Главная · Метеоризм · Все о резистентности и методах определения чувствительности бактерий к антибиотикам. Резистентность бактерий к антибиотикам — бич современной урологии Природные источники генов резистентности к антибиотикам

Все о резистентности и методах определения чувствительности бактерий к антибиотикам. Резистентность бактерий к антибиотикам — бич современной урологии Природные источники генов резистентности к антибиотикам

Резистентность к антибиотикам – это способность патогенных бактерий проявлять устойчивость к воздействию терапевтических концентраций антибактериальных препаратов. Устойчивость к антибиотикам разделяют на врожденную и приобретенную. Под врожденной резистентностью подразумевают отсутствие у бактерии мишени, на которую может действовать применяемый антибиотик, слишком низкую проницаемость бактериальной мембраны для препарата, способность инактивировать лекарство при помощи ферментов либо активно выводить его из бактериальной клетки.

Приобретенная устойчивость возникает как следствие мутации возбудителя, благодаря которой он может свободно переносить концентрации антибиотика, достаточные для инактивации других бактерий данного вида.

Стремительный рост устойчивости бактерий к антибиотикам представляет серьезную угрозу для здоровья и жизни людей. По статистике ВОЗ, вероятность смертельного исхода заболевания у пациента, инфицированного метициллино-резистентными штаммами стафилококка (MRSA), на 70% выше, чем у больного, инфицированного обычными, чувствительными к антибиотикам штаммами.

Во многих странах наблюдается тенденция к росту резистентности E. Coli (основного возбудителя инфекций мочевыводящих путей) к фторхинолонам и цефалоспоринам. Все чаще регистрируются случаи устойчивости бактерий к препаратам резерва для данной инфекции (карбапенемы для Klebsiella pneumonia, 3-е поколение цефалоспоринов для гонореи) и т.д. То есть, те заболевания, которые на протяжении многих лет эффективно лечились антибактериальными препаратами сегодня, снова представляют опасность для населения.

В некоторых случаях, тест на чувствительность к антибиотикам показывает частичную или полную устойчивость к большинству «классических» для данной инфекции антибиотиков.

Такая неутешительная картина связана с частым нерациональным и необоснованным применением противомикробных средств. Многие пациенты покупают лекарства не по назначению врача, а по рекомендации друзей, фармацевтов в аптеке, после просмотра рекламы или просто вспомнив, что когда-то этот препарат уже помогал. Также, у многих существуют «любимые» лекарства, которые принимаются по несколько дней при первых признаках заболевания.

Важно понимать, что самоназначение антибиотиков, самостоятельная коррекция назначенных дозировок, кратности приема и длительности курса способствует формированию и распространению бактерий с приобретенной устойчивостью к антибиотикам.

Как развивается устойчивость к противомикробным препаратам?

Вторичная (приобретенная) резистентность к антибиотикам развивается за счет спонтанных мутаций в геноме микробной клетки после контакта с противомикробным средством. Важной особенностью данных мутаций является их способность «запоминаться» бактериями и передаваться следующим поколения патогенов. Это способствует быстрому распространению устойчивых штаммов в окружающей среде.

Степень резистентности (сниженная чувствительность к антибиотикам или полная устойчивость), а также скорость ее развития зависит от видов и штаммов бактерий.

Быстрее всего под действием антибиотиков мутируют:

  • стафилококки (грамположительные кокки);
  • эшерихии (грамотрицательные бактерии);
  • микоплазмы (внутриклеточные возбудители);
  • протей (грам- бактерии);
  • (грамотрицательные бактерии).

Достаточно редко встречаются антибиотикорезистентные стрептококки группы А, клостридии, сибироязвенные и гемофильные палочки.

Среди механизмов формирования устойчивости, на данный момент наиболее важными считают:

  • ферментную инактивацию антибиотика;
  • модификацию молекул-мишеней в микробной клетке;
  • способность возбудителей активно выводить антибиотик (эффлюкс);
  • снижение проницаемости микробной мембраны для лекарства.

Поскольку активное выведение и нарушение проницаемости основаны на ограничении доступа антибиотика в бактериальную клетку, их часто объединяют в один механизм резистентности.

Что значит чувствительность к антибиотикам

В связи с ростом резистентности ко многим противомикробным средствам, определение чувствительности микроорганизмов к антибиотикам позволяет проводить противомикробную терапию максимально рационально и эффективно.

Итак, чувствительность к антибиотикам. Всех возбудителей инфекционно-воспалительных болезней можно разделить на:

  • чувствительные;
  • малочувствительные;
  • полностью устойчивые.

Если рост и размножение бактерий на питательной среде подавляются терапевтическими дозировками антибиотиков, то бактерии считаются чувствительными. Малочувствительные штаммы, реагируют только на максимальные дозировки лекарственного средства.

Резистентными к антибиотику считаются патогены, которые ингибируются только критически высокими дозами антибактериальных средств, достичь которых можно исключительно в условиях лаборатории, но не в человеческом организме.

Как определить чувствительность к антибиотикам?

Этиотропное назначение противомикробных препаратов основывается на выделении возбудителя с дальнейшим определением чувствительности к антибиотикам. Этот анализ позволяет получить эпидемиологические показатели устойчивости патогенных микроорганизмов в определенном регионе, а также изучить структуру внутрибольничных и внебольничных инфекций.

При проведении пробы на чувствительность к антибиотикам, необходимо соблюдать определенный алгоритм действий и четко соблюдать все звенья бактериологической диагностики.

Этапность исследования состоит из:

  • забора материала;
  • доставки в лабораторию;
  • посевов на специальные среды;
  • выделения вида и штамма возбудителя;
  • изучения чувствительности к противомикробным средствам.

Важно понимать, что достоверные данные анализа можно получить только при правильном выполнении всех этапов диагностики.

Методы определения чувствительности бактерий к антибиотикам

Чувствительность к антибиотикам исследуется при помощи:

  • диффузии (диски с противомикробными препаратами или E-тесты);
  • разведения (для этого используют агар или жидкие питательные среды (бульон)).

Как сделать пробу на антибиотик?

