Главная · Гастрит · Народные антибиотики: средства и травы против бактерий. Антибиотики против вирусов и бактерий: «за» и «против Вирусы против бактерий

Народные антибиотики: средства и травы против бактерий. Антибиотики против вирусов и бактерий: «за» и «против Вирусы против бактерий

Со времен Дарвина известно, что мир - вековая арена борьбы за существование всего живого. Смерть рано или поздно губит все, что неспособно выдержать эту борьбу, эту конкуренцию с более совершенными, более приспособленными к жизни существами. Однако, пожалуй, сам Дарвин не подозревал, что и в мире, который находится за пределами человеческого зрения, среди мельчайших живых существ, среди микробов, бушует та же вековая борьба за существование. Но кто с кем борется? Какие виды оружия используются при этом? Кто оказывается побежденным и кто победителем?

На эти и подобные им вопросы ученые нашли ответы далеко не сразу. Долгое время в распоряжении исследователей были лишь отдельные разрозненные наблюдения.

Еще в 1869 году профессор Военно-медицинской академии Вячеслав Авксентьевич Манассеин заметил, что, если на питательной среде поселилась плесень, на ней никогда не растут бактерии. В то же время другой ученый, профессор Алексей Герасимович Полотебнев, использовал на практике наблюдение своего коллеги. Он успешно лечил гнойные раны повязками с зеленой плесенью, которую соскабливал с лимонных и апельсиновых корок.

Луи Пастер заметил, что обычно бациллы сибирской язвы хорошо растут на питательном бульоне, но, если в этот бульон попадут гнилостные бактерии, они начинают быстро размножаться и "забивают" бациллы сибирской язвы.

Илья Ильич Мечников установил, что гнилостные бактерии, в свою очередь, подавляются бактериями молочнокислыми, образующими вредную для них молочную кислоту.

Известно было и еще несколько фактов такого же рода. Этого оказалось достаточно, чтобы зародилась мысль использовать борьбу микроорганизмов друг с другом в целях лечения заболеваний. Но как? И каких?

Вот если бы заглянуть в жизнь микромира, рассмотреть, что делают микробы в естественной обстановке, а не в искусственно выращенной лабораторной культуре. Ведь в одном грамме почвы, взятой где-нибудь в лесу или на огороде, содержится несколько тысяч спор плесневых грибов, несколько сотен тысяч других грибов-актиномицетов, миллионы бактерий различных видов, не говоря об амебах, инфузориях и других животных.

И, конечно, в таких тесных сообществах микробы вступают в самые различные взаимоотношения друг с другом. Здесь могут наблюдаться и случаи взаимопомощи - симбиоза, и ожесточенная борьба представителей разных микробных видов, так называемый естественный антагонизм микробов, и просто безразличное отношение друг к другу.

Но как это увидеть?!

Киев. 1930 год. Опыт за опытом ставил доцент Киевского университета Николай Григорьевич Холодный, пытаясь найти "способ изучения микроорганизмов в их естественной обстановке". Такой способ им уже найден для микробов, обитающих в водной среде. Но как рассмотреть жизнь микробов в почве?

Собрав в окрестностях Киева образцы почв, Холодный по нескольку дней не выходит из своей лаборатории. К тому же университетская лаборатория - его дом. Квартира, где Николай Григорьевич жил раньше, была разрушена артиллерийским снарядом еще в 1919 году. С тех пор qh поселился в лаборатории. Равнодушный к материальным благам и удобствам жизни, он даже считает, что устроился неплохо: можно работать в любое время суток.

Сейчас Холодный уже известный исследователь железобактерий, "крестный" нескольких дотоле науке неведомых видов из рода Лептотрикс. Пройдет несколько лет, и две его статьи, "Почвенная камера, как метод исследования микрофлоры" и "Метод непосредственного изучения почвенной микрофлоры", положат начало новому направлению в микробиологии. "Войны микробов" в их естественном состоянии станут предметом прямого изучения. Но пока пробуется один прием за другим, опыт следует за опытом. Многое из найденного Холодного не удовлетворяет, сложно. Во всех своих методических разработках он ищет простоты. Способ должен быть таким, чтобы им легко мог воспользоваться любой исследователь. Вот, например, острым ножом ученый делает вертикальный разрез в почве и вставляет в него четырехугольное стерилизованное стеклышко, стекло закапывается. Со временем оно покрывается почвенными растворами, мелкими частичками почвы, среди которых поселятся обитающие в ней микроорганизмы. Теперь остается только извлечь стекло и после специальной обработки рассмотреть его под микроскопом. Приставшие к стеклу частички почвы и микробы сохраняются в их естественном расположении, и, таким образом, можно наблюдать отдельные "кадры" из грандиозного фильма о жизни микробов в почве. Проще, кажется, не придумаешь.

Действительно, это было то, что так упорно искал Холодный. Он видел, как мир микробов жил своей бурной и тайной жизнью. Ежесекундно здесь шла ожесточенная борьба, приводящая к смерти одних обитателей и усиленному размножению других.

Теперь уже ученые знают, каким оружием пользуются различные виды микробов в своих непрекращающихся "войнах". Это не обязательно прямое уничтожение, как делают амебы и инфузории с бактериями. Очень часто микробы применяют и другие методы воздействия на своих врагов. Винные дрожжи, например, выделяют спирт, а уксуснокислые бактерии - уксусную кислоту. Такое "химическое оружие" угнетает развитие большинства других видов микробов, являясь для них ядом. Это как бы оружие против всех, кто посмеет приблизиться.

Однако в арсенале некоторых микроорганизмов встречается и оружие "персонального" прицела. Оно направлено только против некоторых видов микробов, угнетает только их и не поражает все остальные микроорганизмы. Как правило, такие вещества вырабатываются специально для нападения и защиты против микробов, с которыми первым приходится чаще всего сталкиваться в своей жизни. Вещества эти получили название антибиотиков.

Особенно много антибиотиков вырабатывают почвенные микроорганизмы. Это и понятно - ведь в почве отдельные виды микробов образуют целые скопления. Создав вокруг такого "поселения" зону антибиотической защиты, микробы находятся за ней, как за крепостной стеной. Причем она служит им не только надежной защитой, но в какой-то степени даже средством наступления, так как по мере роста колонии "крепостные стены" раздвигаются и его обитатели расширяют свои владения. Кстати, отсюда понятно, почему не вырабатывают антибиотиков водные микроорганизмы. В воде крепости не создашь, да и соседи здесь непостоянные. Тут нужно оружие против всех, кто посмеет приблизиться, - допустим, какая-нибудь кислота.

Близкое знакомство с почвенной микрофлорой показало, что почвенных микробов-антагонистов очень много и большинство из них для решения основного вопроса борьбы за существование "жить или не жить" вырабатывает антибиотические вещества, убивающие врагов.

Многолетние систематические исследования советского ученого Николая Александровича Красильникова показали, что особенно широко распространены в почве различные виды плесневых грибов и так называемые лучистые грибы - актиномицеты. И те и другие вырабатывают антибиотики.

У них это, пожалуй, единственное средство защиты против бактерий, для которых грибы являются лакомой пищей. Кстати, сами бактерии тоже вырабатывают антибиотики, но уже против почвенных амеб и инфузорий, охотящихся за ними. Этот интересный факт был впервые установлен профессором Александром Александровичем Имшенецким.

Итак, казалось бы, все просто. Микробов, вырабатывающих антибиотики, много. Остается только отобрать у них это оружие, выделить его в чистом виде и применять как лекарство против болезнетворных бактерий. Но не тут-то было!

Действительно, антибиотиков много. Так, только из почвы Подмосковья в лаборатории профессора Георгия Францевича Гаузе было выделено в чистую культуру. 556 штаммов почвенных грибов, 234 из них оказались продуцентами самых разных антибиотиков. Большая часть штаммов (56 процентов) вырабатывала противобактериальные антибиотики; 23 процента были универсалы: их антибиотики подавляли и рост бактерий и рост других грибов; остальные владели оружием лишь против своих собратьев - грибов иных видов.

Богатый набор продуцентов антибиотиков имеет и почва других мест. Однако здесь повторяется история с "магической пулей" Эрлиха: антибиотики оказываются токсичными не только для возбудителей болезней, но и для организма человека.

С одной стороны, в природе великое множество антибиотиков, но использовать в качестве лекарственных препаратов можно лишь считанные единицы. Впрочем, это стало известно уже после того, как в поиски новых средств борьбы с болезнетворными микробами вмешался случай. И хотя ученые в своей работе на случай никогда не рассчитывают, а гипотезы и пути исследований строятся, исходя из уже известных закономерностей, в истории науки можно найти немало примеров, когда дальнейшее развитие определяла счастливая случайность. Но случай не слеп. "Судьба, - как сказал Пастер, - одаривает только подготовленные умы".

