Главная · Гастрит · Какая из функций является четной. Четные и нечетные функции. Периодические функции

Какая из функций является четной. Четные и нечетные функции. Периодические функции

Скрыть Показать

Способы задания функции

Пусть функция задается формулой: y=2x^{2}-3 . Назначая любые значения независимой переменной x , можно вычислить, пользуясь данной формулой соответствующие значения зависимой переменной y . Например, если x=-0,5 , то, пользуясь формулой, получаем, что соответствующее значение y равно y=2 \cdot (-0,5)^{2}-3=-2,5 .

Взяв любое значение, принимаемое аргументом x в формуле y=2x^{2}-3 , можно вычислить только одно значение функции, которое ему соответствует. Функцию можно представить в виде таблицы:

x −2 −1 0 1 2 3
y −4 −3 −2 −1 0 1

Пользуясь данной таблицей, можно разобрать, что для значения аргумента −1 будет соответствовать значение функции −3 ; а значению x=2 будет соответствовать y=0 и т.д. Также важно знать, что каждому значению аргумента в таблице соответствует лишь одно значение функции.

Еще функции возможно задать, используя графики. С помощью графика устанавливается какое значение функции соотносится с определенным значением x . Наиболее часто, это будет приближенное значение функции.

Четная и нечетная функция

Функция является четной функцией , когда f(-x)=f(x) для любого x из области определения. Такая функция будет симметрична относительно оси Oy .

Функция является нечетной функцией , когда f(-x)=-f(x) для любого x из области определения. Такая функция будет симметрична относительно начала координат O (0;0) .

Функция является ни четной , ни нечетной и называется функцией общего вида , когда она не обладает симметрией относительно оси или начала координат.

Исследуем на четность нижеприведенную функцию:

f(x)=3x^{3}-7x^{7}

D(f)=(-\infty ; +\infty) с симметричной областью определения относительно начала координат. f(-x)= 3 \cdot (-x)^{3}-7 \cdot (-x)^{7}= -3x^{3}+7x^{7}= -(3x^{3}-7x^{7})= -f(x) .

Значит, функция f(x)=3x^{3}-7x^{7} является нечетной.

Периодическая функция

Функция y=f(x) , в области определения которой для любого x выполняется равенство f(x+T)=f(x-T)=f(x) , называется периодической функцией с периодом T \neq 0 .

Повторение графика функции на любом отрезке оси абсцисс, который имеет длину T .

Промежутки, где функция положительная, то есть f(x) > 0 - отрезки оси абсцисс, которые отвечают точкам графика функции, лежащих выше оси абсцисс.

f(x) > 0 на (x_{1}; x_{2}) \cup (x_{3}; +\infty)

Промежутки, где функция отрицательная, то есть f(x) < 0 - отрезки оси абсцисс, которые отвечают точкам графика функции, лежащих ниже оси абсцисс.

f(x) < 0 на (-\infty; x_{1}) \cup (x_{2}; x_{3})

Ограниченность функции

Ограниченной снизу принято называть функцию y=f(x), x \in X тогда, когда существует такое число A , для которого выполняется неравенство f(x) \geq A для любого x \in X .

Пример ограниченной снизу функции: y=\sqrt{1+x^{2}} так как y=\sqrt{1+x^{2}} \geq 1 для любого x .

Ограниченной сверху называется функция y=f(x), x \in X тогда, когда существует такое число B , для которого выполняется неравенство f(x) \neq B для любого x \in X .

Пример ограниченной снизу функции: y=\sqrt{1-x^{2}}, x \in [-1;1] так как y=\sqrt{1+x^{2}} \neq 1 для любого x \in [-1;1] .

Ограниченной принято называть функцию y=f(x), x \in X тогда, когда существует такое число K > 0 , для которого выполняется неравенство \left | f(x) \right | \neq K для любого x \in X .

Пример ограниченной функции: y=\sin x ограничена на всей числовой оси, так как \left | \sin x \right | \neq 1 .

Возрастающая и убывающая функция

О функции, что возрастает на рассматриваемом промежутке принято говорить как о возрастающей функции тогда, когда большему значению x будет соответствовать большее значение функции y=f(x) . Отсюда выходит, что взяв из рассматриваемого промежутка два произвольных значения аргумента x_{1} и x_{2} , причем x_{1} > x_{2} , будет y(x_{1}) > y(x_{2}) .