Наиболее популярным качественным методом диагностики считается диффузия в агар с использованием метода дисков. Для того, что бы изучить чувствительность к антибиотикам при помощи диффузии с дисками, необходимо засеять исследуемым патогенном питательную среду с агаром и поместить сверху диски с антибактериальными препаратами. Далее, чашка Петри с образцами выдерживается в термостате при температуре от 35 до 37 0 С в течение суток. По истечению 24 часов оценивают зоны ингибирования роста бактерий вокруг дисков. Данный метод диагностики является качественным, то есть диффузия-дисками определяет — чувствителен возбудитель к антибиотику или нет.

Для оценивания степени чувствительности измеряют зону ингибирования роста. При полной резистентности бактерии к антибиотику зона задержки полностью отсутствует.

О слабой чувствительности говорит задержка до 1.5 сантиметра. Препараты с такими показателями являются неэффективными для эрадикации исследуемого возбудителя.

Умеренно эффективными (показатели стандартной чувствительности) являются антибиотики с задержкой роста от 1.5 до 2.5 сантиметров. О высокой чувствительности свидетельствует зона ингибирования роста более 2.5 сантиметров.

Кроме диско-диффузного метода могут применяться полоски E-тестов. Алгоритм действий аналогичен предыдущему, только вместо пропитанных противомикробным средством дисков используют полоску с Е-тестом, содержащую разметку с градиентом концентраций изучаемого антибиотика (от максимума к минимуму).

Полоски с Е-тестом

Важно помнить, что диффузные методы неэффективны для выявления МКП (минимальные концентрации подавления) полипептидных антибиотиков с плохой диффузией в агар. То есть для полимиксина, ристомицина и т.д. предпочтительнее использовать серийное разведение.

Методы разведения

Количественные методы используются для выявления МКП и минимальных концентраций бактерицидного действия. То есть, с их помощью можно определить минимальный уровень антибиотика, который будет предотвращать видимый рост бактерий.

При помощи методов разведения можно рассчитать необходимую дозу препарата (терапевтическая концентрация в крови должна значительно превышать МКП). При использовании метода серийного разведения, вначале готовится основной р-р, со строго определенной концентрацией антибиотика в специальной питательной среде. Из него готовятся все последующие разведенные р-ры.

Далее, в каждую пробирку (чашку Петри) с разведениями добавляют изучаемую культуру возбудителей. После этого, все посевы подвергаются инкубации в термостате при температуре 37 0 С на одни сутки. По окончанию инкубации оценивают результаты и выявляют МКП по отсутствию зоны роста (в чашке Петри) или помутнения (среды в пробирке).

Оценивание результатов проводится при помощи специальных таблиц с стандартными показателями диаметров ингибирования роста и МКП для резистентных (для этих штаммов указывается только зона ингибирования роста), малочувствительных и чувствительных.

Устойчивость микроорганизмов к антибиотикам

С открытием антибиотиков, обладающих избирательным действием на микробы in vivo (в организме), могло показаться, что наступила эпоха окончательной победы человека над инфекционными болезнями. Но уже вскоре было обнаружено явление резистентности (устойчивости) отдельных штаммов болезнетворных микробов к губительному действию антибиотиков. По мере увеличения сроков и масштабов практического применения антибиотиков нарастало и число устойчивых штаммов микроорганизмов. Если в 40-х годах клиницистам приходилось сталкиваться с единичными случаями инфекций, вызванных устойчивыми формами микробов, то в настоящее время количество, например, стафилококков, устойчивых к пенициллину, стрептомицину, хлорамфениколу (левомицетину), превышает 60-70%. Чем же объясняется явление антибиотикорезистентности?


Устойчивость микроорганизмов к действию антибиотиков вызвана несколькими причинами. В основном они сводятся к следующим. Во-первых, в любой совокупности микроорганизмов, сосуществующих на каком-то определенном участке субстрата, встречаются естественно устойчивые к антибиотикам варианты (примерно одна особь на миллион). При воздействии антибиотика па популяцию основная масса клеток гибнет (если антибиотик обладает бактерицидным действием) или прекращает развитие (если антибиотик обладает бактериостатическим действием). В то же самое время устойчивые к антибиотику единичные клетки продолжают беспрепятственно размножаться. Устойчивость к антибиотику этими клетками передается по наследству, давая начало новой устойчивой к антибиотику популяции. В данном случае происходит селекция (отбор) устойчивых вариантов с помощью антибиотика. Вовторых, у чувствительных к антибиотику микроорганизмов может идти процесс адаптации (приспособления) к вредному воздействию антибиотического вещества. В этом случае может наблюдаться, с одной стороны, замена одних звеньев обмена веществ микроорганизма, естественный ход которых нарушается антибиотиком, другими звеньями, не подверженными действию препарата. При этом микроорганизм также не будет подавляться антибиотиком. С другой - микроорганизмы могут начать усиленно вырабатывать вещества, разрушающие молекулу антибиотика, тем самым нейтрализуя его действие. Например, ряд штаммов стафилококков и спороносных бактерий образует фермент пенициллиназу, разрушающий пенициллин с образованием продуктов, не обладающих антибиотической активностью. Это явление называется энзиматической инактивацией антибиотиков.


Интересно отметить, что пенициллиназа в настоящее время нашла практическое применение в качестве антидота - препарата, снимающего вредное действие пенициллина, когда он вызывает тяжелые аллергические реакции, угрожающие жизни больного.


Микроорганизмы, обладающие устойчивостью к одному антибиотику, одновременно устойчивы и к другим антибиотическим веществам, сходным с первым по механизму действия. Это явление называется перекрестной устойчивостью. Например, микроорганизмы, ставшие устойчивыми к тетрациклину, одновременно приобретают устойчивость к хлортетрациклину и окситетрациклину.


Наконец, есть штаммы микроорганизмов, которые содержат в своих клетках так называемые R-факторы, или факторы резистентности (устойчивости). Распространение R-факторов среди болезнетворных бактерий в наибольшей степени снижает эффективность лечения многими антибиотиками по сравнению с другими видами микробной устойчивости, так как обусловливает устойчивость одновременно к нескольким антибактериальным веществам.


