Главная · Гастрит · Иммунитет физиология. Физиология иммунной системы

Иммунитет физиология. Физиология иммунной системы

ИММУНИТЕТ Более эффективным способом защиты внутренней среды организма от проникающих в нее чужеродных агентов (антигенов) является специфический иммунный ответ, в результате которого организм приобретает дополнительные защитные механизмы: активированные клетки и продуцируемые ими молекулы. Защитное действие этих механизмов строго избирательно (специфично) в отношении того конкретного антигена (например, патогенного микроорганизма), контакт с которым вызвал иммунный ответ. Специфический иммунный ответ является функцией клеток и органов иммунной системы.

Лимфоциты являются центральным звеном иммунной системы организма. Они осуществляют формирование специфического иммунитета, синтез защитных антител, лизис чужеродных клеток, реакцию отторжения трансплантата, обеспечивают иммунную память. Лимфоциты образуются в костном мозге, а дифференцировку проходят в тканях.

Лимфоциты, созревание которых происходит в вилочковой железе, называются Т-лимфоцитами (тимусзависимые). Различают несколько форм Тлимфоцитов. Т-КИЛЛЕРЫ (УБИЙЦЫ) осуществляют реакции клеточного иммунитета, лизируя чужеродные клетки, возбудителей инфекционных заболеваний, опухолевые клетки, клетки-мутанты. Т-ХЕЛПЕРЫ (ПОМОЩНИКИ), взаимодействуя с В-лимфоцитами, превращают их в плазматические клетки, т. е. помогают течению гуморального им мунитета. Т-СУПРЕССОРЫ (УГНЕТАТЕЛИ) блокируют чрезмерные реакции Влимфоцитов. Имеются также Т-хелперы и Т-супрессоры, регулирующие клеточный иммунитет. Т-КЛЕТКИ ПАМЯТИ хранят информацию о ранее действующих антигенах.

ТИПЫ МОЛЕКУЛ НА ПОВЕРХНОСТИ Т-ЛИМФОЦИТОВ МОЛЕКУЛЫ Антигенраспознающий рецептор (Т-клеточный рецептор) Корецепторы: СD 4, СD 8 ФУНКЦИИ Распознавание и связывание комплекса: антигенный пептид+собственная молекула главного комплекса гистосовместимости Участвуют в связывании молекулы главного комплекса гистосовместимости

Адгезия лимфоцитов к эндотелиальньим клеткам, к антигенпредставля. Адгезионные молекулы ющим клеткам, к элементам внеклеточного матрикса Костимулирующие Участвуют в активации молекулы Т-лимфоцитов после взаимодействия с антигеном

При развитии специфического иммунного ответа Тлимфоциты в лимфатических узлах, селезенке и мукозноассоциированных лимфоидных тканях выполняют секреторные и эффекторные функции. Активированные Т-лимфоциты продуцируют и секретируют молекулы цитокинов. Цитокины связываются со специфическими рецепторами на поверхности клеток-мишеней. Соединение цитокина с его рецептором порождает сигнал активации, который передается соответствующими факторами трансдукции к ядру клетки-мишени, где начинают функционировать определенные гены, контролирующие функции клеток.

Цитокины подразделяются на пять групп: Интерлейкины –цитокины, обеспечивающие взаимодействие между различными видами лейкоцитов Интерфероны – обладающие противовирусной, противоопухолевой, иммунорегуляторной активностью Факторы некроза опухолей- цитокины, обладающие цитолитической активностью Хемокины – разновидность цитокинов, обеспечивающих поступление лейкоцитов в очаг повреждения или воспаления Колониестимулирующие факторы – гемопоэтические цитокины

Активированные СD 8+ (цитотоксические) Т -лимфоциты выполняют эффекторную функцию цитотоксических Т-лимфоцитов (СТL): распознают своими рецепторами и убивают клетки-мишени, несущие на своей поверхности соответствующий по специфичности антигенный пептид. При непосредственном контакте СТL с клеткой -мишенью содержимое гранул СТL (цитотоксины: перфорины и гранзимы) проникают в клетку-мишень и вызывают ее гибель. Этот механизм называется ПЕРФОРИНЗАВИСИМЫЙ МЕХАНИЗМ.

ПЕРФОРИНЗАВИСИМЫЙ МЕХАНИЗМ Активированный белок- перфорин, продуцируемый Т-киллерами, погрузившись в мембрану клетки, полимеризуется, а образовавшиеся поры служат проводником для гранзимов, ускоряющих лизис. После проникновения в клетку, гранзимы активируют ферменты – каспаразы (сериновые протеазы). В результате этого происходит активация эндонуклеазы и деградация ДНК. Это ведет к сегментации ДНК с отделением сегментов клеток-мишеней.

В-ЛИМФОЦИТЫ (БУРСОЗАВИСИМЫЕ) проходят дифференцировку у человека в лимфоидной ткани кишечника, нёбных и глоточных миндалин. В-лимфоциты осуществляют реакции гуморального иммунитета. Большинство Влимфоцитов являются антителопродуцентами. Влимфоциты в ответ на действие антигенов в результате сложных взаимодействий с Тлимфоцитами и моноцитами превращаются в плазматические клетки. Плазматические клетки вырабатывают антитела, которые распознают и специфически связывают соответствующие антигены. 0 -ЛИМФОЦИТЫ (НУЛЕВЫЕ) не проходят дифференцировку и являются как бы резервом Ти В-лимфоцитов.

ТИПЫ МОЛЕКУЛ НА ПОВЕРХНОСТИ ВЛИМФОЦИТОВ МОЛЕКУЛЫ ФУНКЦИИ Антигенраспознающий Распознавание и рецептор имсвязывание антигена муноглобулиновой природы Адгезионные молекулы Адгезия лимфоцитов к эндотелиальным клеткам, к элементам внеклеточного матрикса

Костимулирующие молекулы Рецепторы иммуноглобулинов Рецепторы компонентов комплемента Молекулы главного комплекса гистосовместимости Рецепторы цитокинов Участвуют в активации В-лимфоцитов после взаимодействия с антигеном Связывают иммунные комплексы Участвуют в связывании иммунных комплексов Участвуют в презентации антигенов Связывают цитокины

АНТИГЕНПРЕДСТАВЛЯЮЩИЕ КЛЕТКИ Способностью представлять (презентировать) антигенные пептиды Т-лимфоцитам обладают антигенпредставляющие клетки: дендритные клетки, макрофаги и В-лимфоциты. Дендритные клетки, как и макрофаги и лимфоциты, имеют гемопоэтическое происхождение. Они локализованы в эпителии кишечника, урогенитального тракта, воздухоносных путей, легких, в эпидермисе кожи, интерстициальных пространствах.

Презентации антигенных пептидов предшествуют стадии: 1) захвата поступившего в организм антигена 2) его переработки (дезинтеграции) 3) формирования комплексов накопившихся антигенных пептидов с собственными молекулами главного комплекса гистосовместимости, постоянно синтезирующиеся в этих клетках

4) транспортировки образовавшихся комплексов на мембрану антигенпрезентирующей клетки 5) доставки во вторичные лимфоидные органы, где и происходит встреча с Тлимфоцитами и распознавание образовавшегося комплекса Т-клеточным рецептором.

СТРУКТУРА И ФУНКЦИИ ОРГАНОВ ИММУННОЙ СИСТЕМЫ К органам иммунной системы относятся: - центральные (первичные): костный мозг и тимус, - периферические (вторичные): селезенка, лимфатические узлы, ассоциированная со слизистыми оболочками (мукозно-ассоциированная) лимфоидная ткань.

В центральных органах иммунной системы постоянно идут процессы пролиферации клеток-предшественниц Т- и В-лимфоцитов, их созревания (дифференцировки), их отбора (селекции), сопровождающиеся их частичной гибелью или транспортировкой созревающих клеток через кровь в периферические органы.

Периферические органы иммунной системы являются местом встречи Т- и В-лимфоцитов с поступающими туда антигенами, местом распознавания антигенов и развития последовательных стадий специфического иммунного ответа на данный антиген. Распознавание антигена лимфоцитом служит сигналом его усиленной пролиферации, ускоренной дифференцировки и активации. Влимфоциты после активации в периферических органах иммунной системы дифференцируются в плазматические клетки, продуцирующие и секретирующие антитела - иммуноглобулины.

