Главная · Метеоризм · Общие хим свойства металлов. Химические свойства металлов

Общие хим свойства металлов. Химические свойства металлов

По своей химической активности металлы очень сильно различаются. О химической активности металла можно примерно судить по его положению в .

Самые активные металлы расположены в начале этого ряда (слева), самые малоактивные - в конце (справа).
Реакции с простыми веществами. Металлы вступают в реакции с неметаллами с образованием бинарных соединений. Условия протекания реакций, а иногда и их продукты сильно различаются для разных металлов.
Так, например, щелочные металлы активно реагируют с кислородом (в том числе в составе воздуха) при комнатной температуре с образованием оксидов и пероксидов

4Li + O 2 = 2Li 2 O;
2Na + O 2 = Na 2 O 2

Металлы средней активности реагируют с кислородом при нагревании. При этом образуются оксиды:

2Mg + O 2 = t 2MgO.

Малоактивные металлы (например, золото, платина) с кислородом не реагируют и поэтому на воздухе практически не изменяют своего блеска.
Большинство металлов при нагревании с порошком серы образуют соответствующие сульфиды:

Реакции со сложными веществами. С металлами реагируют соединения всех классов - оксиды (в том числе вода), кислоты, основания и соли.
Активные металлы бурно взаимодействуют с водой при комнатной температуре:

2Li + 2H 2 O = 2LiOH + H 2 ;
Ba + 2H 2 O = Ba(OH) 2 + H 2 .

Поверхность таких металлов, как, например, магний и алюминий, защищена плотной пленкой соответствующего оксида. Это препятствует протеканию реакции с водой. Однако если эту пленку удалить или нарушить ее целостность, то эти металлы также активно вступают в реакцию. Например, порошкообразный магний реагирует с горячей водой:

Mg + 2H 2 O = 100 °C Mg(OH) 2 + H 2 .

При повышенной температуре с водой вступают в реакцию и менее активные металлы: Zn, Fe, Mil и др. При этом образуются соответствующие оксиды. Например, при пропускании водяного пара над раскаленными железными стружками протекает реакция:

3Fe + 4H 2 O = t Fe 3 O 4 + 4H 2 .

Металлы, стоящие в ряду активности до водорода, реагируют с кислотами (кроме HNO 3) с образованием солей и водорода. Активные металлы (К, Na, Са, Mg) реагируют с растворами кислот очень бурно (с большой скоростью):

Ca + 2HCl = CaCl 2 + H 2 ;
2Al + 3H 2 SO 4 = Al 2 (SO 4) 3 + 3H 2 .

Малоактивные металлы часто практически не растворяются в кислотах. Это обусловлено образованием на их поверхности пленки нерастворимой соли. Например, свинец, стоящий в ряду активности до водорода, практически не растворяется в разбавленной серной и соляной кислотах вследствие образования на его поверхности пленки нерастворимых солей (PbSO 4 и PbCl 2).

Вам необходимо включить JavaScript, чтобы проголосовать

ХИМИЧЕСКИЕ СВОЙСТВА МЕТАЛЛОВ

По химическим свойствам металлы подразделяют на:

1 )Активные (щелочные и щелчноземельные металлы, Mg, Al, Zn и др.)

2) Металлы средней активности (Fe, Cr, Mn и др.) ;

3 )Малоактивные (Cu, Ag)

4) Благородные металлы – Au, Pt, Pd и др.

В реакциях - только восстановители. Атомы металлов легко отдают электроны внешнего (а некоторые – и предвнешнего) электронного слоя, превращаясь в положительные ионы. Возможные степени окисления Ме Низшая 0,+1,+2,+3 Высшая +4,+5,+6,+7,+8

1.ВЗАИМОДЕЙСТВИЕ С НЕМЕТАЛЛАМИ

1. С ВОДОРОДОМ

Реагируют при нагревании металлы IA и IIA группы, кроме бериллия. Образуются твёрдые нестойкие вещества гидриды, остальные металлы не реагируют.

2K + H₂ = 2KH (гидрид калия)

Ca + H₂ = CaH₂

2.С КИСЛОРОДОМ

Реагируют все металлы, кроме золота, платины. Реакция с серебром происходит при высоких температурах, но оксид серебра(II) практически не образуется, так как он термически неустойчив. Щелочные металлы при нормальных условиях образуют оксиды, пероксиды, надпероксиды (литий – оксид, натрий – пероксид, калий, цезий, рубидий – надпероксид

4Li + O2 = 2Li2O (оксид)

2Na + O2 = Na2O2 (пероксид)

K+O2=KO2 (надпероксид)

Остальные металлы главных подрупп при нормальных условиях образуют оксиды со степенью окисления, равной номеру группы 2Сa+O2=2СaO

2Сa+O2=2СaO

Металлы побочных подрупп образуют оксиды при нормальных условиях и при нагревании оксиды разной степени окисления, а железо железную окалину Fe3O4 (Fe⁺²O∙Fe2⁺³O3)

3Fe + 2O2 = Fe3O4

4Cu + O₂ = 2Cu₂⁺¹O (красный) 2Cu + O₂ = 2Cu⁺²O (чѐрный);

