Главная · Гастрит · Что такое теломеры и почему мы стареем? Теломеры – индикатор старения или «счетчики» жизни Что такое теломеры в организме человека

Что такое теломеры и почему мы стареем? Теломеры – индикатор старения или «счетчики» жизни Что такое теломеры в организме человека

Нашла самое главное, что я искала в тему теломер.
Напомним, что есть теломеры.

В результате исследований удалось доказать благотворное влияние на длину теломер следующих питательных веществ:

Витамин B12 Цинк Витамин D

Oмега-3 Витамин К Витамина E

Ниже будет представлен их анализ, а также даны несколько добавочных рекомендаций, относящихся к потреблению продуктов с высоким содержанием указанных веществ, способствующих удлинению теломер.
Естественно, что эффект от употребления представленных ниже продуктов, в силу особенностей каждого отдельно взятого человеческого организма, не может быть абсолютным для 100% населения. Однако в изложенном перечне представлены продукты, благотворный эффект которых на человеческий организм достаточно изучен и научно доказан.
В презентуемом ниже списке собраны 12 лучших питательных веществ, замедляющих процесс старения, в дополнение к которым приведены 2 основные стратегии, не предполагающие дополнительного потребления биодобавок и мультивитаминных комплексов. Все они способны радикально повлиять на жизнь каждого человека и защитить теломеры.

Перечень 12-ти питательных веществ изложен в порядке уменьшения важности оных.

Лично я ежедневно потребляю продукты из первых 6 пунктов плюс дополнительно повышаю содержание витамина D посредством принятия солнечных ванн.