КОСТНЫЙ МОЗГ Продолжая функцию эмбриональной печени, костный мозг является местом гемопоэза, в том числе лимфопоэза. Единая гемопоэтическая стволовая клетка может дифференцироваться в сторону общей клетки-предшественницы лимфоцитов. Эта клетка дает начало клеткампредшественницам В-лимфоцитов, Тлимфоцитов и естественных киллеров. Созревающие активированные лимфоциты начинают продуцировать цитокины, аутокринно влияющие на их пролиферацию и дифференцировку.

НАПРИМЕР, Интерлейкин - 1 и интерлейкин-6 служат синергистами колониестимулирующих факторов в стимуляции пролиферации клеток- предшественниц; интерлейкин-2 является ростовым фактором Тлимфоцитов; интерлейкины-4, -6 -7 способствуют выживанию, пролиферации и дифференцировке ранних предшественниц лимфоцитов; туморнекротизирующий фактор (ТНФ), гамма интерферон, трансформирующий ростовой фактор-бета (ТРФ-бета), напротив, ингибируют процессы пролиферации и дифференцировки клетокпредшественниц.

Костный мозг в качестве одного из центральных органов иммунной системы выполняет следующие функции: является местом начальной дифференцировки и пролиферации ранних клетокпредшественниц лимфоцитов является местом дальнейшей дифференцировки В-лимфоцитов вплоть до их выхода в кровоток и заселения периферических органов иммунной системы

является местом продукции и секреции колониестимулирующих факторов и цитокинов, влияющих на процессы пролиферации, дифференцировки и транспортировки Т и В-лимфоцитов; является одним из мест продукции и секреции антител (иммуноглобулинов)

ТИМУС (ВИЛОЧКОВАЯ ЖЕЛЕЗА) Тимус в качестве одного из центральных органов иммунной системы является местом созревания Тлимфоцитов из клеток-предшественниц и формирования огромного разнообразия зрелых Тлимфоциов, способных распознать своими рецепторами любой антиген. Лимфоциты, находящиеся в тимусе, называют тимоцитами. В тимусе идут параллельно несколько процессов: пролиферация Т-лимфоцитов, их созревание (дифференцировка), отбор пригодных для данного организма клеток, которому сопутствует гибель значительной части непригодных клеток.

В качестве одного из центральных органов иммунной системы ТИМУС выполняет следующие функции: а) контролирует пролиферацию, дифференцировку, отбор и окончательное созревание Тлимфоцитов б) продуцирует тимические гормоны, влияющие на функции Т-лимфоцитов.

СЕЛЕЗЕНКА И ЛИМФАТИЧЕСКИЕ УЗЛЫ В КАЧЕСТВЕ ОДНОГО ИЗ ПЕРИФЕРИЧЕСКИХ ОРГАНОВ ИММУННОЙ СИСТЕМЫ СЕЛЕЗЕНКА И ЛИМФАТИЧЕСКИЕ УЗЛЫ ЯВЛЯЮТСЯ МЕСТОМ: 1) созревания естественных киллеров(СЕЛЕЗЕНКА), 2) распознавания антигена, 3) антигензависимой пролиферации и дифференцировки Т- и В-лимфоцитов, 4) активации Т- и В-лимфоцитов, 5) продукции цитокинов, 6) продукции и секреции специфических антител - иммуноглобулинов.

Один лимфатический узел имеет массу около 1 г. Каждый час из лимфоузла выходит в лимфу количество лимфоцитов, эквивалентное его утроенной массе. Большая часть (90 %) клеток в этой эфферентной лимфе представляют собой лимфоциты, покинувшие кровяное русло на территории этого лимфатического узла. Среди клеток лимфатического узла около 10% составляют макрофаги и около 1 % - дендритные клетки.

МУКОЗНО-АССОЦИИРОВАННАЯ ЛИМФОИДНАЯ ТКАНЬ Непосредственно под мукозным эпителием слизистых оболочек в тесной связи с эпителиальными клетками располагаются лимфоциты пейеровых бляшек кишечника, лимфоидных фолликулов аппендикса, миндалин глотки, лимфоидных фолликулов подслизистого слоя верхних дыхательных путей и бронхов, мочеполового тракта. Все эти лимфоидные скопления получили собирательное название - мукозно-ассоццированная лимфоидная ткань.

РАННИЙ ЗАЩИТНЫЙ ВОСПАЛИТЕЛЬНЫЙ ОТВЕТ: 1. призван препятствовать внедрению и распространению возбудителя, по возможности быстро удалять его из организма. 2. разыгрывается в течение первых 4 суток после внедрения возбудителя.

3. обеспечивается факторами врожденного иммунитета, к которым относятся фагоцитирующие клетки крови и тканей, естественные киллеры, циркулирующие в крови белковые молекулы, обладающие защитными свойствами (компоненты системы комплемента и др.), а также межклеточные медиаторы - цитокины 4. стимулирует последующий специфический иммунный ответ, влияет на его форму, способствуя развитию наиболее эффективного против конкретного микроорганизма специфического иммунного ответа.

Ранний воспалительный ответ начинается с привлечения лейкоцитов из кровяного русла в очаг инфекции с последующей их активацией для удаления возбудителя. Проявляется инфильтрацией очага инфекции фагоцитирующими клетками, где эти клетки получают дополнительные сигналы активации от микробных продуктов и компонентов (липополисахарид клеточной стенки бактерий), от компонентов активированной системы комплемента и от провоспалительных цитокинов, в том числе, от гамма-интерферона, продуцируемого и секретируемого активированными естественными киллерами.

NK – НАТУРАЛЬНЫЕ КИЛЛЕРЫ Основная особенность – способность уничтожать клетки-мишени без предварительного распознавания антигенов. Они находятся в состоянии постоянной готовности к цитолизу. Общая продолжительность цитолиза, обусловленного NK-клетками: 1 -2 часа. Цитолитический эффект достигается путем формирования перфориновых пор в мембране клетки-мишени и проникновении веществ, усиливающих лизис – ГРАНЗИМОВ (сериновых протеаз и эстераз трипсинового и химотрипсинового типа).

В случае попадания в организм небольшого количества низковирулентных возбудителей ранний воспалительный ответ подавляет очаг инфекции. Удаление из кровяного русла попавших в кровь единичных бактериальных клеток является функцией системы комплемента. Большая часть компонентов комплемента синтезируются гепатоцитами и мононуклеарными фагоцитами. Компоненты комплемента (С 1, С 2, С 3, С 4, С 5, С 6, С 7, С 8, С 9, факторы В и О) содержатся в крови в неактивной форме.

При попадании в кровяное русло бактерий на их поверхности каскад ферментативных реакций ведет к последовательной активации компонентов системы комплемента («альтернативный путь активации») с формированием мембранатакующего комплекса (С 5- С 9), вызывающего лизис бактерий. В процессе активации системы комплемента накапливаются фрагменты, которые опосредуют разные биологические эффекты: привлечение лейкоцитов в очаг инфекции или воспаления (хемотаксис) - фрагмент С 5 а, усиление фагоцитоза (опсонизацию) - СЗb, индукцию синтеза и секреции медиаторов воспаления - СЗа, С 5 а.

СПЕЦИФИЧЕСКИЙ ИММУННЫЙ ОТВЕТ Начинается с этапа представления и распознавания антигена. 1) макрофаги, как правило, представляют антигены бактериального происхождения - продукты захвата и внутриклеточной переработки ими бактерий, 2) В-лимфоциты представляют микробные антигены, антигены токсинов, связанные их поверхностными иммуноглобулиновыми рецепторами, 3) наиболее универсальными антигенпредставляющими клетками являются дендритные клетки, которые, необходимы для запуска первичного иммунного ответа, представляют многие, в том числе опухолевые, антигены

ВЗАИМОДЕЙСТВИЕ Т-ХЕЛПЕРОВ (ТH 1) С АНТИГЕНПРЕДСТАВЛЯЮЩИМИ ДЕНДРИТНЫМИ КЛЕТКАМИ (ДК) ОПОСРЕДОВАНО ЦИТОКИНАМИ (ИЛ-12, ГАММА-ИНТЕРФЕРОН) КОСТИМУЛИРУЮЩИМИ МОЛЕКУЛАМИ(CD 40, CD 40 L)

АКТИВАЦИЯ Т- И В-ЛИМФОЦИТОВ В ИММУННОМ ОТВЕТЕ В-лимфоцит получает одновременно два сигнала активации: 1. от антигенраспознающего рецептора при его соединении с антигеном 2. от связывания его поверхностных костимулирующих молекул с соответствующими лигандами на Т-лимфоцитах. После этого В-лимфоцит пролиферирует и потомки его превращаются в зрелые антителопродуцирующие плазматические клетки.

