Главная · Метеоризм · Химия аналитическая. Химические и электрохимические методы исследование в медицине Химический анализ в медицине

Химия аналитическая. Химические и электрохимические методы исследование в медицине Химический анализ в медицине


Химический практикум Цель: исследование химической природы анализируемого образца Цель: исследование химической природы анализируемого образца Качественный анализ Количественный анализ Совокупность экспериментальных методик, позволяющих определить в анализируемом образце количественное содержание отдельных составных частей, выраженное в виде границ доверительного интервала или числа с указанием погрешности Совокупность экспериментальных методик, позволяющих определить в анализируемом образце количественное содержание отдельных составных частей, выраженное в виде границ доверительного интервала или числа с указанием погрешности




Подготовка образца Причины: образец представляет собой смесь веществ, не поддающуюся совместному определению образец представляет собой смесь веществ, не поддающуюся совместному определению содержание анализируемого вещества ниже предела чувствительности метода содержание анализируемого вещества ниже предела чувствительности метода Необходимые действия: Разделение Концентрирование


Подготовка образца Способы подготовки: Осаждение Выделение из раствора твердой фазы малорастворимого осадка Выделение из раствора твердой фазы малорастворимого осадка Экстракция Извлечение вещества из водной фазы не смешивающимся с ней органическим растворителем Извлечение вещества из водной фазы не смешивающимся с ней органическим растворителем Адсорбция Концентрирование вещества на границе раздела фаз Концентрирование вещества на границе раздела фаз Электромиграция Разделение ионов в растворе, основанное на различной подвижности ионов Разделение ионов в растворе, основанное на различной подвижности ионов


Обработка полученных данных Способы: Использование готовых формул Вывод формулы из основных законов Метод калибровочного графика Применение формул требует полного соблюдения условий эксперимента, для которых они разработаны! Применение формул требует полного соблюдения условий эксперимента, для которых они разработаны!


Обработка полученных данных Метод калибровочного графика 1. Приготовить несколько (3-5) образцов с заранее известным содержанием искомого вещества. Границы диапазона приготовленных концентраций должны заведомо включать в себя ожидаемые значения 2. Провести анализ стандартных образцов выбранным методом. 3. Нанести результаты анализа на график, отражающий зависимость величины аналитического сигнала от концентрации анализируемого вещества (занести в память компьютера). 4. Провести анализ неизвестного образца, полностью соблюдая условия эксперимента. 5. Графически, либо с помощью компьютерной обработки результатов определить концентрацию вещества в образце.


Обработка полученных данных Метод калибровочного графика С(m) Х o o o o Сх Сх Необходимо быть уверенным в том, что зависимость между концентрацией и величиной аналитического сигнала носит прямолинейный характер Необходимо быть уверенным в том, что зависимость между концентрацией и величиной аналитического сигнала носит прямолинейный характер


Оформление результатов Представление результата Совокупность экспериментальных методик, позволяющих определить в анализируемом образце количественное содержание отдельных составных частей, выраженное в виде границ доверительного интервала или числа с указанием погрешности Совокупность экспериментальных методик, позволяющих определить в анализируемом образце количественное содержание отдельных составных частей, выраженное в виде границ доверительного интервала или числа с указанием погрешности Примеры правильного представления результата: m к-ты на 100 мл р-ра = 350 мг m к-ты на 100 мл р-ра = мг 20 мг погрешность доверительный интервал


Непосредственный анализ Основные характеристики методов анализа: Чувствительность Та концентрация вещества, которая может быть определена на серийной аппаратуре со стандартной для данного метода погрешностью Та концентрация вещества, которая может быть определена на серийной аппаратуре со стандартной для данного метода погрешностью Предел обнаружения Предел обнаружения Минимальная концентрация вещества, которая может быть качественно обнаружена данным методом Минимальная концентрация вещества, которая может быть качественно обнаружена данным методом Воспроизводимость Повторяемость результатов нескольких экспериментов, выполненных в одних и тех же условиях для одного и того же образца Повторяемость результатов нескольких экспериментов, выполненных в одних и тех же условиях для одного и того же образца Правильность Процент ошибок определения данным методом и его систематическая погрешность Процент ошибок определения данным методом и его систематическая погрешность