Все эти факты говорят о том, что для успешного лечения антибиотиками следует перед их назначением определять антибиотикорезистентность болезнетворных микробов,- а также пытаться преодолевать лекарственную устойчивость микробов.


Основные пути преодоления устойчивости микроорганизмов к антибиотикам, снижающей эффективность лечения, следующие:


изыскание и внедрение в практику новых антибиотиков, а также получение производных известных антибиотиков;


применение для лечения не одного, а одновременно нескольких антибиотиков с различным механизмом действия; в этих случаях одновременно подавляются разные процессы обмена веществ микробной клетки, что ведет к быстрой ее гибели и в значительной степени затрудняет развитие устойчивости у микроорганизмов; применение комбинации антибиотиков с другими химиотерапевтическими препаратами. Например, сочетание стрептомицина с парааминосалициловой кислотой (ПАСК) и фтивазидом резко повышает эффективность лечения туберкулеза;


подавление действия ферментов, разрушающих антибиотики (например, действие пенициллиназы можно подавить кристаллвиолетом);


освобождение устойчивых бактерий от факторов множественной лекарственной устойчивости (R-факторов), для чего можно использовать некоторые красители.


Существует много противоречивых теорий, которые пытаются объяснить происхождение устойчивости к лекарственным веществам. В основном они касаются вопросов о роли мутаций и адаптации в приобретении устойчивости. По-видимому, в процессе развития устойчивости к лекарственным веществам, в том числе и к антибиотикам, играют определенную роль как адаптивные, так и мутационные изменения.


В настоящее время, когда антибиотики широко применяются, устойчивые к антибиотическим препаратам формы микроорганизмов встречаются очень часто.

Жизнь растений: в 6-ти томах. - М.: Просвещение. Под редакцией А. Л. Тахтаджяна, главный редактор чл.-кор. АН СССР, проф. А.А. Федоров . 1974 .


Смотреть что такое "Устойчивость микроорганизмов к антибиотикам" в других словарях:

    устойчивость к антибиотикам - Одна из форм устойчивости микроорганизмов к лекарственным препаратам, характерна для многих природных штаммов например, при гастроэнтерите 86 % выделенных штаммов сальмонеллы проявляют устойчивость к различным антибиотикам. [Арефьев В.А.,… … Справочник технического переводчика

    - … Википедия

    Antibiotic resistance устойчивость к антибиотикам. Oдна из форм устойчивости микроорганизмов к лекарственным препаратам, характерна для многих природных штаммов например, при гастроэнтерите 86% выделенных штаммов сальмонеллы проявляют… … Молекулярная биология и генетика. Толковый словарь.

    Фаги, как и микроорганизмы, способны изменять все свои свойства: форму и размеры негативных колоний, спектр литического действия, способность к адсорбции на микробной клетке, устойчивость к внешним воздействиям, антигенные свойства.… … Биологическая энциклопедия

    Антибиотикорезистентность трансмиссивная (трансферабельная) - устойчивость микроорганизмов к антибиотикам, закодированная на внехромосомных генных элементах микробной клетки, наиболее часто встречающийся селективный маркер рекомбинантной ДНК ГММ... Источник: ПОРЯДОК И ОРГАНИЗАЦИЯ КОНТРОЛЯ ЗА ПИЩЕВОЙ… … Официальная терминология

    Использование антибиотиков в ветеринарии началось сразу же после их открытия. Это объясняется целым рядом преимуществ, которыми обладают антибиотики по сравнению с другими химиотерапевтическими веществами: антимикробное действие в очень… … Биологическая энциклопедия

    Вырабатываемые микроорганизмами химические вещества, которые способны тормозить рост и вызывать гибель бактерий и других микробов. Противомикробное действие антибиотиков имеет избирательный характер: на одни организмы они действуют сильнее, на… … Энциклопедия Кольера

    Способность микроорганизмов сохранять жизнедеятельность, включая размножение, несмотря на контакт с химиопрепаратами. Лекарственная устойчивость (резистентность) микроорганизмов отличается от их толерантности, при которой микробные клетки не… … Медицинская энциклопедия

    Базовая химическая структура тетрациклинов Тетрациклины (англ. tetracyclines) группа антибиотиков, относящихся к классу поликетидов, близких по химическому строению и биологическим свойства … Википедия

ОБЩИЕ ЗАКОНОМЕРНОСТИ

Основой терапевтического действия антибактериальных препаратов является подавление жизнедеятельности возбудителя инфекционной болезни в результате угнетения более или менее специфичного для микроорганизмов метаболического процесса. Угнетение происходит в результате связывания антибиотика с мишенью, в качестве которой может выступать либо фермент, либо структурная молекула микроорганизма.

Резистентность микроорганизмов к антибиотикам может быть природной и приобретенной.

  • Истинная природная устойчивость характеризуется отсутствием у микроорганизмов мишени действия антибиотика или недоступности мишени вследствие первично низкой проницаемости или ферментативной инактивации. При наличии у бактерий природной устойчивости антибиотики клинически неэффективны. Природная резистентность является постоянным видовым признаком микроорганизмов и легко прогнозируется.
  • Под приобретенной устойчивостью понимают свойство отдельных штаммов бактерий сохранять жизнеспособность при тех концентрациях антибиотиков, которые подавляют основную часть микробной популяции. Возможны ситуации, когда большая часть микробной популяции проявляет приобретенную устойчивость. Появление у бактерий приобретенной резистентности не обязательно сопровождается снижением клинической эффективности антибиотика. Формирование резистентности во всех случаях обусловлено генетически: приобретением новой генетической информации или изменением уровня экспрессии собственных генов.

Известны следующие биохимические механизмы устойчивости бактерий к антибиотикам:

  1. Модификация мишени действия.
  2. Инактивация антибиотика.
  3. Активное выведение антибиотика из микробной клетки (эффлюкс).
  4. Нарушение проницаемости внешних структур микробной клетки.
  5. Формирование метаболического "шунта".