Т-лимфоцит в ответ на контакт с антигеном начинает пролиферировать, потомки его приобретают способность продуцировать определенные цитокины или превращаются в зрелые цитотоксические клетки. В зависимости от того, какие дополнительные сигналы активации (цитокины, костимулирующие молекулы) получает Т-лимфоцит в момент контакта с антигеном, его потомки дифференцируются в двух разных направлениях, превращаясь в Т-хелперы, продуцирующие гамма-интерферон (Th 1), или в Т-хелперы, продуцирующие интерлейкины-4, -5, 6, -10, -13 (Th 2).

Количественное преобладание Th 1 над Th 2 является условием развития клеточного (клеточноопосредованного) иммунного ответа. В случае преобладания Th 2 развивается гуморальный иммунный ответ, проявляющийся продукцией специфических антител.

Специфические антитела - иммуноглобулины против конкретных антигенов бактерий (стафилококки, стрептококки, возбудители дифтерии, кишечных инфекций, клостридии и др.), связываясь с бактериальными токсинами, вызывают их нейтрализацию, т. е. утрату токсического действия на организм. Сами бактерии, связавшиеся со специфическими антителами, быстрее и легче захватываются и убиваются фагоцитирующими клетками или лизируются активированной системой комплемента.

ИММУНОГЛОБУЛИНЫ ДЕЛЯТСЯ НА ПЯТЬ КЛАССОВ: Ig G- мономер, доминирующий среди других изо- типов иммуноглобулинов у взрослых в кровяном русле, легко диффундирующий из крови в ткани, единственный из иммуноглобулинов способен преодолевать плацентарный барьер и обеспечивать гуморальный иммунитет новорожденных первых месяцев жизни. Ig M-пентамер, состоящий из пяти четырехцепочечных структур, (называют еще макроглобулином из-за высокой молекулярной массы). Синтезируется раньше других классов в онтогенезе, может продуцироваться в организме плода в ответ на внутриутробную инфекцию. Ig A циркулирует в сыворотке крови в виде мономеров или димеров. Димер Ig А может связываться с полиглобулиновым рецептором на базолатеральной поверхности эпителиальных клеток и в комплексе с этим рецептором проникать в эпителиальные клетки. Ig. D содержится в следовых количествах Ig. E в крови здоровых людей практически не содержится

Защитное действие специфических антител реализуется с помощью нескольких механизмов: 1) усиление фагоцитоза бактерий, 2) нейтрализация бактериальных экзотоксинов и вирусов; 3) активация системы комплемента с последующим бактериолитическим действием ее мембранатакующего комплекса, 4) препятствие колонизации слизистых оболочек патогенными бактериями и адсорбции вирусов.

В результате гуморального иммунного ответа на бактериальную инфекцию в сыворотке крови накапливаются специфические антитела классов Ig G и Ig М. При взаимодействии этих антител с антигенами на поверхности бактерий создаются условия активации системы комплемента по классическому пути, результатом которого становится лизис бактерий (бактериолиз). Классический путь активации системы комплемента начинается со стадии соединения С 1 с определенным участком молекулы иммуноглобулина, который становится доступным только после взаимодействия иммуноглобулина - антитела со своим антигеном.

С 1 при этом активируется, приобретая активность сериновой протеиназы (эстеразы), которая запускает каскадный процесс расщепления и присоединения последующих фракций: С 4, С 2, СЗ. После активации СЗ запускается дальнейший каскад формирования мембранатакующего комплекса (С 5-С 9), что ведет к лизису бактерий.

ИММУНОЛОГИЧЕСКАЯ ПАМЯТЬ После первой встречи организма с чужеродным антигеном в лимфоидных органах сохраняются долгоживущие потомки Т- и В-лимфоцитов, пролиферировавших в ответ на сигнал активации, полученный от антигенраспознающих рецепторов. На мембране этих клеток-потомков сохраняются специфические для данного антигена рецепторы, способные связаться с ним при его повторном попадании в организм. Способность иммунной системы организма ускоренно и усиленно отвечать активацией на повторную встречу с тем же антигеном характеризуется как иммунологическая память.

ОСОБЕННОСТЯМИ ДОЛГОЖИВУЩИХ В-КЛЕТОК ПАМЯТИ ЯВЛЯЮТСЯ: 1) способность быстро отвечать пролиферацией и дифференцировкой в плазматические клетки на повторную встречу с антигеном,) способность быстро переключаться с синтеза Ig М на синтез Ig. G и Ig. A, З) способность быстро продуцировать и секретировать большое количество специфических антител с выраженными защитными свойствами.

Особенностями Т-клеток памяти являются: 1) повышенная активность связывания антигена антигенраспознающими рецепторами, 2) повышенное количество рецепторов интерлейкина - 2, З) готовность быстро ответить на повторный контакт с антигеном активацией, пролиферацией и дифференцировкой в клеткиэффекторы.

Иммунология рассматривает антиген в качестве биологического маркера клеток, тканей, органов и жидкостей организма в процессах онто- и филогенеза. Эти структуры называют антигенами главного комплекса гистосовместимости (МНС), так как они контролируются группами генов главной системы гистосовместимости, расположенными у человека на шестой хромосоме.

МНС выполняют в организме разнообразные функции. Так, антигены МНС класса 1 и 2 определяют способность иммунной системы организма распознавать чужеродные антигены. Суть этого явления состоит в том, что микроорганизмы, продукты их распада или жизнедеятельности, другие неизмененные антигены Т-лимфоцитами не распознаются, поэтому вначале они подвергаются переработке в клетках-макрофагах, где происходит их частичная денатурация и протеолиз, как правило, до пептидов. Такой низкомолекулярный переработанный антиген перемещается на поверхность клетки, связывается с находящимися здесь молекулами МНС и становится доступным для восприятия Т-лимфоцитами. При этом комплексы антигенов с молекулами МНС класса 1 распознаются цитотоксическими Т-лимфоцитами, которые осуществляют разрушение злокачественно перерожденных или инфицированных вирусом клеток, а комплексы антигенов с молекулами МНС класса 2, образующимися в основном на В-лимфоцитах и макрофагах, распознаются Т-хелперами, которые как посредники передают сигнал и включают В- и Т-клетки в антителообразование или другие эффекторные процессы.

Антитела – это особый вид белков, называемых иммуноглобулинами, вырабатываемых под влиянием антигенов и обладающих способностью специфически реагировать с ними. Антитела могут нейтрализовать токсины бактерий и вирусы (антитоксины и вируснейтрализующие антитела), осаждать растворимые антигены (преципитины), склеивать корпускулярные антигены (агглютинины), повышать фагоцитарную активность лейкоцитов (опсонины), связывать антигены, не вызывая каких-либо видимых реакций (блокирующие антитела), совместно с комплементом лизировать бактерии и другие клетки, например, эритроциты (лизины).

Антитела представляют собой гликопротеины с молекулярной массой от 150 000 до 1 000 000. В простейшем случае молекула AT имеет форму буквы «игрек» или «рака» с меняющимся углом между двумя верхними отрезками («клешнями»), что говорит о гибкости ее структуры. Состоят антитела из четырех полипептидных цепей, связанных друг с другом дисульфидными мостиками. Две цепи – длинные и посередине изогнутые (как хоккейные клюшки), а две – короткие и прямые – прилегают к верхним отрезкам длинных цепей. Молекулярная масса длинных цепей 50 000, их называют тяжелыми, или Н-цепями; коротких – 25 000, их называют легкими, или Z-цепями. Тяжелые и легкие цепи отличаются по аминокислотному составу и антигенным свойствам.