Функция, что убывает на рассматриваемом промежутке, называется убывающей функцией тогда, когда большему значению x будет соответствовать меньшее значение функции y(x) . Отсюда выходит, что взяв из рассматриваемого промежутка два произвольных значений аргумента x_{1} и x_{2} , причем x_{1} > x_{2} , будет y(x_{1}) < y(x_{2}) .

Корнями функции принято называть точки, в которых функция F=y(x) пересекает ось абсцисс (они получаются в результате решения уравнения y(x)=0 ).

а) Если при x > 0 четная функция возрастает, то убывает она при x < 0

б) Когда при x > 0 четная функция убывает, то возрастает она при x < 0

в) Когда при x > 0 нечетная функция возрастает, то возрастает она и при x < 0

г) Когда нечетная функция будет убывать при x > 0 , то она будет убывать и при x < 0

Экстремумы функции

Точкой минимума функции y=f(x) принято называть такую точку x=x_{0} , у которой ее окрестность будет иметь остальные точки (кроме самой точки x=x_{0} ), и для них тогда будет выполняться неравенство f(x) > f(x_{0}) . y_{min} - обозначение функции в точке min.

Точкой максимума функции y=f(x) принято называть такую точку x=x_{0} , у которой ее окрестность будет иметь остальные точки (кроме самой точки x=x_{0} ), и для них тогда будет выполняется неравенство f(x) < f(x^{0}) . y_{max} - обозначение функции в точке max.

Необходимое условие

Согласно теореме Ферма: f"(x)=0 тогда, когда у функции f(x) , что дифференцируема в точке x_{0} , появится экстремум в этой точке.

Достаточное условие
  • Когда у производной знак меняется с плюса на минус, то x_{0} будет точкой минимума;
  • x_{0} - будет точкой максимума только тогда, когда у производной меняется знак с минуса на плюс при переходе через стационарную точку x_{0} .
  • Наибольшее и наименьшее значение функции на промежутке

    Шаги вычислений:

  • Ищется производная f"(x) ;
  • Находятся стационарные и критические точки функции и выбирают принадлежащие отрезку ;
  • Находятся значения функции f(x) в стационарных и критических точках и концах отрезка. Меньшее из полученных результатов будет являться наименьшим значением функции , а большее — наибольшим .
  • Определение 1. Функцияназываетсячетной (нечетной ), если вместе с каждым значением переменной
    значение –х также принадлежит
    и выполняется равенство

    Таким образом, функция может быть четной или нечетной только тогда, когда ее область определения симметрична относительно начала координат на числовой прямой (числа х и –х одновременно принадлежат
    ). Например, функция
    не является четной и нечетной, так как ее область определения
    не симметрична относительно начала координат.

    Функция
    четная, так как
    симметрична относительно начала координат и.

    Функция
    нечетная, так как
    и
    .

    Функция
    не является четной и нечетной, так как хотя
    и симметрична относительно начала координат, равенства (11.1) не выполняются. Например,.

    График четной функции симметричен относительно оси Оу , так как если точка

    тоже принадлежит графику. График нечетной функции симметричен относительно начала координат, так как если
    принадлежит графику, то и точка
    тоже принадлежит графику.

    При доказательстве четности или нечетности функции бывают полезны следующие утверждения.

    Теорема 1. а) Сумма двух четных (нечетных) функций есть функция четная (нечетная).

    б) Произведение двух четных (нечетных) функций есть функция четная.

    в) Произведение четной и нечетной функций есть функция нечетная.

    г) Если f – четная функция на множествеХ , а функцияg определена на множестве
    , то функция
    – четная.

    д) Если f – нечетная функция на множествеХ , а функцияg определена на множестве
    и четная (нечетная), то функция
    – четная (нечетная).

    Доказательство . Докажем, например, б) и г).

    б) Пусть
    и
    – четные функции. Тогда, поэтому. Аналогично рассматривается случай нечетных функций
    и
    .

    г) Пусть f – четная функция. Тогда.

    Остальные утверждения теоремы доказываются аналогично. Теорема доказана.

    Теорема 2. Любую функцию
    , заданную на множествеХ , симметричном относительно начала координат, можно представить в виде суммы четной и нечетной функций.

    Доказательство . Функцию
    можно записать в виде

    .

    Функция
    – четная, так как
    , а функция
    – нечетная, поскольку. Таким образом,
    , где
    – четная, а
    – нечетная функции. Теорема доказана.