Витамин D
В исследовании с участием более чем 2,000 представительниц слабого пола было установлено следующее: ДНК женщин с большим уровнем витамина D оказались менее подвержены старению. Также была доказана прямая зависимость длины теломер от концентрации в организме витамина D. Кроме того, исследователи не преминули отметить то обстоятельство, что женщины с большей концентрацией витамина D оказались более уравновешенными и менее раздражительными. Всё это, по мнению учёных, указывает на то, что люди с большим уровнем витамина D стареют медленнее по сравнению с людьми, «обделёнными» данным элементом.Длина теломер лейкоцитов (англ. LTL) - это лучший предсказатель болезней, ускоряющих наступление старости. Дело в том, что по мере старения организма LTL становится всё более короткой, а при хронических воспалениях уменьшение длины теломер происходит ещё быстрее. Причина этого кроется в ответе организма на воспалительные процессы путём увеличения объёма лейкоцитов. Уровень витамина D с возрастом также уменьшается, в то время как концентрация C-реактивного белка (C-reactive protein, сокр. CRP) при воспалении возрастает. Этот «двойной удар» увеличивает общий риск развития таких аутоиммунных заболеваний как рассеянный склероз, ревматоидный артрит и др.Витамин D, со своей стороны, является мощным ингибитором, замедляющим воспалительные процессы. Результатом этого является уменьшение объёма лейкоцитов и формирование положительной реакции в цепи, защищающей организм от множества болезней, и, как следствие, - от преждевременного старения.Учёные установили, что субпопуляции лейкоцитов (англ. lymphocyte subsets) располагают рецепторами для активной формы витамина D (D3), позволяющими витамину напрямую воздействовать на эти клетки. В частности, дефекты рецепторов витамина D способствуют развитию рахита и других аутоимунных болезней, тогда как физиологическая обеспеченность организма витамином D увеличивает противораковый иммунитет (посредством уменьшения выживаемости раковых клеток). Данный эффект «привязан» к иммуномодулирующей активности рецептора витамина D и его производных (агонистов). Эти данные фундаментальных исследований в области клеточной биологии подтверждены доказательной медициной.
Солнечные ванны являются самым благоприятным способом оптимизации уровня витамина D в организме. Я в полной мере осознаю, что у многих современных людей отсутствует возможность регулярно загорать, но с моей стороны было бы непростительной небрежностью не акцентировать внимание на том, что получение витамина D от солнца в разы предпочтительнее насыщения организма витамином D путём приёма различных пищевых добавок.
Астаксантин (производная микроводорослей Pluvialis Haematoccous)
В исследовании об использовании мультивитаминов, проведённом в 2009 году, была выявлена взаимосвязь между длиной теломер и использованием антиоксидантных формул. Согласно авторам, теломеры особенно уязвимы перед окислительным (оксидативным) стрессом (англ. oxidative stress). Кроме того, наличие в организме воспалительных процессов существенно увеличивает степень повреждения клеток под воздействием оксидативного стресса и приводит к уменьшению активности теломеразы - фермента, ответственного за поддержание длины теломер.Астаксантин - один из самых мощных антиоксидантов с сильными противовоспалительными свойствами и способностями к защите ДНК. Исследование доказало, что это вещество обеспечивает надёжную защиту ДНК даже от радиации, вызываемой смертоносным гамма-излучением. Антаксантин обладает рядом уникальных характеристик, отсутствующих у прочих антиоксидантов.В частности, астаксантин мощнее всех известных антиоксидантов-каротиноидов по части уничтожения свободных радикалов: он в 65 раз мощнее витамина C, в 54 раза эффективнее бета-каротина и в 14 раз сильнее витамина E VI. Кроме того, эффективность астаксантина в «тушении» синглетного кислорода (англ. singlet oxygen) в 550 раз превышает возможности витамина Е и в 11 раз - эффективность бета-каротина в нейтрализации данной разновидности окисления.Астаксантин способен преодолевать гемато-энцефалический (между кровеносной и центральной нервной системами) и гемато-ретинальный (сетчатки) барьеры, благодаря чему обеспечивается противовоспалительная и антиоксидантная защита глаз, мозга и центральной нервной системы.
Еще одной особенностью, отличающей астаксантин от других каротиноидов, является его неспособность функционировать в качестве про-окислителя (рro-oxidant). Другие антиоксиданты в случае повышенной концентрации в тканях могут выступать в качестве про-окислителей (т.е вызывать ещё большее окисление). Именно по этой причине не рекомендуется употреблять слишком много антиоксидантов (вроде бета-каротина). Астаксантин, со своей стороны, даже при значительной концентрации в организме, не способен выступать в качестве про-оксиданта, что делает его чрезвычайно полезным.
И, наконец, едва ли не главным его свойством является уникальная способность защищать клетку целиком (в отличие от других антиоксидантов, обеспечивающих защиту лишь отдельных частей клетки). Эта особенность проистекает из физических характеристик астаксантина, позволяющих ему находиться внутри клеточной мембраны, защищая также внутреннюю часть клетки.
Убихинон (CoQ10)
Коензима Q10 (CoQ10) - пятая по популярности биодобавка в Соединенных Штатах, которую предпочитают 53% американцев (данные опроса 2010 г., проведённого ConsumerLab.com). Согласно статистическим данным, каждый четвёртый американец старше 45 лет принимает статины (англ. statins или HMG-CoA reductase inhibitors) - лекарства, тормозящие в печени биосинтез холестерина, в дополнение к которым необходимо принимать эту коэнзиму.CoQ10 используется каждой клеткой человеческого тела, именно поэтому название данного элемента («ubiquinone») переводится как «присутствующий везде» или «вездесущный» (англ. omnipresent).Для того, чтобы питательные вещества для производства клеточной энергии и уменьшения основных признаков старения приносили должный эффект, человеческий организм должен преобразовать убихинон в редуцированную форму, которая называется убихинол (ubiquinol).Человеческий организм до 25-летнего возраста способен превращать окисленную форму CoQ10 в редуцированную, однако с возрастом эта способность постепенно уменьшается. Преждевременное старение является главным побочным эффектом, демонстрирующим уменьшение количества CoQ10 - витамина, перерабатывающего антиоксиданты подобно витаминам C и E. Кроме того, недостаток CoQ10 наносит значительный ущерб ДНК. В свете того, что коэнзима Q10 оказывает благотворный эффект на здоровье сердца и мускульные функции, её истощение приводит к быстрой утомляемости, мускульной слабости, болям и сердечной недостаточности.
Д-р Стефан Синатра (Stephen Sinatra) в одном из интервью рассказывал об эксперименте, проведённом в середине 1990-х годов на крысах преклонного возраста (в среднем эти грызуны живут 2 года). Животные, получавшие CoQ10 в конце жизни, были более энергичными и отличались повышенным аппетитом по сравнению со своими сородичами, лишёнными CoQ10. Исходя из результатов данного эксперимента, учёные пришли к выводу, что эта коэнзима обладает мощным эффектом анти-старения в том смысле, что позволяет поддерживать молодость до конца жизни. Однако в контексте увеличения продолжительности жизни эффект от приёма CoQ10 является незначительным.
Др. Синатра позднее провёл собственное исследование, по результатам которого констатировал приток энергии и сил как у молодых, так и у старых мышей, в пищу которых добавляли CoQ10. Самые старые мыши проходили через лабиринты быстрее, отличались лучшей памятью и большей двигательной активностью по сравнению со своими ровесниками, не получавшими CoQ10.
Всё это может свидетельствовать в пользу того, что коэнзима Q10 существенно улучшает качество жизни и минимально увеличивает её продолжительность.
Кисломолочные продукты / пробиотики
Общеизвестно, что потребление в пищу значительного количества обработанных химикатами продуктов питания отрицательно сказывается на продолжительности жизни. Несмотря на это, 90% денег, потраченных американцами на еду, приходятся именно на эти продукты. Все они - от замороженной еды до приправ и аперитивов - содержат кукурузный сироп с высоким содержанием фруктозы, являющийся главным источником калорий в США. Учёным удалось доказать прямое влияние обработанных продуктов на появление у будущих поколений значительных генетических изменений (вплоть до серьёзных мутаций), однако даже этот факт не останавливает американцев.Основная проблема состоит в том, что «перегруженные» химией и искусственными подсластителями продукты активно разрушают кишечную микрофлору, ответственную за защиту иммунной системы. Антибиотики, стресс, вода с содержанием хлора, искусственные подсластители и прочие негативные факторы приводят к уменьшению количества пробиотиков (полезных бактерий) в кишечнике, что способствует преждевременному старению и возникновению болезней.Источниками пробиотиков могут служить как ферментированные продукты, так и биодобавки. Первый вариант является более предпочтительным, поскольку ферментированная пища (особенно овощи) содержит значительно больше (вплоть до 100 раз) полезных бактерий.
Масло криля
По мнению д-ра Ричарда Харриса (Richard Harris), люди, у которых показатель жирных кислот омега-3 составляет менее 4%, стареют значительно быстрее тех, у кого указанный показатель превышает 8 процентов. Следовательно, количество omega-3 также влияет на процесс старения.Исследования д-ра Харриса (главного специалиста США по части omega-3) показали, что данные жиры непосредственно влияют на активизацию теломеразы, которая, повторим, способна предотвращать укорачивание теломер.Хотя исследование, о котором идёт речь, является предварительным, я позволю себе предположить, что увеличение жирных кислот омега-3 до более чем 8-процентного уровня является прекрасной стратегией для замедления процесса старения (измерением уровня жирных кислот омега-3 в США занимается Лаборатория диагностики здоровья (Health Diagnostic Laboratory) в г. Ричмонд, штат Вирджиния.Главным источником жирных кислот омега-3 является масло криля, обладающее серией значительных преимуществ перед другими источниками омега-3 (такими как жир холодноводных морских рыб). Кроме того, добавки на основе рыбьего жира несут в себе высокий риск окисления (прогоркания) жира. Д-р. Руди Моерк (Rudi Moerck) указывал на этот нюанс в одном из интервью.
Масло криля также содержит астаксантин натурального происхождения, благодаря чему оно почти в 200 раз устойчивее к окислению, нежели рыбий жир.
В соответствии с исследованием д-ра Харриса, содержание омега-3 в грамме масла криля на 25-50% превышает аналогичный показатель в рыбьем жире. И, наконец, масло криля значительно быстрее абсорбируется организмом.
Витамин K
Витамин K является почти таким же важным, как и витамин D, гласят результаты последних исследований. Несмотря на то, что большинство людей получает достаточное количество витамина K из повседневного рациона, этого недостаточно для поддержания адекватного уровня свертываемости крови и защиты от возможных проблем со здоровьем.В частности, исследования последних лет доказали способность витамина К2 противодействовать появлению рака простаты - главного ракового заболевания среди мужского населения США. В результате изучения данного витамина также удалось установить его преимущества по части улучшения «сердечного» здоровья.Благотворный эффект витамина К2 был впервые доказан в 2004 году (исследование в Роттердаме). В результате последующих опытов удалось установить, что люди, потребляющие 45 микрограмм (мкг) витамина K2 ежедневно, живут в среднем на 7 лет дольше по сравнению с теми, чья дневная норма К2 не превышает 12 мкг.В ходе ещё одного исследования (Prospect Stud), специалисты наблюдали 16.000 добровольцев в течение 10 лет. В результате учёные обнаружили, что дополнительные 10 мкг витамина K2 в ежедневном рационе снижают риск возникновения сердечно-сосудистых заболеваний на 9 процентов.
Витамин K2 присутствует в кисломолочных продуктах (особенно в сыре) и японской натто - пище, являющейся настоящим кладезем K2.
Магний
По данным исследования, опубликованного в октябрьском номере «Journal of Nutritional» за 2011г., магний также играет одну из ключевых ролей в репликации ДНК и синтезе РНК; «пищевой» магний, со своей стороны, оказал положительное влияние на увеличение длины теломер у женщин.Другие исследования показали, что долгосрочный дефицит этого элемента приводит к укорочению теломер в клетках крыс. Это даёт основание полагать, что отсутствие ионов магния оказывают негативное воздействие на целостность генома. Кроме того, дефицит магния может привести к негативным изменениям в хромосомах и снизить способности организма восстанавливать поврежденные ДНК.Авторы эксперимента пришли к следующему заключению: «гипотеза о том, что … магний влияет на длину теломер, является полностью обоснованной, поскольку магний обеспечивает целостность и исправляет дефекты ДНК, а также способен эффективно противостоять оксидативному стрессу и воспалительным процессам.»
Полифенолы
Полифенолы - это мощные антиоксиданты, содержащиеся в продуктах питания растительного происхождения, многие из которых способны замедлять процесс старения и противостоять некоторым заболеваниям. Ниже приведён перечень продуктов с самыми сильными антиоксидантными свойствами.

