Главная · Изжога и отрыжка · Что происходит с информацией в головном мозге. Что происходит в мозге влюбленных. Когда слепо доверяешь лечащему врачу

Что происходит с информацией в головном мозге. Что происходит в мозге влюбленных. Когда слепо доверяешь лечащему врачу

Смирнова Ольга Леонидовна

Невропатолог, образование: Первый Московский государственный медицинский университет имени И.М. Сеченова. Стаж работы 20 лет.

Написано статей

Какая часть мозга отвечает за память и что влияет на этот процесс, важно знать всем. Каждый день мы получаем массу информации, часть из которой запоминается. Почему одни воспоминания остаются в памяти, а другие нет, какой механизм действия памяти?

Памятью называют способность к запоминанию, накоплению и извлечению полученных сведений. Сколько может запомнить человек, зависит от его внимания.

Память формируется несколькими участками головного мозга: корой мозга, мозжечком, лимбической системой. Но в большей степени на нее влияют височные доли мозга. Процесс запоминания происходит в гиппокампе. Если повреждена височная область с одной стороны, то память становится хуже, но при нарушениях в обеих височных долях процесс запоминания полностью прекращается.

Функционирование памяти зависит от состояния нейронов и нейромедиаторов, обеспечивающих связь между нервными клетками. Они концентрируются в области гиппокампа. К нейромедиаторам относят и ацетилхолин. Если этих веществ не хватает, то память значительно ухудшается.

Уровень ацетилхолина зависит от количества энергии, производимой в процессе окисления жиров и глюкозы. Нейромедиаторы концентрируются в органе в меньших количествах, если человек переживает стресс или страдает от депрессивных состояний.

Механизм запоминания

Мозг человека работает, как компьютер. Чтобы сохранить текущую информацию он использует оперативную память, а для длительного хранения не обойтись без жесткого диска. В зависимости от того насколько долго часть мозга отвечающая за память хранит информацию, выделяют:

  • непосредственную память;
  • кратковременную;
  • долговременную.

Интересно, что в зависимости от вида, память хранится в разных участках мозга. Кратковременные воспоминания концентрируются в , а долговременные – в гиппокампе.

Способность к запоминанию считается важной частью интеллекта. Поэтому от ее развития зависит и объем информации, которой владеет человек.

Работа памяти состоит из запоминания, сохранения и воспроизведения. Когда люди получают информацию, она поступает от одной нервной клетки к другой. Эти процессы происходят в области коры головного мозга. Данные нервные импульсы приводят к созданию нейронных связей. По этим путям в дальнейшем человек извлекает, то есть, вспоминает полученные сведения.

На то, как успешно и надолго запомнится информация, влияет то, с каким вниманием человек относится к объекту. Если это ему интересно, то он сильнее концентрируется на интересующем его предмете и процесс запоминания происходит на высоком уровне.

Вниманием и концентрацией называют такую функцию психики, которая позволяет сфокусировать все мысли на определенном объекте.

Не менее важным, чем запоминание, является забывание информации. Благодаря этому нервная система разгружается и освобождается место для новых сведений, начинают образовываться новые нейронные связи.

Какое полушарие отвечает за память, точно сказать нельзя, так как оба эти участка играют важную роль в процессе обработки и запоминания информации.

Объем памяти

Согласно недавним результатам исследований, ученым удалось выяснить, что объем памяти человеческого мозга составляет около миллиона гигабайт.

Если способности к запоминанию хорошо развиты, то творческим личностям это может доставлять много проблем.

В составе головного мозга около сотни миллиардов нервных клеток, между каждой из которых существуют тысячи нейронных связей. Информация передается в синапсе. Так называют точку, в которой контактируют нейроны. Во время взаимодействия двух нейронов, происходит формирование прочных синапсов. На ветвящихся отростках нервных клеток есть дендриты, которые увеличиваются в размерах во время получения новой информации. Эти отростки позволяют контактировать с другими клетками, во время увеличения он может воспринимать большее количество сигналов, поступающих в мозг.

Некоторые ученые сравнивают дендриты с битами компьютерного кода, но вместо цифр применяют описательные характеристики их размеров.

Но раньше не знали и том, каких размеров способны достигать эти отростки. Ограничивались только определением маленьких, средних и больших дендритов.

Ученые из Калифорнии столкнулись с интересной особенностью, которая заставила их пересмотреть известную информацию о размерах отростков. Это произошло во время изучения гиппокампа крысы. Это отдел мозга отвечающий за память по отношению к зрительным образам.

Исследователи заметили, что один, из отростков нервной клетки, отвечающий за передачу сигналов способен взаимодействовать с двумя дендритами, принимающими информацию.

Ученые выдвинули предположение о способности дендритов принимать одинаковую информацию, если она происходит от одного аксона. Поэтому размер и прочность их должны быть идентичными.

Было произведено измерение объектов, отвечающих за формирование синаптических связей. В ходе исследования удалось выяснить, что разница между дендритами, получающими информацию от одного аксона составляет около восьми процентов. Всего удалось выявить 26 возможных размеров отростков.

Основываясь на результатах исследований, была выдвинута гипотеза о способности человеческой памяти сохранять квадриллион байт информации. Чтобы сравнить мозг с компьютером достаточно знать, что размер средней оперативной памяти устройства не больше восьми гигабайт. Тогда как мозг может сохранить миллион гигабайт.

Каждый человек знает, что полностью использовать весь объем памяти нельзя. Многие хоть раз забывали о днях рождениях друзей и родственников, испытывали трудности с изучением стихотворений или запоминанием параграфов по истории. Это явление считается нормальным. Но, если человек помнит абсолютно все, то это считается феноменом. Миру известны лишь единицы людей, которые помнили большую часть полученных сведений.