    Определение 2. Функция
    называетсяпериодической , если существует число
    , такое, что при любом
    числа
    и
    также принадлежат области определения
    и выполняются равенства

    Такое число T называетсяпериодом функции
    .

    Из определения 1 следует, что если Т – период функции
    , то и число –Т тоже является периодом функции
    (так как при заменеТ на –Т равенство сохраняется). С помощью метода математической индукции можно показать, что еслиТ – период функцииf , то и
    , тоже является периодом. Отсюда следует, что если функция имеет период, то она имеет бесконечно много периодов.

    Определение 3. Наименьший из положительных периодов функции называется ееосновным периодом.

    Теорема 3. ЕслиТ – основной период функцииf , то остальные периоды кратны ему.

    Доказательство . Предположим противное, то есть что существует периодфункцииf (>0), не кратныйТ . Тогда, разделивнаТ с остатком, получим
    , где
    . Поэтому

    то есть – период функцииf , причем
    , а это противоречит тому, чтоТ – основной период функцииf . Из полученного противоречия следует утверждение теоремы. Теорема доказана.

    Хорошо известно, что тригонометрические функции являются периодическими. Основной период
    и
    равен
    ,
    и
    . Найдем период функции
    . Пусть
    - период этой функции. Тогда

    (так как
    .

    илиилиили
    .

    Значение T , определяемое из первого равенства, не может быть периодом, так как зависит отх , т.е. является функцией отх , а не постоянным числом. Период определяется из второго равенства:
    . Периодов бесконечно много, при
    наименьший положительный период получается при
    :
    . Это – основной период функции
    .

    Примером более сложной периодической функции является функция Дирихле

    Заметим, что если T – рациональное число, то
    и
    являются рациональными числами при рациональномх и иррациональными при иррациональномх . Поэтому

    при любом рациональном числе T . Следовательно, любое рациональное числоT является периодом функции Дирихле. Ясно, что основного периода у этой функции нет, так как есть положительные рациональные числа, сколь угодно близкие к нулю (например, рациональное числоможно сделать выборомn сколь угодно близким к нулю).

    Теорема 4. Если функцияf задана на множествеХ и имеет периодТ , а функцияg задана на множестве
    , то сложная функция
    тоже имеет периодТ .

    Доказательство . Имеем, поэтому

    то есть утверждение теоремы доказано.

    Например, так как cos x имеет период
    , то и функции
    имеют период
    .

    Определение 4. Функции, не являющиеся периодическими, называютсянепериодическими .

    Преобразование графиков.

    Словесное описание функции.

    Графический способ.

    Графический способ задания функции является наиболее наглядным и часто применяется в технике. В математическом анализе графический способ задания функций используется в качестве иллюстрации.

    Графиком функции f называют множество всех точек (x;y) координатной плоскости, где y=f(x), а x «пробегает» всю область определения данной функции.

    Подмножество координатной плоскости является графиком какой-либо функции, если оно имеет не более одной общей точки с любой прямой, параллельной оси Оу.

    Пример. Является ли графиками функций фигуры, изображенные ниже?

    Преимуществом графического задания является его наглядность. Сразу видно, как ведёт себя функция, где возрастает, где убывает. По графику сразу можно узнать некоторые важные характеристики функции.

    Вообще, аналитический и графический способы задания функции идут рука об руку. Работа с формулой помогает построить график. А график частенько подсказывает решения, которые в формуле и не заметишь.

    Почти любой ученик знает три способа задания функции, которые мы только что рассмотрели.

    Попытаемся ответить на вопрос: "А существуют ли другие способы задания функции?"

    Такой способ есть.

    Функцию можно вполне однозначно задать словами.

    Например, функцию у=2х можно задать следующим словесным описанием: каждому действительному значению аргумента х ставится в соответствие его удвоенное значение. Правило установлено, функция задана.

    Более того, словесно можно задать функцию, которую формулой задать крайне затруднительно, а то и невозможно.

    Например: каждому значению натурального аргумента х ставится в соответствие сумма цифр, из которых состоит значение х. Например, если х=3, то у=3. Если х=257, то у=2+5+7=14. И так далее. Формулой это записать проблематично. А вот табличку легко составить.

    Способ словесного описания - достаточно редко используемый способ. Но иногда встречается.

    Если есть закон однозначного соответствия между х и у - значит, есть функция. Какой закон, в какой форме он выражен - формулой, табличкой, графиком, словами – сути дела не меняет.