МЕХАНИЗМЫ УСТОЙЧИВОСТИ К АНТИБАКТЕРИАЛЬНЫМ ПРЕПАРАТАМ ОТДЕЛЬНЫХ ГРУПП

β-лактамные антибиотики

Ферментативная инактивация . Наиболее распространенным механизмом устойчивости микроорганизмов к β-лактамам является их ферментативная инактивация в результате гидролиза одной из связей β-лактамного кольца ферментами β-лактамазами . К настоящему времени описано более 200 ферментов, различающихся по следующим практически важным свойствам:

  • Субстратный профиль (способность к преимущественному гидролизу тех или иных β-лактамов, например пенициллинов или цефалоспоринов , или тех и других в равной степени).
  • Локализация кодирующих генов (плазмидная или хромосомная). Эта характеристика определяет эпидемиологию резистентности. При плазмидной локализации генов происходит быстрое внутри- и межвидовое распространение резистентности, при хромосомной - наблюдают распространение резистентного клона.
  • Чувствительность к применяющимся в медицинской практике ингибиторам : клавулановой кислоте, сульбактаму и тазобактаму.
Таблица 1. Наиболее распространенные β-лактамазы и их свойства
Ферменты Характеристика
Плазмидные β-лактамазы класса А стафилококков Гидролизуют кроме метициллина и оксациллина
Плазмидные β-лактамазы широкого спектра класса А грамотрицательных бактерий Гидролизуют природные и полусинтетические пенициллины , цефалоспорины I поколения . Чувствительны к ингибиторам.
Плазмидные β-лактамазы расширенного спектра класса А грамотрицательных бактерий Гидролизуют природные и полусинтетические пенициллины , цефалоспорины I-IV поколения . Чувствительны к ингибиторам.
Хромосомные β-лактамазы класса С грамотрицательных бактерий Гидролизуют природные и полусинтетические пенициллины , цефалоспорины I-III поколения
Хромосомные β-лактамазы класса А грамотрицательных бактерий Гидролизуют природные и полусинтетические пенициллины , цефалоспорины I-II поколения . Чувствительны к ингибиторам.
Хромосомные β-лактамазы класса В грамотрицательных бактерий Эффективно гидролизуют практически все β-лактамы, включая карбапенемы . Не чувствительны к ингибиторам.
Плазмидные β-лактамазы класса D грамотрицательных бактерий (преимущественно P.aeruginosa ) Гидролизуют природные и полусинтетические пенициллины , цефалоспорины I-II поколения . Многие способны также гидролизовать цефалоспорины III поколения . Большинство не чувствительны к ингибиторам.

К наиболее распространенным ферментам относятся стафилококковые β-лактамазы (встречаются у 60-80% штаммов) и β-лактамазы широкого спектра грамотрицательных бактерий (среди штаммов E.coli встречаются в 30-40% случаев). Несмотря на широкое распространение перечисленных ферментов, они не представляют серьезной проблемы для терапии, поскольку многие современные β-лактамы (цефалоспорины II-IV поколений , ингибиторозащищенные пенициллины , карбапенемы) не чувствительны к гидролизу.

В настоящее время наибольшее значение для клинической практики имеют плазмидные БЛРС грамотрицательных бактерий, поскольку они способны разрушать цефалоспорины III и, в меньшей степени, IV поколения . Рутинные методы оценки антибиотикочувствительности очень часто не выявляют этот механизм устойчивости. Чаще всего БЛРС встречаются у микроорганизмов рода Klebsiella , достаточно часто у E.coli и Proteus spp., реже у других грамотрицательных бактерий. В России в отдельных учреждениях частота распространенности этих ферментов среди клебсиелл достигает 90%.

Модификация мишени действия . Мишенями действия β-лактамов являются ферменты - ПСБ , участвующие в синтезе клеточной стенки бактерий. В результате модификации у некоторых ПСБ уменьшается сродство к β-лактамам, что проявляется в повышении МПК этих препаратов и снижении клинической эффективности. Реальное клиническое значение имеет устойчивость среди стафилококков и пневмококков. Гены модифицированных ПСБ локализованы на хромосомах.

  • Устойчивость стафилококков (S.aureus и КНС) обусловлена появлением у микроорганизмов дополнительного ПСБ (ПСБ2а).
    • Маркером наличия ПСБ2а является устойчивость к метициллину или оксациллину .
    • Независимо от результатов оценки in vitro при инфекциях, вызываемых MRSA , все β-лактамы следует считать клинически неэффективными и не использовать в терапии.
    • Частота распространения MRSA в некоторых отделениях реанимации, онкологии и гематологии в России превышает 50-60%, что создает крайне серьезные проблемы для терапии.
  • Устойчивость пневмококков обусловлена появлением в генах, кодирующих ПСБ , чужеродной ДНК, происхождение которой связывают с зеленящими стрептококками. При этом перекрестная устойчивость между отдельными β-лактамами неполная. Значительная часть штаммов, устойчивых к пенициллину , сохраняет чувствительность к цефалоспоринам III поколения и карбапенемам . К настоящему времени накоплено значительное количество данных, свидетельствующих о сохранении клинической эффективности β-лактамов при инфекциях ДП, вызываемых штаммами с промежуточным уровнем устойчивости, однако при инфекциях ЦНС (менингитах) эффективность этих антибиотиков явно снижается. Накопленные данные послужили основанием для пересмотра критериев чувствительности пневмококков к амоксициллину , обсуждается целесообразность изменения критериев чувствительности к пенициллину .
  • Данные о частоте распространения в России пенициллинорезистентных пневмококков ограничены. В Москве, в период с 1998 г. по 2001 г., частота встречаемости штаммов пневмококков со сниженной чувствительностью к пенициллину колебалась в пределах 10-22%. При этом высокий уровень устойчивости отмечали не более чем у 1-2% штаммов.
  • Среди грамотрицательных бактерий устойчивость, связанная с модификацией ПСБ встречается редко. Определенное значение этот механизм устойчивости имеет у H.influenzae и N.gonorrhoeae . Микроорганизмы, проявляют устойчивость не только к , но и к ингибиторозащищенным препаратам .

