр. От него отходят 12 пар черепно-мозговых
    нервов. Головной мозг имеет латеральную поверхность и нижнюю неровную.
    Головной мозг делится на 5 отделов:
    1. Продолговатый мозг.
    2.Задний мозг.
    3.Средний мозг.
    4.Промежуточный мозг.
    5.Конечный мозг (большой мозг)
    Ретикулярная формация – скопление нейронов с многочисленными сильно
    ветвящимися отростками, образующими густую сеть. от её нейронов начинают
    неспецифические пути, они идут вверх к коре головного мозга и подкорковым
    ядрам и внизу к нейронам спинного мозга. Её функция – регулятор
    функционального состояния спинного и головного мозга, а также важная
    регуляция мышечного тонуса.

    16. Продолговатый мозг

    Напоминает по строению спинной мозг.
    Состоит из белого вещества – образует
    проводящие пути – располагается по
    периферии.
    Серое вещество образует ядра: пирамид,
    олив, ядро Дейтерса, ядра черепномозговых нервов 9-12 пар.
    Полостью продолговатого и заднего мозга
    является четвертый желудочек
    Рефлекторная
    Обеспечивает рефлексы:
    статические (положения и выпрямления),
    статокинетические (положение тела в
    пространстве при ускорении),
    защитные (кашель, мигание,
    слезоотделение, рвота),
    пищевые (сосание, глотание, сокоотделение
    пищеварительных желез)
    сердечно-сосудистые (регуляция
    деятельности сердца и сосудов)
    дыхательные
    распознавание частоты, интенсивности
    и источника звука
    -Проводниковая
    Через белое вещество проходят восходящие
    и нисходящие проводящие пути. Происходит
    обмен информацией между нижележащими и
    вышележащими отделами.

    17. Задний мозг

    Варольев мост – представлен белым веществом и
    ядрами серого вещества (собственные ядра моста,
    ядра верхней оливы, ядра ретикулярной формации и
    5-8 пар черепно-мозговых нервов) Мост граничит
    снизу с продолговатым мозгом, сверху со средним
    мозгом, боковые отделы с ножками мозжечка.
    Мозжечок - состоит из 2-х отделов
    Червь – белое вещество, через которое проходят
    проводящие пути, серое вещество – ядро Шатра
    Полушария – покрыты корой, которая покрыта
    бороздами и извилинами (серое вещество толщиной
    1-1,5 мм). Внутри полушарий – белое вещество, в нем
    располагаются ядра серого вещества – шаровидное,
    промежуточное, зубчатое.
    В мозжечке выделяют три пары ножек:
    - нижние ножки – связывают мозжечок с
    продолговатым мозгом
    - средние ножки –с варольевым мостом
    - верхние ножки –со средним мозгом и контактируют
    с нейронами ретикулярной формации.
    - Рефлекторная
    Варольев мост обеспечивает
    рефлексы вместе с продолговатым
    мозгом.
    Мозжечок участвует в координации
    двигательных реакций, в регуляции
    вегетативных функций организма
    через ретикулярную формацию.
    При нарушении функций мозжечка
    отмечаются расстройства
    двигательных реакций:
    Атония – понижение мышечного
    тонуса
    Астения – нарушение регуляции
    мышечного тонуса
    Астазия – развитие быстрого
    утомления
    Атаксия – нарушение точности
    движений
    - Проводниковая

    18. Средний мозг

    Крыша мозга – представлена буграми
    четверохолмия (расположены ядра серого
    вещества) и текториальной частью.
    Ножки мозга – состоят из покрышки и
    основания ножек мозга. Между ними залегает
    черная субстанция. В покрышке располагаются
    парные ядра: красное,3-4 пара черепномозговых нервов, и непарное ядро Якубовича.
    Полостью среднего мозга является – Сильвиев
    водопровод
    Рефлекторная
    Ядра верхних бугров четверохолмия
    являются зрительными подкорковыми
    центрами.
    Ядра нижних бугров четверохолмия
    являются слуховыми подкорковыми
    центрами
    Черная субстанция регулирует тонкие
    пластические двигательные реакции
    Красное ядро участвует в контроле
    статических и статокинетических
    рефлексов, перераспределении
    мышечного тонуса.
    Ядра 3-4 пар черепно-мозговых нервов
    участвуют в обеспечении рефлексов
    связанных с движением глаз
    Ядро Якубовича – вегетативное ядро,
    регулирует диаметр зрачка
    Средний мозг управляет разнообразными
    бессознательными стереотипными
    движениями.
    -Проводниковая