2Zn + O₂ = ZnO 4Cr + 3О2 = 2Cr2О3

3. С ГАЛОГЕНАМИ

галогениды (фториды, хлориды, бромиды, иодиды). Щелочные при нормальных условиях с F, Cl , Br воспламеняются:

2Na + Cl2 = 2NaCl (хлорид)

Щелочноземельные и алюминий реагируют при нормальных условиях:

С a+Cl2= С aCl2

2Al+3Cl2 = 2AlCl3

Металлы побочных подгрупп при повышенных температурах

Cu + Cl₂ = Cu⁺²Cl₂ Zn + Cl₂ = ZnCl₂

2Fe + ЗС12 = 2Fe⁺³Cl3 хлорид железа (+3) 2Cr + 3Br2 = 2Cr⁺³Br3

2Cu + I₂ = 2Cu⁺¹I (не бывает йодида меди (+2)!)

4. ВЗАИМОДЕЙСТВИЕ С СЕРОЙ

при нагревании даже у щелочных металлов, с ртутью при нормальных условиях. Реагируют все металлы, кроме золота и платины

с серой сульфиды : 2K + S = K2S 2Li+S = Li2S ( сульфид )

С a+S= С aS( сульфид ) 2Al+3S = Al2S3 Cu + S = Cu⁺²S (чѐрный )

Zn + S = ZnS 2Cr + 3S = Cr2⁺³S3 Fe + S = Fe⁺²S

5. ВЗАИМОДЕЙСТВИЕ С ФОСФОРОМ И АЗОТОМ

протекает при нагревании (исключение: литий с азотом при нормальных условиях) :

с фосфором – фосфиды: 3 Ca + 2 P =Са3 P 2,

С азотом – нитриды 6Li + N2 = 3Li2N (нитрид лития) (н.у.) 3Mg + N2 = Mg3N2 (нитрид магния) 2Al + N2 = 2A1N 2Cr + N2 = 2CrN 3Fe + N2 = Fe₃⁺²N₂¯³

6. ВЗАИМОДЕЙСТВИЕ С УГЛЕРОДОМ И КРЕМНИЕМ

протекает при нагревании:

С углеродом образуются карбиды С углеродом реагируют только наиболее активные металлы. Из щелочных металлов карбиды образуют литий и натрий, калий, рубидий, цезий не взаимодействуют с углеродом:

2Li + 2C = Li2C2, Са + 2С = СаС2

Металлы – d-элементы образуют с углеродом соединения нестехиометрического состава типа твердых растворов: WC, ZnC, TiC – используются для получения сверхтвёрдых сталей.

с кремнием – силициды: 4Cs + Si = Cs4Si,

7. ВЗАИМОДЕЙСТВИЕ МЕТАЛЛОВ С ВОДОЙ:

С водой реагируют металлы, стоящие до водорода в электрохимическом ряду напряжений Щелочные и щелочноземельные металлы реагируют с водой без нагревания, образуя растворимые гидроксиды(щелочи) и водород, алюминий (после разрушения оксидной пленки - амальгирование), магний при нагревании, образуют нерастворимые основания и водород.

2Na + 2HOH = 2NaOH + H2
С a + 2HOH = Ca(OH)2 + H2

2Аl + 6Н2O = 2Аl(ОН)3 + ЗН2

Остальные металлы реагируют с водой только в раскаленном состоянии, образуя оксиды (железо – железную окалину)

Zn + Н2O = ZnO + H2 3Fe + 4HOH = Fe3O4 + 4H2 2Cr + 3H₂O = Cr₂O₃ + 3H₂

8 С КИСЛОРОДОМ И ВОДОЙ

На воздухе железо и хром легко окисляется в присутствии влаги (ржавление)

4Fe + 3O2 + 6H2O = 4Fe(OH)3

4Cr + 3O2 + 6H2O = 4Cr(OH)3

9. ВЗАИМОДЕЙСТВИЕ МЕТАЛЛОВ С ОКСИДАМИ

Металлы (Al, Mg,Са), восстанавливают при высокой температуре неметаллы или менее активные металлы из их оксидов → неметалл или малоактивный металл и оксид (кальцийтермия, магнийтермия, алюминотермия)

2Al + Cr2O3 = 2Cr + Al2O3 ЗСа + Cr₂O₃ = ЗСаО + 2Cr (800 °C) 8Al+3Fe3O4 = 4Al2O3+9Fe (термит) 2Mg + CО2 = 2MgO + С Mg + N2O = MgO + N2 Zn + CО2 = ZnO+ CO 2Cu + 2NO = 2CuO + N2 3Zn + SО2 = ZnS + 2ZnO

10. С ОКСИДАМИ

Металлы железо и хром реагируют со оксидами, уменьшая степень окисления

Cr + Cr2⁺³O3 = 3Cr⁺²O Fe+ Fe2⁺³O3 = 3Fe⁺²O

11. ВЗАИМОДЕЙСТВИЕ МЕТАЛЛОВ СО ЩЕЛОЧАМИ

Со щелочами взаимодействуют только те металлы, оксиды и гидроксиды которых обладают амфотерными свойствами ((Zn, Al, Cr(III), Fe(III) и др. РАСПЛАВ → соль металла + водород.