Обе цепи иммуноглобулина по порядку расположения в них аминокислот делятся на две части. Одна из них, С-область, у всех цепей иммуноглобулина стабильна; другая, V-область, вариабельна, последовательность аминокислот в ней меняется в зависимости от вида антигена, вызывающего образование антитела. При этом на концах V-областей молекулы Y (на двух «клешнях рака») формируются два антигенсвязывающие центра. Последние у разных иммуноглобулинов имеют разную конфигурацию, комплементарную детерминантной группе того антигена, под воздействием которого выработались.

Таким образом, распознавание антигена соответствующим антителом происходит не по химической структуре, а главным образом по общей конфигурации антигена благодаря взаимной комплементарности с антигенсвязывающим центром. Антитела связываются с антигенами за счет пространственной комплементарности, которая обеспечивается межмолекулярными силами и водородными связями. Прочность взаимодействия между антигеном и одним антигенсвязывающим центром называется аффинностью (сродством). Реакция между антигеном и антителом приводит к образованию комплекса антиген-антитело (АГ-АТ). В некоторых случаях связывания антигена антителом уже достаточно для обезвреживания антигена – нейтрализации (например, обезвреживание столбнячного анатоксина). Сродство антител к соответствующим им антигенам может быть различным. В сыворотке против того или иного антигена всегда содержится смесь многих молекул антител с различным сродством к нему, и их соединение с антигеном обусловливает перекрестные реакции. Если в молекуле антигена имеются несколько детерминант с одинаковой антигенной специфичностью, то молекулярные агрегаты, образующиеся в присутствии специфических антител, могут становиться настолько крупными, что комплексы АГ-АТ уже не могут оставаться в растворе и выпадают в осадок – происходит преципитация. В диагностике преципитацию применяют для определения природы антигенов и специфичности антител. В реакциях антител с антигенами, представляющими собой частицы или клетки (частицы крови, бактерии), также могут образовываться крупные агрегаты, иногда даже видимые невооруженным глазом. Подобные реакции агглютинации («склеивания») используют для определения групп крови, идентификации бактерий, а также антител против бактериальных белков и гормонов в крови и моче. На основании этой реакции различают полные и неполные антитела. Так, соответствующие полные антитела (обычно принадлежащие к классу JgM) непосредственно вызывают агглютинацию эритроцитов, тогда как неполные антитела (преимущественно класса JgG) реагируют с расположенными на их поверхности антигенами, но в силу своих небольших размеров не могут вызывать агглютинацию.

Антигены, соединенные со специфическими участками связывания неполных антител, уже не могут реагировать с полными антителами, поэтому неполные антитела называют также блокирующими. Последние блокируют антиген, а нередко одновременно связывают комплемент, вследствие чего их уже называют и комплементсвязывающими. Если же реакция антиген-антитело не вызывает каких-либо изменений в организме, их называют антителами-свидетелями. Реагирование JgE и JgG с антигенами может приводить к развитию аллергий. При незначительных, бесследно исчезающих проявлениях аллергии на кожных покровах аллергические антитела называют реагинами, а при ярко выраженных повреждениях клеток кожи – агрессинами, или кожно-сенсибилизирующими антителами. Как и все белки, иммуноглобулины являются антигенами, и по отношению к ним вырабатываются антииммуноглобулины, то есть антитела против антител.

В зависимости от строения константных областей тяжелых цепей все иммуноглобулины подразделяют на пять классов: JgG, JgM,JgA,JgE,JgD.

Jg G активируют систему комплемента и связываются с некоторыми антигенами поверхности клеток, делая тем самым эти клетки более доступными для фагоцитоза. Поскольку это сравнительно мелкие мономерные молекулы, они могут проникать через плацентарный барьер из крови матери в кровь плода. Так как до рождения у плода существенной продукции антител не происходит (для этого требуется контакт с чужеродными веществами), JgG матери служат важными механизмами защиты новорожденного от инфекции. В последующем их количество пополняется при кормлении ребенка грудью (особенно в первые шесть часов после родов), что обеспечивает ему иммунитет в первые недели жизни. Содержание этих иммуноглобулинов в крови ребенка обычно даже выше, чем у матери. Они защищают организм новорожденного от вируса полиомиелита, вируса краснухи, от возбудителей менингита, коклюша, столбняка, дифтерии. Через 2–4 месяца содержание JgG заметно снижается, что связано с интенсивным распадом материнских AT и временной недостаточностью собственного синтеза. Со 2-го года жизни ребенка количество JgG в его крови начинает увеличиваться и достигает взрослого уровня к 4–5 годам.

Бурная выработка JgG происходит уже при повторном попадании антигена в организм, обеспечивая нейтрализацию бактериальных токсинов и вирусов. Период полураспада 24 дня.

JgM самые крупные антитела, вырабатывающиеся на первичное введение в организм антигена. Они отличаются выраженной авидностью и образуют прочные соединения с антигенами, несущими множественные детерминанты, – эти антитела вызывают агглютинацию и способны нейтрализовывать инородные частицы, обеспечивая устойчивость к бактериальным инфекциям. К JgM принадлежат антитела системы групп крови АВО, холодовые агглютинины и ревматические факторы. Сохраняются JgM , однако, недолго – период их полураспада не превышает 5 дней.

JgA могут представлять собой как мономеры, так и полимеры и вырабатываются как на первичное, так и на вторичное воздействие антигена. При этом сывороточные JgA накапливаются в крови. Биологическая роль их до конца не изучена. Секреторные JgA продуцируются в слизистых оболочках кишечника, в верхних дыхательных путях, в мочеполовой трубке, содержатся в слезной жидкости, слюне, молоке и обеспечивают местный иммунитет тканей против антигенов, контактирующих со слизистыми оболочками. Период полураспада – 6 дней.

Мономерные иммуноглобулины JgD и JgE присутствуют в плазме в очень низких концентрациях. Возможно, они функционируют как связанные с клетками рецепторы антигенов. JgE соединяются со специальными рецепторами на поверхности базофилов и тучных клеток при встрече с соответствующим антигеном, клетка – носитель этого иммуноглобулина – секретирует гистамин и другие вазоактивные вещества, вызывающие аллергическую реакцию.

JgD находится на поверхности В-лимфоцитов и вместе с JgM составляет основную часть их рецепторов. О физиологической роли их известно мало.

В последние годы стали проясняться некоторые механизмы генной регуляции синтеза иммуноглобулинов. Существенный шаг вперед в этом направлении был сделан тогда, когда было обнаружено, что сегменты генов, кодирующих Н- и L-цепи иммуноглобулинов в предшественниках лимфоцитов, вначале «разбросаны» по хромосоме, то есть пространственно разделены. Для каждой вариабельной (V-области) части цепи исходно существует очень много (по меньшей мере 10 3) различных генных сегментов. Поскольку и Н-, и L-цепи антител имеют свои V-области, участвующие в связывании антигена, числом возможных комбинаций обеспечивается синтез по меньшей мере 10 6 специфичностей антител. При таком огромном разнообразии возможностей антиген вызывает пролиферацию именно тех В-лимфоцитов, которые распознают данный антиген.

Иммунология - это наука об иммунитете, о его функционировании, механизмах и реакциях на патогенные объекты. Понятие об иммунитете, виды иммунитета не вмещается в одно определение. Требует краткого рассмотрения его деталей и особенностей.

Иммунология

Иммунология как отдельная наука появилась в начале двадцатого века. Основоположниками ее зарождения были:

  • Луи Пастер - разработал первые ;
  • Илья Мечников - открыл фагоцитоз, клеточный иммунитет;
  • Пауль Эрлих - определил функции иммуноглобулинов;
  • Ландштейнер - открыл свойство эритроцитов производить антигены;
  • Владимир Тимаков - определил основу иммунной системы в совокупности и постоянности деятельности механизмов, барьеров и реакций.

Иммунология на сегодняшний день - одно из самых быстро развивающихся течений медицины, помогающее решать многие проблемы со здоровьем современного человека.

Описание

Иммунитет - это особенность невосприимчивости организма, способность противостоять внешним и внутренним угрозам здоровью и нормальной жизнедеятельность.