    19. Промежуточный мозг

    Это конечный отдел ствола мозга.
    Морфологически делится на отделы:
    -Таламус – зрительные бугры. Представляет
    собой парные яйцевидные скопления серого
    вещества, покрытые слоем белого вещества. В
    таламусе выделяют до 40 ядер
    - Эпиталамус – надбугорная область.
    Содержит верхний придаток мозга – эпифиз, или
    шишковидное тело
    - Метаталамус – забугорная область.
    Представлен медиальными и латеральными
    коленчатыми телами, соединенными с верхними
    и нижними холмиками пластинки крыши. В них
    расположены ядра, являющиеся рефлекторными
    центрами зрения и слуха.
    -Гипоталамус – подбугорная область.
    Включает собственно подбугорную область и ряд
    образований. От него отходит нижний придаток
    мозга – гипофизом.
    Полостью промежуточного мозга является третий желудочек
    «Коллектор чувствительности»
    - К нему сходятся афферентные пути от
    всех рецепторов, исключая
    обонятельные.
    -Объединение всех видов
    чувствительности
    - Сопоставление и оценка поступающей
    информации
    -Эмоциональное поведение.
    Высший подкорковый центр
    вегетативной нервной системы
    - - Обеспечение постоянства внутренний
    среды организма;
    - Центр терморегуляции;
    - Центр регуляции жирового, белкового,
    углеводного и водно-солевого обменов;
    - Центры: жажды, страха, удовольствия и
    неудовольствия;
    -Регуляция смены состояния сна и
    бодрствования

    20. Конечный мозг

    Состоит из двух полушарий – левого и
    правого, и мозолистого тела.
    Под мозолистым телом находится свод –
    два соединительно тканных тяжа, которые в
    срединной части соединяются, а спереди и
    сзади расходятся, образуя столбы и ножки
    свода.
    В каждом полушарии три поверхности:
    Верхнелатеральная – выпуклая
    Медиальная – плоская, обращенная к
    другому полушарию
    Нижняя – неправильной формы
    Полушарие состоит из белого и серого
    вещества. Серое вещество – плащ (кора) –
    пласт толщиной до 4 мм, покрыта бороздами
    (углубления) и извилинами (складки); также
    обонятельный мозг и базальные ядра
    (полосатое тело – хвостатое ядро и
    чечевицеобразное ядро (скорлупа и бледный
    шар), ограда, миндалевидное тело).
    Рефлекторная
    Обеспечивает сложное поведение (условные
    рефлексы) – Высшую нервную
    деятельность (у человека – сознание,
    мышление, речь);
    Является центром всех рецепторных систем:
    затылочная зона – зрительный центр;
    височная зона – слуховой центр, контроль
    речи, пространственный анализ, центр
    памяти;
    теменная зона – пространственная
    ориентация, память связанная с речью и
    обучением, центр соматической
    чувствительности;
    лобная зона – произвольные движения,
    центр логического мышления, координирует
    двигательные механизмы речи

    21. Конечный мозг

    Структурно-функциональная единица
    коры – модуль, состоящий из пирамидных,
    звездчатых и веретеновидных клеток. Модули
    объединяются в колонки нейронов.
    Типичный участки коры состоят из 6 слоев
    клеток.
    Белое вещество – состоит из нервных
    волокон, идущих в разные направления:
    Ассоциативные
    Комиссуральные
    Проекционные
    Полушарие состоит из 5 долей:
    Лобной
    Теменной
    Затылочной
    Височной
    Островковой
    Полости конечного мозга – боковые
    желудочки (1 и 2 желудочки)
    Содержит «висцеральный мозг» лимбическую систему: поясная извилина,
    гиппокамп, миндалевидное тело, свод,
    прозрачная перегородка – участвует в
    поддержании постоянства внутренней среды
    организма, регуляции вегетативной функции
    и формировании эмоций и мотиваций. Она
    обеспечивает вегетативный контроль всех
    вегетативных функций: сердечно-сосудистой,
    дыхательной, пищеварительной, обмена
    веществ и энергии. Обеспечивает
    сохранение памяти.