2NaOH + Zn → Na2ZnO2 + H2 (цинкат натрия)

2Al + 2(NaOH · H2O) = 2NaAlO2 + 3H2
РАСТВОР → комплексная соль металла + водород.

2NaOH + Zn0 + 2H2O = Na2 + H2 (тетрагидроксоцинкат натрия) 2Al+2NaOH + 6H2O = 2Na+3H2

12. ВЗАИМОДЕЙСТВИЕ С КИСЛОТАМИ (КРОМЕ HNO3 и Н2SО4 (конц.)

Металлы, стоящие в электрохимическом ряду напряжений металлов левее водорода, вытесняют его из разбавленных кислот → соль и водород

Запомни! Азотная кислота никогда не выделяет водород при взаимодействии с металлами.

Мg + 2НС1 = МgСl2 + Н2
Al + 2НС1 = Al⁺³Сl₃ + Н2

13. РЕАКЦИИ С СОЛЯМИ

Активные металлы вытесняют из солей менее активные. Восстановление из растворов:

CuSO4 + Zn = Zn SO4 + Cu

FeSO4 + Cu = РЕАКЦИИ НЕТ

Mg + CuCl2(pp) = MgCl2 + С u

Восстановление металлов из расплавов их солей

3Na+ AlCl₃ = 3NaCl + Al

TiCl2 + 2Mg = MgCl2 +Ti

Металлы групп В реагируют с солями, понижая степень окислениЯ

2Fe⁺³Cl3 + Fe = 3Fe⁺²Cl2

Восстановительные свойства - это главные химические свойства, характерные для всех металлов. Они проявляются во взаимодействии с самыми разнообразными окислителями, в том числе с окислителями из окружающей среды. В общем виде взаимодействие металла с окислителями можно выразить схемой:

Ме + Окислитель " Me (+Х),

Где (+Х) - это положительная степень окисления Ме.

Примеры окисления металлов.

Fe + O 2 → Fe(+3) 4Fe + 3O 2 = 2 Fe 2 O 3

Ti + I 2 → Ti(+4) Ti + 2I 2 = TiI 4

Zn + H + → Zn(+2) Zn + 2H + = Zn 2+ + H 2

  • Ряд активности металлов

    Восстановительные свойства металлов отличаются друг от друга. В качестве количественной характеристики восстановительных свойств металлов используют электродные потенциалы Е.

    Чем активнее металл, тем отрицательнее его стандартный электродный потенциал Е о.

    Металлы, расположенные в ряд по мере убывания окислительной активности, образуют ряд активности.

    Ряд активности металлов

    Me Li K Ca Na Mg Al Mn Zn Cr Fe Ni Sn Pb H 2 Cu Ag Au
    Me z+ Li + K + Ca 2+ Na + Mg 2+ Al 3+ Mn 2+ Zn 2+ Cr 3+ Fe 2+ Ni 2+ Sn 2+ Pb 2+ H + Cu 2+ Ag + Au 3+
    E o ,B -3,0 -2,9 -2,87 -2,71 -2,36 -1,66 -1,18 -0,76 -0,74 -0,44 -0,25 -0,14 -0,13 0 +0,34 +0,80 +1,50
    Металл, с более отрицательным значением Ео, способен восстановить катион металла с более положительным электродным потенциалом.

    Восстановление металла из раствора его соли с другим металлом с более высокой восстановительной активностью называется цементацией . Цементацию используют в металлургических технологиях.

    В частности, Cd получают, восстанавливая его из раствора его соли цинком.

    Zn + Cd 2+ = Cd + Zn 2+

  • 3.3. 1. Взаимодействие металлов с кислородом

    Кислород - это сильный окислитель. Он может окислить подавляющее большинство металлов, кроме Au и Pt . Металлы, находящиеся на воздухе, контактируют с кислородом, поэтому при изучении химии металлов всегда обращают внимание на особенности взаимодействия металла с кислородом.

    Всем известно, что железо во влажном воздухе покрывается ржавчиной - гидратировааным оксидом железа. Но многие металлы в компактном состоянии при не слишком высокой температуре проявляют устойчивость к окислению, так как образуют на своей поверхности тонкие защитные пленки. Эти пленки из продуктов окисления не позволяют окислителю контактировать с металлом. Явление образования на поверхности металла защитных слоев, препятствующих окислению металла, называется - пассивацией металла.

    Повышение температуры способствует окислению металлов кислородом . Активность металлов повышается в мелкораздробленном состоянии. Большинство металлов в виде порошка сгорает в кислороде.

  • s-металлы

    Наибольшую восстановительную активность проявляют s -металлы. Металлы Na, K, Rb Cs способны воспламеняться на воздухе, и их хранят в запаянных сосудах или под слоем керосина. Be и Mg при невысоких температурах на воздухе пассивируются. Но при поджигании лента из Mg сгорает с ослепительным пламенем.