Невероятные факты

Мозг - один из самых удивительных органов в человеческом теле. Он контролирует нашу центральную нервную систему, помогает нам ходить, разговаривать, дышать и думать. К тому же это невероятно сложная система, состоящая из 100 миллиардов нейронов .

В мозге происходит так много всего, что сразу несколько областей медицины и науки посвящены его изучению и лечению, включая неврологию, психологию и психиатрию.

Хотя люди изучали мозг с еще древних времен, многие аспекты мозга остаются до сих пор загадкой . Неудивительно, что мы склонны упрощать информацию о том, как работает мозг, чтобы лучше его понять. Это привело к появлению множества заблуждений о нашем мозге.

1. Цвет мозга: наш мозг серый

Вы когда-нибудь задумывались о цвете собственного мозга? Скорее всего - нет, если вы не работаете в медицинской сфере. Если у вас была возможность видеть мозг, сохраненный в банке, то он, как правило, имел белый или серый с желтоватым оттенок. Однако живой пульсирующий мозг в нашем черепе не такой тусклый на вид. В нем присутствует белый, черный и красный компонент .

Хотя большая часть мозга серая, так называемое серое вещество , которое представляет собой разные типы клеток, он содержит и белое вещество , содержащее нервные волокна, присоединенные к серому веществу.

В мозге также есть черная субстанция (Substantia nigra ), которая имеет черный цвет благодаря нейромеланину – особому виду пигмента, который окрашивает кожу и волосы и является частью базальных ганглиев.

И наконец, красный цвет появляется благодаря множеству кровеносных сосудов в мозге. Так почему же мозг имеет такой тусклый цвет? Это все благодаря формальдегиду, который сохраняет мозг в банке.

2. Эффект Моцарта: прослушивание классической музыки делает нас умнее

Многие родители покупают DVD, видео и другую продукцию классической музыки, искусства и поэзии для малышей, считая, что это полезно для умственного развития ребенка . Есть даже сборники классической музыки, разработанные для еще неродившихся детей в животе в матери. Эта идея стала настолько популярной, что ее назвали "эффектом Моцарта".

Откуда же появился этот миф? В 1950-х годах врач-отоларинголог Альберт Томатис (Albert Tomatis) заявил, что прослушивание музыки Моцарта помогло людям с речевыми и слуховыми нарушениями .

В 1960-х годах 36 студентов участвовали в исследовании Калифорнийского университета, прослушивая по 10 минут из сонаты Моцарта перед тем, как пройти тест IQ. Согласно психологу д-ру Гордону Шоу (Gordon Shaw), баллы студентов по IQ увеличились в среднем на 8 баллов и так родился "эффект Моцарта ".

Однако, как оказалось, исследователь, проводивший этот эксперимент, никогда не утверждал, что музыка может сделать кого-то умнее, а лишь показал, что она улучшает выполнение некоторых пространственно-временных задач. Другим исследователям не удалось повторить результаты, и сейчас нет данных о том, что прослушивание музыки Моцарта или другой классической музыки может сделать вас умнее.

Единственное, что известно, так этот то, что изучение игры на музыкальных инструментах улучшает концентрацию, уверенность в себе и координацию .

3. Извилины мозга: у нас появляются новые складки в мозге, когда мы учим что-то новое

Когда мы представляем себе, как выглядит мозг, мы рисуем себе картину закругленной серой массы из двух долей с множеством "морщин" или борозд.

По мере нашего развития, мозг стал больше, чтобы вместить все высшие функции, которые отличают нас от других животных. Но, чтобы мозг мог умещаться в череп, он должен находится в определенной пропорции к остальной части тела, и мозг начал морщиться .

Если бы можно было разгладить все извилины и борозды, мозг стал бы размером с подушку. Существуют различные виды извилин и борозд со своим названием, и они отличаются у разных людей.

Однако такой "морщинистый" вид появляется не сразу. У плода на раннем этапе развития очень гладкий небольшой мозг. По мере роста плода, растут нейроны, которые передвигаются к различным областям мозга, создавая впадины и борозды. Через 40 недель его мозг становится таким же складчатым (но меньше по размеру), как и мозг взрослого человека.

Таким образом новые складки не появляются по мере, того как мы учимся , и все складки, с которыми мы рождаемся остаются на всю жизнь, если конечно мы здоровы.

Во время обучения наш мозг действительно меняется, но не в плане извилин и борозд. Изучая мозг животных, ученые выяснили, что синапсы - связи между нейронами и кровяные клетки, которые поддерживают нейроны, растут и их количество увеличивается. Это явление называется нейропластичностью.

4. Мозг может выполнять несколько функций одновременно

5. 25-й кадр: Мы можем учиться, влияя на подсознание

25-й кадр – это сообщение, заключенное в картинку или звук, которое было сделано с целью внедрить его в подсознание и повлиять на поведение человека .

Первым человеком, кто ввел этот термин, стал Джеймс Вайкери (James Vicary), который заявил, что внедрил сообщения во время показа фильма в Нью-Джерси. Сообщение вспыхивало на экране на 1/3000 секунды, внушая зрителям "выпить Кока-колу" или "Съесть попкорн".

Согласно Вайкери, продажи колы в кинотеатре выросли на 18 процентов, а попкорна на 57 процентов , что подтверждало эффективность 25-го кадра. Результаты этого эксперимента стали использовать в телевизионной рекламе, чтобы убедить покупателей приобретать определенные продукты.

Но на самом ли деле 25-й кадр действовал? Как оказалось, Вайкери сфабриковал результаты исследования . Последующие исследования, как например, сообщение "Звони прямо сейчас", которое показывали на канадском телевидении, не оказало никакого действия на телезрителей. Однако многие люди до сих пор считают, что музыка и реклама содержит скрытые посылы.

И хотя прослушивание специальных записей для самовнушения, возможно, не повредит, вряд ли это поможет вам бросить курить.