Главными функциями иммунной системы являются:

  • Обеспечение биологической индивидуальности человека;
  • Формирование защиты от патогенных чужеродных объектов;
  • Приспособление организма к изменению внешней среды обитания;
  • Производство антигенов, иммуноглобулинов для своевременного и качественного ответа защиты организма;
  • Распознание чужеродного организма или собственной злокачественной клетки, подбор способа их уничтожения, мобилизация всех необходимых реакций и механизмов, ликвидация угрозы.

Иммунная система имеет совершенное строение, части которой постоянно находятся в стабильной и слаженной работе, а при необходимости активно развивают ответ возбудителю.

Разновидности защитных сил

Физиология выделяет два типа иммунитета.

Первый тип - это врожденная защита, то есть присутствует у человека с момента его рождения, подразделяется на два вида. В первом случае антитела передаются от матери к ребенку через плаценту, такой иммунитет еще называют индивидуальным. Второй тип - это видовой, то есть организм человека не подвержен заболеваниям, которые переносят животные и птицы.

Второй тип - приобретенная защита. Обеспечивает полноценный иммунный ответ на повторное заражение инфекцией. Бывает активным - приобретенным от вакцинации или после болезни, и пассивным - передается от матери к малышу, при использовании фармацевтического иммуноглобулина.

Кроме того, физиология, подразумевает подразделение на виды иммунитета: стерильный подтип, то есть сопротивляемость после перенесенного заболевания или прививки, а так же - воздействия реакций и механизмов на чужеродный ген, который находится продолжительное время в организме.

Органы и системы

Особенности анатомии и физиологии иммунитета заключаются в том, что иммунные клетки, барьеры и механизмы располагаются почти во всех внутренних органах и системах. Исключение - это мозг, щитовидная железа, отдельные части глазных отделов - эти органы защищены от клеток иммунитета, чтобы обеспечить полноценность их работы, предупреждая развитие аутоиммунных заболеваний.

Действие иммунной защиты обусловлены:

  • Клетками - разные виды клеток крови, в частности лейкоциты;
  • Жидкостями - гуморальные факторы, предназначенные для распознания и ликвидирования возбудителей болезни.

Понятие об иммунитете четко обосновывает, что иммунный ответ дается посредством взаимодействия периферических и центральных органов, иммунологических клеток и механизмов.

Главными центральными инструментами, обеспечивающими выполнение функций иммунитета являются:

  • Красный костный мозг - он является производителем кроветворения, поддержание и, при необходимости, увеличение их количества;
  • Тимус или по другому вилочковая железа - главное место дифференцирования лимфоцитов типа Т. Данный орган имеет свойство инволюции, и с возрастом он перестает полностью обеспечивать организм данными клетками. Тогда функции переходят к вторичным органам иммунной системы.

Вторичные или периферические органы защиты организма представлены:

  • Селезенкой - это орган, состоящий из лимфатической ткани, сосудов и нервов. Она располагается в брюшине левее желудка. Главным ее предназначением является очистка и фильтрация крови от токсичных частиц, бактерий, вирусов, старых кровяных клеток. В селезенке продуцируются белые кровяные тела и происходит синтез антител. Она наполнена кровью. Если организм в спокойствии и здоров, то есть не имеет нужды в дополнительном количестве крови, то она концентрируется именно в селезенке. И при необходимости, селезенка, сокращаясь, увеличивает кровоснабжение сосудов и органов.;
  • Лимфатической системой. Ее части: миндалины, узлы, сосуды, ткань - участвуют в кроветворении, очищают и защищают организм. А именно: ткань лимфоидного типа - это небольшие лимфатические фолликулы или узелки, распространенные по всем органам и тканям. Особенно их много на слизистых горла, носа, кишечника. Они предназначены для обеспечения местного полноценного иммунного ответа, а так же для уничтожения собственных мутировавших или поврежденных клеток. В этой ткани содержатся: лимфоциты, лейкоциты, макрофаги, клетки плазматического вида. Лимфатические узлы располагаются по ходу сосудов лимфатической системы. В иммунной системе фолликулы призваны выполнять фильтрацию лимфы от патогенных компонентов и служит своеобразным барьером для предупреждения развития инфекции. Данные функции обусловлены тем, что в узлах вырабатывается секрет, стимулирующий накопление, созревание и размножение лимфоцитных клеток крови. Так же лимфатические узлы препятствуют накоплению чрезмерного количества межклеточной жидкости;
  • Кишечником - главный периферический орган иммунитета, его естественная микрофлора помогает дифференциации и увеличивает число иммунных клеток для распознания своих и чужеродных объектов, а так же для активного и быстрого ответа на возбудителя болезни;
  • Соединительной тканью - ткани органов, сосудов, кожи, подкожной клетчатки, соединительное волокно не имеет определенной функции, но играет важную роль в работе иммунитета - обеспечение постоянства внутренней среды и защита организма от внешних факторов, способствует нормальным процессам фагоцитоза и обмена веществ;
  • Кровеносной системой - обеспечивает органы и ткани бесперебойным поступление питательных веществ, а главное, иммунными клетками для защиты всего организма.

Клеточная структура

Иммунные клетки присутствуют практически во всех тканях и органах. К ним относятся:

  • Стволовые мезенхимальные клетки - это клеточки вырабатываемые красным костным мозгом, они предназначены для замещения поврежденных или погибших клеток, что восстанавливает нормальное функционирование органа или ткани;
  • Макрофаги - тип лейкоцитов, основная задача которых захват и уничтожение чужеродных антигенов, благодаря наличию специальных ферментов. Данные клетки отсутствуют в крови и сосредоточены в основном в органах, которые непосредственно взаимодействуют с окружающей средой: например легкие. Макрофаги имеют особенность распространять сигнал об опасности клеткам крови для улучшения иммунного ответа;
  • Нейтрофилы - вид лейкоцитов, образуются красным костным мозгом и циркулируют по системе кровообращения. Предназначены для захвата и поглощения чужеродных бактерий;
  • Базофилы - клетки иммунитета, вызывающие аллергические реакции благодаря наличию гистамина, так же участвуют в процессе свертывания крови;
  • Лимфоциты - белые кровяные тала. К ним относятся: Лимфоциты типа В (вырабатывают антитела и иммуноглобулины) и типа Т (циркулируют по лимфатической системе, распознают чужеродные клетки). Так же к лимфоцитным объектам относятся естественные киллеры, которые уничтожают опухолевые и патогенные объекты, продуцируют цитокины;
  • Эозинофилы - многочисленные клетки, в основном находится в тканях, способствует разрушению чужеродных белков;
  • Моноциты - кровяные клетки, поступая в ткани приобретают форму макрофагов.

Иммунная система постоянно обновляет свои клетки, регулируя их количество, так как одни клетки действуют от нескольких часов до суток, другие - несколько лет. Координированность действий иммунных клеток способствует обеспечению полноценной защиты и адекватной реакции на антигены.

Главные элементы

Физиология иммунной системы к главным элементам защиты для обеспечения полноценного функционирования относит вещества, вырабатываемые иммунными клетками:

  • Цитокины - регулировщики иммунной реакции для ее усиления или снижения;
  • Антитела и иммуноглобулины - относится к классу иммуноглобулинов, возникает как ответная реакция на возбудителя болезни. Иммунитет имеет пять типов иммуноглобулинов: М (первичный ответ), С (активный ответ на повторное заражение инфекцией), А (защищают слизистые оболочки), Е (аллергическая реакция), Д (циркулируют в крови функция до конца не выявлена);
  • Специальные белки - имеется восемнадцать видов, позволяют полноценно атаковать антигены. Могут самостоятельно бороться с инфекцией или участвуют в комплексном ответе;
  • Лизоцимы - антибактериальные белки, предназначенные для разрушения стенок бактериальной клетки;
  • Трансферрины - специальные белки, обеспечивающие процесс метаболизма клеток;
  • Интерфероны - белковые составляющие помогающие повышать невосприимчивость организма к вирусам.

Действие на инфекцию

Понятие об иммунитете будет не полноценным, если не знать как именно он осуществляет деятельность своими реакциями и механизмами.

Самым первым сигналом нарушения целостности и гармоничности работы организма является изменения в формуле крови. Кроме повышения показателей лейкоцитов, лимфоцитов, в сыворотке начинают обнаруживаться белки-антитела, антитоксины, лизины.