    Металлы II А-подгруппы и Li при взаимодействии с кислородом образуют оксиды .

    2Ca + O 2 = 2CaO

    4 Li + O 2 = 2Li 2 O

    Щелочные металлы, кроме Li , при взаимодействии с кислородом образуют не оксиды, а пероксиды Me 2 O 2 и надпероксиды MeO 2 .

    2Na + O 2 = Na 2 O 2

    K + O 2 = KO 2

  • р-металлы

    Металлы, принадлежащие p -блоку на воздухе пассивируются.

    При горении в кислороде

    • металлы IIIА-подгруппы образуют оксиды типа Ме 2 О 3 ,
    • Sn окисляется до SnO 2 , а Pb - до PbO
    • Bi переходит в Bi 2 O 3 .
  • d-металлы

    Все d -металлы 4 периода окисляются кислородом . Легче всего окисляются Sc, Mn , Fe. Особенно устойчивы к коррозии Ti, V, Cr.

    При сгорании в кислороде из всех d

    При сгорании в кислороде из всех d -элементов 4 периода только скандий, титан и ванадий образуют оксиды, в которых Ме находится в высшей степени окисления, равной № группы. Остальные d-металлы 4 периода при сгорании в кислороде образуют оксиды, в которых Ме находится в промежуточных, но устойчивых степенях окисления.

    Типы оксидов, образуемых d-металлами 4 периода при горении в кислороде:

    • МеО образуют Zn, Cu, Ni, Co. (при Т>1000оС Cu образует Cu 2 O),
    • Ме 2 О 3 , образуют Cr, Fe и Sc,
    • МеО 2 - Mn, и Ti,
    • V образует высший оксид -V 2 O 5 .
    d -металлы 5 и 6 периодов, кроме Y, La, более всех других металлов устойчивы к окислению. Не реагируют с кислородом Au, Pt.

    При сгорании в кислороде d -металлов 5и 6 периодов, как правило, образуют высшие оксиды , исключение составляют металлы Ag, Pd, Rh, Ru.

    Типы оксидов, образуемых d-металлами 5и 6 периодов при горении в кислороде:

    • Ме 2 О 3 - образуют Y, La; Rh;
    • МеО 2 - Zr, Hf; Ir:
    • Me 2 O 5 - Nb, Ta;
    • MeO 3 - Mo, W
    • Me 2 O 7 - Tc, Re
    • МеО 4 - Os
    • MeO - Cd, Hg, Pd;
    • Me 2 O - Ag;
  • Взаимодействие металлов с кислотами

    В растворах кислот катион водорода является окислителем . Катионом Н + могут быть окислены металлы, стоящие в ряду активности до водорода , т.е. имеющие отрицательные электродные потенциалы.

    Многие металлы, окисляясь, в кислых водных растворах многие переходят в катионы Me z + .

    Анионы ряда кислот способны проявлять окислительные свойства, более сильные, чем Н + . К таким окислителям относятся анионы и самых распространенных кислот H 2 SO 4 и HNO 3 .

    Анионы NO 3 - проявляют окислительные свойства при любой их концентрации в растворе, но продукты восстановления зависят от концентрации кислоты и природы окисляемого металла.

    Анионы SO 4 2- проявляют окислительные свойства лишь в концентрированной H 2 SO 4 .

    Продукты восстановления окислителей: H + , NO 3 - , SO 4 2 -

    2Н + + 2е - = Н 2

    SO 4 2- из концентрированной H 2 SO 4 SO 4 2- + 2e - + 4 H + = SO 2 + 2 H 2 O

    (возможно также образование S, H 2 S)

    NO 3 - из концентрированной HNO 3 NO 3 - + e - + 2H + = NO 2 + H 2 O
    NO 3 - из разбавленной HNO 3 NO 3 - + 3e - + 4H + = NO + 2H 2 O

    (возможно также образование N 2 O, N 2 , NH 4 +)

    Примеры реакций взаимодействия металлов с кислотами

    Zn + H 2 SO 4 (разб.) " ZnSO 4 + H 2

    8Al + 15H 2 SO 4 (к.) " 4Al 2 (SO 4) 3 + 3H 2 S + 12H 2 O

    3Ni + 8HNO 3 (разб.) " 3Ni(NO 3) 2 + 2NO + 4H 2 O

    Cu + 4HNO 3 (к.) " Cu(NO 3) 2 + 2NO 2 + 2H 2 O

  • Продукты окисления металлов в кислых растворах

    Щелочные металлы образуют катион типа Ме + , s-металлы второй группы образуют катионы Ме 2+ .

    Металлы р-блока при растворении в кислотах образуют катионы, указанные в таблице.

    Металлы Pb и Bi растворяют только в азотной кислоте.

    Me Al Ga In Tl Sn Pb Bi
    Mez+ Al 3+ Ga 3+ In 3+ Tl + Sn 2+ Pb 2+ Bi 3+
    Eo,B -1,68 -0,55 -0,34 -0,34 -0,14 -0,13 +0,317

    Все d-металлы 4 периода, кроме Cu, могут быть окислены ионами Н + в кислых растворах.