6. Размер мозга: у человека самый большой мозг

Многие животные используют свой мозг, чтобы выполнять те же действия, что и люди, например, чтобы найти решение задачи, используя инструменты, и демонстрируя сопереживание. И хотя ученые не пришли к согласию относительно того, что делает человека умным, большинство все же согласны, что человек является самым умным существом на Земле . Возможно по этой причине, многие приходят к выводу, что у нас самый крупный мозг среди животных.

Но это не совсем так. Средний вес человеческого мозга составляет 1361 грамм . У дельфинов – очень умных животных, мозг имеет в среднем такой же вес. Тогда как у кашалота, который считается не таким умным, как дельфин, мозг весит около 7 800 грамм.

С другой стороны мозг гончих собак весит около 72 грамм, а мозг орангутана 370 грамм. И собаки и орангутаны считаются умными животными, но у них маленький мозг . А у птиц, как например, голубя, вес мозга составляет всего 1 грамм.

При этом, вес тела дельфина составляет в среднем 158, 8 кг, а кашалота 13 тонн. Обычно чем больше животное, тем крупнее его череп и соответственно мозг. Гончие относительно небольшие собаки, весом до 11,3 кг, и потому их мозг меньше. Другими словами важен не размер мозга, а соотношение веса мозга по отношению к общему весу тела . У людей такое соотношение составляет 1 к 50, и на мозг приходится больше веса, чем у других животных. Для большинства млекопитающих, соотношение составляет 1 к 220.

Интеллект также связан с разными составляющими мозга. У млекопитающих более развита кора больших полушарий, отвечающая за высшие функции , такие как память, общение и мышление, в отличие от птиц, рыб и рептилий. У человека самая большая мозговая кора по отношению к размеру мозга.

7. Мозг остается активным после обезглавливания

Когда-то, обезглавливание считалось одним из самых распространенных методов экзекуции, отчасти благодаря гильотине. Хотя многие страны отказались от этого метода казни, его все еще применяют среди террористов и других групп. При этом гильотина была выбрана в качестве быстрой и относительно гуманной смерти. Но насколько быстро она происходит?

Идея того, что после отсечения головы, вы какое-то время находитесь в сознании , появилась во времена Французской революции, когда была создана гильотина. В 1793 году француженка Шарлотта Корде была казнена при помощи гильотины за убийство радикального журналиста, политика и революционера Жана Поля Марата .

После отсечения головы женщины, один из помощников поднял ее голову и ударил по щеке. Согласно свидетелям, глаза Корде посмотрели на помощника, и на ее лице было выражение негодования. После этого инцидента, людей, которых обезглавливали, просили после казни моргнуть, и некоторые свидетели утверждали, что глаза продолжали моргать еще в течение 30 секунд .

Другим примером стал случай, описанный французским врачом д-ром Габриелем Бюри (Gabriel Beaurieux), который наблюдал за обезглавливанием мужчины по имени Лонгиль. Врач утверждал, что видел, как веки и губы ритмически сжимались в течение 5-6 секунд, а когда он назвал его по имени, веки жертвы медленно приподнялись, а его зрачки сфокусировались.

Все эти случаи могут заставить нас поверить в то, что после обезглавливания человек может оставаться в сознании даже на несколько секунд. Однако большинство современных врачей считают, что такая реакция является не чем иным, как рефлекторными подергиваниями мышц .

Мозг, отрезанный от сердца, сразу впадает в кому и начинает умирать, а сознание теряется в течение 2-3 секунд , из-за быстрого уменьшения внутричерепного кровотока. Что же касается безболезненности гильотины, то разделение головного и спинного мозга после рассечения окружающих тканей вызывает резкую и очень сильную боль. По этой причине, обезглавливание во многих странах не применяется.

8. Травма мозга необратима

Наш мозг очень хрупкий орган, который восприимчив к множеству травм . Повреждение мозга может вызвать что угодно, начиная от инфекций до автомобильной катастрофы, и часто ведет к смерти клеток мозга. У многих людей травма мозга ассоциируется с образами людей в вегетативном состоянии или с постоянными физическими или умственными нарушениями.

Но это не всегда так. Существует разные виды травм мозга, и то, как она повлияет на человека, зависит от места и тяжести повреждения . При легкой травме мозга, как например сотрясении , мозг отскакивает внутри черепа, что может привести к кровотечению и разрывам, но мозг при этом может хорошо восстановиться. При тяжелой травме мозга, иногда требуется операция, чтобы убрать скопление крови или уменьшить давление. В этом случае последствия, как правило, необратимые.

Однако некоторые люди с травмой мозга, могут частично восстановиться после повреждения . Если нейроны были повреждены или потеряны, они не могут снова вырасти, но синапсы - связи между ними, могут.

Часто мозг создает новые связи, и некоторые области мозга берут на себя новые функции и учатся заново делать какие-то вещи. Так пациенты, пережившие инсульт, восстанавливают речь или моторные навыки.

9. Действие наркотиков: при употреблении наркотиков в мозге образуются дыры

То, как наркотики влияют на мозг, до сих пор является предметом споров. Некоторые считают, что только при злоупотреблении наркотических веществ могут появиться долговременные последствия, другие – что эти последствия появляются сразу после первого употребления.

В одном исследовании выяснили, что потребление марихуаны приводит только к небольшой потере памяти , а в другом, что долгое и частое использование может сморщить части мозга. Некоторые люди даже считают, что использование таких наркотиков, как кокаин и экстези может привести к появлению дыр в мозге.

На самом деле, единственное, что может продырявить ваш мозг – это физическая травма .