    22.

    Каждое полушарие состоит из 5 долей:
    лобной
    теменной
    затылочной
    височной
    островковой
    Полостью конечного мозга являются боковые
    желудочки или правые и левые желудочки.
    Они заполнены спинно- мозговой жидкостью.
    В коре имеются разные зоны – это двигательные, чувствительные,
    зрительные и т.д.
    Ассоциативные зоны коры – они осуществляют связь между
    разными зонами коры, объединяют все поступившие в кору
    импульса. При поражении этих зон может возникнуть:
    1)
    агония – неспособность узнавать,
    2)
    афазия – потеря речи,
    3)
    аграфия – невозможность писать.

    23. Физиологические свойства коры

    В коре большого мозга выделяют области или центры, ответственные за
    выполнение двигательных или чувствительных функций.
    Двигательная или моторная область расположена впереди центральной борозды и
    содержит нейроны, отростки которых образуют двигательные проводящие пути,
    контролирующие выполнение движений на противоположной стороне тела.
    В нижней части двигательной зоны коры находится речевой центр Брока. У
    правшей он располагается в левом полушарии, а у левшей – в правом.
    Чувствительная или сенсорная область коры расположена позади центральной
    борозды. Эта область отвечает за оценку различных чувствительных (болевых,
    температурных и т.д.) стимулов.
    Слуховая область коры, где анализируются различные звуковые раздражения,
    расположена в височной доле, книзу от латеральной борозды.
    Зрительная область коры лежит в затылочной доле и отвечает за формирование
    зрительных образов.
    Вкусовая и обонятельная области коры располагаются в переднем отделе височной
    доли.

    24.

    В коре полушарий большого мозга выделяют высшие центры
    осознанного поведения, мышления, морали, воли, интеллекта,
    речи и специальных органов чувств.
    В коре зарождаются все сознательные двигательные импульсы,
    контролирующие работу скелетных мышц.
    Кроме того, кора является конечной областью, где происходит
    восприятие, оценка и обработка всех восходящих
    чувствительных нервных импульсов, включая кожную
    чувствительность (чувства прикосновения, боли, давления,
    температуры, вибрации, плотности, формы и размера
    предметов) и мышечно-суставное чувство.
    Волокна белого вещества связывают различные части головного
    мозга и расположенные в них центры между собой, а также со
    спинным мозгом.

    25. Оболочки мозга, полости головного мозга, ликвор

    Головной и спинной мозг покрыты тремя оболочками:
    твердой, паутинной и мягкой.
    наружная –твердая оболочка мозга
    субдуральное пространство
    средняя-паутинная оболочка мозга
    подпаутинное
    (субарахноидальное)
    пространство
    внутренняя – мягкая оболочка мозга
    Оно заполнено спинномозговой жидкостью – это секрет
    клеток, расположенных в области сосудистых сплетений
    желудочков головного мозга.
    1 и 2 желудочки – полушария конечного мозга
    3 желудочек – промежуточный мозг
    Сильвиев водопровод – средний мозг
    4 желудочек – продолговатый мозг
    Спинномозговая жидкость содержит небольшое количество
    белка и глюкозы, а также лимфоцитов.
    Жидкость защищает ткань мозга

    26. Условные и безусловные рефлексы

    Приспособление организмов к внешнему миру осуществляется при помощи рефлексов. Рефлексы
    делятся на безусловные и условные.
    Безусловные рефлексы – это постоянные, врожденные, возникающие в ответ на раздражение,
    имеющие непосредственное биологическое значение. Безусловные рефлексы простые – отделение
    слюны на раздражение рецепторов полости рта и сложные – пищевой, оборонительный, половой,
    родительский – инстинкты.
    Условные рефлексы – вырабатываются в течение индивидуальной жизни благодаря образованию
    временных нервных связей в высших отделах ЦНС.
    Особенности условных рефлексов:
    1) условные рефлексы отсутствуют у новорожденных,
    2) условные рефлексы могут вырабатываться и осуществляться только высшим отделом ЦНС,
    который способен к замыканию временных связей, образованных условными рефлексами. В этом
    его основная функция.
    3) условные рефлексы временные, они могут исчезнуть, если условный раздражитель не
    подкрепляется безусловным.
    Биологическое значение условного рефлексаусловный рефлекс более тонко, более совершенно приспосабливают организм в борьбе за
    существование. Биологическим важным свойством – временность.
    Особенности ВНД –
    слово и речь составляют вторую сигнальную систему действительности, свойственную только
    человеку. Слово – это понятие для человека. При помощи слов образуются общие понятия,
    возникает словесное человеческое мышление.