Аминогликозиды

Ферментативная инактивация. Основным механизмом устойчивости к аминогликозидам является их ферментативная инактивация путем модификации. Модифицированные молекулы аминогликозидов теряют способность связываться с рибосомами и подавлять биосинтез белка. Описаны три группы АМФ , осуществляющих инактивацию аминогликозидов , путем их связывания с различными молекулами: ААС - присоединяющие молекулу уксусной кислоты, АРН - присоединяющие молекулу фосфорной кислоты, нуклеотидил- или ANT - присоединяющие молекулу нуклеотида аденина.

Таблица 2. Характеристика наиболее распространенных АМФ

На практике среди грамотрицательных бактерий могут встречаться практически все комбинации устойчивости к отдельным аминогликозидам . Это связано с разнообразием субстратных профилей отдельных ферментов и возможностью наличия у бактерии одновременно нескольких генов АМФ .

Для России характерна высокая частота распространения устойчивости среди грамотрицательных бактерий к гентамицину и тобрамицину , что, вероятно, связано с необоснованно широким применением гентамицина . Частота устойчивости к нетилмицину , как правило, несколько ниже. Устойчивость к амикацину встречается достаточно редко.

У ряда микроорганизмов (S. pneumoniae , Mycobacterium spp., Brachyspira hyodysenteriae , Propionibacterium spp., B. pertussis , H. influenzae , H. pylori ) известен и другой механизм модификации мишени для макролидов и линкозамидов - в результате мутаций в V домене 23S рРНК снижается сродство к антибиотикам и формируется клинически значимая устойчивость. При этом механизме наблюдают перекрестную резистентность ко всем макролидам и линкозамидам макролидам /линкозамидам штаммов S. pneumoniae , S. pyogenes и S. oralis вызывают также мутации в генах рибосомальных белков L4 и L22.

Активное выведение. Активное выведение макролидов и линкозамидов осуществляют несколько транспортных систем. Основное клиническое значение имеет система выведения, кодируемая mef -геном, распространенная среди S.pneumoniae , S.pyogenes и многих других грамположительных бактерий. Соответствующий белок-транспортер выводит 14- и 15-членные макролиды и обеспечивает невысокий уровень резистентности (МПК от 1 до 32 мг/л). Линкозамиды и 16-членые макролиды сохраняют активность.

Гены mef локализованы на хромосомах в составе конъюгативных элементов, что обеспечивает достаточно эффективное внутри- и межвидовое распространение. У стафилококков и энтерококков активное выведение макролидов , но не линкозамидов , осуществляют транспортные системы другого типа, кодируемые генами msr . Существуют также транспортные системы, осуществляющие избирательное выведение некоторых препаратов, например, линкомицина или олеандомицина.

Ферментативная инактивация. Ферменты, инактивирующие макролиды и линкозамиды , описаны среди грамположительных и грамотрицательных микроорганизмов. Некоторые из них обладают широким субстратным профилем (макролидфосфотрансферазы E.coli и Staphylococcus spp.), другие инактивируют только отдельные антибиотики (эритромицинэстеразы, распространенные среди семейства Enterobacteriaceae , линкомицинацетилтрансферазы стафилококков и энтерококков). Клиническое значение ферментов, инактивирующих макролидные антибиотики , невелико.

Роль отдельных механизмов резистентности к макролидам не равноценна. Накапливаются данные о том, что при инфекциях, вызываемых S. pneumoniae и S. pyogenes с устойчивостью, обусловленной активным выведением, некоторые макролиды могут сохранять клиническую эффективность.

Устойчивость энтерококков к гликопептидам является серьезной проблемой в ОРИТ в США и Западной Европе. Чаще всего устойчивость отмечают у штаммов E.faecium , ее частота может достигать 15-20%. Достоверных данных о выделении VRE в России нет.

Сообщения о выделении единичных штаммов метициллинорезистентных и метициллиночувствительных S.aureus со сниженной чувствительностью к ванкомицину (GISA) начали появляться в различных странах с 1997г.. Для штаммов со сниженной чувствительностью характерно утолщение клеточной стенки, уменьшение аутолитической активности. Обсуждается возможность избыточной продукции мишеней действия гликопептидов . Снижение чувствительности к гликопептидам было описано ранее среди КНС .

На практике при выделении ванкомицинорезистентных энтерококков и стафилококков необходимо проявлять настороженность, тщательно проверять чистоту исследуемой культуры и точность ее идентификации. Так, необходимо иметь в виду, что некоторые грамположительные бактерии (Lactobacillus spp., Leuconostoc spp., Pediococcus spp.) обладают природной устойчивостью к гликопептидам . .

Сульфаниламиды и ко-тримоксазол

Полимиксины

ЗАКЛЮЧЕНИЕ

В заключение целесообразно коротко суммировать данные о наиболее распространенных механизмах резистентности среди основных клинически значимых микроорганизмов.

Возбудители внебольничных инфекций

  • Staphylococcus spp. - устойчивость к природным и полусинтетическим пенициллинам , связанная с продукцией β-лактамаз .
  • S.pneumoniae - устойчивость различного уровня к пенициллину (часть штаммов устойчива к цефалоспоринам III поколения), связанная с модификацией ПСБ ; высокая частота ассоциированной устойчивости к макролидам , тетрациклинам , ко-тримоксазолу .
  • H.influenzae , M.catarrhalis - устойчивость к полусинтетическим пенициллинам , связанная с продукцией β-лактамаз .
  • N.gonorrhoeae - устойчивость к пенициллинам , связанная с продукцией β-лактамаз , устойчивость к тетрациклинам , фторхинолонам .
  • Shigella spp. - устойчивость к ампициллину , тетрациклинам , ко-тримоксазолу , хлорамфениколу .
  • Salmonella spp. - устойчивость к ампициллину , ко-тримоксазолу , хлорамфениколу . Появление устойчивости к цефалоспоринам III поколения и фторхинолонам .
  • E.coli - при внебольничных инфекциях МВП - возможна устойчивость к ампициллину , ко-тримоксазолу , гентамицину .
  • Enterobacteriaceae - продукция БЛРС (чаще всего среди Klebsiella spp.), обуславливающая клиническую неэффективность всех цефалоспоринов ; очень высокая частота ассоциированной устойчивости к гентамицину /тобрамицину ; в некоторых учреждениях тенденция к росту ассоциированной резистентности к фторхинолонам , амикацину .
  • Pseudomonas spp., Acinetobacter spp., S.maltophilia - ассоциированная устойчивость к цефалоспоринам , аминогликозидам , фторхинолонам , иногда карбапенемам .
  • Enterococcus spp. - ассоциация устойчивости к пенициллинам , высокого уровня устойчивости к аминогликозидам , фторхинолонам и гликопептидам .
  • Staphylococcus spp. (метициллинорезистентные) - ассоциированная устойчивость к макролидам , аминогликозидам , тетрациклинам , ко-тримоксазолу , фторхинолонам .