    Типы катионов, образуемых d-металлами 4 периода:

    • Ме 2+ (образуют d-металлы начиная от Mn до Cu)
    • Ме 3+ (образуют Sc, Ti , V , Cr и Fe в азотной кислоте).
    • Ti и V образуют также катионы МеО 2+
    d -элементы 5 и 6 периодов более устойчивы к окислению, чем 4 d - металлы.

    В кислых растворах Н + может окислить: Y, La, Сd.

    В HNO 3 могут растворяться: Cd, Hg, Ag. В горячей HNO 3 растворяются Pd, Tc, Re.

    В горячей H 2 SO 4 растворяются: Ti, Zr, V, Nb, Tc, Re, Rh, Ag, Hg.

    Металлы: Ti, Zr, Hf, Nb, Ta, Mo, W обычно растворяют в смеси HNO 3 + HF.

    В царской водке (смеси HNO 3 + HCl) можно растворить Zr, Hf, Mo, Tc, Rh, Ir, Pt, Au и Os с трудом). Причиной растворения металлов в царской водке или в смеси HNO 3 + HF является образование комплексных соединений.

    Пример. Растворение золота в царской водке становится возможным из-за образования комплекса -

    Au + HNO 3 + 4HCl = H + NO + 2H 2 O

  • Взаимодействие металлов с водой

    Окислительные свойства воды обусловлены Н(+1).

    2Н 2 О + 2е - " Н 2 + 2ОН -

    Так как концентрация Н + в воде мала, окислительные свойства ее невысоки. В воде способны растворяться металлы с Е < - 0,413 B. Число металлов, удовлетворяющих этому условию, значительно больше, чем число металлов, реально растворяющихся в воде. Причиной этого является образование на поверхности большинства металлов плотного слоя оксида, нерастворимого в воде. Если оксиды и гидроксиды металла растворимы в воде, то этого препятствия нет, поэтому щелочные и щелочноземельные металлы энергично растворяются в воде. Все s -металлы, кроме Be и Mg легко растворяются в воде.

    2 Na + 2 HOH = H 2 + 2 OH -

    Na энергично взаимодействует с водой с выделением тепла. Выделяющийся Н 2 может воспламениться.

    2H 2 +O 2 =2H 2 O

    Mg растворяется только в кипящей воде, Ве защищен от окисления инертным нерастворимым оксидом

    Металлы р-блока - менее сильные восстановители, чем s .

    Среди р-металлов восстановительная активность выше у металлов IIIА-подгруппы, Sn и Pb - слабые восстановители, Bi имеет Ео > 0 .

    р-металлы при обычных условиях в воде не растворяются . При растворении защитного оксида с поверхности в щелочных растворах водой окисляются Al, Ga и Sn.

    Среди d-металлов водой окисляются при нагревании Sc и Mn, La, Y. Железо реагирует с водяным паром.

  • Взаимодействие металлов с растворами щелочей

    В щелочных растворах окислителем выступает вода .

    2Н 2 О + 2е - = Н 2 + 2ОН - Ео = - 0,826 B (рН =14)

    Окислительные свойства воды с ростом рН понижаются, из-за уменьшения концентрации Н + . Тем не менее, некоторые металлы, не растворяющиеся в воде, растворяются в растворах щелочей, например, Al, Zn и некоторые другие. Главная причина растворения таких металлов в щелочных растворах заключается в том, что оксиды и гидроксиды этих металлов проявляют амфотерность, растворяются в щелочи, устраняя барьер между окислителем и восстановителем.

    Пример. Растворение Al в растворе NaOH.

    2Al + 3H 2 O +2NaOH + 3H 2 O = 2Na + 3H 2

  • ВЗАИМОДЕЙСТВИЕ МЕТАЛЛОВ С НЕМЕТАЛЛАМИ

    Неметаллы проявляют окислительные свойства в реакциях с металлами, принимая от них электроны и восстанавливаясь.

    Взаимодействие с галогенами

    Галогены (F 2 , Cl 2 , Br 2 , I 2 ) являются сильными окислителями, поэтому с ними взаимодействуют все металлы при обычных условиях:

    2 Me + n Hal 2 → 2 MeHal n

    Продуктом такой реакции является соль – галогенид металла (MeF n -фторид, MeCl n -хлорид, MeBr n -бромид, MeI n -иодид). При взаимодействии с металлом галоген восстанавливается до низшей степени окисления (-1), а n равно степени окисления металла.

    Скорость реакции зависит от химической активности металла и галогена. Окислительная активность галогенов снижается по группе сверху вниз (от F к I ).

    Взаимодействие с кислородом

    Кислородом окисляются почти все металлы (кроме Ag , Au , Pt ), при этом происходит образование оксидов Me 2 O n .

    Активные металлы легко при обычных условиях взаимодействуют с кислородом воздуха.

    2 Mg + O 2 → 2 MgO (со вспышкой)

    Металлы средней активности также реагируют с кислородом при обычной температуре. Но скорость такой реакции существенно ниже, чем при участии активных металлов.