Тем не менее, наркотические вещества действительно вызывают кратковременные и долговременные последствия в мозге. Они могут уменьшить воздействие нейромедиаторов – передатчиков нервных импульсов, таких как допамин. Это объясняет, почему наркоманам нужно потреблять все больше наркотиков , чтобы добиться тех же ощущений. Также это может привести к проблемам в функции нейронов.

В 2008 году исследование показало, что длительное потребление некоторых наркотиков может вызвать рост определенных структур мозга. По этой причине наркоманам бывает так сложно изменить свое поведение.

10. Алкоголь убивает клетки мозга

Один лишь взгляд на пьяного человека может убедить нас в том, что алкоголь напрямую воздействует на мозг. Среди последствия неумеренного потребления алкоголя наблюдается спутанность речи, нарушенная моторики и суждения . Также человек часто страдает от головной боли, тошноты и неприятного побочного эффекта – похмелья. Но может ли стаканчик другой убить клетки мозга? А что насчет запоев или постоянного употребления алкоголя?

На самом деле, даже у алкоголиков, потребление алкоголя не приводят к смерти клеток мозга . Однако, он действительно повреждает окончания нейронов, называемые дендридами. Это приводит к тому, что возникают проблемы при передаче сообщений между нейронами, хотя такое повреждение обратимо.

У алкоголиков может развиться неврологическое нарушение называемое синдром Гайе-Вернике , при котором происходит потеря нейронов в определенных частях мозга. Также этот синдром вызывает проблемы с памятью, спутанность сознания, паралич глаз, отсутствие мышечной координации и амнезию. Кроме того, это может привести к смерти.

Само нарушение вызвано не алкоголем, а недостатком тиамина или витамина В1. Дело в том, что алкоголики часто плохо питаются, а злоупотребление алкоголем мешает всасыванию тиамина.

И хотя алкоголь не убивает клетки мозга, в больших количествах он все равно повреждает мозг .

Бонус: Сколько процентов мозга использует человек?

Вы наверняка часто слышали о том, что мы используем только 10 процентов нашего мозга. В пример даже приводят цитаты известных людей, таких как Альберт Эйнштейн и Маргарет Мид.

Источником этого мифа стал американский психолог Уильям Джеймс , которые как-то сказал, что "средний человек редко достигает только малой доли своего потенциала". Каким-то образом эту фразу превратили в "10 процентов нашего мозга".

С первого взгляда это кажется нелогичным. Зачем нам такой большой мозг, если мы его полностью не используем? Появились даже книги, которые обещали научить людей использовать остальные 90 процентов их мозга .

Но, как можно было уже догадаться, такое мнение ошибочно. Кроме 100 миллиардов нейронов, мозг содержит разные типы клеток, которые мы постоянно используем. Человек может стать инвалидом, даже при повреждении небольшой области мозга, в зависимости от того, где она находится, и потому мы не можем существовать только на 10 процентах мозга.

Сканирование мозга показало, что, что бы мы не делали, наш мозг всегда остается активным . Одни области более активны, чем другие, но нет части, которая бы совсем не работала.

Так, например, если вы сидите за столом и едите бутерброд, вы не используете свои ноги. Вы сконцентрированы на том, чтобы поднести бутерброд ко рту, прожевать и проглотить его. Но это не значит, что ваши ноги не работают. В них сохраняется активность, как например кровоток, даже если вы ими не двигаете.

Другими словами у нас нет скрытого дополнительного потенциала , который можно было использовать. Но ученые до сих пор продолжают изучать мозг.

Они учились на одном курсе. Долгое время Ира не обращала на него никакого внимания. До того самого семинара. Олег вызвался прочитать доклад про теорию происхождения речи у первобытных людей. Сама тема уже навевала скуку. Пробудил ее от грез громкий смех соучеников. Прислушавшись, она внезапно увлеклась - Олег говорил складно, интересно, много шутил и держался перед целой сотней однокурсников очень уверенно. Взгляд Иры невольно оценивающе скользнул по его фигуре - широкие плечи, развитая мускулатура. Он повернулся, чтобы что-то нарисовать на доске, и в этот момент Ира стыдливо поймала себя на том, что смотрит на его ягодицы...

К щекам прилила кровь, а руки внезапно вспотели. Ира вспомнила, что совсем недавно читала свежее исследование , где говорилось, что женщин в мужчинах привлекает прежде всего атлетическое телосложение, очевидные признаки физической силы. "Хм, но это не про меня. Мне главное, чтобы был умным, веселым, добрым, нежным и заботливым". И тут Олег повернулся - и посмотрел именно на нее, прямо в глаза, долго, взяв солидную паузу. Вокруг его глаз собрались озорные морщинки, а лицо как будто осветилось теплым светом.

Единственный из всех

"Почему Олег не выходит у меня из головы? - именно этот вопрос мучил Иру уже неделю. - Чем бы я ни занималась, мысли постоянно возвращаются к нему снова и снова. Более того, мне кажется, что он самый лучший среди всех парней! Единственный и неповторимый!"

"Да все просто, - пришла на выручку лучшая подруга Иры отличница Люба. - Сейчас я тебе все объясню.

Ученые полагают, что в основе любви лежат три фактора: отбор предпочитаемого партнера, установление с ним близости и сексуальное влечение. Сейчас у тебя доминирует первый фактор. Наш мозг в ходе эволюции обрел способность выделять одного потенциального партнера из многих. Почему так произошло? Существует множество гипотез, которые это объясняют, - например, про "эффект бабушек".

В какой-то момент (в позднем палеолите или раннем неолите) продолжительность жизни женщин увеличилась, пожилые дамы стали помогать заботиться о потомстве своим дочерям, что позволило последним иметь больше детей. Это в свою очередь закрепило "долгожительство" в человеческой популяции и привело также к росту продолжительности жизни мужчин. Но тут возникла опасная ситуация - старики уже были неспособны эффективно охотиться, а потому не покидали поселений, зато еще вполне могли иметь детей. В итоге из-за "эффекта бабушек" количество фертильных женщин по отношению к числу способных к продолжению рода мужчин уменьшилось (моделирование показывает , что пропорция могла достигать 156 мужчин к 100 женщинам в детородном возрасте). Все это привело к резкому обострению конкуренции за женщин, усугубленной долговременным отсутствием молодых мужчин в селениях.