Вступают в действие механизмы: повышение температуры, воспаления местного значения, скапливание секрета в бронхах, носовой полости, что провоцирует активизацию клеточных и гуморальных видов защиты. В этот же период начинается активно вырабатываться белок-интерферон. Когда организм полностью распознает инфекцию, повышается уровень продуцирования цитокинов, антител и иммуноглобулинов. Иммунитет перестраивает работу для уничтожения патогенного объекта, зараженных клеток, обеспечивая непригодность здоровых клеток для развития болезни. И организм идет на поправку.

Заболевания

Патофизиология представляет собой научное течение иммунологии о патологии системы.

Понятие об иммунитете четко регламентирует, что нарушение правильного функционирования разрушает синхронность деятельности защитных механизмов, способность организма давать качественный иммунный ответ на инфекцию, развивается аллергия и аутоиммунные заболевания, высока вероятность иммуннодефицитных и иммунодепрессивных состояний.

Для обеспечения полноценной жизнедеятельности такие состояния требуют специфического лечения:

  • Заместительной терапии;
  • Снижение риска осложнений от болезни;
  • Восстановление обменных процессов;
  • Прием иммуностимуляторов разного направления действия.

Таким образом, краткая анатомия и физиология иммунной системы позволяет понять, что здоровый иммунитет - это совместная работа клеток, органов и систем организма для обеспечения здоровой и полноценной жизнедеятельности человека.

Видео

Лекция №44. Иммунитет, органы иммунной системы.

Наименование параметра Значение
Тема статьи: Лекция №44. Иммунитет, органы иммунной системы.
Рубрика (тематическая категория) Физиология

Лимфа при своем движении по лимфатическим сосудам встречает на своем пути 1 – 3 лимфатических узла – периферические органы иммунной системы. Οʜᴎ выполняют функцию биологических фильтров. В организме насчитывается от500 – 1000 лимфоузлов. Οʜᴎ имеют розовато - серый цвет, округлую или лентовидную форму. Их размеры колеблются от величины булавочной головки до крупного боба. Οʜᴎ располагаются около крупных сосудов (чаще вен), группами или в одиночку. Виды лимфатических узлов:

· групповые

· одиночные

· поверхностные (ближе к поверхности кожи в подкожной жировой клетчатке)

· глубокие (в грудной и брюшной полостях)

Больше всœего лимфоузлов находится в паховой области, подколенной ямке, локтевой ямке, под углом нижней челюсти, на шее. В лимфоузел входят несколько приносящих сосудов (2 – 4) и выходят 1 – 2 выносящих. В узле различают темное корковое вещество и светлое мозговое. Строму узла представляет ретикулярная ткань. В корковом веществе находятся лимфатические фолликулы. В петлях ретикулярной ткани находятся лимфоциты, лимфобласты и макрофаги. Размножение лимфоцитов происходит в лимфатических фолликулах.

На границе коркового и мозгового вещества находится полоска лимфоидной ткани – околокорковое вещество тимусзависимой зоны. В ней содержатся Т – лимфоциты. Также здесь расположены посткапиллярные венулы, через стенки которых лимфоциты мигрируют в кровеное русло. Мозговое вещество состоит из мякотных тяжей, которые начинаются от внутренней части коркового вещества и заканчиваются у ворот лимфоузла. Οʜᴎ вместе с лимфоидными узелками образуют В – зависимую зону - размножение и созревание плазматических клеток, синтезируемых антитела. Здесь же расположены В – лимфоциты и макрофаги. Капсула лимфоузла и его трабекулы отделœены от коркового и мозгового вещества щелœевидным пространством – лимфатический синус. Протекая по синусам, лимфа обогащается лимфоцитами и антителами – иммуноглобулинами. Одновременно в синусах происходит фагоцитирование бактерий и задержка инородных частиц.

При патологии лимфоузлы уплотняются, увеличиваются и становятся болезненными. Воспаление лимфососудов – лимфангит, лимфоузлов – лимфанденит.

На пути тока крови из артериальной системы в систему воротной вены лежит селœезенка - иммунный контроль крови. Селœезенка (spleen) – самый крупный орган иммунной системы, 140 – 200 гр.
Размещено на реф.рф
Расположена в левом подреберье, фиксируется желудочно – селœезеночной и диафрагмально - селœезеночной связками. Имеет уплощенную форму, цвет красно – бурый, консистенция мягкая. На вогнутой поверхности имеются ворота. Снаружи селœезенка покрыта серозной оболочкой. Строму органа составляют трабекулы и ретикулярная ткань. Паренхимой является белая и красная пульпа. Белая пульпа состоит из лимфатических узелков и периартериальных влагалищ. Основная масса органа – красная пульпа. Она содержит эритроциты и лимфоциты. В селœезенке происходит разрушение эритроцитов (кладбище эритроцитов), дифференцировка Т и В – лимфоцитов.

К органам иммунной системы относятся: красный костный мозг, тимус, лимфоидная ткань стенок дыхательной и пищеварительной систем (миндалины, лимфатические узелки подвздошной кишки, червеобразный отросток).

Косный мозг (medulla ossium) – у новорожденных весь мозг красный. С 4 – 5 лет красный костный мозг в диафизах трубчатых костей превращается в желтый (жировая ткань). У взрослых красный костный мозг остается в эпифизах трубчатых костей, коротких и плоских костях (1,5 кг). Он состоит из миелоидной ткани, содержащей кроветворные клетки, являющиеся предшественниками клеток крови. С током крови они попадают в другие органы иммунной системы, где дозревают. Попадая в тимус, они становятся Т – лимфоцитами (тимусзависимыми), обеспечивают клеточный или тканевой иммунитет – разрушение отживших или злокачественных клеток организма, чужеродных клеток. Тимус – центральный орган иммунной системы. Часть стволовых кроветворных клеток попадает в другие органы, отвечающие за гуморальные функции. У птиц таким органом является сумка Фабрициуса – скопление лимфоидной ткани в стенке клоаки. Сумка (bursa) – бурсазависимые или В –лимфоциты. У человека аналогом сумки считаются лимфоидные узелки подвздошной кишки, пейеровы бляшки, червеобразный отросток. В - лимфоциты попадают в В – зависимые зоны (лимфоузлы и селœезенка) и являются предшественниками клеток, вырабатывающие антитела – иммуноглобулины.

Вилочковая желœеза (тимус) – центральный орган иммунной системы. Это эндокринная желœеза, расположенная в грудной клетке за рукояткой грудины. Состоит из 2 долей, покрытых фиброзной оболочкой. Тимусные клетки представлены лимфоцитами, плазматическими клетками, макрофагами, гранулоцитами. В тимусе имеются слоистые тельца – уплощенные эпителиальные клетки – тельца Гассаля. В тимусе вырабатываются гормоны: тимозин, тимопоэтин, тимусный гуморальный фактор (стимулируют иммунные процессы). После 25 лет происходит инволюция тимуса, и в старческом возрасте на его месте обнаруживается жировое тело - снижение иммунитета).

Миндалины (tonsillae) – скопление лимфоидной ткани в начальных отделах пищеварительной и дыхательной систем:

1. небная (парная)

2. язычная

3. трубная (парная)

4. глоточная (адеиноидная)

Данное образование – лимфоидное кольцо Пирогова – Вальдейера.

Язычная миндалина (tonsilla lingvalis) – на корне языка под эпителиальной оболочкой. Ее эпителиальные узелки выпячивают слизистую оболочку, образуя 80 – 90 бугорков.

Небная миндалина (tonsilla palatina) – расположена в углублении между небно – язычной и небно – глоточной складками полости рта – миндаликовая ямка (миндальный орех) – лимфоциты ее выходят на слизистую оболочку и фагоцитируют бактерии.

Глоточная миндалина (tonsilla pharyngealis) – расположена в верхней части задней стенки глотки.

Трубная миндалина (tonsilla tubaria) – расположена в слизистой оболочке носовой части глотки в основании слуховых труб (трубный валик).

В слизистой оболочке аппендикса имеются более 500 лимфоидных фолликулов, которые уменьшаются после 18 лет, а к 60годам исчезают вовсœе.

Также большое значение для защиты брюшной полости играют пейеровы бляшки и одиночные лимфоидные фолликулы подвздошной кишки.