    Малоактивные металлы окисляются кислородом при нагревании (горение в кислороде).

    Оксиды металлов по химическим свойствам можно разделить на три группы:

    1. Осно́вные оксиды (Na 2 O , CaO , Fe II O , Mn II O , Cu I O и др.) образованы металлами в низких степенях окисления (+1, +2, как правило, ниже +4). Основные оксиды взаимодействуют с кислотными оксидами и кислотами с образованием солей:

    CaO + CO 2 → CaCO 3

    CuO + H 2 SO 4 → CuSO 4 + H 2 O

    2. Кислотные оксиды (Cr VI O 3 , Fe VI O 3 , Mn VI O 3 , Mn 2 VII O 7 и др.) образованы металлами в высоких степенях окисления (как правило, выше +4). Кислотные оксиды взаимодействуют с основными оксидами и основаниями с образованием солей:

    FeO 3 + K 2 O → K 2 FeO 4

    CrO 3 + 2KOH → K 2 CrO 4 + H 2 O

    3. Амфотерные оксиды (BeO , Al 2 O 3 , ZnO , SnO , MnO 2 , Cr 2 O 3 , PbO , PbO 2 и др.) имеют двойственную природу и могут взаимодействовать как с кислотами, так и с основаниями:

    Cr 2 O 3 + 3H 2 SO 4 → Cr 2 (SO 4) + 3H 2 O

    Cr 2 O 3 + 6NaOH → 2Na 3

    Взаимодействие с серой

    С серой взаимодействуют все металлы (кроме Au ), образуя соли – сульфиды Me 2 S n . При этом сера восстанавливается до степени окисления «-2». Платина (Pt ) взаимодействует с серой только в мелкораздробленном состоянии. Щелочные металлы, а также Ca и Mg реагируют с серой при нагревании со взрывом. Zn , Al (в порошке) и Mg в реакции с серой дают вспышку. В направлении слева направо в ряду активности скорость взаимодействия металлов с серой убывает.

    Взаимодействие с водородом

    С водородом некоторые активные металлы образуют соединения – гидриды:

    2 Na + H 2 → 2 NaH

    В этих соединениях водород находится в редкой для него степени окисления «-1».

    Е.А. Нуднoва, М.В. Андрюxова


    Если в периодической таблице элементов Д.И.Менделеева провести диагональ от бериллия к астату, то слева внизу по диагонали будут находиться элементы-металлы (к ним же относятся элементы побочных подгрупп, выделены синим цветом), а справа вверху – элементы-неметаллы (выделены желтым цветом). Элементы, расположенные вблизи диагонали – полуметаллы или металлоиды (B, Si, Ge, Sb и др.), обладают двойственным характером (выделены розовым цветом).

    Как видно из рисунка, подавляющее большинство элементов являются металлами.

    По своей химической природе металлы – это химические элементы, атомы которых отдают электроны с внешнего или предвнешнего энергетического уровней, образуя при этом положительно заряженные ионы.

    Практически все металлы имеют сравнительно большие радиусы и малое число электронов (от 1 до 3) на внешнем энергетическом уровне. Для металлов характерны низкие значения электроотрицательности и восстановительные свойства.

    Наиболее типичные металлы расположены в начале периодов (начиная со второго), далее слева направо металлические свойства ослабевают. В группе сверху вниз металлические свойства усиливаются, т.к увеличивается радиус атомов (за счет увеличения числа энергетических уровней). Это приводит к уменьшению электроотрицательности (способности притягивать электроны) элементов и усилению восстановительных свойств (способность отдавать электроны другим атомам в химических реакциях).

    Типичными металлами являются s-элементы (элементы IА-группы от Li до Fr. элементы ПА-группы от Мg до Rа). Общая электронная формула их атомов ns 1-2 . Для них характерны степени окисления + I и +II соответственно.

    Небольшое число электронов (1-2) на внешнем энергетическом уровне атомов типичных металлов предполагает легкую потерю этих электронов и проявление сильных восстановительных свойств, что отражают низкие значения электроотрицательности. Отсюда вытекает ограниченность химических свойств и способов получения типичных металлов.

    Характерной особенностью типичных металлов является стремление их атомов образовывать катионы и ионные химические связи с атомами неметаллов. Соединения типичных металлов с неметаллами — это ионные кристаллы «катион металлаанион неметалла», например К + Вг — , Сa 2+ О 2-. Катионы типичных металлов входят также в состав соединений со сложными анионами — гидроксидов и солей, например Мg 2+ (OН —) 2 , (Li +)2СO 3 2-.

    Металлы А-групп, образующие диагональ амфотерности в Периодической системе Ве-Аl-Gе-Sb-Ро, а также примыкающие к ним металлы (Gа, In, Тl, Sn, Рb, Вi) не проявляют типично металлических свойств. Общая электронная формула их атомов ns 2 np 0-4 предполагает большее разнообразие степеней окисления, большую способность удерживать собственные электроны, постепенное понижение их восстановительной способности и появление окислительной способности, особенно в высоких степенях окисления (характерные примеры — соединения Тl III , Рb IV , Вi v). Подобное химическое поведение характерно и для большинства (d-элементов, т. е. элементов Б-групп Периодической системы (типичные примеры — амфотерные элементы Сr и Zn).