Так было и на этот раз.

Бактерии в борьбе против человека берут верх, антибиотики не справляются. Ученым удалось разобраться в природном механизме уничтожения бактерий. Это поможет созданию новых классов препаратов против инфекций.

Текст: Галина Костина

Всемирная организация здравоохранения (ВОЗ) буквально вопиет о . Глава ВОЗ Маргарет Чен на одной из недавних европейских конференций говорила, что медицина возвращается в доантибиотиковую эру. Новые лекарства практически не разрабатываются. Ресурсы исчерпаны: «Постантибиотиковая эра в действительности означает конец современной медицины , которую мы знаем. Такие распространенные состояния, как стрептококковое воспаление горла или царапина на коленке ребенка, смогут снова приводить к смерти». По данным ВОЗ, более 4 млн детей в возрасте до пяти лет ежегодно умирают от инфекционных заболеваний.

Главной проблемой становится . В Европе бьют тревогу: уровень резистентности, например, пневмонии достиг 60% — в полтора раза больше, чем четыре года назад. В последние годы пневмония и другие инфекции, вызываемые только патогенными бактериями, ежегодно уносят жизни примерно 25 тыс. европейцев.

Многие помнят нашумевшую в 2011 году историю, когда в Германии острой кишечной инфекцией заразились более 2000 человек, более 20 человек умерли, а у 600 вследствие болезни отказали почки. Причиной стала устойчивая к ряду групп антибиотиков кишечная палочка E. coli, принесенная, а затем, как выяснилось, на проростках пажитника.

По прогнозам ВОЗ, через 10-20 лет все микробы приобретут устойчивость к существующим антибиотикам. Но оружие против бактерий есть у природы. И ученые пытаются поставить его на службу медицине.

Бактериальные надсмотрщики

Бактерии долгое время считались самой многочисленной популяцией живых организмов на Земле. Однако не так давно выяснилось, что бактериофагов (бактериальных вирусов) еще больше. Немного, конечно, странная ситуация: почему же тогда фаги не изничтожили все бактерии? Как всегда, в природе все непросто. Природа устроила микромир таким образом, чтобы популяции фагов и бактерий пребывали в динамическом равновесии. Достигается это избирательностью фагов, теснотой их общения с соответствующими бактериями, способами защиты бактерий от фагов.

Считается, что фаги почти такие же древние, как и бактерии. Открыли их почти одновременно Фредерик Творт и Феликс Д’Эрель в начале XX века. Первый, правда, не рискнул обозначить их как новый класс вирусов. Зато второй методично описал вирусы дизентерийных бактерий и назвал их в 1917 году бактериофагами — пожирателями бактерий. Д’Эрель, смешивавший бактерии и вирусы, увидел, как культура бактерий буквально растворялась на глазах. И почти сразу же французский ученый стал делать попытки использования вирусов против дизентерии в детской клинике. Любопытно, что потом француз продолжил свои эксперименты в Тбилиси и открыл там институт, который занимался почти исключительно вопросами фаговой терапии.

Вслед за Д’Эрелем фагами увлеклись многие ученые и медики. Где-то их опыты были удачными и вдохновляющими, где-то провальными. Теперь это легко объяснить: бактериофаги очень избирательны, практически каждый вирус выступает против какой-то определенной бактерии, иногда даже конкретного ее штамма. Конечно, если потчевать больного не теми фагами, то лучше ему не станет.

А в 1929 году Александр Флеминг о — пенициллин, и с начала 1940-х началась эра антибиотиков. Как часто бывает, о бактериофагах практически забыли, и только в России и в Грузии продолжали потихоньку производить фаговые препараты.

Интерес к бактериофагам возродился в 1950-х, когда их стали использовать в качестве удобных модельных организмов. «Многие фундаментальные открытия в молекулярной биологии, связанные с генетическим кодом, репликацией и другими клеточными механизмами, были сделаны во многом благодаря бактериофагам», — рассказывает руководитель лаборатории молекулярной биоинженерии Института биоорганической химии (ИБХ) им. М. М. Шемякина и Ю. А. Овчинникова РАН Константин Мирошников . Взрывное развитие микробиологии и генетики накопило огромные знания как о фагах, так и о бактериях.


Лаборатория Вадима Месянжинова ИБХ РАН, где 15 лет назад вместе работали Константин Мирошников, Михаил Шнейдер , Петр Лейман и Виктор Костюченко , занималась бактериофагами, в частности фагом Т4. «Так называемые хвостатые фаги делятся на три группы, — рассказывает Мирошников. — У одних маленький, почти символический хвостик, у других — длинный и гибкий, а у третьих — сложный, многокомпонентный сократимый хвост. Последняя группа фагов, к которой относится Т4, называется миовиридами».

На картинках Т4 напоминает фантастический летающий объект с головкой, в которой находится ДНК, с прочным хвостом и ножками — белками-сенсорами. Нащупав ножками-сенсорами подходящую бактерию, бактериофаг прикрепляется к ней, после чего наружная часть хвоста сокращается, проталкивая вперед внутренний поршень, протыкающий оболочку бактерии. За это хвост фага прозвали молекулярным шприцем. Через поршень фаг вводит в бактерию свою ДНК и ждет, когда в ней наплодится его потомство. После завершения репродуктивного цикла детки фага разрывают стенку бактерии и способны к заражению других бактерий.

на фото: Михаил Шнейдер (слева) и Константин Мирошников из ИБХ РАН («Эксперт»)

Ученые, по словам Константина Мирошникова, долго не хотели верить, что фаг использует такой примитивный метод — механическое протыкание бактерии, — ведь практически все биологические процессы построены на биохимических реакциях. Тем не менее оказалось, что так и есть. Правда, это всего лишь часть процесса. Как позже выяснилось, механически протыкается наружная оболочка бактерии — плазматическая мембрана. В составе молекулярного шприца есть фермент лизоцим, который проделывает небольшое отверстие во внутренней оболочке клетки. Наибольший интерес для ученых представлял белок «шприца» — его своеобразная игла, которая протыкает внешнюю оболочку. Оказалось, что он, в отличие от многих других белков, обладает замечательно стабильной структурой, что, видимо, необходимо для такого сильного механического воздействия.

Российские ученые вместе с коллегами из Университета Пурдью (США) построили молекулярную модель фага Т4. В дальнейшем, изучая подробности этого необычного молекулярного оружия бактериофага, ученые натолкнулись еще на одну загадку. Электронная микроскопия, выполненная Виктором Костюченко, показала, что на конце иглы есть еще один маленький белочек. И в лаборатории вновь задались вопросом: что же это за белок и зачем он нужен? Однако в то время понять это не удалось.

Один из учеников Вадима Месянжинова, Петр Лейман, работавший после ИБХ в Университете Пурдью, а затем в Швейцарском институте технологии в Лозанне (EPFL), позднее вернулся к этой теме, правда, с другой стороны — со стороны бактерий. Одним из фокусов работы новой лаборатории стали не бактериофаги, а бактерии, которые атакуют своих недружелюбных соседей при помощи машинки, очень похожей на молекулярный шприц фага. По-научному она называется системой секреции 6-го типа (СС6Т). И эта система оказалась еще более интересной.

Смерть на кончике иглы

«Система секреции шестого типа была открыта в 2006 году, — рассказывает Петр Лейман. — Однако в то время еще было не ясно, насколько она похожа на хвост бактериофага. Это открытие было сделано благодаря накопленным знаниям об отсеквенированных геномах сотен бактерий». В течение последующих трех лет исследований выяснилось, что конструктивно СС6Т — это почти то же, что и хвост бактериофага. Он также имеет внешний сокращаемый чехол, внутренний поршень и иглу с наконечником. И эта молекулярная машина пробивает дырку в оболочке бактерии.

По словам Константина Мирошникова, вполне возможно, что за миллионы лет сосуществования предприимчивая бактерия вполне могла перенять от бактериофага его оружие, для того чтобы использовать его в борьбе с другими бактериями. При этом бактерия избавилась от фаговой «головы» — чужая генетическая информация бактерии была не нужна. Зато его чудесный хвост она вставила в свой геном. Правда, бактерия его значительно модифицировала. СС6Т намного сложнее, чем молекулярный шприц бактериофага. Бактериофаг делает аккуратную дырочку, не намереваясь мгновенно убить бактерию, чтобы потом размножиться в ней. Бактерии же нужно быстро и гарантированно убить бактерию-конкурента, поэтому она сразу делает много больших дырок в теле врага.