Механизмы резистентности к противотуберкулезным препаратам

Особенности патогенеза туберкулеза и биологии возбудителя (медленная пролиферация, длительное персистирование в организме и последующая реактивация инфекции) накладывают определенные отпечатки на формирование устойчивости у микобактерий. Из-за крайне ограниченных возможностей генетического обмена между микобактериями формирование у них резистентности практически всегда связано с накоплением хромосомных мутаций в генах, кодирующих мишени действия препаратов.

Терминология антибиотикоустойчивости микобактерий отличается некоторыми особенностями, что связано с чисто практическими задачами. Согласно рекомендациям ВОЗ, в зависимости от того, получал ли пациент специфическую противотуберкулезную терапию до выделения возбудителя, различают первичную и приобретенную устойчивость. К микроорганизмам с первичной устойчивостью относят штаммы, выделенные от пациентов, не получавших специфическую терапию. Если устойчивый штамм выделен у пациента на фоне противотуберкулезной терапии, то устойчивость расценивают как приобретенную. В тех случаях, когда невозможно достоверно установить факт применения противотуберкулезных препаратов , используют термин "начальная" устойчивость. К множественноустойчивым микобактериям относят микроорганизмы, устойчивые, как минимум, к рифампицину и изониазиду .

Риск развития мутаций, опосредующих устойчивость, составляет: 3,32 x 10 -9 на одно деление клетки для рифампицина ; 2,56 x 10 -8 для изониазида ; 2,29 x 10 -8 для стрептомицина ; 1,0 x 10 -7 для этамбутола . Риск одновременного развития устойчивости к двум препаратам меньше чем 10 -15 . Вероятность такого события крайне низка, особенно учитывая тот факт, что обсемененность микобактериями очага инфекции обычно не превышает 10 8 КОЕ . Учитывая приведенные факты, формирование у микобактерий множественной устойчивости связывают с нарушением режимов антибактериальной терапии, хотя прямых доказательств этому нет.

Рифамицины

Активное выведение, опосредуемое продуктом гена pfmdr , вероятно, является причиной феномена множественной устойчивости P.falciparum к противомалярийным препаратам .

Нитроимидазолы

Ряд простейших, прежде всего T.vaginalis , G.lamblia и E.histolytica , характеризуются анаэробным метаболизмом, во многом сходным с метаболизмом анаэробных бактерий. Чувствительность этих простейших к нитроимидазолам (прежде всего к метронидазолу) объясняется способностью микроорганизмов к восстановлению нитрогруппы препаратов и, таким образом, трансформации их в активную форму, повреждающую ДНК. Донором электронов, участвующим в активации нитроимидазолов , является ферредоксин. Устойчивость анаэробных простейших к нитроимидазолам связана со снижением уровня экспрессии ферредоксина и, следовательно, со снижением способности микроорганизмов активировать препараты.

Антибиотики, нарушающие метаболизм фолиевой кислоты

Сульфаниламиды – структурные аналоги парааминобензойной кислоты, нарушают синтез тетрагидрофолиевой кислоты, что и предотвращает дальнейший рост бактериальной клетки. Приметоприм блокирует фермент последующего звена синтеза тетрогидрофолиевой кислоты, поэтому совместное применение препаратов сульфаниламида и приметоприма приводит к заметному синергидному бактерицидному действию.

Многие антибиотики постепенно утратили свою эффективность в связи с возникновением резистентности к ним микроорганизмов. Например, выделяемые в настоящее время штаммы стафилококка, за редким исключением, устойчивы к
пенициллину, туберкулезные бактерии резистентны к
стрептомицину. Появились штаммы патогенных бактерий, одновременно устойчивые к нескольким антибиотикам, т. е. обладающие множественной резистентностью . Частота встречаемости штаммов Shigella
с такими свойствами достигает 70 %.

Резистентность микроорганизмов к лекарственным препаратам мо­жет быть естественной или приобретенной. Естественная (природная истинная) устойчивость обусловлена отсутствием или недоступностью у микроорганизмов «мишени» для действия антибиотика, т. е. такого звена в цепи метаболических реакций, которое блокировалось бы под влиянием препарата вследствие первично низкой проницаемости или ферментативной инактивации. При наличии у бактерий природной устойчивости антибиотики клинически неэффективны. Природная резистентность является постоянным видовым признаком микроорганизмов и легко прогнозируется.

Приобретенная устойчивость – это свойство отдельных штаммов бактерий сохранять жизнеспособность при тех концентрациях антибиотиков, которые подавляют основную часть микробной популяции. Формирование резистентности во всех случаях обусловлено генетически: приобретением новой генетической информации или изменением уровня экспрессии собственных генов, т. е. приобретенная устойчивость может быть обусловлена мутациями в хромосомных генах, контролирующих синтез компонентов клеточной стенки, ЦПМ, рибосомных или транспортных белков. Такого рода мутации изменяют «мишень» и делают клетку неуязвимой для антибиотика. Хромосомные мутанты обычно устойчи­вы к одному или нескольким антибиотикам близкой химической струк­туры.

Биохимические механизмы устойчивости бактерий к антибиотикам:

ü Модификация мишени действия антибактериальных препаратов.