    Это проявление двойственности (амфотерности) свойств, одновременно металлических (основных) и неметаллических, обусловлено характером химической связи. В твердом состоянии соединения нетипичных металлов с неметаллами содержат преимущественно ковалентные связи (но менее прочные, чем связи между неметаллами). В растворе эти связи легко разрываются, а соединения диссоциируют на ионы (полностью или частично). Например, металл галлий состоит из молекул Ga 2 , в твердом состоянии хлориды алюминия и ртути (II) АlСl 3 и НgСl 2 содержат сильно ковалентные связи, но в растворе АlСl 3 диссоциирует почти полностью, а НgСl 2 — в очень малой степени (да и то на ионы НgСl + и Сl —).


    Общие физические свойства металлов

    Благодаря наличию свободных электронов («электронного газа») в кристаллической решетке все металлы проявляют следующие характерные общие свойства:

    1) Пластичность — способность легко менять форму, вытягиваться в проволоку, прокатываться в тонкие листы.

    2) Металлический блеск и непрозрачность. Это связано со взаимодействием свободных электронов с падающими на металл светом.

    3) Электропроводность . Объясняется направленным движением свободных электронов от отрицательного полюса к положительному под влиянием небольшой разности потенциалов. При нагревании электропроводность уменьшается, т.к. с повышением температуры усиливаются колебания атомов и ионов в узлах кристаллической решетки, что затрудняет направленное движение «электронного газа».

    4) Теплопроводность. Обусловлена высокой подвижностью свободных электронов, благодаря чему происходит быстрое выравнивание температуры по массе металла. Наибольшая теплопроводность — у висмута и ртути.

    5) Твердость. Самый твердый – хром (режет стекло); самые мягкие – щелочные металлы – калий, натрий, рубидий и цезий – режутся ножом.

    6) Плотность. Она тем меньше, чем меньше атомная масса металла и больше радиус атома. Самый легкий — литий (ρ=0,53 г/см3); самый тяжелый – осмий (ρ=22,6 г/см3). Металлы, имеющие плотность менее 5 г/см3 считаются «легкими металлами».

    7) Температуры плавления и кипения. Самый легкоплавкий металл – ртуть (т.пл. = -39°C), самый тугоплавкий металл – вольфрам (t°пл. = 3390°C). Металлы с t°пл. выше 1000°C считаются тугоплавкими, ниже – низкоплавкими.

    Общие химические свойства металлов

    Сильные восстановители: Me 0 – nē → Me n +

    Ряд напряжений характеризует сравнительную активность металлов в окислительно-восстановительных реакциях в водных растворах.

    I. Реакции металлов с неметаллами

    1) С кислородом:
    2Mg + O 2 → 2MgO

    2) С серой:
    Hg + S → HgS

    3) С галогенами:
    Ni + Cl 2 – t° → NiCl 2

    4) С азотом:
    3Ca + N 2 – t° → Ca 3 N 2

    5) С фосфором:
    3Ca + 2P – t° → Ca 3 P 2

    6) С водородом (реагируют только щелочные и щелочноземельные металлы):
    2Li + H 2 → 2LiH

    Ca + H 2 → CaH 2

    II. Реакции металлов с кислотами

    1) Металлы, стоящие в электрохимическом ряду напряжений до H восстанавливают кислоты-неокислители до водорода:

    Mg + 2HCl → MgCl 2 + H 2

    2Al+ 6HCl → 2AlCl 3 + 3H 2

    6Na + 2H 3 PO 4 → 2Na 3 PO 4 + 3H 2 ­

    2) С кислотами-окислителями:

    При взаимодействии азотной кислоты любой концентрации и концентрированной серной с металлами водород никогда не выделяется!

    Zn + 2H 2 SO 4(К) → ZnSO 4 + SO 2 + 2H 2 O

    4Zn + 5H 2 SO 4(К) → 4ZnSO 4 + H 2 S + 4H 2 O

    3Zn + 4H 2 SO 4(К) → 3ZnSO 4 + S + 4H 2 O

    2H 2 SO 4(к) + Сu → Сu SO 4 + SO 2 + 2H 2 O

    10HNO 3 + 4Mg → 4Mg(NO 3) 2 + NH 4 NO 3 + 3H 2 O

    4HNO 3 (к) + Сu → Сu (NO 3) 2 + 2NO 2 + 2H 2 O

    III. Взаимодействие металлов с водой

    1) Активные (щелочные и щелочноземельные металлы) образуют растворимое основание (щелочь) и водород:

    2Na + 2H 2 O → 2NaOH + H 2

    Ca+ 2H 2 O → Ca(OH) 2 + H 2

    2) Металлы средней активности окисляются водой при нагревании до оксида:

    Zn + H 2 O – t° → ZnO + H 2 ­

    3) Неактивные (Au, Ag, Pt) — не реагируют.