Группа Петра Леймана в сотрудничестве с Михаилом Шнейдером из лаборатории ИБХ среди прочих задач искала в этой системе тот самый маленький белочек на конце шприца, который когда-то они увидели у бактериофага Т4. Они-то не сомневались, что он там есть и что у него должна быть важная функция в этом механизме. «Многие не верили, что на кончике иглы что-то есть и что это может быть важно, — рассказывает Петр Лейман. — А мы упорно искали. И все-таки мы его нашли!»

Ученые выяснили, что к этому маленькому белку-наконечнику могут присоединяться различные токсины, которые неминуемо убьют другую бактерию, после того как ее проткнет наконечник. В частности, выяснилось, что одним из таких токсинов может быть лизоцим, аналог того, что сидит и на молекулярном шприце фага. Но, сидя на фаге, он проделывает крохотную дырочку в клеточной стенке и не проникает внутрь бактерии, а в СС6Т он разрушает клеточную стенку бактерии, что ведет к ее гибели.

Впрочем, лизоцим не единственный токсин, который использует бактерии, их десятки и сотни. Причем, по словам Леймана, они могут проникать в чужую бактерию, как сидя на наконечнике, так и выпрыскиваясь изнутри шприца. Но и на этом хитрости не заканчиваются. Оказалось, что у бактерии есть несколько таких сменных наконечников, которые она выбирает в зависимости от того, на какого недруга собирается нападать и чем будет этого недруга потчевать. Ну и еще одна инновация бактерии: СС6Т — система не одноразовая, как молекулярный шприц бактериофага, а многоразовая. После того как она протыкает бактерию-врага и доставляет в нее токсины, та часть системы, что находится внутри нападающей клетки, распадается на элементы, из которых бактерия собирает новый «шприц» — систему СС6Т, заряженную токсинами. И снова готова к бою.

Это интересное фундаментальное открытие (посвященная ему статья опубликована недавно в Nature), однако, требует продолжения. «Пока для нас одна из самых загадочных вещей, — продолжает Лейман, — как система секреции отбирает для транспортировки сменные наконечники и токсины. У нас уже есть некоторые наработки, но мы еще в процессе». Петр Лейман не сомневается, что в ближайшие годы эти детали наконец будут прояснены. Над этим, по его словам, только в Швейцарии работают несколько лабораторий и еще десятки лабораторий во всем мире. Знание о том, как работает убийственный механизм СС6Т, может способствовать разработке нового класса лекарств, которые будут избирательно убивать болезнетворные бактерии. Медицина этого открытия очень ждет.


Время запускать фагов

Эра антибиотиков, начавшаяся в середине прошлого века и вызвавшая всеобщую эйфорию, похоже, заканчивается. И об этом предупреждал еще отец антибиотиков Флеминг. Он предполагал, что хитроумные бактерии будут все время изобретать механизмы выживания. Всякий раз, сталкиваясь с новым лекарством, бактерии словно проходят сквозь бутылочное горлышко. Выживают сильнейшие, приобретшие механизм защиты от антибиотика. Кроме того, безудержное и неконтролируемое использование антибиотиков, особенно в сельском хозяйстве, ускорило приближение конца их эры. Чем активнее применялись антибиотики, тем быстрее приспосабливались к ним бактерии. Особой проблемой стали внутрибольничные инфекции, возбудители которых чувствуют себя как дома в святая святых — стерильных отделениях клиник. Там, среди больных с ослабленным иммунитетом, даже так называемые условно-патогенные микробы, не представляющие для здорового человека никакой опасности, но приобретшие солидный спектр устойчивости к антибиотикам, становятся жестокими патогенами и добивают пациентов.

По словам Михаила Шнейдера, антибиотики, как правило, берутся из природы, как тот же пенициллин. Синтезированных антибиотиков очень мало: трудно поймать в бактериях уязвимые места, на которые можно было бы нацелиться. К тому же, сетуют медики, разработчики не очень охотно берутся за создание новых антибиотиков: мол, возни с разработками много, устойчивость к ним вырабатывается у бактерий слишком быстро, а цена на них не может быть такой высокой, как, к примеру, на антираковые препараты. По некоторым данным, к концу первого десятилетия XXI века лишь полтора десятка новых антибиотиков находились в разработках крупных компаний, да и то на очень ранних стадиях. Тут-то и стали вспоминать о природных врагах бактерий — бактериофагах, которые хороши еще и тем, что практически нетоксичны для человеческого организма.

В России терапевтические фаговые препараты делают давно. «Я держал в руках затрепанную методичку времен финской войны по применению фагов в военной медицине, фагами лечили еще до антибиотиков, — рассказывает Константин Мирошников. — В последние годы фаги широко использовали при наводнениях в Крымске и Хабаровске, чтобы предотвратить дизентерию. У нас такие препараты в промышленных масштабах много лет делает НПО "Микроген”. Но технологии их создания давно нуждаются в модернизации. И мы последние три года сотрудничаем с “Микрогеном” по этой теме».

Бактериофаги кажутся отличным оружием против бактерий. Во-первых, они высокоспецифичны: каждый фаг убивает не просто свою бактерию, но даже конкретный ее штамм. По словам Михаила Шнейдера, бактериофаги можно было бы использовать и в средствах диагностики для определения бактерий до штаммов, и в терапии: «Их можно использовать и сами по себе, и в комбинации с антибиотиками. Антибиотики хотя бы частично ослабляют бактерии. А фаги могут добить их».

Сейчас во многих лабораториях думают, как можно было бы использовать как бактериофаги, так и их компоненты против бактериальных инфекций. «В частности, американская компания Avidbiotics разрабатывает продукты на основе бактериоцинов, которые представляют собой модифицированный фаговый хвост — молекулярный шприц, направленный на уничтожение вредоносных бактерий, — рассказывает Михаил Шнейдер. — Они создали своеобразный молекулярный конструктор, у которого можно легко менять сенсорный белок, распознающий конкретную патогенную бактерию, благодаря чему можно получить много высокоспецифичных препаратов».

Сейчас в разработке компании — препараты, которые будут направлены против кишечной палочки, сальмонеллы, шигеллы и других бактерий. Кроме того, компания готовит препараты для продовольственной безопасности и заключила соглашение с компанией DuPont о создании класса антибактериальных агентов для защиты продуктов питания.

Перед Россией, казалось бы, широкая дорога для создания новых классов препаратов на основе фагов, но пока энергичных действий в этом плане не видно. «Мы не производственники, но примерно себе представляем, в какую канитель могут вылиться сертификация и внедрение современного препарата на основе фагов или бактериоцинов, — говорит Мирошников. — Ведь он должен будет пройти путь нового лекарства, а это занимает до десятка лет, потом еще нужно будет утверждать каждую деталь такого конструкторского препарата с заменяемыми частицами. Пока что мы можем давать лишь научные рекомендации, что можно было бы сделать». А в том, что делать надо, нет сомнений ни у кого из тех, кто осведомлен о катастрофе с антибиотиками.

На смену фагам вскоре могут прийти и новые технологии, которые будут использовать механизмы СС6Т. «Мы еще в процессе исследований и пока далеки от рационального использования системы секреции шестого типа, — говорит Петр Лейман. — Но я не сомневаюсь, что эти механизмы будут раскрыты. И тогда на их основе можно будет делать не только высокоспецифичные препараты против злостных бактерий, но и использовать их как средство доставки нужных организму белков, даже очень крупных, что сейчас является проблемой, а также доставки лекарств, например, в опухолевые клетки».

Этим летом вся Европа была напугана очень маленьким существом — патогенным штаммом кишечной палочки Escherichia coli. Ее длина — всего 2-3 микрона, но она опасна и шустра. Поневоле задумаешься, кто же на нашей планете господствующий вид — человек или такие вот малютки?

Если одну кишечную палочку, которая, как известно, размножается простым бинарным делением, поместить в идеальную питательную среду и допустить, что еды у нее и ее потомков будет в достатке, то за сутки эта малышка способна образовать колонию весом около... 10 миллионов тонн!

Шокирующая цифра, не правда ли? Одноклеточные — если и не самые главные, то уж точно самые весомые, в прямом смысле, жители земного шара. Суммарная биомасса всех микроорганизмов, в том числе микроскопических грибов и водорослей, составляет 76 миллиардов тонн (в сухом остатке, без учета воды).