Виноград (Resveratrol).

Две дополнительные стратегии здорового образа жизни, влияющие на длину теломер.

Правильное питание «ответственно» примерно за 80% благ, проистекающих от здорового образа жизни (одной из составных частей которого являются голодание). Остальные 20% приходится на физические упражнения, которые также препятствуют сокращению длины теломер.

Физические упражнения.

Недавнее исследование (PLoS One, май 2010) женщин, страдающих от хронического стресса в период постменопаузы, показало, что «энергичная физическая активность … защищает людей, находящихся в состоянии стресса, оказывая влияние на длину теломер (TL)». Это значит, что у женщин, игнорирующих физические упражнения, повышение уровня стресса на 1 пункт увеличивает вероятность сокращения длины теломер на 15% (изменение уровня стресса проводится по Шкале восприятия стресса PSS-10 (англ. PERCEIVED STRESS SCALE). В то же время стрессовое состояние у физически активных женщин никак не отразилось на длине теломер.Высокая интенсивность физических упражнений оказалась весьма действенным инструментом уменьшения сокращения длины теломер и, как следствие, - замедления процесса старения.

Грета Блэкберн (Greta Blackburn) в своей книге «Возраст бессмертия…» («The Immortality Edge: Realize the Secrets of Your Telomeres for a Longer, Healthier Life») представила подробный отчёт о том, как физические упражнения высокой интенсивности препятствуют сокращению длины теломер.

Периодическое голодание

Предыдущие исследования показали, что возможность продления жизни за счет снижения потребления калорий действительно существует. Проблема состоит в том, что большинство людей не понимает, как правильно нужно голодать (ведь для того, чтобы оставаться здоровым, следует сокращать лишь некоторые виды калорий - углеводы).

Исследование, проведённое профессором Синтией Кенйон (Cynthia Jane Kenyon), доказало, что уменьшение количества углеводов приводит к активизации генов, управляющих молодостью и долголетием.

Одним из самых действенных способов ограничения таких калорий является периодическое голодание (в частности, прекращение потребления сахара и зерновых).

Теломеры представляют собой повторяющуюся последовательность ДНК на концах хромосом. Всякий раз, когда клетка воспроизводится, теломеры становятся короче. В конечном счёте, теломеры изнашиваются, и клетка более не способна делиться и омолаживаться, в результате чего здоровье клетки ухудшается, что увеличивает риск болезни. В итоге клетка погибает.

В 1962 американский учёный Л. Хейфлик произвёл переворот в области биологии клетки, создав концепцию теломер, известную как лимит Хейфлика. По мнению Хейфлика, максимальная (потенциально) продолжительность человеческой жизни составляет сто двадцать лет – это возраст, когда слишком большое количество клеток уже не способно к делению, и организм умирает.

Механизм, посредством которого питательные вещества влияют на длину теломер, заключается в том, что еда оказывает воздействие на теломеразу, энзим, добавляющий теломерные повторы к концам ДНК.

Теломеразе посвящены тысячи исследований. Они известны тем, что поддерживают геномную стабильность, предотвращают нежелательную активацию путей повреждения ДНК и регулируют старение клеток.

В 1984 Элизабет Блэкбёрн, профессор биохимии и биофизики в Калифорнийском университете в Сан-Франциско, обнаружила, что энзим теломераза способен удлинять теломеры, синтезируя ДНК из РНК-праймера. В 2009 Блэкбёрн, Кэрол Грейдер и Джек Шостак получили Нобелевскую премию в области физиологии и медицины за открытие того, как теломеры и энзим теломераза защищают хромосомы.

Вполне возможно, что знание о теломерах даст нам возможность значительно увеличить продолжительности жизни. Естественно, исследователи занимаются разработкой фармацевтических средств такого рода, но существуют достаточные свидетельства того, что простой образ жизни и правильное питание тоже эффективны.

Это радует, поскольку короткие теломеры суть фактор риска – они приводят не только к смерти, но и к многочисленным заболеваниям.

Так, укорачивание теломер связывают с заболеваниями, список которых приведён ниже. Исследования на животных показали, что многие заболевания могут быть устранены благодаря восстановлению функции теломеразы. Это и пониженная сопротивляемость иммунной системы инфекциям, и диабет второго типа, и атеросклеротическое повреждение, а также нейродегенеративные болезни, тестикулярная, селезёночная, кишечная атрофия.

Результаты всё большего числа исследований показывают, что определённые нутриенты играют значительную роль в деле защиты длины теломер и оказывают значительное влияние на продолжительность жизни, в их числе – железо, жиры омега-3, а также витамины E и C, витамин D3, цинк, витамин B12.

Ниже приведено описание некоторых питательных веществ такого рода.

Астаксантин

Астаксантин обладает прекрасным противовоспалительным действием и эффективно защищает ДНК. Исследования показали, что он способен защищать ДНК от повреждения, вызванного гамма радиацией. Астаксантин обладает множеством уникальных черт, которые делают его выдающимся соединением.