    27. Используемая литература

    1.
    1. Е.А. Воробьева «Анатомия и физиология».
    2.
    2. Э. Пирс «Анатомия и физиология человека».
    3.
    3. М.Ф. Румянцева «Руководство к практическим занятиям по
    физиологии с основами анатомии человека».
    4.
    4. А.И. Борисевич «Словарь терминов и понятий по анатомии человека».
    5.
    5. В.Я. Липченко, Р.П. Самусев «Атлас анатомии человека».

    ВВЕДЕНИЕ.

    ПАТОФИЗИОЛОГИЯ НЕРВНОЙ СИСТЕМЫ

    ФУНКЦИОНАЛЬНАЯ АНАТОМИЯ И

    ВВЕДЕНИЕ.

    Лекция №1

    Нервная система в онтогенезе развивается из эктодермального листка - медуллярной трубки. Оболочки, покры­вающие головной и спинной мозг, формируются из мезодер­мы, окружающей мозговую трубку.

    Нервную систему условно разделяют на центральную и пе­риферическую.

    К центральной нервной системе

    относятся го­ловной и спинной мозг, к периферической - - нервы, сплете­ния, нервные узлы, расположенные вне головного и спинною мозга и связывающие их с органами и тканями организма.

    Головной мозг . Располагается в черепной коробке, покрыт мозговыми оболочками, между которыми цирку­лирует спинномозговая жидкость (ликвор). Через затылочное отверстие головной мозг связан со спинным мозгом.

    Головной мозг состоит из двух полушарий, мозжечка, ствола, в глубине полушарий находятся подкорковые ядра .

    Полушария г о л о в н о г о мозг а делят на доли: лобные, теменные, височные, затылочные . Они отделены друг от друга бороздами . Каждая из этих долей более мелкими бороздами подразделяется на извилины . Полушария соедине­ны между собой мозолистым телом - большой белой спай­кой, которая состоит из волокон, связывающих одноименные доли мозга. Полушария покрыты корой, представленной нервными клетками (нейронами). Наиболее глубокие бороз­ды коры мозга - центральная (роландова), отделяющая те­менную долю мозга от лобной, и боковая (сильвиева), которая образуется у места соприкосновения височной доли мозга с лобной и теменной. Впереди роландовой борозды располо­жена прецентральная борозда, ограничивающая переднюю центральную извилину.

    Горизонтальными бороздами лобная доля делится на верхнюю, среднюю и нижнюю извилины.

    Теменная доля делится постцентральной и и внутритеменной бороздами на заднюю теменную извилину и на верхнюю, и нижнюю теменные дольки.

    На внутренней поверхности полушарий теменно-затылочная борозда отделяет теменную долю отзатылочной , а шпорная борозда разделяет затылочную долю на две извилины - предклинье и клин

    Височная доля бороздами делится на три извилины. На внутренней поверхности височной доли располагается изви­лина, называемая гиппокампом.

    Под корой больших полушарий находится белое вещество, представляющее собой аксоны и дендриты нервных клеток и нейроглию. Аксоны и дендриты составляют проводящие пути, которые связывают между собой различные отделы коры, кору и другие отделы головного и спинного мозга. Нейроглия - мелкие клетки нервной системы, которые обеспечи­вают питательные и защитные функции мозга.


    В глубине белого вещества вокруг желудочков мозга рас­полагаются подкорковые ядра. Самые крупные из них - зрительные бугры, хвостатые ядра и чечевицеобразные ядра. Последние состоят из скорлупы и бледного шара.

    Центральную часть полушарий занимают два боковых желудочка и один третий желудочек, соединенные между собой отверстием Монро.