Все многоклеточные растения весят 55 миллиардов тонн, а масса животных, включая человека, составляет в сумме какие-то «жалкие» 500 миллионов тонн.

Да и в каждом здоровом человеческом теле наберется килограмма два бактерий, ведь человек — это симбиотический конгломерат клеток его собственного организма и бактерий. Как утверждает молодая наука метабономика, люди - это сверхорганизмы, в которых только 2-3 триллиона клеток непосредственно наши, родные.

Еще добрую сотню триллионов составляют микроорганизмы — их в человеческом теле более 500 видов. В этом сверхорганизме человеческая ДНК вовсе не является преобладающей, утверждает отец-основатель метабономики британский биохимик Джереми Николсон.

Каждый из нас обладает уникальным геномом, который складывается из собственного генетического материала и ДНК населяющих нас многочисленных одноклеточных.

КТО В ЧЕЛОВЕКЕ ЖИВЕТ?

В большинстве случаев младенцы рождаются стерильными. Однако в первые же сутки их жизни начинается создание микробиоценоза: человек колонизируется множеством микроорганизмов. Сначала это хаотический процесс, в ходе которого бактерии яростно борются за «место под солнцем» и внутри, и снаружи.

Через 2-3 дня устойчивые колонии получают пожизненную прописку в различных частях тела. Это так называемые облигатные — полезные и. более того, необходимые микробы. Можно сказать, самые близкие людям живые существа в этом мире.

На всей поверхности кожи и в ее верхнем слое уютно устроились пропионибактерии, дифтероиды и коринебактерии. Они умеют поглощать приходящих извне патогенных бактерий, держат первый рубеж обороны.

Слизистая оболочка глаз заселена стафилококками и микоплазмой, которые не дают случайным пришельцам закрепиться здесь и начать размножение, В желудке плавает дружная команда стрептококков, лакто- и бифидобактерий в окружении дрожжеподобных грибов; все они хорошо переносит кислую среду желудочного сока и дают старт процессу переваривания пищи.

В кишечнике в тесноте, да не в обиде живут более 15 основных видов анаэробных бактерий и грибов рода Candida. И среди них та самая кишечная палочка Е. соli, непатогенные штаммы котором очень нужны человеку. Именно она вырабатывает в нашем организме витамин К2, отвечающий за свертываемость крови.

"Хотя мне исполнилось уже 50 лет, но у меня очень хорошо сохранились зубы, потому что я имею привычку каждое утро натирать их солью, а после очистки больших зубов гусиным пером хорошенько протирать их еще платком" — такие слова можно прочитать в письме сторожа судебной палаты из голландского города Делфта Антони ван Левенгука (1632-1723), которое он направил в Лондонское королевское общество.

Ничего не скажешь, оригинальный способ соблюдения гигиены полости рта, но прославился Левенгук, конечно, не этим - а тем, что научил человечество видеть потаенные стороны жизни природы. У Левенгука не было «ученого» образования, зато была поистине пламенная страсть: увеличительные стекла. Он был одним из первых, кто догадался объединить несколько линз в зрительную трубу для изучения не макро-, а микромира. И получил таким образом микроскоп.

Материалы для своих исследований он выбирал бессистемно: перечный настой, волокна хрена, чешуйки кожи, глаз мухи, моллюски, выловленные в каналах Делфта. Соскоб с зубов он разбавлял водой и в волшебных стеклах наблюдал «невероятное количество маленьких животных, и притом в таком крошечном кусочке вышеуказанного вещества, что этому почти невозможно было поверить, а если не убедишься собственными глазами.

Самоучка Левенгук за 50 лет наблюдений зарисовал более 200 видов «крошечных зверьков», как он называл своих новых знакомцев. Впрочем, научной революции тогда не случилось — еще сотню лет после Левенгука микромир оставался для ученого мира эдаким «шапито в микроскопе».

ДРУЗЬЯ И ВРАГИ

Пожалуй, практически все самые привычные для нас продукты питания — хлеб, сыр, йогурт, пиво, вино, шоколад и многое другое — не что иное, как продукты брожения. Всю основную работу по их приготовлению производят анаэробные бактерии и дрожжевые грибы. Человеку остается только бережно хранить, селекционировать и культивировать закваски — колонии бактерий.

И он делает это на протяжении тысячелетий. Еще за пять тысяч лет до Рождества Христова в древнем Вавилоне умели сбраживать напитки, а три с половиной тысячи лет назад египтяне придумали дрожжевой хлеб. Так что человек уже давно приручил своих микродрузей.

Профессиональные "дрессировщики», ученые-биотехнологи, вооружившись достижениями молекулярной биологии и генной инженерии, научили микробов делать массу полезных для человека вещей. Сегодня на полях вносят в почву бактериальные удобрения, а микробные инсектициды и пестициды, подверженные биодеградации, пришли на смену опасным химическим сельскохозяйственным реагентам.

Тионовые (окисляющие серу) бактерии выщелачивают ценные металлы из рудных концентратов и повышают качество серосодержащего каменного угля. Современная фармацевтика немыслима без «рабочих лошадок» - бактерий, одноклеточных грибов и водорослей, производящих все виды антибиотиков, противоопухолевые препараты, витамины и аминокислоты.

Команда исследователей под руководством профессора Джозефа Чеппела из американского Университета Кентукки выяснила, что все запасы нефти и угля на нашей планете — результат жизнедеятельности одной-единственной микроводоросли Botryococcus braunii. Так что, если бы не она, не видать нам ни тепловой энергетики, ни автомобилей.

Кроме того, некоторые микроорганизмы — это еще и самые старательные и дотошные в мире уборщики. Подсчитано, что если бы не работа бактерий гниения, разлагающих органические вещества, то кости животных, обитавших на Земле с начала ледникового периода, покрывали бы сегодня всю сушу полутораметровым слоем.

Взаимовыгодное существование человека и микроорганизмов портит только одно обстоятельство: есть порядочное количество простейших, которые не прочь ускорить процесс превращения живого в мертвое, сократив его до пары суток.

Со времен Гиппократа и приблизительно до середины XIX века считалось, что болезни, которые мы сегодня называем инфекционными, вызываются дурным воздухом и вредными испарениями — «миазмами». Среди теоретиков патогенеза ближе всего к истине был однокашник Коперника Джироламо Фракасторо. живший за сто с лишним лет до Левенгука. Он писал о крошечных «семенах», которые передаются от человека к человеку, поселяются внутри и вызывают болезни. Однако Фракасторо и помыслить не мог, что эти «семена» живые.

Потери человечества от эпидемических инфекционных заболеваний значительно превышают число жертв военных конфликтов. На полях сражений Столетней войны (1337-1453) погибли сотни тысяч человек.

А эпидемия бубонной чумы, случившаяся как раз во время той войны и продолжавшаяся всего пять лет, унесла жизни 34 миллионов европейцев. Всего же за все время существования нашей цивилизации жертвами одноклеточных возбудителей болезней пало около полутора миллиардов человек.

Весь XIX век в научном мире не утихали споры о том, виноваты ли микроорганизмы в том, что мы болеем и умираем. С одной стороны, ученые постоянно находили патогенных возбудителей в тканях умерших от холеры, туберкулеза, дифтерии; их чистые культуры выделили первые микробиологи, все как один — лауреаты Нобелевских премий по медицине: Эмиль Беринг, Пауль Эрлих, Илья Мечников и первооткрыватель возбудителей сибирской язвы, туберкулеза и холеры Роберт Кох.

Но с другой стороны, приверженцы гигиенической теории не уставал и твердить, что все болезни происходят от грязи. Во главе гигиенистов стоял президент Баварской академии наук Макс фон Петтенкофер. Профессор прославился тем, что в 73 года в доказательство своих научных теорий в присутствии свидетелей проглотил чистую культуру холерного вибриона.

Холерой Петтенкофер не заболел, все обошлось легким расстройством желудка. Понятия «специфический иммунитет» в тот момент еще не существовало, а профессор был здоров как бык. Наверняка сработала и сила внутренней убежденности в собственной правоте.

Петтенкофер настолько дорожил собственным здоровьем и не желал болеть, что, ощутив себя в 82 года дряхлеющим стариком, предпочел застрелиться.

Сегодня мы точно знаем: такие болезни, как чума, дифтерия, холера, туберкулез и многие другие, однозначно вызываются бактериями, которые в процессе своей жизнедеятельности выделяют токсины. Оспу, корь, гепатит, полиомиелит провоцируют не бактерии, а вирусы. Вирусы намного меньше бактерий (20-500 нанометров в поперечнике), и до сих пор не вполне понятно, живые они или нет. Сам но себе вирус размножаться не способен — он производит потомство, используя ДНК клетки, в которую внедряется.