ü Инактивация антибактериальных препаратов.

ü Активное выведение антибактериальных препаратов из микробной клетки (эффлюкс).

ü Нарушение проницаемости внешних структур микробной клетки.



ü Формирование метаболического "шунта".

Приобретенная устойчивость определяется наличием устойчивых вариантов в популяции микроорганизмов, чувствительной к данному антибиотику. Первичная приобретенная устойчивость , как результат мутации, выявляется у вариантов микробной культуры еще до применения антибиотиков. Вторичная устойчивость проявляется после применения антимикробных препаратов, которые оказывают селективное действие при появлении устойчивых и чувствительных мутантов. Под влиянием антибиотиков чувствительные варианты подавляются, устойчивые выживают.

Множественная резистентность передается не только в пределах разных штаммов одного вида бактерий, но и различным видам одного рода и даже представителям разных родов.

Чаще всего приобретенная резистентность возникает в результате переноса плазмиды (R-фактор ), контролирующей множественную резистентность бактерий к антибиотикам. Плазмиды включают комплекс генов, кодирующих синтез ферментов, разрушающих или модифици­рующих структуру антибиотика, с чем и связана потеря его активности. Так, устойчивость S. aureus к пенициллину обусловлена наличием локализованных в плазмидах генов пенициллиназы, расщепляющей пенициллин до неактивной пенициллоиновой кислоты.

R-фактор состоит их 2х разных фрагментов ДНК. Один из них – RTF-фактор переноса устойчивости , несет гены, ответствен­ные за репликацию и перенос плазмиды. Другой фрагмент – детерминанты резистентности к различным антибиотикам. R-фактор имеет циркулярное строение и состоит из ДНК, отли­чающейся по физико-химическим характеристикам от ДНК бак­териальной хромосомы. Возможен перенос резистентности R-факторами одновременно к 8 и более антибиотикам (4,5).

Лекарственная устойчивость обусловлена передачей генетического материала (хромосомного и внехромосомного) от одной микробной клетки к другой. Известны 3 механизма передачи устойчивости: трансформация, трансдукция и конъюгация. Механизм конъюгации является преобладающим и ответствен за широкое распространение резистентности штаммов микроорганизмов.

Фенотипы полирезистентности, включающие одновременно устойчивость к 2-3 и более антибиотикам (левомицетин, стрептомицин, тетрациклин, пенициллины, гентамицин), описаны для многих энтеробактерий (сальмонеллы, кишечная палочка), синегнойной палочки, протея.

Устойчивость микроорганизмов к лекарственным препаратам реализуется за счет следующих механизмов:

1) образование устойчивыми штаммами микробов специ­фических ферментов, инактивирующих антибиотик;

2) изменение проницаемости клеточной стенки;

3) нарушение обменных процессов в бактериальной клетке,

4) изменение внутриклеточных рецепторов – рибосомальных белков, следствием чего является нарушение связывания антибиотика.

Биологическое значение проблемы антибиотикоустойчивости микроорганизмов как фактора, снижающего эффективность химиотерапии, огромно. Антибиотикам, как мощным селективным агентам, принадлежит ведущая роль в отборе и преимущественном распространении штаммов, несущих R-плазмиды.

Для преодоления лекарственной устойчивости микробов ис­пользуют следующие способы:

Получение новых препаратов, которые отличаются от существующих механизмом антибактериального действия;

Комбинация антибиотиков между собой;

Синтез антимикробных препаратов с заранее заданными свойствами;

Создание ингибиторов бактериальных ферментов, инактивирующих антибиотики

Множественная устойчивость, связанная со снижением проницаемости

Снижение проницаемости внешних структур бактериальной клетки является наименее специфичным механизмом устойчивости и, обычно, приводит к формированию устойчивости одновременно к нескольким группам антибиотиков.

Чаще всего причиной этого явления становится полная или частичная утрата пориновых белков.

Глобальная угроза развития резистентности микроорганизмов

Проблема глобальной угрозы развития резистентности микроорганизмов требует международных усилий для своего решения. Очень важно на данном этапе уже то, что угроза всеобщего снижения эффективности антибактериальных препаратов достаточно ясно осознается мировым сообществом. 16 сентября 2000 г. в г. Торонто (Канада) состоялся Всемирный день резистентности , в котором приняли участие ведущие мировые ученые. Главные выводы:

1. Антимикробные препараты (АП) – это невосстановимые ресурсы.

2. Резистентность коррелирует с клинической неэффективностью.

3. Резистентность создается человеком, и только человек может решить эту проблему.

4. Антибиотики – это социальные препараты.

5. Избыточное применение АП населением, неправильные представления и недооценка проблемы устойчивости врачами и фармацевтами, назначающими АП, ведет к распространению резистентности.

6. Применение АП в сельском хозяйстве и ветеринарии способствует накоплению резистентности в окружающей среде.

Учитывая состояние проблемы, необходимо направить интернациональные усилия в следующих направлениях:

1. Мониторинг резистентности и эпидемиологический надзор должны стать рутинными как в поликлинике, так и в стационаре.

2. Во всем мире должно быть прекращено применение антибиотиков в качестве стимуляторов роста в животноводстве.

3. Рациональное применение АП является основным мероприятием по снижению резистентности.

4. Создание образовательных программ для врачей и фармацевтов, назначающих АП.

5. Разработка новых АП.

Должны быть созданы Комитеты по контролю за АП как во всех лечебных учреждениях, в которых назначаются АП, так и в странах и регионах для разработки и внедрения политики их применения, а также должны быть пересмотрены продолжительность лечения и режимы дозирования АП в соответствии со структурой резистентности. Целесообразно проводить исследования для определения наиболее активного препарата в группах антибиотиков для контроля за развитием резистентности.


«Мифы» об антибиотиках

1. Все антибактериальные препараты являются антибиотиками .

Кроме антибиотиков существуют полностью синтетические антибактериальные средства (сульфаниламиды, нитрофурановые препараты и др.). Такие лекарства, как бисептол, фурацилин, фуразолидон, метронидазол, палин, нитроксолин, невиграмон, не являются антибиотиками. Они отличаются от истинных антибиотиков механизмами воздействия на микробов, а также по эффективности и общему воздействию на организм человека.