Закономерным ответом стало чувство ревности - молодые мужья предпочитали вместо охоты сторожить своих жен от посягательств престарелых "ловеласов". Такие общины быстро оставались без ресурсов, хирели и погибали. Выживали только те сообщества, где между мужчинами и женщинами устанавливались крепкие романтические отношения - любовь, взаимное доверие и верность, исключающие измены. Но эти чувства невозможны, если партнер не будет казаться особенным и единственно возможным из всех. Так и у тебя!

А отвечает за такую реакцию нейромедиатор дофамин. Это особое вещество, выделяемое нейронами мозга, главным образом в нашей внутренней "системе вознаграждения" (вентральной области покрышки), где оно вызывает чувство удовольствия и удовлетворения. Но в данном случае важно другое: дофамин также влияет на процессы внимания, заставляя его концентрироваться на одном человеке. Так происходит потому, что данный медиатор воздействует на поясную извилину, главным образом ее заднюю часть. Эта область мозга, в частности, отвечает за способность переводить внимание с одного объекта на другой, видеть выбор, переключаться между разными мыслями. Как показали знаменитые исследования Хелены Фишер и Артура Арона, чем меньше по времени длятся романтические отношения, тем сильнее активность в задней части поясной извилины. Однако постепенно - месяц за месяцем - активность в этой области снижается".

Бабочки в животе

"Эх, тебе бы под все научную базу подвести! Неужели все дело в простой химии? - Ира была возмущена холодным прагматизмом подруги. - Я вот как никогда раньше себя прекрасно чувствую: такой восторг, столько энергии, хотя, с другой стороны, совсем перестала спать по ночам и есть не особо хочется. Да и когда? Я весь день предаюсь мечтам об Олеге, вспоминаю всякие милые мелочи и наши встречи - как мы лазали по питерским крышам ночью или сидели в том уютном кафе возле факультета. Господи, как же хорошо-то было!"

"Всё так, - продолжала Люба. - И здесь тоже "виноват" дофамин. Помимо воздействия на центральные отделы мозга этот нейромедиатор усиливает выработку тестостерона, связанного с усилением сексуального желания. Он также обостряет наши чувства - небо кажется более голубым, а прикосновения - волнующими. Но самое главное - дофамин вызывает общее эмоциональное возбуждение и эйфорию, потому у тебя такие переживания душевного подъема. А помогают ему в этом еще гормон и нейромедиатор норадреналин и другое вещество - фенилэтиламин. Оба этих вещества являются естественными стимуляторами. Другой их важный аспект - они заставляют иначе работать твою память и восприятие. Ты подмечаешь и запоминаешь малейшие детали об объекте своей любви.

Параллельно твой мозг еще и значительно снижает выработку другого нейромедиатора - серотонина. По данным исследований целого ряда нейрофизиологов, его количество за полгода романа падает до такого же уровня, как у больных обсессивно-компульсивным расстройством - синдромом навязчивых состояний. Поэтому ты не можешь больше ни о ком и ни о чем думать, пока Олег твой не будет рядом, а даже если вы и вместе, то насытиться обществом друг друга все равно не получается. Секс дает разрядку лишь на время. А потом все повторяется вновь и вновь.

Кстати, серотонин играет важную роль в структурах мозга, ответственных за оценку и сравнение, поэтому с уменьшением его выработки притупляется и способность объективно судить о человеке. Ты видишь только лучшие стороны возлюбленного, в упор не замечая плохие".

Он больше не звонит

Любу разбудил звонок в три часа ночи. Всхлипывая и запинаясь, Ира рассказала, что Олег уехал на полевую практику и вот уже три дня ей не звонит.

"Успокойся, может там сотовых вышек нет, - рассудительно заключила Люба. - А вообще… Все это обратная сторона мощного выброса дофамина, норадреналина и фенилэтиламина. Ты настолько зациклена на своем любимом, что малейший разлад или невнимание кажутся тебе катастрофой. Эйфория тут же сменяется негативными эмоциями: тревогой, паникой, чувством отчаяния, заброшенности и бесконечного одиночества. А все потому, что ты постоянно балансируешь на краю - и внутреннее возбуждение интерпретируешь положительно только тогда, когда твоя "любовь" рядом, в противном случае те же переживания мгновенно становятся отрицательными. И да, при этом понижается выработка фенилэтиламина, а мозг, снятый со стимуляторов, тут же впадает в депрессивное состояние. Все это называется эмоциональной нестабильностью...

В общем, я понимаю твои чувства, но будь уверена: скорее всего, он просто не может дозвониться".

Расставания - маленькая смерть

"Знаешь, чем больше вот таких ситуаций - когда он пропадает, не звонит или что-то нам мешает, тем все сильнее я влюбляюсь в Олега, - рассказывала очередным вечером Ира. - Вот скажи, Люба, а что твоя наука по этому поводу говорит?"

"Ну, тут все просто... Дело в том, что, как я уже говорила, главную роль в формировании чувства любви играет "система вознаграждения" в нашем мозге. А работает она очень хитро . Как только мы не можем получить желаемого, достижение цели откладывается, продуцирующие дофамин нейроны становятся все более активными, мотивируя нас все больше и больше. Соответственно, после невзгод и преодоленных препятствий усиливается и удовольствие.