КОВАРНЕЙ КОШКИ ЗВЕРЯ НЕТ

При этом остальные рефлексы не нарушаются. Так токсоплазма контролирует свой собственный жизненный цикл, управляя переносчиком: для нее выгодно, чтобы мышь погибла, будучи съеденной кошкой.

Впрочем, подлинную роль токсоплазмы ученым еще предстоит выяснить. Пока можно сказать только одно — «другим человека» она не была никогда. В отличие от нашего симбионта — кишечной палочки Е. coli. Каким же образом незаменимый помощник превратился в убийцу? Эта детективная интрига все еще ждет своей разгадки.

Пока ученые искали преступника, перебирая всех возможных подозреваемых, начиная с испанского огурца и заканчивая пажитником из Египта, эпидемия сама собой сошла на нет. Теперь уже не определить ни «место преступления», ни какая из миллиона других видов бактерий передала часть своего генома "хорошей" кишечной палочке, после чего та приобрела неприятную особенность вырабатывать гибельные для почек токсины и разрушать эритроциты. Кроме того, новый штамм, обозначенный шифром О104:Н4, получил от какого-то другого микроорганизма удивительную стойкость к антибиотикам.

Можно сказать и о простейших. Казалось бы, все просто: одноклеточные размножаются делением или почкованием, а значит, весь геном должен передаваться от «мамы» к «дочке* в целости и сохранности. Но существует еще и так называемый горизонтальный перенос генов — процесс, отдаленно напоминающий спаривание. Происходит физический контакт, в ходе которого бактерии обмениваются генетической информацией.

Причем контактировать могут особи совершенно разных видов — и успешно. В результате возникают новые подвиды — штаммы, становящиеся звеном в непредсказуемой эволюции бактерий, эволюции гораздо более быстрой, чем у многоклеточных. Эта скорость и обеспечивает их невероятное видовое многообразие.

В 2009 году израильские микробиологи изучали палочки Paunibacillus dentintiformis и решили провести эксперимент: что будет, если начать морить их голодом? Предполагалось, что в условиях дефицита питания клетки начнут активно размножаться в целях сохранения вида. Однако все пошло совсем по-другому: бактерии не только прекратили размножаться, но и принялись убивать сородичей, избавляясь от «лишних ртов». Когда численность колонии стала соответствовать количеству питательных веществ, ситуация стабилизировалась.

Ученые пока не утверждают, что микробы обладают коллективным разумом, но существование у них примитивных социальных механизмов считают доказанным.

«У бактерий есть примитивная форма социального сознания. — полагает руководитель исследования профессор Эшел Бен-Якоб. — Они знают, как собирать информацию из окружающей среды и передавать ее друг другу. Они могут распределять задачи и хранить «коллективную память». Химический язык, с помощью которого они общаются, превращает колонии микробов в большой мозг».

Хотелось бы научиться понимать этот «большой мозг», а еще лучше - с ним дружить. Но микромир живет по своим законам, и наших знаний о нем пока слишком мало для заключения долгосрочного мирового соглашения.

Журнал Discovery ноябрь 2011

Экология здоровья: Его успешно используют в качестве местного лечения стригущего лишая, кератоза, воспалений кожи, ссадин, грибковых инфекций

Касторовое масло – одно из наиболее известных природных средств, которое уже достаточно долго используют в лечебных целях , и только уже один этот факт является основанием для его исследования; тем не менее, немного осторожности при использовании этого средства в домашних условиях не повредит

Касторовое масло начали использовать несколько веков назад

Касторовое масло изготавливают путем прессования семян клещевины (Ricinus communis), родиной которой является Индия; но сейчас клещевину выращивают в средиземноморских странах, таких как Алжир, Египет и Греция. Во Франции касторовое дерево культивируют для декоративных целей, так как оно обладает пышной и красивой листвой.

Многие древние цивилизации, в том числе древние египтяне, китайцы и персы, ценили клещевину за то, что ее можно применять для многочисленных целей, например, в качестве топлива для ламп или компонента, входящего в состав бальзамов и мазей.

В Средние века касторовое дерево, которое использовали для лечения кожных заболеваний, стало популярным в Европе. Греческий врач Диоскорид даже описал процесс получения масла из этого растения, но предупредил, что семена подходят только для внешнего применения, поскольку они являются "чрезвычайно слабительными".

Касторовое масло представляет собой смесь триглицеридов, состоящих из жирных кислот, из которых 90 процентов приходится на рицинолеиновую кислоту. Другие семена и масла, такие как масло сои и хлопковое масло, также содержат эту уникальную жирную кислоту, хотя и в значительно более низких концентрациях.

Утверждают, что рицинолеиновая кислота - это основной оздоравливающий компонент касторового масла, а по словам медицинского исследователя, мануального терапевта и биохимика Дэвида Уильямса это:

"Эффективное средство для профилактики роста многочисленных видов вирусов, бактерий, дрожжей и плесневых грибов. Его успешно используют в качестве местного лечения стригущего лишая, кератоза, воспалений кожи, ссадин, грибковых инфекций [ногтей пальцев рук] и ногтей пальцев ног, угревой сыпи и хронического прурита (зуда)".

В своей статье Уильямс также пишет, что в Индии семена касторового дерева традиционно используют для лечения различных заболеваний, таких как дизентерия, астма, запор, воспалительные заболевания кишечника и мочевого пузыря, вагинальные инфекции.

14 способов использования касторового масла в домашних условиях

Хорошо, если у вас дома уже есть бутылочка касторового масла; если нет, вам нужно прямо сейчас приобрести это средство, но оно должно быть от надежного производителя. Безусловно, вы будете очень удивлены, когда узнаете, для чего можно использовать это разностороннее масло.

1. Безопасное и природное слабительное.

В исследовании, которое было проведено в 2010 году, было описано, как компрессы с касторовым маслом помогают избавиться от запоров среди пожилых людей. Управление США по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA) считает это масло "как правило, безопасным и эффективным" для использования в качестве стимулирующего слабительного.

Оральное применение касторового масла может "очистить" желудочно-кишечный тракт в течение двух-пяти часов. Тем не менее, для этой цели необходимо помнить о правильной дозировке. Для взрослых - это 1-2 столовые ложки, а для детей от 2 до 12 лет - только 1-2 чайные ложки.

2. Облегчение мышечных болей.

После интенсивной тренировки растирающими движениями нанесите масло на мышцы, это улучшит циркуляцию крови и облегчит боль. Для дополнительного лечебного и успокаивающего эффекта смешайте его с маслом мяты или маслом римской ромашки.

3. Облегчение боли в суставах.

Рицинолеиновая кислота, входящая в состав касторового масла, оказывает противоотечное действие на лимфатическую систему , которая отвечает за выведение из тканей организмов продуктов жизнедеятельности и их транспортировку через систему кровообращения для последующего удаления.

Если лимфатическая система не работает должным образом (например, у людей, страдающих артритом), это может стать причиной возникновения в суставах болезненных ощущений. Нанося касторовое масло массирующими движениями на суставы, вы можете облегчить ощущение скованности и придать своей лимфатической системе дополнительный импульс.

Проведенное в 2009 исследование, результаты которого были опубликованы в журнале Phytotherapy Research (Исследование методов фитотерапии), поддерживает этот метод; также представлены данные, которые подтверждают, что касторовое масло помогает уменьшить боль у пациентов с остеоартритом коленных суставов.

4. Лечение грибковых заболеваний.

Утверждается, что касторовое масло также является эффективным противогрибковым средством при лечение общих инфекций, как, например, стригущий лишай, паховая эпидермофития (паховый дерматомикоз) и эпидермофития стопы.

Просто нагрейте масло, нанесите на пораженный участок перед сном и оставьте на ночь. Повторяйте это процедуру целую неделю или до полного исчезновения инфекции.

5. Улучшение роста волос.

Массаж кожи головы (и даже бровей) теплым касторовым маслом стимулирует фолликулы и способствует росту новых волос. Выполняйте эту процедуру каждую ночь. Улучшение будет заметно всего через две недели. Касторовое масло также можно наносить на зоны с алопецией.

6. Придание волосам более насыщенного оттенка.

Касторовое масло фиксирует влагу в волосах, придавая им более богатый внешний вид ; кроме того, волосы будут казаться более густыми. Для получения такого эффекта нужно подогреть столовую ложку масла и кончиками пальцев нанести его на каждую прядь; таким образом необходимо обработать все локоны, это поможет сделать волосы максимально густыми.