    Мозжечок отделен от полушарий головного мозга твердой мозговой оболочкой - мозжечковым наметом и на­ходится под затылочными долями мозга над четвертым же­лудочком. В нем различают среднюю часть - червь мозжечка и боковые отделы - полушария. В толще белого вещества полушарий мозжечка имеется зубчатое серое образование - зубчатое ядро и более мелкие ядра - пробковидное и шаро­видное. В средней части мозжечка располагается ядро крыши. Мозжечок имеет три пары ножек, соединяющих его со всеми отделами ствола мозга.

    В стволе мозга выделяют продолговатый мозг, мост, ножки мозга (средний мозг), а также основание и покрышку. В основании расположены главные проводящие пути к спинно­му мозгу, в центральной части покрышки - преимуществен­но ядра черепных нервов, экстрапирамидные ядра (красное ядро, черная субстанция), ретикулярная формация.

    На основании мозга из мозгового вещества выходят 12 пар черепных нервов . По функции они подразделяются на чувствительные, двигательные и смешанные. В дистальном направлении черепные нервы связаны с различными функ­циональными структурами (глаза, уши, мышцы лица, языка, железы и т. д.). В проксимальном направлении они связаны с ядрами ствола мозга, подкорковыми ядрами, корой мозга, мозжечком.

    I пара - обонятельные нервы (п. olfactorii). Рецепторы расположены в слизистой оболочке верхних носо­вых раковин, верхнего отдела перегородки носа и соединены с чувствительными нейронами обонятельной луковицы, нахо­дящейся на основании лобных долей в передней черепной ям­ке. По обонятельному тракту сигналы поступают в ядра обо­нятельного треугольника, переднего продырявленного вещест­ва, прозрачной перегородки (первичные обонятельные центры) и далее к внутренним отделам височной доли (гиппокамп), где расположены корковые центры обоняния.

    II пара - зрительные нервы (п. opticus). Ре-
    цепторами являются клетки сетчатки глаза (палочки, колбоч-
    ки, биполярные, ганглиозные клетки), от ганглиозного слоя
    которых начинаются сами нервы. Проходя на основании
    лобных долей перед турецким седлом, зрительные нервы час-
    тично перекрещиваются, образуя хиазму (chiasma opticum), и
    направляются в составе зрительных трактов к наружным
    коленчатым телам и ядрам верхних бугров четверохолмия
    (подкорковые зрительные центры). От подкорковых ядер
    сигналы поступают по волокнам зрительной лучистости к
    затылочным долям (клин и язычная извилина).

    III пара - глазодвигательные нервы (п. oeulomotorius). Содержат двигательные и парасимпатиче­ские волокна, иннервируют мышцы, поднимающие верхние веки, верхние прямые мышцы глазного яблока, внутренние и нижние прямые, нижние косые, реснитчатые мышцы, мышцы, суживающие зрачок. Ядра расположены в ножках мозга, сиг­налы от коры к ядрам поступают по корковоядерным путям.

    IVпара - блоковые нерв ы (п. trochlearis). Ин-нервирует верхние косые мышцы глаз. Ядра нервов располо­жен также в ножках мозга, с корой они связаны корково-ядерными волокнами.

    Y пара - тройничные нервы (п. trigeminus). Являются смешанными нервами.

    Первые чувствительные нейроны расположены в тройничном (гассеровом) узле, лока­лизованном в области средней черепной ямки. От этого узла отходят три крупные ветви: глазной, верхнечелюстной и ниж­нечелюстной нервы, которые выходят из полости черепа и иннервируют лобно-теменную часть волосистого покрова головы, кожу лица, глазные яблоки, слизистые оболочки по­лостей носа, рта, передние две трети языка, зубы, твердую мозговую оболочку. Центральные отростки клеток гассерова узла погружаются в глубину ствола мозга и соединяются со вторыми чувствительными нейронами, образующими цепоч­ку ядер (спинномозговые, мостовые и среднемозговые ядра тройничного нерва), тянущуюся от спинного до среднего мозга. Сигналы от стволовых ядер через таламус (третий нейрон) поступают к постцентральной извилине (четвертый нейрон), противоположной месту расположения рецепторов.

    Двигательные волокна тройничного нерва регулируют работу жевательных мышц. Корковые двигательные цент­ры располагаются в нижнезадних отделах лобных долей и кортикоядерными путями связаны с двигательным ядром тройничного нерва в мосту. От моста двигательные аксоны к мышцам идут в составе третьей ветви (нижнечелюстной нерв).