Например, это самый мощный окислитель-каротиноид, способный «вымывать» свободные радикалы: астаксантин в 65 раз эффективнее витамина C, в 54 раза – бета-каротина и в 14 раз – витамина E. Он в 550 раз более эффективен, нежели витамин E, и в 11 раз более эффективен, нежели бета-каротин, в деле нейтрализации синглетного кислорода.

Астаксантин преодолевает и гемоэнцефалический, и гематоретинальный барьер (бета-каротин и каротиноид ликопин на это не способны), благодаря чему мозг, глаза и центральная нервная система получают антиокислительную и антивоспалительную защиту.

Другое свойство, отличающее астаксантин от иных каротиноидов, выражается в том, что он не может действовать как проокислитель. Многие антиоксиданты действуют как прооксиданты (т. е., они начинают окислять, вместо того, чтобы противодействовать окислению). Однако астаксантин, даже в больших количествах, не действует как окислитель.

Наконец, одно из самых важных свойств астаксантина – его уникальная способность защищать всю клетку от разрушения: как водорастворимую, так и жирорастворимую её части. Другие антиоксиданты влияют лишь либо на одну, либо на другую часть. Уникальные физические характеристики астаксантина позволяют ему находиться в клеточной мембране, защищая также внутреннюю область клетки.

Прекрасным источником астаксантина является микроскопическая водоросль Haematococcus pluvialis, растущая на Шведском архипелаге. Кроме того, астаксантин содержит старая добрая черника.


Убихинол

Убихинол - восстановленная форма убихинона. По сути, убихинол – это убихинон, присоединивший к себе молекулу водорода. Содержится в брокколи, петрушке и апельсинах.

Ферментированные продукты/пробиотики

Совершенно очевидно, что диета, состоящая, преимущественно, из переработанных продуктов, сокращает продолжительность жизни. Исследователи считают, что в будущих поколениях возможны множественные генетические мутации и функциональные расстройства, приводящие к болезням – по той причине, что нынешнее поколение активно потребляет искусственные и переработанные продукты.

Отчасти, проблема заключается в том, что переработанные продукты, изобилующие сахаром и химическими веществами, эффективно уничтожают кишечную микрофлору. Микрофлора влияет на иммунную систему, которая, является естественной защитной системой тела. Антибиотики, стресс, искусственные подсластители, хлорированная вода и многие другие явления также уменьшают объём пробиотиков в кишечнике, что предрасполагает организм к болезням и преждевременной старости. В идеале, рацион должен включать традиционно культивируемые и ферментированные продукты.

Витамин K2

Этот витамин вполне может быть «ещё одним витамином D», поскольку исследования показывают многочисленные блага этого витамина для здоровья. Большинство людей получает адекватное количество витамина K2 (поскольку он синтезируется самим организмом в тонком кишечнике), которое позволяет поддерживать коагуляцию крови на адекватном уровне, но этого количества не достаточно, чтобы защитить организм от серьёзных проблем со здоровьем. Например, проведённые в последние годы исследования показывают, что витамин K2 может защищать организм от рака предстательной железы. Витамин K2 также благотворен для здоровья сердца. Содержится в молоке, сое (в больших количествах – в натто).

Магний

Магний играет важную роль в деле воспроизводства ДНК, его восстановлении и синтезе рибонуклеиновой кислоты. Долгосрочный дефицит магния приводит к сокращению теломер в телах крыс и клеточной культуре. Недостаток ионов магния негативно влияет на здоровье генов. Нехватка магния понижает способность тела восстанавливать повреждённую ДНК и вызывает в хромосомах аномалии. В целом, магний влияет на длину теломер, поскольку связан со здоровьем ДНК и её способностью восстанавливаться, а также повышает сопротивляемость организма окислительному стрессу и воспалению. Содержится в шпинате, спарже, пшеничных отрубях, орехах и семечках, фасоли, зелёных яблоках и салате, в сладком перце.

Полифенолы

Полифенолы – мощные антиокислители, способные замедлять процесс.

Статья на конкурс «био/мол/текст»: Уже более 50 лет прошло с тех пор, как на культуре фибробластов доказан феномен старения клеток, но существование старых клеток в организме долгое время подвергалось сомнению. Не было доказательств, что старение отдельных клеток играет важную роль в старении всего организма . В последние годы были открыты молекулярные механизмы старения клеток, их связь с онкологическими заболеваниями и воспалением. По современным представлениям, воспаление играет ведущую роль в генезе практически всех возраст-зависимых заболеваний, которые в конечном итоге приводят организм к смертельному исходу. Оказалось, что старые клетки, с одной стороны, выступают в качестве супрессоров опухолей (поскольку необратимо перестают делиться сами и снижают риск трансформации окружающих клеток), а с другой - специфический метаболизм старых клеток может вызывать воспаление и перерождение соседних предраковых клеток в злокачественные. В настоящее время проходят клинические испытания лекарственных препаратов, избирательно элиминирующих старые клетки в органах и тканях, тем самым предотвращая дегенеративные изменения органов и рак.

В организме человека присутствует примерно 300 типов клеток, и все они делятся на две большие группы: одни могут делиться и размножаться (то есть, они митотически компетентны ), а другие - постмитотические - не делятся: это достигшие крайней стадии дифференцировки нейроны, кардиомиоциты, зернистые лейкоциты и другие.

В нашем организме существуют обновляющиеся ткани, в которых есть пул постоянно делящихся клеток, которые заменяют отработанные или погибающие клетки. Такие клетки есть в криптах кишечника, в базальном слое эпителия кожи, в костном мозге (кроветворные клетки). Обновление клеток может происходить довольно интенсивно: так, клетки соединительной ткани в поджелудочной железе заменяются каждые 24 часа, клетки слизистой желудка - каждые три дня, лейкоциты - каждые 10 дней, клетки кожи - каждые шесть недель, примерно 70 г пролиферирующих клеток тонкого кишечника удаляется из организма ежедневно .

Стволовые клетки, существующие практически во всех органах и тканях, способны делиться неограниченно. Регенерация тканей происходит за счет пролиферации стволовых клеток, которые могут не только делиться, но и дифференцироваться в клетки той ткани, регенерация которой происходит. Стволовые клетки есть в миокарде, в головном мозге (в гипокампе и в обонятельных луковицах) и в других тканях. Это открывает большие надежды в плане лечения нейродегенеративных заболеваний и инфаркта миокарда .

Постоянно обновляющиеся ткани способствуют увеличению продолжительности жизни. При делении клеток происходит омоложение тканей: новые клетки приходят на место поврежденных, при этом интенсивнее происходит репарация (устранение повреждений ДНК) и возможна регенерация при повреждении тканей. Не удивительно, что у позвоночных значительно выше продолжительность жизни, чем у беспозвоночных - тех же насекомых, у которых во взрослом состоянии клетки не делятся.