    Рассмотрим функции, области определения которых симметричны относительно начала координат, т.е. для любого х из области определения число (-х ) также принадлежит области определения. Среди таких функций выделяют четные и нечетные .

    Определение. Функция f называется четной , если для любого х из ее области определения

    Пример. Рассмотрим функцию

    Она является четной. Проверим это.



    Для любого х выполнены равенства

    Таким образом, у нас выполняются оба условия, значит функция четная. Ниже представлен график этой функции.

    Определение. Функция f называется нечетной , если для любого х из ее области определения

    Пример. Рассмотрим функцию

    Она является нечетной. Проверим это.

    Область определения вся числовая ось, а значит, она симметрична относительно точки (0;0).

    Для любого х выполнены равенства

    Таким образом, у нас выполняются оба условия, значит функция нечетная. Ниже представлен график этой функции.

    Графики, изображенные на первом и третьем рисунках симметричны относительно оси ординат, а графики, изображенные на втором и четвертом рисункам симметричны относительно начала координат.

    Какие из функций, графики которых изображены на рисунках являются четными, а какие нечетными?

    Как вставить математические формулы на сайт?

    Если нужно когда-никогда добавлять одну-две математические формулы на веб-страницу, то проще всего сделать это, как описано в статье : математические формулы легко вставляются на сайт в виде картинок, которые автоматически генерирует Вольфрам Альфа. Кроме простоты, этот универсальный способ поможет улучшить видимость сайта в поисковых системах. Он работает давно (и, думаю, будет работать вечно), но морально уже устарел.

    Если же вы постоянно используете математические формулы на своем сайте, то я рекомендую вам использовать MathJax - специальную библиотеку JavaScript, которая отображает математические обозначения в веб-браузерах с использованием разметки MathML, LaTeX или ASCIIMathML.

    Есть два способа, как начать использовать MathJax: (1) при помощи простого кода можно быстро подключить к вашему сайту скрипт MathJax, который будет в нужный момент автоматически подгружаться с удаленного сервера (список серверов ); (2) закачать скрипт MathJax с удаленного сервера на свой сервер и подключить ко всем страницам своего сайта. Второй способ - более более сложный и долгий - позволит ускорить загрузку страниц вашего сайта, и если родительский сервер MathJax по каким-то причинам станет временно недоступен, это никак не повлияет на ваш собственный сайт. Несмотря на эти преимущества, я выбрал первый способ, как более простой, быстрый и не требующий технических навыков. Следуйте моему примеру, и уже через 5 минут вы сможете использовать все возможности MathJax на своем сайте.

    Подключить скрипт библиотеки MathJax с удаленного сервера можно при помощи двух вариантов кода, взятого на главном сайте MathJax или же на странице документации :

    Один из этих вариантов кода нужно скопировать и вставить в код вашей веб-станицы, желательно между тегами и или же сразу после тега . По первому варианту MathJax подгружается быстрее и меньше тормозит страницу. Зато второй вариант автоматически отслеживает и подгружает свежие версии MathJax. Если вставить первый код, то его нужно будет периодически обновлять. Если вставить второй код, то страницы будут загружаться медленнее, зато вам не нужно будет постоянно следить за обновлениями MathJax.

    Подключить MathJax проще всего в Blogger или WordPress: в панели управления сайтом добавьте виджет, предназначенный для вставки стороннего кода JavaScript, скопируйте в него первый или второй вариант кода загрузки, представленного выше, и разместите виджет поближе к началу шаблона (кстати, это вовсе не обязательно, поскольку скрипт MathJax загружается асинхронно). Вот и все. Теперь изучите синтаксис разметки MathML, LaTeX и ASCIIMathML, и вы готовы вставлять математические формулы на веб-страницы своего сайта.

    Любой фрактал строится по определенному правилу, которое последовательно применяется неограниченное количество раз. Каждый такой раз называется итерацией.

    Итеративный алгоритм построения губки Менгера достаточно простой: исходный куб со стороной 1 делится плоскостями, параллельными его граням, на 27 равных кубов. Из него удаляются один центральный куб и 6 прилежащих к нему по граням кубов. Получается множество, состоящее из 20 оставшихся меньших кубов. Поступая так же с каждым из этих кубов, получим множество, состоящее уже из 400 меньших кубов. Продолжая этот процесс бесконечно, получим губку Менгера.