7. Природная тушь для ресниц.

Растопите на водяной бане столовую ложку пчелиного воска, добавьте 2 столовые ложки древесного угля или какао-порошка (в зависимости от цвета волос), затем добавьте касторовое масло и перемешивайте полученный состав до получения нужной консистенции.

В отличие от других традиционных косметических продуктов, эта самодельная тушь для ресниц не содержит токсичных химических ингредиентов. В качестве альтернативы вы можете наносить касторовое масло на ресницы каждую ночь, чтобы они выглядели более густыми и объемными.

8. Увлажнение кожи.

Входящие в состав касторового масла жирные кислоты питают и увлажняют сухую кожу. Благодаря своей вязкой структуре масло удерживается на коже и легко проникает в ее ткани.

Помните о том, что больше - не значит лучше: просто разотрите чайную ложку масла в своих ладонях и нанесите его на кожу.

9. Устраняет пятна и другие проблемы кожи.

Благодаря касторовому маслу вы сможете попрощаться с непривлекательными и смущающими вас кожными образованиями.

Благодаря своим антимикробным и противовоспалительным свойствам масло благоприятно воздействует на кожу, способствуя избавлению от папиллом, акне и бородавок . В ходе одного исследования, результаты которого были опубликованы в журнале международной токсикологии (Journal of International Toxicology), было обнаружено, что касторовое масло может оказать положительное воздействие при лечении профессионального дерматита.

10. Улучшение качества сна.

Говорят, что нанесение небольшого количества касторового масла на веки может помочь заснуть намного быстрее. Касторовое масло способствует более глубокому и более длительному сну.

11. Помощь для лечения коликов у новорожденных.

Колики иногда возникают в первые несколько месяцев жизни, из-за чего ребенок может плакать длительные периоды времени. Почему возникают колики – точно не известно, хотя основной причиной считают газообразование. Если вы хотите использовать касторовое масло, чтобы облегчить колики, просто аккуратно нанесите его на всю брюшную полость ребенка.

12. Безопасное лечение ран домашних питомцев.

Если вы обнаружили на коже своей собаки или кота небольшие порезы или раны, приложите немного касторового масла; благодаря своим антимикробным и противовоспалительным свойствам масло облегчит процесс выздоровления. Даже если ваш питомец начнет облизывать рану (как это делает большинство домашних животных), масло ему не навредит, но может стать причиной жидкого стула.

13. Использование в качестве консерванта для продуктов питания.

Чтобы не только предотвратить порчу высушенных зерновых продуктов, но также и защитить их от микробов и вредителей, на них можно нанести слой касторового масла. Тем не менее, следует отметить, что для хорошего здоровья необходимо хранить только минимальное количество зерновых продуктов.

14. Универсальное смазывающее средство.

Если в вашем доме есть предметы, которые необходимо смазать, например, скрипучие петли, ножницы или мясорубка, касторовое масло отлично справится с этой задачей. Благодаря своей вязкости касторовое масло не замерзает , поэтому является идеальным вариантом для использования при высоких или очень низких температурах.

При местном применении не нужно смешивать касторовое масло с базовым маслом; чтобы исключить вероятность аллергической реакции просто нанесите масло на небольшой участок кожи.

Вы можете не только втирать масло непосредственно в кожу или наносить его массажными движениями, вы можете сделать компресс с касторовым маслом, который, по моему мнению, оказывает мощное воздействие в рамках целостной терапии. Покойный целитель Эдгар Кейси был первым, кто пропагандировал использование в лечебных целях компрессов с касторовым маслом. Подобное применение затем было исследовано доктором Уильямом МакГреем в Фениксе, штат Аризона.

МакГрей, врач первичной медицинской помощи и последователь учения Кейси, говорит, что при правильном использовании компрессы с касторовым маслом могут оказать иммунной системе значительную помощь.

Касторовое масло можно использовать для родоусиления - но требуется предельная осторожность

Другое популярное традиционное использование касторового масла – это использовать его для родоусиления. Проведя исследованиях на мышах, было обнаружено, что рицинолеиновая кислота заставляет сокращаться кишечник и матку, что затем может привести к родоусилению . Исследование продемонстрировало, что среди 100 испытуемых беременных женщин у более половины группы, которые получили касторовое масло, в течение 24 часов началась сократительная деятельность матки. Тем не менее, из-за потенциально вредных побочных эффектов я не советую использовать масло таким образом.

Одно исследование, проведенное в 2001 году, показало, что все беременные женщины, которые принимали касторовое масло, испытывали тошноту после его приема. В другом исследовании также было продемонстрировано, что вызванные касторовым маслом сокращения могут привести к высвобождению мекония (первый стула младенца) прямо в утробе, что подвергает ребенка риску мекониевой аспирации, которая может привести к дыхательной недостаточности у новорожденных. По мнению авторов исследования:

"Большинство побочных эффектов, вызванных приемом касторового масла – это усталость, тошнота, рвота и понос. Кроме того, использование касторового масла повлияло на оценку состояния новорожденного по шкале Апгара в течение первой минуты... Очень важно, чтобы перед каким-либо приемом касторового масла женщины получали от акушерки или повитухи соответствующую дозировку".

Знали ли вы, что семена касторового дерева содержат смертельные компоненты?

Несмотря на потенциально целебные свойства, необходимо знать, что касторовое дерево также содержит сильнодействующий яд под названием рицин . Он был обнаружен в сырых плодах клещевины и "смеси", полученной после обработки касторового масла; при попадании в организм через нос и рот, а также через внутривенное переливание, рицин предотвращает синтез белка и уничтожает клетки.

Рицин настолько сильное вещество, что проглатывание или вдыхание всего лишь 1 миллиграмма может привести к фатальному исходу , то есть проглатывание четырех - восьми семян клещевины может привести к смерти. Противоядия не существует , поэтому рицин даже используют в составе химического оружия.

Тем не менее, так как рицин удаляется из семян в процессе производства касторового масла, вам не нужно беспокоиться о том, что вы можете им отравиться. Итоговый отчет журнала The International Journal of Toxicology в отношении касторового масла подтверждает отсутствие опасности отравления, так как рицин не "входит" в касторовое масло, поэтому его можно смело добавлять в косметическую продукцию.

Используйте касторовое масло, но помните о возможных побочных эффектах

Как и в случае применения любого растительного масла я рекомендую осторожное использование касторового масла из-за вероятных отрицательных побочных эффектов. У людей с чувствительной кожей могут возникнуть аллергические реакции при локальном нанесении масла, поэтому перед использованием я советую провести патч-тест; для этого обильно покройте маслом большие участки кожи.

Если вы собираетесь принимать масло внутрь, помните, что рицинолеиновая кислота раздражает слизистую оболочку кишечника, что облегчает состояние при запоре. Тем не менее, масло может также привести к желудочно-кишечным расстройствам и дискомфорту, а также вызвать головокружение и тошноту. Поэтому, если вы страдаете от каких-либо проблем с пищеварением (синдром раздраженного кишечника, язвы, судороги, дивертикулит, колит или геморрой), я советую воздержаться от использования этого масла . Те, кто недавно перенес операцию, также должны воздержаться от использования касторового масла.

Это Вам будет интересно:

И наконец, убедитесь, что вы покупаете органическое касторовое масло от авторитетного производителя. Большая часть коммерческого касторового масла, продаваемого в магазинах, получают из бобов клещевины, которые, возможно, опрыскивали большим количеством пестицидов или обрабатывали растворителями и другими химическими загрязнителями, которые отрицательно влияют на его полезные компоненты и даже могут загрязнить само масло. опубликовано

Вирусы и бактерии – великое противостояние

Создание современной технологии геномного редактирования, которая уже с успехом применяется на разных животных, растениях, грибах и бактериях, базируется на исследованиях бактериальных систем CRISPR-Cas. Изначально предполагалось, что они участвуют в ликвидации повреждений бактериальной ДНК, но в 2007 г. стало ясно, что истинное предназначение этих систем – борьба с вирусами бактерий, бактериофагами. Всего за девять лет наука проделала гигантский путь от раскрытия механизма бактериального иммунитета до редактирования геномов людей – в настоящее время уже проводятся первые эксперименты по редактированию ДНК человеческих эмбрионов. У бактерий имеются и другие «иммунные» механизмы, изучение которых, возможно, создаст предпосылки для новых прорывов в биомедицине

Бактериофаги – это вирусы, которые поражают только бактерий. В ходе инфекции они влияют на все процессы жизнедеятельности бактериальной клетки, фактически превращая ее в фабрику по производству вирусного потомства. В конце концов клетка разрушается, а вновь образованные вирусные частицы выходят наружу и могут заражать новые бактерии.