Свойство живых систем отвечать на воздействие внутренней и внешней среды - иммунологическая реактивность. Она включает в себя:

· невосприимчивость к инфекциям

· реакции биологической несовместимости тканей

· реакции повышенной чувствительности

· явление привыкания к ядам

Все эти явления возникают в организме при попадании в него микробов, бактерий, вирусов, токсинов, антигенов. Это реакции биологической защиты. В механизме этой защиты лежит взаимодействие антигенов и антител. Антигены (анти – против, генос – род) – чуждые для организма вещества, вызывающие образование антител- белки группы иммуноглобулинов, которые нейтрализуют действие антигенов. Полное или частичное отсутствие иммунологической реактивности – иммунологическая толерантность (терпение).

1. физиологическая (переносимость иммунной системой белков собственного происхождения; в базе лежит запоминание клетками иммунной системы белкового состава организма)

2. патологическая (переносимость опухоли организмом)

3. искусственная (создается с помощью препаратов, снижающих активность иммунной системы человека – иммунодепрессанты, ионизирующее излучение) - ϶ᴛᴏ обеспечивает переносимость организмом пересаженных органов и тканей

В 1796 году английский врач Дженнер обратил внимание на то, что люди, работающие на фермах, контактирующие с коровами, болеющими коровьей оспой, почти никогда не болеют оспой человеческой. С медицинской целью Дженнер заразил испытуемого человека коровьей оспой, благодаря чему человек заболел в очень легкой форме (взял струп с вымени коровы и поместил его в рану на руке). Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, было выявлено, что оспу коровью и натуральную вызывают очень похожие вирусы. Прививка вируса коровьей оспы вызывает образование в организме человека антител, способных реагировать на вирусы натуральной оспы. Позднее Пастер нашел способ ослабления вирулентности микробов, чтобы воспроизвести легкое заболевание у человека, оставляющее после себя иммунитет к данному заболеванию. Ослабленные культуры микробов в честь Дженнера Пастер назвал вакцинами (vaccines – коровий). Мечников развил теорию иммунитета. immunitas - избавление – невосприимчивость организма по отношению к возбудителям болезней, ядам, направленная на всœе чужеродное. В здоровом организме существует ʼʼиммунный надзорʼʼ, который распознает свое и чужое и уничтожает чужое. Это способ защиты организма от живых существ и веществ, несущих признаки чужеродности. В 1868 году И. И. Мечников поставил случайный опыт: в тело морской звезды вонзился шип от розы; ученый не стал вытаскивать шип, решив, что звезда погибнет; через несколько дней он обнаружил на месте и вокруг шипа скопление гноя – погибших лейкоцитов – на базе этого он сделал вывод о борьбе организма с микробами и бактериями – иммунитет. Виды иммунитета:

1. врожденный (видовой)

2. приобретенный:

· естественный (активный и пассивный)

· искусственный (активный и пассивный)

Врожденный иммунитет – наследуемый признак. Он должна быть абсолютным (у собаки кроликов никогда не бывает полиомиелита) и относительным (голуби и куры при плохих условиях содержания могут заболеть сибирской язвой, которой они никогда не болеют в хороших условиях содержания) – менее прочный и зависит от внешних воздействий. Естественный приобретенный активный иммунитет возникает после перенесения инфекционного заболевания. Естественный приобретенный пассивный иммунитет обусловлен переходом антител из крови матери через плаценту в кровь плода (корь, скарлатина, дифтерия) – через 1-2 года антитела исчезают и восприимчивость к этим заболеваниям возрастает (вакцинация детей). Пассивным путем иммунитет передается с молоком матери. Искусственный приобретенный иммунитет воспроизводится человеком в целях предупреждения инфекции. Активный искусственный достигается путем прививки людям культур убитых или ослабленных микробов, токсинов, вирусов – вакцинация.

Пассивный искусственный иммунитет воспроизводится путем введения человеку сыворотки, содержащей уже готовые антитела против микробов и их токсинов.

Механизмы иммунитета:

· неспецифические (общие защитные приспособления, препятствующие проникновению микробов в организм):

1. неповрежденная кожа

2. уничтожение микробов с помощью естественных жидкостей (слюна, слеза, желудочный сок – лизоцим и соляная кислота)

3. бактериальная микрофлора (прямая кишка, влагалище)

4. гематоэнцефалический барьер (эндотелий капилляров головного мозга, защищающий ЦНС)

5. фагоцитоз – пожирание бактерий фагоцитами

6. очаг воспаления в месте проникновения микробов через кожу или слизистую оболочку

7. гормон интерферон – замедляет внутриклеточное размножение вирусов

· специфические:

1. А – система – способность отличать свойства антигенов от свойств собственных белков организма. Это моноциты, которые поглощают антигены, накапливают их и передают сигнал исполнительным клеткам.

2. В – система – исполнительная часть – В – лимфоциты – после получения сигнала В – лимфоциты переходят в плазматические клетки, вырабатывающие антитела - иммуноглобулины, обеспечивающие развитие гуморального иммунитета

3. Т – система – Т – лимфоциты – после получения сигнала они переходят в лимфобласты, которые созревают в иммунные Т- лимфоциты, способные распознавать антигены

Виды Т – лимфоцитов:

· Т – хелперы – помощники – помогают В – лимфоцитам переходить в плазматические клетки

· Т – супрессоры – угнетатели

· Т – киллеры – убийцы – уничтожают антигены

Т – система обеспечивает формирование клеточного иммунитета͵ предупреждающего возникновение опухолей.

Аллергия (allos) – другой – измененная реактивность организма к повторным воздействиям. В корне ее лежит иммунный ответ с повреждением кожи и слизистый оболочек. При первоначальном попадании в организм происходит накапливание антител. При повторных попаданиях в организм возникают расстройства жизнедеятельности и даже гибель организма.

К типичным аллергенам относятся:

· Пыльца растений

· Шерсть животных

· Синтетические вещества

· Порошки

· Косметические средства

· Пищевые вещества

· Лекарства

· Красители

· Чужеродная сыворотка крови

· Домашняя пыль (продукты жизнедеятельности микроскопических клещей)

Аллергические реакции:

1. замедленного типа (гипочувствительность) – бактериальная аллергия, контактный дерматит, лекарственная аллергия, реакция отторжения трансплантата

2. немедленного типа (гиперчувствительность) – сывороточная болезнь, отек Квинке, анафилаксия

Анафилаксия (анна – вновь, aphylaxis – беззащитность) – аллергическая реакция немедленного типа, возникающая при введении аллергена.

Проявляется анафилактическим шоком - гиперчувствительность организма при введении лекарственных сывороток, антибиотиков, витаминов. сывороточная болезнь – при введении лечебных сывороток и гамма – иммуноглобулинов - повышение температуры тела, боли в суставах, их отек, зуд кожи.

Для профилактики анафилаксии больным вводят за 2 – 4 часа 1 мл сыворотки, а затем, при отсутствии реакции, остальную часть сыворотки. Сверхчувствительность организма к различным веществам – идиосинкразия – возникает сразу после первого приема.

Лекция №44. Иммунитет, органы иммунной системы. - понятие и виды. Классификация и особенности категории "Лекция №44. Иммунитет, органы иммунной системы." 2017, 2018.

Лекция № 6

Физиология крови (часть 2). Физиология иммунной системы

План лекции

1. Функция базофилов и эозинофилов.

2. Лимфоциты. Т-, В- и О- лимфоциты, их функция в организме.

3. Роль органов иммунной системы в защите организма.

4. Развитие Т- и В- лимфоцитов.

5. Механизм иммунного ответа организма.

6. Центральные органы иммунной системы.

7. Периферические органы иммунной системы.

Базофилы осуществляют синтез биологически активных веществ (БАВ) и ферментов: гепарина, входящего в антисвёртывающую систему крови; гистамина, расширяющего кровеносные сосуды; гиалуроновой кислоты, изменяющей проницаемость сосудистой стенки. В крови базофилов очень мало, однако в различных тканях, в том числе в сосудистой стенке, содержатся «тучные клетки», иначе называемые «тучные базофилы».