Параллельно в другой области мозга, в лобных долях, происходит подсчет рисков - что мы приобретем, а что потеряем в той или иной ситуации. И субъективный проигрыш от потери возлюбленного всегда кажется чересчур высоким, что вновь приводит в действие "систему вознаграждения", заставляя упорно добиваться любви и идти на любой риск. Так что любые трудности в романтических отношениях лишь усиливают чувства!"

Раствориться друг в друге

"Ох, Люба, у нас сейчас так все хорошо! Страсти бурлят так, что ночью и поспать, бывает, не удается. А потом мы вместе лежим и мечтаем, как поедем в совместное путешествие, снимем нам на двоих квартиру, заведем собаку, а потом, может быть, и малыша. И я всегда так переживаю за Олега, все его неудачи и боль чувствую как свои. Хочется все бросить и помочь ему".

"Ну что же, дорогая, вы перешли на стадию близости и максимального сексуального влечения!

Здесь уже центральную роль играют гормоны: как всем известные условно женский гормон эстроген и условно мужской тестостерон, обеспечивающие силу плотского желания, так и два более хитрых - окситоцин и вазопрессин. Оба этих гормона отвечают помимо своих прямых физиологических функций и за формирование чувства привязанности и взаимосвязи. А вырабатываются они главным образом при физической близости, начиная от объятий, поцелуев, заканчивая максимальным выбросом при оргазмической разрядке.

Чем больше пара занимается любовью, тем больше у них вырабатывается гормонов привязанности и сильнее взаимная любовь. Кстати, тут вот два петербургских исследователя и параллельно практика йоги - физиолог Ринад Минвалеев и математик Анатолий Иванов - поставили эксперимент, в котором установили, что у женщин есть два типа профиля тонуса вегетативной нервной системы и кровообращения во время секса. При этом один из них приводит к истощению сил женщины (условно - симпатический профиль), а второй, парасимпатический, наоборот, дает энергию и жизненные силы. При этом если женщина достигает такой реакции в процессе полового акта, то и мужчина вслед за ней также "перестраивает" свой профиль реакции на парасимпатический. И после соития оба партнера не только чувствуют нежность друг к другу, но и полны сил и энергии. А зависит достижение этого профиля от продолжительности полового акта - чем дольше, тем лучше. Проблема с этой работой только в том - впрочем, серьезная проблема, - что она не была опубликована в рецензируемом научном журнале и не была повторена какой-либо другой группой ученых".

Любовь - навсегда?

"Эх, а мне бы так хотелось, чтобы любили друг друга до конца жизни", - мечтательно проговорила Ира.

"Ну, это почти возможно!

Смотри, американские ученые показали, что чем дольше был процесс ухаживаний, тем сильнее будет привязанность друг к другу в отношениях, а значит, и продлятся они дольше. Однако такая страстная любовь не может длиться больше двух-трех лет по одной простой причине - организм не может поддерживать столь высокий уровень выработки дофамина, норадреналина и фенилэтиламина на протяжении длительного времени. Вы волей-неволей взгляните друг на друга трезвыми глазами, поймете взаимные недостатки. И вот тут на первый план выйдет не страсть, а привязанность.

Здесь также важны будут гормоны окситоцин и вазопрессин, но одновременно и совсем нематериальные вещи. Так, психологи показали, что чем больше мы идеализируем того, кого любим, тем прочнее связи на этапе, когда привязанности важнее страсти. В этом случае мы легче прощаем обнаруженные недостатки, так как образ в нашей голове сильнее.

Более того, та же Хелена Фишер и Артур Арон обнаружили пары, прожившие вместе в среднем около 21 года и утверждавшие, что все еще сохраняют романтичный настрой. Исследование их мозга показало, что, как и у влюбленных юных пар, у них сохраняется высокая активность в "системе вознаграждения" при мыслях о супруге и даже активизируется задняя часть поясной извилины! Иными словами, они сохранили, как это не удивительно, новизну и концентрацию внимания на партнере сквозь десятилетия".

Даниил Кузнецов

Согласно результатам исследований, мыслительные процессы осуществляются в префронтальной коре, расположенной в передней части мозга. Здесь локализована наша способность анализировать прошлое и планировать будущее, контролировать свое поведение и решать задачи, ставить цели и осознавать, что мы чувствуем . Логический анализ, планирование и критическое мышление осуществляются в дорсолатеральной зоне ПК. Если же в процесс мышления вовлечены эмоции, активируется интериорно-орбитальная зона, расположенная на уровне глаз и непосредственно связанная с лимбической системой, где формируются наши эмоции и привязанности.

Мысль рождается как электрический импульс в отдельном нейроне или группе нейронов. Затем возбуждение распространяется по аксонам связанных нейронов через синапсы. Направление и локализация нейронного пути зависят от предмета мыслительного процесса и согласуются с принципом межполушарной асимметрии. Так, при вербальном мышлении, когда вы «думаете словами», составляете список дел или готовите речь для презентации, наибольшая активность наблюдается в , где статистически чаще всего располагаются центры языка и речи.

Когда вы представляете предмет размышлений в образах, будь то настоящее воспоминание или плод воображения, активируются нейронные структуры , нашей «встроенной художественной галереи». Здесь, в правом , совершается таинство творческого процесса, здесь рождаются герои наших рассказов и сюжеты для картин.

Нейромедиаторы, внимание и влюбленность

Обдумывая некую проблему, решая задачу, вы стараетесь сосредоточиться. При этом активируются базальные ядра – глубинные структуры центральной части мозга, отвечающие за внимание и концентрацию. Клетки черного вещества базальных ганглиев синтезируют нейромедиатор дофамин, который оказывает тормозящее действие на перцептивные структуры, «приглушая» отвлекающие раздражители извне или от внутренних органов. Дофамин также участвует в системе вознаграждения в мозге, благодаря ему вы чувствуете удовлетворение или радость, найдя удачное решение.