Несмотря на огромное число и разнообразие природных фагов, встречаемся мы с ними редко. Однако бывают ситуации, когда деятельность этих вирусов не остается незамеченной. Например, на предприятиях, где производят сыры, йогурты и другие молочно-кислые продукты, часто приходится сталкиваться с вирусной атакой на бактерии, сбраживающие молоко. В большинстве таких случаев фаговая инфекция распространяется молниеносно, и полезные бактерии гибнут, что приводит к значительным экономическим потерям (Neve et al. , 1994).

Именно благодаря прикладным исследованиям в интересах молочной промышленности, направленным на получение устойчивых к бактериофагам штаммов молочно-кислых бактерий, был открыт ряд механизмов, с помощью которых бактерии избегают инфекции. Параллельно были изу­чены способы, с помощью которых вирусы, в свою очередь, преодолевают бактериальные системы защиты (Moineau et al. , 1993).

Кто защищен – тот вооружен

На сегодня известно пять основных, весьма хитроумных механизмов защиты, которые бактерии выработали в непрестанной борьбе с вирусами: изменение рецептора на поверхности клетки; исключение суперинфекции; системы абортивной инфекции; системы рестрикции-модификации и, наконец, системы CRISPR-Cas.

В ходе эволюции происходила и сейчас происходит селекция бактерий, способных избежать гибели при инфицировании вирусами, что, в свою очередь, служит стимулом для бактериофагов совершенствовать свои агрессивные стратегии. Эта «гонка вооружений», длящаяся несколько миллиардов лет, т. е. ровно столько, сколько существуют сами бактерии и их враги, породила целый ряд изощренных механизмов защиты и нападения

Вирусная атака начинается с прикрепления фага к специфическому рецептору на поверхности бактериальной клетки, но при потере рецептора или изменении в его структуре связывания вируса не происходит. Бактерии могут менять рецепторы в зависимости от окружающих условий, таких как плотность и разнообразие микроорганизмов в среде, а также доступность питательных веществ (Bikard et al. , 2012). Любопытный пример - ​бактерии вида Vibrio anguillarum , которые способны формировать биопленку , т. е. плотный слой клеток, прикрепленный к какой-либо поверхности. У этой бактерии имеется своего рода «чувство кворума», за счет чего при увеличении плотности клеток у них понижается выработка рецептора, с которым может связываться вирус. В результате биопленка становится почти полностью устойчивой к заражению (Tan et al. , 2015).

Однако потеря рецепторов не всегда выгодна для бактерии, поскольку они выполняют разнообразные важные функции, например, транспорт питательных веществ или формирование межклеточных контактов (Lopez-Pascua et al. , 2008). В результате для каждой пары «бактерия-бактериофаг» в ходе эволюции находится оптимальное решение, обеспечивающее приемлемый уровень защиты при сохранении возможности роста бактерий в различных условиях среды.

Следующий защитный механизм – исключение супер­инфекции . Для бактериофагов известны два основных пути инфекции: литический , приводящий к быстрой гибели зараженной бактерии с высвобождением вирусного потомства, и затяжной лизогенный путь, когда наследственный материал вируса находится внутри генома бактерии, удваивается только с хозяйской ДНК, не причиняя клетке вреда. Когда клетка находится в состоянии лизогенной инфекции, то, с точки зрения «домашнего» вируса (профага ), ее заражение другим вирусом нежелательно.

Действительно, многие вирусы, встроившие свою ДНК в геном клетки, ограничивают вновь проникшего в клетку бактериофага («суперинфекцию») посредством специальных белков-репрессоров, не позволяющих генам «пришельца» работать (Calendar, 2006). А некоторые фаги даже препятствуют другим вирусным частицам проникнуть в инфицированную ими клетку, воздействуя на ее рецепторы. В результате бактерии – носительницы вируса имеют очевидное преимущество по сравнению с незараженными собратьями.

В 1978 г. за открытие ферментов рестриктаз швейцарский генетик В. Арбер и американские микробиологи Д. Натанс и Г. Смит были удостоены Нобелевской премии. Изучение систем рестрикции-модификации привело к созданию технологии молекулярного клонирования, которая широко применяется во всем мире. С помощью рестриктаз можно «вырезать» гены из генома одного организма и вставить в геном другого, получив химерную рекомбинантную ДНК, не существующую в природе. Различные вариации этого подхода используются учеными для изолирования отдельных генов и их дальнейшего изучения. Кроме того, он широко применяется в фармацевтике, например, для наработки инсулина или терапевтических антител: все лекарства такого рода созданы с помощью молекулярного клонирования, т. е. являются продуктом генной модификации

Во время инфекции все ресурсы бактериальной клетки направлены на производство новых вирусных частиц. Если рядом с такой клеткой будут находиться другие уязвимые бактерии, то инфекция быстро распространится и приведет к гибели большинства из них. Однако для таких случаев у бактерии имеются так называемые системы абортивной инфекции , которые приводят ее к запрограммированной гибели. Конечно, этот «альтруистичный» механизм не спасет саму зараженную клетку, но остановит распространение вирусной инфекции, что выгодно для всей популяции. Бактериальные системы абортивной инфекции очень разнообразны, но детали их функционирования пока изучены недостаточно.

К средствам противовирусной защиты бактерий относятся и системы рестрикции-модификации , в которые входят гены, кодирующие два белка-фермента – рестриктазу и метилазу . Рестриктаза узнает определенные последовательности ДНК длиной 4-6 нуклеотидов и вносит в них двуцепочечные разрывы. Метилаза, напротив, ковалентно модифицирует эти последовательности, добавляя к отдельным нуклеотидным основаниям метильные группы, что предотвращает их узнавание рестриктазой.

В ДНК бактерии, содержащей такую систему, все сайты модифицированы. И если бактерия заражается вирусом, ДНК которого не содержит подобной модификации, рестриктаза защитит от инфекции, разрушив вирусную ДНК. Многие вирусы «борются» с системами рестрикции-модификации, не используя в своих геномах последовательности, узнаваемые рестриктазой, – очевидно, что вирусные варианты с другой стратегией просто не оставили потомства.

Последней и в настоящее время самой интересной системой бактериального иммунитета является система CRISPR-Cas, с помощью которой бактерии способны «записывать» в собственный геном и передавать потомству информацию о фагах, с которыми они сталкивались в течение жизни. Наличие таких «воспоминаний» позволяет распознавать ДНК фага и эффективней противостоять ему при повторных инфекциях. В настоящее время к системам CRISPR-Cas приковано пристальное внимание, так как они стали основой революционной технологии редактирования геномов, которая в будущем, возможно, позволит лечить генетические заболевания и создавать новые породы и сорта сельскохозяйственных животных и растений.

Врага нужно знать в лицо

Системы CRISPR-Cas являются уникальным примером адаптивного иммунитета бактерий. При проникновении в клетку ДНК фага специальные белки Cas встраивают фрагменты вирусной ДНК длиной 25-40 нуклеотидов в определенный участок генома бактерии (Barrangou et al. , 2007). Такие фрагменты называются спейсерами (от англ. spacer – промежуток), участок, где происходит встраивание, – CRISPR-кассета (от англ. Clustered Regularly Interspaced Short Palindromic Repeats ), а сам процесс приобретения спейсеров – ​адаптацией .

Чтобы использовать спейсеры в борьбе с фаговой инфекцией, в клетке должен происходить еще один процесс, управляемый белками Cas, названный интерференцией . Суть его в том, что в ходе транскрипции CRISPR-кассеты образуется длинная молекула РНК, которая разрезается белками Cas на короткие фрагменты – защитные криспрРНК (крРНК), каждая из которых содержит один спейсер. Белки Cas вместе с молекулой крРНК образуют эффекторный комплекс , который сканирует всю ДНК клетки на наличие последовательностей, идентичных спейсеру (протоспейсеров ). Найденные протоспейсеры расщепляются белками Cas (Westra et al. , 2012; Jinek et al. , 2012).

Системы CRISPR-Cas обнаружены у большинства прокариот – бактерий и архей. Хотя общий принцип действия всех известных систем CRISPR-Cas одинаков, механизмы их работы могут существенно отличаться в деталях. Наибольшие различия проявляются в строе­нии и функционировании эффекторного комплекса, в связи с чем системы CRISPR-Cas делят на несколько типов. На сегодняшний день описаны шесть типов таких неродственных друг другу систем (Makarova et al. , 2015; Shmakov et al. , 2015).