Существует два основных вида тканевых базофилов, отличающихся типом гистохимической структуры (клетки I I типа содержат в цитоплазме в 3 - 5 раз больше гранул, имеют больший периметр, длину, ширину, площадь и оптическую плотность). Они располагаются в слизистой оболочке желудочно-кишечного тракта, в субэпидермальной зоне кожи и в лимфатических узлах, т. е. входят в состав клеточных сообществ «барьерных» органов и зон, которые находятся в условиях постоянной антигенной стимуляции, обеспечивая реакции местного иммунитета.

Эозинофилы адсорбируют на своей поверхности антигены (чужеродные белки), многие тканевые вещества и токсины белковой природы. Обладают фагоцитарной активностью, особенно в отношении кокков. В тканях эозинофилы скапливаются преимущественно в тех органах, где содержится гистамин - в слизистой оболочке и подслизистой основе желудка и тонкой кишки, в лёгких. Они захватывают гистамин и разрушают его с помощью фермента гистаминазы, регулируя таким образом аллергические реакции. Эозинофилы выполняют роль «чистильщиков», фагоцитируя и инактивируя продукты, выделяемые базофилами. Чрезвычайно велика роль эозинофилов в борьбе с гельминтами, их яйцами и личинками.



Лимфоциты являются центральным звеном иммунной системы. Они образуются из стволовых лимфоидных клеток костного мозга и затем переносятся к тканям, где проходят дальнейшую дифференциацию. Одна их популяция направляется в вилочковую железу, где превращается в Т-лимфоциты (от лат. cлова thymus), другие клетки попадают в ткани миндалин и аппендикса, становятся В-лимфоцитами (от лат. слова bursa - фабрициева сумка у птиц, где они впервые были открыты). Часть лимфоидных клеток (10-20%) не проходит дифференцировки в органах иммунной системы и образуют группу О-лимфоцитов, составляющих резерв Т - и В - клеток, в которые при необходимости могут превращаться.

Популяция Т-лимфоцитов представлена несколькими классами клеток:

1) Т-киллеры(убийцы) посредством ферментов уничтожают микробы, вирусы, грибки, опухолевые клетки и др.;

2) Т-хелперы (помощники) выделяют биологически активные вещества (БАВ), усиливающие клеточный иммунитет (Т - Т-хелперы) и облегчающие течение гуморального иммунитета (Т - В-хелперы), без их участия В-лимфоциты не в состоянии превратиться в клетки плазмы;

3) Т- амплифайеры усиливают функцию Т- и В-лимфоцитов;

4) Т-супрессоры угнетают гуморальный иммунитет;

5) Т-клетки памяти хранят информацию о ранее действующих антигенах и таким образом регулируют вторичный иммунный ответ.

В-лимфоциты участвуют в реакциях гуморального иммунитета. Особенностью этих клеток является наличие на их поверхности микроворсинок, способных распознавать определённые виды чужеродных веществ - антигены (полисахариды, белки, вирусы и др.). Из В-лимфоцитов образуются также клетки плазмы (антителопродуценты), которые, как и лимфоциты, синтезируют антитела и выделяют их в кровь, лимфу и тканевую жидкость.

Физиология иммунной системы

Родоначальником всех видов клеток крови и иммунной (лимфоидной) системы являются стволовые клетки костного мозга. В костном мозге в его миелоидной ткани из стволовых клеток образуются клетки - предшественники, из которых путем распределения и дифференцировки по трем направлениям образуются: эритроциты, лейкоциты, тромбоциты. Из стволовых клеток в самом костном мозге и в тимусе образуются лимфоциты.

Иммунная система объединяет органы и ткани, обеспечивающие защиту организма от генетически чужеродных клеток или веществ.

В органах иммунной системы образуются иммуннокомпетентные клетки-лимфоциты, которые включаются в иммунный процесс. Лимфоциты распознают и уничтожают чужеродные клетки и вещества. При попадании в организм чужеродных веществ - антигенов образуются антитела (иммуноглобулины), которые нейтрализуют антигены.

К органам иммунной системы относятся все органы, которые участвуют в образовании клеток (лимфоцитов, плазматических клеток), осуществляющие защитные функции организма.

К органам иммунной системы относятся: костный мозг, тимус, скопления лимфоидной ткани, расположенные в тонком кишечнике - пейеровы бляшки, миндалины, селезенка и лимфатические узлы.

Костный мозг, тимус относятся к центральным органам иммунной системы. Другие - к периферическим органам иммуногенеза.

Стволовые клетки поступают из костного мозга в кровь, затем в тимус, где образуются Т - лимфоциты - тимус - зависимые. В самом костном мозге из стволовых клеток образуются В - лимфоциты, не зависящие от тимуса. Т- и В-лимфоциты попадают в периферические органы иммунной системы. Т-лимфоциты обеспечивают клеточный иммунитет. В - лимфоциты (их производные - плазматические клетки) синтезируют антитела (иммуноглобулины).

Т - лимфоциты поступают в тимус-зависимые зоны лимфатических узлов (паракортикальную зону), селезенки (лимфоидные, периартериальние муфты).

В - лимфоциты поступают в бурсозависимые зоны лимфатических узлов и селезенки. Т и В - лимфоциты с участием макрофагов выполняют функции генетического контроля, распознают и уничтожают чужеродные вещества и микроорганизмы. Общая масса лимфоцитов равна 1 300 - 1 500 г, 2,5% всей массы тела. У новорожденных - 4,3%.

В целом процесс иммунного ответа можно представить следующим образом:

1. Нейтрофилы являются первичной защитой организма от чужеродных веществ. Когда микробы проникают в организм, нейтрофилы атакуют и «пожирают» их.

2. Макрофаги уничтожают значительную часть чужеродных организмов, избежавших атаки нейтрофилов.

3. Одновременно с процессом фагоцитоза макрофаги обмениваются информацией с Т - хелперами, сообщая им о природе антигена (бактерий, вирусов или макромолекул).

4. Т- хелперы выделяют в кровь химическое вещество лимфокин, которое сигнализируют В - лимфоцитам, чтобы те активировали выработку необходимых антител.

5. В - лимфоциты исследуют структуру чужеродного агента и вырабатывают антитела, предназначенные для борьбы именно с ним.

6. Т - киллеры, активно циркулирующие по системе крови, получают информацию от Т-хелперов на разрушение чужеродных клеток и уничтожают их. Одновременно фагоциты разрушают повреждённые микробами собственные клетки.

7. После уничтожения всех антигенов Т - супрессоры дают команду Т-хелперам о прекращении иммунного ответа.

Интенсивность иммунного ответа во многом определяется состоянием нервной и эндокринной систем. Гипофиз и эпифиз с помощью пептидных биорегуляторов - цитомединов - контролируют деятельность вилочковой железы и костного мозга. Передняя доля гипофиза является регулятором преимущественно клеточного, а задняя - гуморального иммунитета.

Ряд микроорганизмов может ослаблять иммунную систему, а некоторые, например, ВИЧ, полностью блокируют её работу, прицельно убивая Т- хелперов.

Центральные органы иммунной системы расположены в местах, защищенных от внешних воздействий.

Периферические органы иммунной системы расположены на путях возможного внедрения в организм чужеродных веществ. Глоточное лимфатическое кольцо окружает вход в глотку из полости рта и полости носа. В слизистой оболочке органов пищеварения, дыхательных и мочевыводящих путей находятся скопления лимфоидной ткани - лимфоидные узелки. В стенках тонкой кишки - пейеровы бляшки, большое количество одиночных лимфоидных узелков. В слепой кишке и аппендиксе - также много лимфоидных узелков. В стенке толстой кишки также скопления лимфоидной ткани.

Лимфатические узлы лежат на путях тока лимфы от органов и тканей почек и слизистых оболочек.

Селезенка лежит на пути потока крови из артериальной системы в венозную, является органом, контролирующим кровь. В селезенке утилизируют эритроциты, вышедшие из строя.

При постоянных и сильных антигенных действиях в центре лимфоидных узелков наблюдается размножение, образование молодых лимфоидов - герминативний центр - центр размножения. Такие узелки есть в миндалинах глоточного кольца, в стенках желудка, кишечника, в аппендиксе, в лимфоузлах, в селезенке.

Все органы иммунной системы достигают своего максимального развития в детском возрасте и у подростков. Затем постепенно уменьшается количество лимфоидных узелков, в них исчезают центры размножения, на месте лимфоидной ткани появляется жировая и соединительная ткани.