Но в то же время обновляющиеся ткани подвержены гиперпролиферации, что ведет к образованию опухолей, в том числе - злокачественных. Это происходит из-за нарушений регуляции деления клеток и повышенной частоты мутагенеза в активно делящихся клетках. По современным представлениям, чтобы клетка приобрела свойство злокачественности, ей необходимо 4–6 мутаций . Мутации возникают редко, и для того, чтобы клетка стала раковой - это подсчитано для фибробластов человека - должно произойти около 100 делений (такое число делений обычно происходит у человека примерно в возрасте 40 лет) .

Стоит, в прочем, помнить, что мутация мутации рознь, и согласно новейшим геномным исследованиям в каждом поколении человек приобретает около 60 новых мутаций (которых не было в ДНК у его родителей). Очевидно, что большая часть из них вполне нейтральная (см. «Перевалило за тысячу: третья фаза геномики человека »). - Ред.

В целях защиты от самого себя, в организме сформировались специальные клеточные механизмы супрессии опухолей . Один из них - репликативное старение клеток (сенесценция ), заключающееся в необратимой остановке деления клетки в стадии G1 клеточного цикла . При старении клетка перестает делиться: она не реагирует на ростовые факторы и становится устойчивой к апоптозу.

Лимит Хейфлика

Феномен старения клеток был впервые открыт в 1961 г. Леонардом Хейфликом с коллегами на культуре фибробластов. Оказалось, что клетки в культуре фибробластов человека при хороших условиях живут ограниченное время и способны удваиваться примерно 50±10 раз, - и это число стали называть лимитом Хейфлика , . До открытия Хейфлика господствовала точка зрения, что клетки бессмертны, а старение и смерть - это свойство организма в целом.

Эта концепция считалась неопровержимой во многом благодаря экспериментам Карреля, который поддерживал культуру клеток сердца цыпленка 34 года (ее выбросили лишь после его смерти). Однако, как выяснилось впоследствии, бессмертие культуры Карреля было артефактом, поскольку вместе с эмбриональной сывороткой, которая добавлялась в культуральную среду для роста клеток, туда попадали и сами эмбриональные клетки (и, скорее всего, культура Карреля стала уже далеко не тем, чем была в начале).

По-настоящему бессмертными являются раковые клетки. Так, клетки HeLa , выделенные в 1951 г. из опухоли шейки матки Генриетты Лакс , до сих пор используются цитологами (в частности, c помощью клеток HeLa была разработана вакцина против полиомиелита). Эти клетки даже побывали в космосе.

О захватывающей истории бессмертия Генриетты Лакс см. в статье «Бессмертные клетки Генриетты Лакс », а также «Наследники клеток HeLa ». - Ред.

Как выяснилось, лимит Хейфлика зависит от возраста: чем старше человек, тем меньшее число раз удваиваются его клетки в культуре. Интересно, что замороженные клетки при разморозке и последующем культивировании как будто помнят число делений до замораживания. Фактически, внутри клетки существует «счетчик делений», и по достижении определенного предела (лимита Хейфлика) клетка перестает делиться - становится сенесцентной. Сенесцентные (старые) клетки имеют специфическую морфологию - они крупные, уплощенные, с большими ядрами, сильно вакуолизированы, у них меняется профиль экспрессии генов. В большинстве случаев они устойчивы к апоптозу.

Однако старение организма нельзя свести только к старению клеток. Это значительно более сложный процесс. Старые клетки есть и в молодом организме, но их мало! Когда же с возрастом сенесцентные клетки накапливаются в тканях, начинаются дегенеративные процессы, которые приводят к возраст-зависимым заболеваниям. Один из факторов этих заболеваний - так называемое старческое «стерильное» воспаление , которое связано с экспрессией провоспалительных цитокинов старыми клетками.

Еще один важный фактор биологического старения - строение хромосом и их кончиков - теломеров.

Теломерная теория старения

Рисунок 1. Теломеры - концевые участки хромосом. Поскольку хромосом у человека 23 пары (то есть, 46 штук), теломер получается 92.

В 1971 году наш соотечественник Алексей Матвеевич Оловников предположил, что лимит Хейфлика связан с «недорепликацией» концевых участков линейных хромосом (они имеют специальное название - теломеры ). Дело в том, что в каждом цикле деления клетки теломеры укорачиваются из-за неспособности ДНК-полимеразы синтезировать копию ДНК с самого кончика , . Кроме того, Оловников предсказал существование теломеразы (фермента, добавляющего повторяющиеся последовательности ДНК на концы хромосом), исходя из того факта, что иначе в активно делящихся клетках ДНК быстро бы «съелась», и генетический материал был бы утерян. (Проблема в том, что активность теломеразы угасает в большинстве дифференцированных клеток.)

Теломеры (рис. 1) играют важную роль: они стабилизируют кончики хромосом, которые иначе, как говорят цитогенетики, стали бы «липкими», т.е. подверженными разнообразным хромосомным аберрациям, что приводит к деградации генетического материала. Теломеры состоят из повторяющихся (1000–2000 раз) последовательностей (5′-TTAGGG-3′), что в сумме дает 10–15 тысяч нуклеотидных пар на каждый хромосомный кончик. На 3′-конце теломеры имеют довольно длинный однонитевой участок ДНК (150–200 нуклеотидов), участвующий в образовании петли по типу лассо , (рис. 2). С теломерами связано несколько белков, образующих защитный «колпачок» - этот комплекс называется шелтерином (рис. 3). Шелтерин предохраняет теломеры от действия нуклеаз и слипания и, видимо, именно он сохраняет целостность хромосомы.

Рисунок 2. Состав и структура теломер. Многократное деление клетки в случае отсутствия активности теломеразы ведет к укорочению теломер и репликативному старению .

Рисунок 3. Строение теломерного комплекса (шелтерина ). Теломеры находятся на концах хромосом и состоят из тандемных повторов TTAGGG, которые заканчиваются 32-членным выступающим одноцепочечным фрагментом. С теломерной ДНК связан шелтерин - комплекс из шести белков: TRF1, TRF2, RAP1, TIN2, TPP1 и POT1.