Если вы думаете об объекте привязанности, гипоталамус и гипофиз выделяют окситоцин, который способствует закреплению образа любимого человека и связанных с ним ассоциаций. При этом, согласно законам нейропластичности, соответствующие нейрокарты увеличиваются в размерах, занимая всё большую площадь в коре головного мозга, и активно дифференцируются. На сознательном уровне мы воспринимаем это как детализацию опыта , когда мы способны помнить буквально каждую минуту, проведенную вместе, и ценить мельчайшие нюансы поведения и привычек любимого человека.

Принятие решений и мысленная пробежка

Нейропластические изменения в мозге происходят не от случая к случаю. Этот процесс безостановочный и беспощадный. По словам нейрофизиолога Майкла Мерцениха, нейрокарта, созданная сегодня, завтра уже недействительна. Это означает, что в процессе мышления непрерывно укрепляются существующие нейронные связи, создаются новые, ослабевают и исчезают неиспользуемые. Например, когда вы лихорадочно ищете решение какой-либо проблемы, просчитывая возможные варианты, в вашем мозге в это время бушует настоящая электрическая буря, происходят интенсивные межклеточные и внутриклеточные биохимические изменения, образуются и исчезают сотни новых связей между нейронами. Когда решение принято, и вы выбрали один вариант из многих, «в живых» остаются только те связи, которые отвечают за этот конкретный вариант. И, чем больше вы думаете о принятом решении, тем сильнее становятся новые нейронные пути за счет образования дополнительных аксонов.

В процессе мышления помимо префронтальной коры задействованы также зрительная и двигательная кора мозга. Нейроны этих зон активируются, когда вы представляете различные объекты визуально или самого себя в движении. Для мозга нет разницы, бегаете ли вы по дорожке или только в своем воображении, сканер SPECT всё равно зафиксирует возбуждение в нейронах соответствующих участков двигательной коры.

Мгновенные изменения в нейронах сопровождающие и обеспечивающие мысль.

Буквально фантастическая молекулярная трансформация охватывает весь объем мозга, все каскады нейронных связей. Обнаружить как морфология мысли реализуется на уровне всех этих связей чрезвычайно сложно.

Сравнительно недавно было замечено, что большинство ментальных событий не ограничено какой-либо небольшой областью или ядром в мозге. Наблюдение за мозгом с помощью очень медленного функционального магнито-резонансного сканирования (fMRI снимки мозга с интервалом в секунду) подталкивали к выводу: каждое ментальное событие в мозге имеет индивидуальную локализацию. Однако, как оказалось после более точных исследований большинство событий случаются во всем мозге сразу, во всей многосложной сети мозга в миллисекунды. В настоящее время их не так просто зафиксировать или измерить.

В эти генетические изменения вовлечены тысячи и возможно миллионы различных факторов, одновременно внося изменения в многочисленные структуры внутри клеток, клеточных сетей и межклеточное пространство.
Ниже представлен в очень упрощенном виде список некоторых наиболее важных изменений, которые происходят в головном мозге мгновенно. Каждое требует немедленного воспроизводства множества специфических белков, которые необходимы для описанных выше процессов, обеспечивающих возникновение мысли в нервных клетках головного мозга.

  • Воспроизводство и размещение на мембранах нервных клеток AMPA-рецептора глутамата (рецептор, который улавливает нейромедиатор, глутаминовую кислоту, из класса возбуждающих аминокислот, и передает быстрые возбуждающие сигналы в синапсах нервной системы. Эти рецепторы обнаружены практически во всех структурах головного мозга. Прим. пер.) Повышение доли АМПА-рецепторов совместно с кальцием вызывает увеличение длительности самого сигнала, то что еще называют длительный потенциал действия.
  • Дендриты меняют свою форму, особенно размеры и количество т.н. головок шипиков, которые образуют синапсы, тем самым повышая способность получать информацию.
  • Концентрация из более чем 1000 крупных протеиновых комплексов (различных по составу, в разных местах головного мозга и разных типов нейронов) повышает постсинаптическую плотность, видоизменяя эти мельчайшие отростки (головки шипиков) на дендритах.
  • Трансформация молекул, которые выступают из мембран наружу, в просвет синапса. Нейролигины (постсинаптический белок) как бы «пожимают руку» Нейрексинам (белок на пресинаптической поверхности).
  • Всплеск концентрации ионов кальция (Ca) дает толчок синтезу «белков памяти» нового типа.
  • Передающий (пресинаптический) нейрон изменяет нейромедиаторы (химические вещества, передающие сигнал через синаптическую щель на другой нейрон. Прим. пер.) , получающий сигнал нейрон (постсинаптический) согласованно трансформирует рецепторы на постсинаптической мембране.
  • По пути от мембраны нервной клетки к ее ядру в каскады сигналов тоже вносятся изменения.
  • Также вносятся изменения в ионные каналы аксона (отросток нейрона, который передает сигнал на другой нейрон. Прим. пер.), видоизменяется передаваемый дальше электрический сигнал.
  • Баланс изменений между ингибированием (подавлением) и стимуляцией.
  • Видоизменение новых микро-РНК (короткие цепочки РНК не принимающие непосредственного участия в кодировании и синтезе белка, но способные вносить изменения в экспрессию генов. Обнаружены в т.ч. у некоторых вирусов. Прим. пер.).
  • Видоизменения т.н. «вставочных» нейронов. (промежуточные нейроны посредники в передаче сигналов между клетками нервной сети. Прим. пер.)
  • Митохондрии в дендритах (дендриты — это отростки нейрона, которые принимают сигнал, митохондрии — энергетические центры клетки — на видео располагаются вдоль элементов клеточного скелета. Прим. пер.) изменяют силу сигнала.
  • Концентрация внимания изменяет структуру синапса.
  • Множественные изменения в восходящих волокнах мозжечка.
  • НМДА рецепторы (рецептор к нейромедиатору — глутамату, видоизменение и перестройка которого играет ключевую роль в синаптической пластичности. Прим. пер.) замещают свои структурные субъединицы.
  • Видоизменение транспортных белков.
  • Белки цитоскелета актин и микротрубочки осуществляют множественную, структурную трансформацию (собираются в одних местах и распадаются в других).
  • Экзосомы (выделяемые клеткой особые микропузырьки, диаметром 30-100 нанометров, содержащие активные биохимические вещества и осуществляющие межклеточную коммуникацию. Прим. Пер.) передают информацию от астроцитов (клетки, окружающие сами нейроны, но не участвующие в передачи нервного сигнала. Прим. пер.) нейронам, включая различные белки и кусочки ДНК.