В процессе лечения многие сталкиваются с такой проблемой, как резистентность организма к действию антибиотиков. Для многих такое заключение медиков становится реальной проблемой при лечении разного рода заболеваний.

Что такое резистентность?

Резистентность - это устойчивость микроорганизмов к действию антибиотиков. В организме человека в совокупности всех микроорганизмов встречаются устойчивые к действию антибиотика особи, но их количество минимальное. Когда антибиотик начинает действовать, вся популяция клеток гибнет (бактерицидный эффект) или вовсе прекращает свое развитие (бактериостатический эффект). Устойчивые клетки к антибиотикам остаются и начинают активно размножаться. Такая предрасположенность передается по наследству.

В организме человека вырабатывается определенная чувствительность к действию определенного рода антибиотиков, а в некоторых случаях и полная замена звеньев обменных процессов, что дает возможность не реагировать микроорганизмам на действие антибиотика.

Также в некоторых случаях микроорганизмы и сами могут начать вырабатывать вещества, которые нейтрализуют действие вещества. Такой процесс носит название энзиматической инактивации антибиотиков.

Те микроорганизмы, которые имеют резистентность к определенному типу антибиотиков, могут, в свою очередь, иметь устойчивость к подобным классам веществ, схожих по механизму действия.

Так ли опасна резистентность?

Резистентность - это хорошо или плохо? Проблема резистентности в данный момент приобретает эффект «эры постантибиотиков». Если ранее проблему устойчивости или невосприятия антибиотика решали путем создания более сильного вещества, то на данный момент такой возможности уже нет. Резистентность - это проблема, к которой нужно относиться серьезно.

Самая главная опасность резистентности — это несвоевременное поступление в организм антибиотиков. Организм попросту не может немедленно среагировать на его действие и остается без должной антибиотикотерапии.

Среди основных ступеней опасности можно выделить:

  • тревожные факторы;
  • глобальные проблемы.

В первом случае есть большая вероятность проблемы развития резистентности из-за назначения таких групп антибиотиков, как цефалоспорины, макролиды, хинолоны. Это довольно сильные антибиотики широкого спектра действия, которые назначаются для лечения опасных и сложных заболеваний.

Второй тип — глобальные проблемы - представляет собой все негативные стороны резистентности, среди которых:

  1. Увеличенные сроки госпитализации.
  2. Большие финансовые затраты на лечение.
  3. Большой процент смертности и заболеваемости у людей.

Такие проблемы особенно ярко выражены при совершении путешествий в страны Средиземноморья, но в основном зависят от разновидности микроорганизмов, которые могут попасть под воздействие антибиотика.

Резистентность к антибиотикам

К основным факторам, приводящим к развитию резистентности к антибиотикам, относят:

  • питьевая вода низкого качества;
  • антисанитарные условия;
  • бесконтрольное применение антибиотиков, а также их использование на животноводческих фермах для лечения животных и роста молодняка.

Среди основных подходов к решению проблем по борьбе с инфекциями при резистентности к антибиотикам ученые приходят к:

  1. Разработке новых видов антибиотиков.
  2. Изменение и модификация химических структур.
  3. Новые разработки препаратов, которые будут направлены на клеточные функции.
  4. Ингибирование вирулентных детерминант.

Как снизить возможность развития резистентности к антибиотикам?

Главным условием является максимальное устранение селективного воздействия антибиотиков на бактериологический ход.

Чтобы побороть резистентность к антибиотикам, необходимо соблюдение некоторых условий:

  1. Назначение антибиотиков только при четкой клинической картине.
  2. Использование простейших антибиотиков при лечении.
  3. Применение кратких курсов антибиотикотерапии.
  4. Взятие микробиологических проб на эффективность действия конкретной группы антибиотиков.

Неспецифическая резистентность

Под этим термином принято понимать так называемый врожденный иммунитет. Это целый комплекс факторов, которые определяют восприимчивость или невосприимчивость к действию того или иного препарата на организм, а также антимикробные системы, которые не зависят от предварительного контакта с антигеном.

К таким системам можно отнести:

  • Система фагоцитов.
  • Кожные и слизистые организма.
  • Естественные эозинофилы и киллеры (внеклеточные уничтожители).
  • Системы комплимента.
  • Гуморальные факторы в острой фазе.

Факторы неспецифической резистентности

Что такое фактор резистентности? К основным факторам неспецифической резистентности относят:

  • Все анатомические барьеры (кожные покровы, мерцательный эпитилий).
  • Физиологические барьеры (Ph, температурные показатели, растворимые факторы— интерферон, лизоцим, комплемент).
  • Клеточные барьеры (прямой лизис чужеродной клетки, эндоцитоз).
  • Воспалительные процессы.

Основные свойства неспецифических факторов защиты:

  1. Система факторов, которая предшествует еще до встречи с антибиотиком.
  2. Нет строгой специфической реакции, так как антиген не распознан.
  3. Нет запоминания чужеродного антигена при вторичном контакте.
  4. Эффективность продолжается в первые 3—4 суток до включения в действие адаптивного иммунитета.
  5. Быстрая реакция на попадание антигена.
  6. Формирование быстрого воспалительного процесса и иммунного ответа на антиген.

Подводя итоги

Значит, резистентность - это не очень хорошо. Проблема резистентности на данный момент занимает довольно серьезное место среди методов лечения антибиотикотерапии. В процессе назначения определенного типа антибиотиков врачом должен быть проведен весь спектр лабораторных и ультразвуковых исследований для постановки точной клинической картины. Только при получении этих данных можно переходить к назначению антибиотикотерапии. Многие специалисты рекомендуют назначать для лечения сперва легкие группы антибиотиков, а при их неэффективности переходить к более широкому спектру антибиотиков. Такая поэтапность поможет избежать возможного развития такой проблемы, как резистентность организма. Также не рекомендуется заниматься самолечением и употреблять бесконтрольно лекарственные препараты в лечении людей и животных.