Незащищенные концы хромосом воспринимаются клеткой как повреждение генетического материала, что активирует репарацию ДНК . Теломерный комплекс вместе с шелтерином «стабилизирует» хромосомные кончики, защищая всю хромосому от разрушения. В сенесцентных клетках критическое укорочение теломер нарушает эту защитную функцию , в связи с чем начинают формироваться хромосомные аберрации, которые часто приводят к малигнизации. Чтобы этого не произошло, специальные молекулярные механизмы блокируют клеточное деление, и клетка переходит в состояние сенесцентности - необратимой остановки клеточного цикла. При этом клетка гарантированно не может размножаться, а значит, не сможет и сформировать опухоль. В клетках с нарушенной способностью к сенесценции (которые размножаются, несмотря на дисфункцию теломер), образуются хромосомные аберрации.

Длина теломер и скорость их укорочения зависит от возраста. У человека длина теломер варьирует от 15 тысяч нуклеотидных пар (т.н.п.) при рождении до 5 т.н.п. при хронических заболеваниях. Длина теломер максимальна у 18-месячных детей, а затем она быстро снижается до 12 т.н.п. к пятилетнему возрасту. После этого скорость укорачивания снижается .

Теломеры укорачиваются у разных людей с разной скоростью. Так, на эту скорость сильно влияют стрессы. Э. Блекберн (лауреат Нобелевской премии по физиологии и медицине 2009 г.) установлено, что женщины, постоянно испытывающие стресс (например, матери хронически больных детей), имеют значительно более короткие теломеры по сравнению со сверстницами (примерно на десять лет!). Лабораторией Э. Блекберн разработан коммерческий тест для определения «биологического возраста» людей на основании длины теломер.

Любопытно, что у мышей очень длинные теломеры (50–40 т.н.п., по сравнению с 10–15 т.н.п. у человека). У некоторых линий лабораторных мышей длина теломер достигает 150 т.н.п. Более того, у мышей теломераза всегда активна, что не дает теломерам укорачиваться. Однако это, как всем известно, не делает мышей бессмертными. Мало того: у них опухоли развиваются намного чаще, чем у людей, что позволяет предположить, что укорачивание теломер как механизм защиты от опухолей у мышей не работает .

При сравнении длины теломер и теломеразной активности у разных млекопитающих оказалось, что виды, для которых характерно репликативное старение клеток, имеют большую продолжительность жизни и большой вес. Это, например, киты, продолжительность жизни которых может достигать 200 лет. Таким организмам репликативное старение просто необходимо, поскольку слишком большое число делений порождает множество мутаций, с которыми необходимо как-то бороться. Предположительно, репликативное старение и есть такой механизм борьбы, который сопровождается к тому же репрессией теломеразы .

Старение диференцированных клеток происходит иначе. Стареют и нейроны, и кардиомиоциты, а ведь они не делятся! Например, в них накапливается липофусцин - старческий пигмент, который нарушает функционирование клеток и запускает апоптоз. В клетках печени и селезенки с возрастом накапливается жир.

Связь репликативного старения клеток со старением организма, строго говоря, не доказана, но возрастная патология сопровождается и старением клеток (рис. 4). Злокачественные новообразования пожилого возраста в большинстве своем связаны с обновляемыми тканями. Онкологические заболевания в развитых странах - одна из основных причин заболеваемости и смертности, причем независимым фактором риска раковых заболеваний является просто... возраст. Число смертей от опухолевых заболеваний увеличивается с возрастом по экспоненте, так же как и общая смертность. Это говорит нам, что между старением и канцерогенезом существует фундаментальная связь.

Рисунок 4. Гистохимически окрашенные на наличие β-галактозидазной активности фибробласты человека линии WI-38. A - молодые; B - старые (сенесцентные).

Теломераза - фермент, который был предсказан

В организме должен существовать механизм, компенсирующий укорочение теломер, - такое предположение сделал А.М. Оловников . Действительно, в 1984 г. такой фермент был открыт Кэрол Грейдер и назван теломеразой . Теломераза (рис. 5) - это обратная транскриптаза, которая увеличивает длину теломер, компенсируя их недорепликацию. В 2009 году Э. Блэкберн, К. Грэйдер и Д. Шостак за открытие этого фермента и цикл работ по изучению теломер и теломеразы была присуждена Нобелевская премия (см: «„Нестареющая“ Нобелевская премия: в 2009 году отмечены работы по теломерам и теломеразе » ).

Рисунок 5. Теломераза содержит каталитический компонент (обратную транскриптазу ТERT), теломеразную РНК (hTR или TERC), содержащую две копии теломерного повтора и являющуюся матрицей для синтеза теломеров, и белок дискерин.

По данным Э. Блекберн, теломераза участвует в регуляции активности примерно 70 генов. Теломераза активна в зародышевых и эмбриональных тканях, в стволовых и пролиферирующих клетках. Ее обнаруживают в 90% раковых опухолей, что обеспечивает неудержимое размножение раковых клеток. В настоящее время среди препаратов, которые используют для лечения рака, есть и ингибитор теломеразы. Но в большинстве соматических клеток взрослого организма теломераза не активна.

В состояние сенесценции клетку могут привести многие стимулы - дисфункция теломер, повреждения ДНК, причиной которых могут быть мутагенные воздействия окружающей среды, эндогенные процессы, сильные митогенные сигналы (сверхэкспрессия онкогенов Ras, Raf, Mek, Mos, E2F-1 и др.), нарушения хроматина, стрессы и др. Фактически, клетки перестают делиться - становятся сенесцентными - в ответ на потенциально вызывающие рак события.

Страж генома

Дисфункция теломер, которая происходит при их укорачивании либо нарушении работы шелтерина, активирует белок р53 . Этот транскрипционный фактор приводит клетку в состояние сенесценции, либо вызывает апоптоз . При отсутствии р53 развивается нестабильность хромосом, характерная для карцином человека. Мутации в белке р53 обнаруживаются в 50% аденокарцином груди и в 40–60% случаев колоректальной аденокарциномы. Поэтому p53 зачастую называют «стражем генома».

Теломераза реактивируется в большинстве опухолей эпителиального происхождения, которые характерны для пожилых людей. Считается, что реактивация теломеразы - важный этап злокачественных процессов, поскольку это позволяет раковым клеткам «не обращать внимания» на лимит Хейфлика. Дисфункция теломер способствует хромосомным слияниям и аберрациям, что в отсутствии p53 чаще всего приводит к злокачественным новообразованиям.