    VI пара - отводящие нервы (п. abducens). Иннервируют отводящие мышцы глаза. Двигательные ядра расположены в мосту, с корой связаны кортикоядерными путями.

    VII пара - лицевые нервы (п.facialis). Иннервируют мимическую мускулатуру лица. Двигательные ядра расположены в мосту, с корковыми двигательными центрами связаны через корковоядерные пути. На выходе из моста к лицевому нерву присоединяется промежуточный нерв, осуществляющий вкусовую иннервацию передних двух третей языка, парасимпатическую иннервацию подчелюстных и подъязычных слюнных желез, слезных желез.

    VIII пара - улитково -слуховые нервы(п. vestibulocochlearis). Обеспечивают функцию слуха и равновесия. Первые нейроны располагаются в одноименных узлах, вторые - в ряде ядер продолговатого мозга и моста, имею-
    щих очень обширные двусторонние связи со структурами экстрапирамидной системы, мозжечка, спинного мозга, коры (височная доля).

    IX пара - я з ы к о г л о т о ч н ый нерв
    (п. glossopharyngeus). Функционируют в теснейшей связи с X парой - блуждающим нервом (п. vagus).

    Эти нервы имеют рад общих ядер в продолговатом мозге, выполняющих чувствительную, двигательную и секреторную функции. Иннервируют мягкое небо, глотку, мускулатуру верхнего отдела пищевода, околоушную слюнную железу, заднюю треть языка. Парасимпатические нервы X пары осуществляют парасимпатическую иннервацию всех внутренних органов
    до уровня таза. С корой ядра имеют двусторонние чувствительные и моторные связи.

    XI пара - добавочные нервы (п. accessorius). Это двигательные нервы, регулирующие грудино-ключичнососцевидные мышцы и верхние отделы трапециевидных
    мышц. Связь с корой двусторонняя, ядра располагаются в продолговатом мозге.

    XII пара - под ь я зычные нерв ы(п. hypoglossus). Иннервируют мышцы языка. Каждое из ядер, расположенное в продолговатом мозге, корковоядерным путем связано с противоположной стороной коры мозга.

    Масса головного мозга взрослого человека в среднем со­ставляет 1300-1500 г.

    Спинной мозг . Спинной мозг расположен в спинномозго­вом канале, образованном телами и дужками позвонков. Как и головной мозг, он покрыт тремя оболочками. По коли­честву отходящих от спинного мозга корешков он может | быть разделен на 32 сегмента: 8 шейных, 12 грудных, 5 пояс­ничных, 5 крестцовых и 1-2 копчиковых. Корешки первого сегмента выходят из спинномозгового канала между черепом и первым шейным позвонком. У 4-месячпого плода каждый сегмент спинного мозга расположен строго в соответствии с одноименным позвонком. По мере развития плода, а затем младенца позвоночник становится длиннее спинного мозга, тем самым взаиморасположение спинальных сегментов и по­звонков меняется. У новорожденного спинной мозг доходит до нижнего края 3-го поясничного позвонка, а у взрослого человека нижний конец спинного мозга оказывается на уров­не верхнего края 2-го поясничного позвонка. Но, так как ко­решки по-прежнему выходят через соответствующие межпо­звонковые отверстия, они, удлинившись, образуют в нижнем отделе спинномозгового канала так называемый конский хвост (рис. 6).

    На поперечном разрезе спинного мозга в центре его видно серое вещество, имеющее форму буквы Н, или летящей бабочки. Парные передние выступы называются передними ро­гами, а более узкие задние выступы - задними рогами. Между передними и задними рогами выделяются небольшие боковые рога. В центре серого вещества находится центральный канал спинного мозга. Срединной щелью (спереди) и срединной бо­роздой (сзади) спинной мозг разделен на левую и правую по­ловины, соединенные между собой белой и серой спайками. Серое вещество окружено нервными волокнами - проводни­ками, образующими белое вещество. В нем различают перед­ние, боковые и задние столбы. Передние столбы расположены между передними рогами, задние - между задними, боковые - между передними и задними рогами каждой стороны (рис. 7, см. цветную вклейку).