КЛАССИФИКАЦИЯ МЕТОДОВ ХИМИЧЕСКОГО АНАЛИЗА Химические Физико-химические Физические Гибридные Предполагают использование химических реакций и визуальное определение результата Основаны на измерении с помощью приборов физических свойств вещества, зависящих от его количественного состава Основаны на измерении физических свойств, появляющихся или изменяющихся в ходе химической реакции Методы, в которых соединены способы разделения и определения, либо два или более способа определения


КЛАССИФИКАЦИЯ МЕТОДОВ ХИМИЧЕСКОГО АНАЛИЗА Химические методы Гравиметрия Титриметрия Основаны на измерении массы определяемого вещества, выделенного из анализируемого образца Основаны на измерении массы определяемого вещества, выделенного из анализируемого образца Основаны на постепенном добавлении к измеренному объему анализируемого вещества раствора реагента известной концентрации с одновременным наблюдением за изменениями в растворе Основаны на постепенном добавлении к измеренному объему анализируемого вещества раствора реагента известной концентрации с одновременным наблюдением за изменениями в растворе Преимущества: Недостатки: - высокая точность - длительность - низкие пороги обнаружения


ГРАВИМЕТРИЯ Метод осаждения Вещество осаждают в виде малорастворимого соединения, фильтруют, сушат и взвешивают. Пример Определение ионов Ag + с помощью иодидов Метод отгонки Вещество выпаривают, улавливают другим реагентом и по изменению массы реагента судят о количестве вещества. Пример При определении влажности объект нагревают, поглощают пар известным количеством безводного СаСl 2 и взвешивают его. Электролитические методы Осаждение определяемого вещества на поверхности электрода Осаждение определяемого вещества на поверхности электрода Пример Выделение ионов меди из кислого раствора в виде металла на поверхности медного электрода.






Реакция нейтрализации Пример: Точка эквивалентности – момент, когда вещества прореагируют в эквивалентных количествах. Объем титранта, затраченный для достижения точки эквивалентности, называют эквивалентным объемом Достижение точки эквивалентности фиксируют с помощью индикатора




Общие закономерности Эквивалентная и нейтральная точки не всегда совпадают. Эквивалентная точка и зона скачка титрования могут лежать как в щелочной, так и в кислотной области. Для обнаружения эквивалентной точки пригоден лишь тот индикатор, чей диапазон изменения окраски находится в зоне скачка титрования.


Основные понятия объемного анализа 1. ЭКВИВАЛЕНТ HnXHnXB(OH) m Me n m+ X m n- НО! Если в-во участвует в окислительно-восстановительной реакции реальная или условная частица, которая может присоединять или высвобождать в реакции нейтрализации один ион водорода


Основные понятия объемного анализа Показывает, какая доля реальной частицы вещества эквивалентна одному иону водорода (одному электрону) в данной конкретной реакции. HnXHnX B(OH) m Z = n Z = m Обратен эквивалентному числу z вещества. Фактор эквивалентности – f eq H 2 SO 4 + 2NaOH Na 2 SO 4 + 2H 2 O f eq (H 2 SO 4) = ½ H 2 SO 4 + NaOH NaHSO 4 + H 2 O Пример: f eq (H 2 SO 4) = 1 Но:


2. ЭКВИВАЛЕНТНАЯ МАССА Молярная масса эквивалента (M 1/z) – масса одного моля эквивалента вещества (г), г/моль Основные понятия объемного анализа H 2 SO 4 + 2NaOH Na 2 SO 4 + 2H 2 O f eq (H 2 SO 4) = ½ Пример: H 2 SO 4 + NaOH NaHSO 4 + H 2 O f eq (H 2 SO 4) = 1 Но: M 1/z (H 2 SO 4) = M f eq = 98 ½ = 49 г/моль M 1/z (H 2 SO 4) = M f eq = 98 1 = 98 г/моль