О молекулярных механизмах старения клеток

Рисунок 6. Схема клеточного цикла. Клеточный цикл подразделяют на четыре стадии: 1. G1 (предсинтетическая) - период, когда клетка готовится к репликации ДНК. В этой стадии может произойти остановка клеточного цикла в случае обнаружения повреждений ДНК (на время репарации). Если обнаруживаются ошибки в репликации ДНК, и они не могут быть исправлены репарацией, клетка не переходит на стадию S. 2. S (cинтетическая) - когда происходит репликация ДНК. 3. G2 (постсинтетическая) - подготовка клетки к митозу, когда происходит проверка точности репликации ДНК; если обнаружены недореплицированные фрагменты или другие нарушения в синтезе, переход на следующую стадию (митоз) не происходит. 4. М (митоз) - формирование клеточного веретена, сегрегация (расхождение хромосом) и формирование двух дочерних клеток (собственно деление).

Чтобы были понятны молекулярные механизмы перехода клетки в состояние сенесцентности, я напомню вам, как происходит деление клетки.

Процесс размножения клеток называют пролиферацией . Время существования клетки от деления до деления именуют клеточным циклом . Процесс пролиферации регулируется как самой клеткой - аутокринными ростовыми факторами, - так и ее микроокружением - паракринными сигналами.

Активация пролиферации происходит через клеточную мембрану, в которой присутствуют рецепторы, воспринимающие митогенные сигналы - это в основном ростовые факторы и межклеточные контактные сигналы. Ростовые факторы обычно имеют пептидную природу (к настоящему времени их известно около 100). Это, например, фактор роста тромбоцитов, который участвует в тромбообразовании и заживлении ран, эпителиальный фактор роста, различные цитокины - интерлейкины, фактор некроза опухолей, колониестимулирующие факторы и т.д. После активации пролиферации клетка выходит из фазы покоя G0 и начинается клеточный цикл (рис. 6).

Клеточный цикл регулируется циклин-зависимыми киназами , разными для каждой стадии клеточного цикла. Они активируются циклинами и инактивируются рядом ингибиторов. Цель такой сложной регуляции - обеспечить синтез ДНК с как можно меньшим числом ошибок, чтобы и дочерние клетки имели абсолютно идентичный наследственный материал. Проверка правильности копирования ДНК осуществляется в четырех «контрольных точках» цикла: если обнаруживаются ошибки, то клеточный цикл останавливается, и включается репарация ДНК . Если нарушения структуры ДНК удается исправить - клеточный цикл продолжается. Если нет - клетке лучше «покончить с собой» (путем апоптоза), чтобы избежать вероятности превращения в раковую.

Молекулярные механизмы, приводящие к необратимой остановке клеточного цикла, контролируются генами-супрессорами опухолей, среди которых p53 и pRB, связанные с ингибиторами циклин-зависимых киназ. Супрессию клеточного цикла в фазе G1 осуществляет белок p53, действующий через ингибитор циклин-зависимой киназы р21. Транскрипционный фактор р53 активируется при повреждениях ДНК, и функция его заключается в удалении из пула реплицирующихся клеток тех, которые являются потенциально онкогенными (отсюда и прозвище р53 - «страж генома»). Данное представление подтверждается тем фактом, что мутации р53 обнаруживают в ~50% случаев злокачественных опохолей. Другое проявление активности р53 связано с апоптозом наиболее поврежденных клеток.

Сенесценция клеток и возраст-зависимые заболевания

Рисунок 7. Взаимосвязь между старением клеток и старением организма.

Сенесцентные клетки накапливаются с возрастом и способствуют возрастным заболеваниям. Они снижают пролиферативный потенциал ткани и истощают пул стволовых клеток, что приводит к дегенеративным нарушениям ткани и снижает способность к регенерации и обновлению.

Сенесцентные клетки характеризуются специфической экспрессией генов: они секретируют воспалительные цитокины и металлопротеиназы, разрушающие межклеточный матрикс. Получается, что старые клетки обеспечивают вялотекущее старческое воспаление, а накопление старых фибробластов в коже служит причиной возрастного снижения способности к заживлению ран (рис. 7). Старые клетки также стимулируют пролиферацию и малигнизацию близлежащих предраковых клеток, благодаря секреции эпителиального фактора роста .

Сенесцентные клетки накапливаются во многих тканях человека, присутствуют в атеросклеротических бляшках, в язвах кожи, в пораженных артритом суставах, а также в доброкачественных и пренеопластических гиперпролиферативных поражениях простаты и печени. При облучении раковых опухолей некоторые клетки также переходят в состояние сенесценции, тем самым обеспечивая рецидивы заболевания.

Таким образом, клеточное старение демонстрирует эффект отрицательной плейотропии, суть которого состоит в том, что хорошее для молодого организма, может стать плохим для старого. Самый яркий пример - процессы воспаления. Выраженная реакция воспаления способствует быстрому выздоровлению молодого организма при инфекционных заболеваниях. В пожилом же возрасте активные воспалительные процессы приводят к возрастным заболеваниям. Сейчас принято считать, что воспаление играет определяющую роль практически при всех возраст-зависимых заболеваниях, начиная с нейродегенеративных.

Лауреат Нобелевской премии, биолог, президент Института биологических исследований Солк в Ла-Хойя (Калифорния) Элизабет Блэкберн вместе с психологом Элиссой Ипел опубликовала книгу про то, как продлить свою жизнь, удлинив теломеры (структуры на концах хромосом, которые играют ключевую роль в клеточном старении). Основная мысль книги «Эффект теломеры» в том, что вы можете взять под контроль старение в большей степени, чем представляете.

Как только Нобелевская премия была вручена за исследование теломер, учёные занялись поиском средства для их удлинения, в том числе разрабатывая различные препараты. По мнению Э. Блэкберн, не надо ждать чудо-пилюлю. Можно обойтись и без неё.

Выводы учёной: надо просто не курить, хорошо питаться, достаточно спать, регулярно заниматься спортом и бороться со стрессом. Это и удлинит теломеры.

«Теломеры слушают вас, слушают ваше поведение, ваше умственное состояние», - утверждает Э. Блэкберн. Она объясняет, что теломеры находятся на концах цепочек ДНК, как защитные колпачки на шнурках. Стресс от грубого образа жизни приводит к сокращению этих колпачков, в результате чего клетки однажды перестанут делиться и будут умирать. И эти стареющие клетки ускоряют старение человека очень сильно. Причём они не приводят к конкретным заболеваниям, но исследования показывают, что они приближают время, когда любые гены, которые могут спать у вас в банке, начнут заявлять о себе. «Поэтому если вы уязвимы к болезням сердца, скорее всего, вы получите их тем раньше, чем ваши теломеры будут короче, - говорят учёные. - Мы можем обеспечить новый уровень конкретики и сказать людям более точно, благодаря фактам, пришедшим из науки о теломерах, как именно упражнения связаны с длинными теломерами, какие именно продукты связаны с длинными теломерами и как сон влияет на длинные теломеры».