Многоуровневый пусковой механизм от молекул к обществу

Каким-то образом ментальное событие (мысль) мгновенно запускает чрезвычайно сложный комплекс клеточной активности на всех упомянутых выше генетических и биохимических уровнях, во всех механизмах внутримозгового взаимодействия в различных областях головного мозга одновременно в какие-то миллисекунды, за это время меняется морфологическая структура мозга.
Побуждения и стимулы к ментальному событию приходят из источников широкого спектра — сенсорная стимуляция со стороны окружающей среды, чтение, наблюдение, взаимодействие с другими людьми и различными культурами. Эти стимулы являются совершенно разными по своим качествам, и они охватывают 12 условных порядков. Каждый различный тип ментального события оказывает различное воздействие с различным результатом на все эти уровни.
Фактически невозможно разделить эти уровни между собой в человеческом существовании. События квантового уровня и большое число соединений внутри различных зон головного мозга вовлечены в формирование ментального события. Квантовые эффекты обнаружены в живых организмах: кальциевая сигнальная система в мозге, химические реакции внутри клетки, навигация у птиц, эффективный механизм фотосинтеза. Похоже на то, что молекулы, формирующие клеточный скелет, такие как актин, миозин и микротрубочки функционируют подобно обладающему собственным разумом конструктору ЛЕГО (почти трансформеры, обладающие интеллектом…) . Структуры цитоскелета, представляющие собой чрезвычайно сложные молекулы, становятся как бы языком ментального события в клетке. Насколько реально это имеет отношение к квантовым событиям внутри клеточных органелл и структур цитоскелета еще предстоит раскрыть. Как эти изменения могут вызываться просто мыслью, остается совершенно неизвестным.

Микротрубочки с прикрепленными к ним транспортными белками внутри аксона нервной клетки. Аксональный транспорт.

Автор тут деликатно касается считающейся маргинальной в научной среде темы «квантовой природы сознания». Роджер Пенроуз, который написал об этом книгу, в чем-то разочаровался, отрицая саму возможность математического познания мысли и сознания. По прошествии ряда лет он признался, что как математик не имел полного представления о морфологии и природе микробиологических процессов внутри нервных клеток мозга, поэтому сегодня, на основании новых открытий, вероятно, пересмотрел бы ряд своих выводов. Особенно после знакомства и совместной работы с нейробиологом из Аризонского университета Hameroff S . Большая пропасть между законами квантовой механики и пониманием биологической природы мысли наверно стала меньше. Все таки речь идет о движении масс (молекулярные структуры, обладающие известными свойствами и предсказуемым поведением). Большой масштаб для квантовых экспериментов, но очень маленький для биологии. В какой-то глубокий момент попытка «вычислить» полностью все изменения порождаемые мыслью во множестве структур рассыпается.

Существование каждой мысли в мозге включает в себя гигантское число порядков за одно мгновение. В этом множестве уровней нет другого пути, кроме как попытаться составить условный список из 12 порядков, 12 уровней, которые вместе каждый раз обеспечивают мысль, формируя отдельное ментальное событие.

  • Квантовые эффекты
  • Молекулы, малые и большие
  • Клеточные транспортные белки, «моторы»
  • Структуры цитоскелета
  • Органеллы
  • Нейроны и глиальные клетки
  • Сеть нейронов с глиальными клетками
  • Мозговые ядра (концентраторы)
  • Зоны мозга
  • Собственно весь мозг
  • Взаимодействие с Другими
  • Наука, Общество и Культура

Жизнь мысли в мозге.

Несмотря на гигантские усилия почти полумиллиона нейробиологов всего мира в течении многих лет все еще нет ясности или какой-либо убедительной теории существования сознания и субъективного опыта в головном мозге. Так и не обнаружены зоны мозга отвечающие и представляющие субъективный опыт.
Число одновременно и подробно изученных фактов делает очень трудно достижимой задачу даже построения теории того, как все это может случаться за один раз в мгновение мысли. В качестве одного примера чрезвычайности масштаба включаемых событий, может послужить факт того, что каждую секунду в последний месяц беременности у плода возникает 250.000(!) новых нейронов, они распределяются в различные зоны мозга и тут же интегрируются в сети.
Нет возможности объяснить эти грандиозные в масштабах биологии эффекты мыслей никакой из существующих молекулярных теорий, теорией нейронных сетей, или теорией специфических зон мозга. Квантовую теорию все еще нельзя считать адекватной в этом плане, хотя некоторые данные вселяют надежду. (Еще одна отсылка автора к квантовой теории мысли.) Другая теория кальциевых волн, имея в процессе много важных аргументов, также все еще не убедительна.
Где тот общий вектор для всех перечисленных выше 12 факторов? Каким-то образом мысль, как нам известно, учитывает и взаимодействует с каждым за раз. Как именно ментальное событие запускает такой неисчислимо сложный порядок событий, все еще предстоит раскрыть. Конечно подразумевая, что новая теория природы сознания даст намного лучший способ понять феномен мысли, чем представления, существующие на сегодня.