    IV. Вытеснение более активными металлами менее активных металлов из растворов их солей:

    Cu + HgCl 2 → Hg+ CuCl 2

    Fe+ CuSO 4 → Cu+ FeSO 4

    В промышленности часто используют не чистые металлы, а их смеси - сплавы , в которых полезные свойства одного металла дополняются полезными свойствами другого. Так, медь обладает невысокой твердостью и малопригодна для изготовления деталей машин, сплавы же меди с цинком (латунь ) являются уже достаточно твердыми и широко используются в машиностроении. Алюминий обладает высокой пластичностью и достаточной легкостью (малой плотностью), но слишком мягок. На его основе готовят сплав с магнием, медью и марганцем — дуралюмин (дюраль), который, не теряя полезных свойств алюминия, приобретает высокую твердость и становится пригодным в авиастроении. Сплавы железа с углеродом (и добавками других металлов) — это широко известные чугун и сталь.

    Металлы в свободном виде являются восстановителями. Однако реакционная способность некоторых металлов невелика из-за того, что они покрыты поверхностной оксидной пленкой , в разной степени устойчивой к действию таких химических реактивов, как вода, растворы кислот и щелочей.

    Например, свинец всегда покрыт оксидной пленкой, для его перехода в раствор требуется не только воздействие реактива (например, разбавленной азотной кислоты), но и нагревание. Оксидная пленка на алюминии препятствует его реакции с водой, но под действием кислот и щелочей разрушается. Рыхлая оксидная пленка (ржавчина ), образующаяся на поверхности железа во влажном воздухе, не мешает дальнейшему окислению железа.

    Под действием концентрированных кислот на металлах образуется устойчивая оксидная пленка. Это явление называется пассивацией . Так, в концентрированной серной кислоте пассивируются (и после этого не реагируют с кислотой) такие металлы, как Ве, Вi, Со, Fе, Мg и Nb, а в концентрированной азотной кислоте — металлы А1, Ве, Вi, Со, Сг, Fе, Nb, Ni, РЬ, Тh и U.

    При взаимодействии с окислителями в кислых растворах большинство металлов переходит в катионы, заряд которых определяется устойчивой степенью окисления данного элемента в соединениях (Nа + , Са 2+ ,А1 3+ ,Fе 2+ и Fе 3+)

    Восстановительная активность металлов в кислом растворе передается рядом напряжений. Большинство металлов переводится в раствор соляной и разбавленной серной кислотами, но Сu, Аg и Нg — только серной (концентрированной) и азотной кислотами, а Рt и Аи — «царской водкой».

    Коррозия металлов

    Нежелательным химическим свойством металлов является их , т. е. активное разрушение (окисление) при контакте с водой и под воздействием растворенного в ней кислорода (кислородная коррозия). Например, широко известна коррозия железных изделий в воде, в результате чего образуется ржавчина, и изделия рассыпаются в порошок.

    Коррозия металлов протекает в воде также из-за присутствия растворенных газов СО 2 и SО 2 ; создается кислотная среда, и катионы Н + вытесняются активными металлами в виде водорода Н 2 (водородная коррозия ).

    Особенно коррозионно-опасным может быть место контакта двух разнородных металлов (контактная коррозия). Между одним металлом, например Fе, и другим металлом, например Sn или Сu, помещенными в воду, возникает гальваническая пара. Поток электронов идет от более активного металла, стоящего левее в ряду напряжений (Ре), к менее активному металлу (Sn, Сu), и более активный металл разрушается (корродирует).

    Именно из-за этого ржавеет луженая поверхность консервных банок (железо, покрытое оловом) при хранении во влажной атмосфере и небрежном обращении с ними (железо быстро разрушается после появления хотя бы небольшой царапины, допускающей контакт железа с влагой). Напротив, оцинкованная поверхность железного ведра долго не ржавеет, поскольку даже при наличии царапин корродирует не железо, а цинк (более активный металл, чем железо).

    Сопротивление коррозии для данного металла усиливается при его покрытии более активным металлом или при их сплавлении ; так, покрытие железа хромом или изготовление сплава железа с хромом устраняет коррозию железа. Хромированное железо и сталь, содержащая хром (нержавеющая сталь ), имеют высокую коррозионную стойкость.

    электрометаллургия , т. е. получение металлов электролизом расплавов (для наиболее активных металлов) или растворов солей;

    пирометаллургия , т. е. восстановление металлов из руд при высокой температуре (например, получение железа в доменном процессе);

    гидрометаллургия , т. е. выделение металлов из растворов их солей более активными металлами (например, получение меди из раствора СuSO 4 действием цинка, железа или алюминия).

    В природе иногда встречаются самородные металлы (характерные примеры — Аg, Аu, Рt, Нg), но чаще металлы находятся в виде соединений (металлические руды ). По распространенности в земной коре металлы различны: от наиболее распространенных — Аl, Nа, Са, Fе, Мg, К, Тi) до самых редких — Вi, In, Аg, Аu, Рt, Rе.