Исследователи в области теломер высоко оценили усилия коллег по ознакомлению широкой общественности с понятием теломер, хотя предупреждали, что они рискуют упростить научный подход.

«Думаю, это очень трудно: убедительно доказать, что образ жизни может влиять на длину теломер и, следовательно, на продолжительность жизни, - говорит гарвардский генетик и исследователь в области омоложения Дэвид Синклер. - Вывести причинно-следственные связи в организме человека невозможно, поэтому всё построено на ассоциациях».

Короткие теломеры увеличивают вероятность того, что клетки будут стареть и производить молекулы, приводящие к воспалению, что составляет огромный фактор риска для всех возрастных заболеваний. Клетки могут стареть по-разному, поэтому у человека может быть много стареющих клеток, но вполне нормальные теломеры.

Но учёные предупреждают от поспешных выводов: «Если бы всё старение было связано с теломерами, мы бы разрешили проблемы старения давным-давно». По мнению экспертов, лучшая часть исследования теломер в том, что их можно посчитать и дать людям вполне конкретные рекомендации по физическим нагрузкам. Что важно, для этого не обязательно бежать марафон каждую неделю - исследования теломер показывают, что экстремальные нагрузки не обязательно связаны с продолжительной жизнью.

И вот что важно: исследование показало, что удлинение теломер с помощью медикаментов может быть опасным. Поэтому изменить образ жизни будет куда безопаснее, чем сесть на таблетки. При этом совсем не обязательно спать по восемь часов в сутки, чтобы помогать теломерам. Семи часов сна вполне достаточно, если вы чувствуете себя хорошо отдохнувшим.

Рецензенты на книгу отмечают, что одна из проблем исследования теломер в том, что большинство исследований измеряют длину теломер в клетках крови. Но это ничего не говорит о том, что печень может стареть быстрее или медленнее, чем кровь, - в конце концов наши органы стареют с разной скоростью.

«Измеряя длину теломер в крови, вы просто получаете данные о том, что иммунные стволовые клетки хорошо функционируют, - говорит Мэтт Кэберлейн, изучающий молекулярные основы старения в Университете штата Вашингтон. - То есть это может говорить нам о том, что иммунная система может быть особенно чувствительна к образу жизни и факторам окружающей среды».

Многие учёные полагают, что у исследования есть потенциал стать биомаркером прогнозирования состояния здоровья, но отмечают, что вряд ли людям будет более комфортно от того, что им скажут: надо менять образ жизни на основании измерения длины теломер.

Старение — это неотъемлемый процесс нашей жизни. Понимание того, почему мы стареем или что вызывает старение, является загадкой, которую ученые все еще пытаются решить. По данному вопросу существует множество теорий:

  • Окислительный стресс повреждает ДНК
  • Виновата глюкоза
  • Наши клетки следуют заранее запрограммированному биологическому расписанию независимо от каких-либо других факторов.

Скорее всего, это сочетание всех этих факторов, а также некоторых других причин, которые мы еще не обнаружили.

Роль теломер в старении

Одна теория предполагает, что процесс старения хотя бы частично связан с нашими теломерами. Теломеры — это маленькие защитные колпачки на концах молекул ДНК. Их работа заключается в том, чтобы не допустить износа концов хромосом или прилипания друг к другу, подобно пластиковым наконечникам на концах шнурков.

Теломеры также играют важную роль в обеспечении правильного копирования нашей ДНК при делении клеток, но благодаря причуде механизма репликации ДНК, несколько нуклеотидов (строительные блоки ДНК) на самом конце цепи не передаются в новую копию ДНК, что приводит к потере некоторой генетической информации; это как если бы вы ксерокопировали один и тот же документ, каждый раз отрезая последнюю строчку текста на странице. Таким образом, нити ДНК становятся короче и короче с каждым делением клетки.

Но потеря этой генетической информации не критична, ведь теломеры состоят из одной и той же последовательности шести нуклеотидов, повторяющихся снова и снова, которые при делении клетки становятся короче; это защищает важную часть ДНК, которая несет генетический код.

В яйцеклетках и сперматозоидах есть фермент, называемый теломеразой, который добавляет эти повторяющиеся последовательности в конец цепей ДНК, поэтому, теломеры в этих клетках не укорачиваются. В других клетках теломераза менее активна, что приводит к постепенному укорочению теломер со временем.

Укорочение теломер — это одна из причин старения, потому что клетки больше не могут делиться, когда теломеры слишком короткие. Как только они достигают критической точки, клетка становится неактивной, медленно накапливает урон, который она не может восстановить и умирает. Этот предел деления клеток называется Пределом Хейфлика , после того, как исследователь Леонард Хейфлик обнаружил, что нормальные человеческие клетки делятся примерно 50-52 раза.

Удлинение теломер, как лекарство от старости

Слишком короткий теломер посылает сигнал о том, что в ДНК есть проблема. Проблемную ДНК нужно восстанавливать, а не непрерывно копировать, поэтому важно, чтобы сломанная ДНК была помечена и быстро восстановлена с помощью механизмов восстановления клеток. В этом смысле, теломеры играют важную роль в предотвращении рака, который является неконтролируемым делением клеток. Вот почему мы не можем просто продлить жизнь наших клеток, ускорив регенерацию теломер с помощью большего количества теломер-продуцирующей теломеразы: наши встроенные системы борьбы с раком перестали бы правильно функционировать.

Оказывается, важна не только длина теломера, но и форма и структура теломера. Здоровые теломеры образованы на окончаниях хромосом, это аккуратные маленькие петли в форме скрепки, конец которых спрятан и надежно защищен. Если вы когда-либо пытались сформировать петлю или узел с кусочком нити, вы будете знать, что по мере того, как кусочек нити становится все короче и короче, формировать его в петлю становится все труднее. То же самое с теломерами.

Когда эта петля разворачивается и обнажается конец — «звучит» сигнал тревоги, указывающий на поломку ДНК. Деление клетки прекращается и клетка начинает стареть, она больше не может должным образом реагировать на повреждения. Последующее медленное ухудшение функций является частью процесса старения.

Значит ли это, что длинные и здоровые теломеры = ключ к долгой жизни? Нам еще многое предстоит узнать, прежде чем мы сможем ответить на этот вопрос, но на текущий момент мы не можем с уверенностью это сказать. Тем не менее, мы знаем, что плохой образ жизни (курение или воздействие ультрафиолета) может ускорить деградацию наших теломер, поэтому для нас было бы разумно принять меры, чтобы замедлить этот процесс.