Наиболее изученной является система CRISPR-Cas I типа, которой обладает излюбленный объект молекулярно-биологических исследований – бактерия кишечная палочка (Esсherichia coli ). Эффекторный комплекс в этой системе состоит из нескольких небольших белков Cas, каждый из которых отвечает за разные функции: разрезание длинной некодирующей CRISPR РНК, связывание коротких крРНК, поиск, а затем разрезание ДНК-мишени.

В системах II типа эффекторный комплекс образован единственным большим белком Cas9, который в одиночку справляется со всеми задачами. Именно простота и относительная компактность таких систем послужили основой для разработки технологии редактирования ДНК. Согласно этому методу, в клетки эукариот (например, человека) доставляют бактериальный белок Сas9 и крРНК, которую называют гидовой (гРНК). Вместо спейсера вирусного происхождения такая гРНК содержит целевую последовательность, соответствующую интересному для исследователя участку генома, например, где есть мутация, вызывающая какую-то болезнь. Получить же гРНК «на любой вкус» совсем несложно.

Эффекторный комплекс Cas9-гРНК вносит двуцепочечный разрыв в последовательность ДНК, точно соответствующую «гидовой» РНК. Если вместе с Cas9 и гРНК внести в клетку и последовательность ДНК, не содержащую мутацию, то место разрыва будет восстановлено по матрице «правильной» копии! Таким образом, используя разные гРНК, можно исправлять нежелательные мутации или вводить направленные изменения в гены-мишени. Высокая точность программируемого узнавания мишеней комплексом Cas9-гРНК и простота метода привели к лавинообразному росту работ по редактированию геномов клеток животных и растений (Jiang & Marraffini, 2015).

Гонка вооружений

В ходе эволюции бактерии и бактериофаги выработали ряд приспособлений, которые должны обеспечить каждому из участников «гонки вооружений» преимущество в борьбе с противником или возможность уклониться от его атаки.

Бактериофаги, как факторы среды, вызывают направленные изменения в геноме бактерий, которые наследуются и дают бактериям явное преимущество, спасая от повторных инфекций. Поэтому системы CRISPR-Cas можно считать примером ламарковской эволюции, при которой происходит наследование благоприобретенных признаков (Koonin et al. , 2009)

Что касается систем CRISPR-Cas, то если фаг обзаведется мутацией в протоспейсере, эффективность его узнавания эффекторным комплексом снижается, и фаг получает возможность заразить клетку. Но и бактерия не оставит без внимания такую попытку ускользнуть от CRISPR-Cas: в качестве ответной реакции она начинает с резко возросшей эффективностью приобретать новые дополнительные спейсеры из ДНК уже «знакомого» фага, пусть и мутировавшего. Такое явление, названное праймированной адаптацией, многократно повышает эффективность защитного действия систем CRISPR-Cas (Datsenko et al. , 2012).

Некоторые бактериофаги реагируют на наличие в бактериальной клетке систем CRISPR-Cas выработкой особых анти CRISPR-белков, способных связываться с белками Cas и блокировать их функции (Bondy-Denomy et al. , 2015). Еще одно ухищрение - обмен участков генома вируса, на которые нацелена система CRISPR-Cas, на участки геномов родственных вирусов, отличающихся по составу нуклеотидной последовательности (Paez-Espino et al. , 2015).

Результаты работ нашей лаборатории свидетельствуют, что зараженные клетки на самом деле погибают даже при наличии защиты CRISPR-Cas, но при этом они ограничивают численность вирусного потомства. Поэтому CRISPR-Cas правильнее относить к системам абортивной инфекции, а не к «настоящим» иммунным системам.

Благодаря постоянному совершенствованию биоинформатических алгоритмов поиска, а также включению в анализ все большего количества прокариотических геномов, открытие новых типов CRISPR-Cas систем является делом недалекого будущего. Предстоит также выяснить и детальные механизмы работы многих недавно открытых систем. Так, в статье, опубликованной в 2016 г. в журнале Science и посвященной анализу системы CRISPR-Cas VI типа, описан белок С2с2, образующий эффекторный комплекс с крРНК, который нацелен на деградацию не ДНК, а РНК (Abudayyeh et al. , 2016). В будущем такое необычное свойство может быть использовано в медицине для регулирования активности генов путем изменения количества кодируемых ими РНК.

Изучение стратегий борьбы бактерий с бактериофагами, несмотря на свою кажущуюся фундаментальность и отвлеченность от задач практической медицины, принесло неоценимую пользу человечеству. Примерами этого могут служить методы молекулярного клонирования и редактирования геномов – направленного внесения или удаления мутаций и изменения уровня транскрипции определенных генов.

Благодаря быстрому развитию методов молекулярной биологии всего лишь через несколько лет после открытия механизма действия систем CRISPR-Cas была создана работающая технология геномного редактирования, способная бороться с болезнями, ранее считавшимися неизлечимыми. Доступность и простота этой технологии позволяют рассматривать ее как основу для медицины, ветеринарии, сельского хозяйства и биотехнологий будущего, которые будут базироваться на направленных и безопасных генных модификациях.

Нет никаких сомнений, что дальнейшее изучение взаимодействия бактерий и их вирусов может открыть перед нами такие возможности, о которых мы сейчас даже не подозреваем.

Литература

Abudayyeh O. O., Gootenberg J. S., Konermann S. et al. C 2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector // Science. 2016. V. 353: aaf5573.

Barrangou R., Fremaux C., Deveau H. et al. CRISPR provides acquired resistance against viruses in prokaryotes // Science. 2007. V. 315. P. 1709–1712.

Bikard D., Marraffini L. A. Innate and adaptive immunity in bacteria: mechanisms of programmed genetic variation to fight bacteriophages // Curr. Opin. Immunol. 2012. V. 1 P. 15–20.

Bondy-Denomy J., Garcia B., Strum S. et al. Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins // Nature. 2015. V. 526. P. 136–139.

Calendar R., Abedon S. T. The Bacteriophages // 2nd Ed., Oxford University Press. 2006.

Datsenko K. A., Pougach K., Tikhonov A. et al. Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system // Nat. Commun. 2012. V. 3. P. 945

Jiang W., Marraffini L. A. CRISPR-Cas: New Tools for Genetic Manipulations from Bacterial Immunity Systems // Annu. Rev. Microbiol. 2015. V. 69. P. 209–28.

Jinek M., Chylinski K., Fonfara I., et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity // Science. 2012. V. 337. P. 816–821.

Koonin E. V., Wolf Y. I. Is evolution Darwinian or/and Lamarckian? // Biol. Direct. 2009. V. 4. P. 42.

Lopez-Pascua L., Buckling A. Increasing productivity accelerates host-parasite coevolution // J. Evol. Biol. 2008. V. 3. P. 853–860.

Makarova K. S., Wolf Y. I., et al. An updated evolutionary classification of CRISPR-Cas systems // Nat. Rev. Microbiol. 2015. V. 11. P. 722–736.

Moineau, S., Pandian S., Klaenhammer T. R. Restriction/modification systems and restriction endonucleases are more effective on lactococcal bacteriophages that have emerged recently in the dairy industry // Appl. Envir. Microbiol. 1993. V. 59. P. 197–202.

Neve H., Kemper U., et al. Monitoring and characterization of lactococcal bacteriophage in a dairy plant // Kiel. Milckwirtsch. Forschungsber. 1994. V. 46. P. 167–178.

Nuñez J. K., Harrington L. B., et al. Foreign DNA capture during CRISPR-Cas adaptive immunity // Nature. 2015a. V. 527. P. 535–538.

Nuñez J. K., Kranzusch P. J., et al. Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity // Nat. Struct. Mol. Biol. 2014. V. 21. P. 528–534.

Nuñez J. K., Lee A. S., Engelman A., Doudna J. A. Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity // Nature. 2015b. V. 519. P. 193–198.

Paez-Espino D., Sharon I., et al. CRISPR Immunity Drives Rapid Phage Genome Evolution in Streptococcus thermophilus // MBio. 2015. V. 6: e00262–15.

Shmakov S., Abudayyeh O. O., Makarova K. S., et al. Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. // Mol. Cell. 2015. V. 60. P. 385–397

Tan D., Svenningsen S. L., Middelboe M. Quorum sensing determines the choice of antiphage defense strategy in Vibrio anguillarum. // mBio 2015. V. 6: e00627–15.

Westra E. R., van Erp P. B., Künne T., et al. CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3 // Mol. Cell. 2012. V. 46. P. 595–605.