НОРМАЛЬНАЯ КОНЦЕНТРАЦИЯ (нормальность, молярная концентрация эквивалента) Показывает количество моль эквивалентов вещества в одном литре раствора N = С м, если M 1/z = М Поскольку M 1/z М, то N С м Основные понятия объемного анализа Обозначения: С н, N, С 1/z 4. ТИТР Т р-ра = N р-ра. M 1/z Размерность: г/л, мг/мл. Показывает, сколько миллиграммов вещества содержится в одном миллилитре раствора




При титровании в точке эквивалентности количество эквивалентов одного вещества равно количеству эквивалентов другого: 1/z (A) = 1/z (B) или С 1/z (A) V(A) = C 1/z (B) V(B) Или, как писали ранее: N 1. V 1 = N 2. V 2 ЗАКОН ЭКВИВАЛЕНТОВ m в-ва = N р-ра. M 1/z. V р-ра Расчет массы вещества в растворе: Отсюда: С 1/z (A) = C 1/z (B) V(B) V(A) N 1 = N2V2N2V2 V1V1


ТИТРИМЕТРИЯ Прямое титрование Непосредственное добавление стандартного реагента к анализируем ому раствору Непосредственное добавление стандартного реагента к анализируем ому раствору Пример NaOH(ан.р-р) + HCl (стандарт) = NaCl + H 2 O Индикатор - фенолфталеин Косвенное титрование Косвенное титрование Определяемое вещество не взаимодейст- вует с титрантом, но его можно связать количественно с другим веществом, взаимодействующим с титрантом. Пример Определение ионов Са 2+ Ca 2+ + KMnO 4 = не взаимодействуют, но Сa 2+ + (COOH) 2 = CaC 2 O 4 (осадок), далее CaC 2 O 4 + H 2 SO 4 + KMno 4 = CaSO 4 + CO 2 + MnO Реакция, лежащая в основе метода, должна быть... - избирательной- количественной- быстрой


ТИТРИМЕТРИЯ Обратное титрование Титрование непрореагировавшего вещества, которое прибавлено в избытке к анализируемому раство- ру в виде стандартного раствора Титрование непрореагировавшего вещества, которое прибавлено в избытке к анализируемому раство- ру в виде стандартного раствора Заместительное титрование Заместительное титрование Если определяемое вещество не реагирует с титрантом, к раствору добавляют вспо- могательный реагент, образующий с опре- деляемым веществом эквивалентное количество вещества-заместителя. Пример Определение KMnO 4 KMnO 4 + KI + H 2 SO 4 = I 2 (эквивалентное кол-во) +... I 2 + Na 2 S 2 O 3 = NaI + Na 2 S 4 O 6 (Индикатор - крахмал) Пример Определение содержания KBr KBr + AgNO 3 (изб.) = KNO 3 + AgBrг + AgNO 3 (ост.) AgNO 3 (ост.) + NH 4 CNS = NH 4 NO 3 + AgCNSг Индикатор - Fe 3+ (Fe CNS - = Fe(CNS) 3 (алый))


Физические методы анализа Электрохимические Основаны на процессах, протекающих в растворе под действием тока Основаны на процессах, протекающих в растворе под действием тока Потенциометрия (ионометрия) Вольтаметрия Кулонометрия Кондуктометрия Определение концентрации ионов ионоселективными электродами Измерение электродных потенциалов, зависящих от концентрации вещества Измерение количества электричества, израсходованного в ходе электродных реакций. Измерение концентрации электролита в растворе по его электропроводности.


ФИЗИЧЕСКИЕ МЕТОДЫ Спектральные методы Основаны на взаимодействии вещества с электромагнитным излучением. Основаны на взаимодействии вещества с электромагнитным излучением., м E = h = hC/ Микроволны Радиоволны УФ лучи Ренгеновское и -излучение ИК излучение Переориентация спина электрона некоторых атомов (1 Н, 13 С,…) Колебания атомов Переход электронов кратных связей на возбуж- денные уровни ЯМР спектроскопия ИК спектроскопия УФ спектроскопия


Спектроскопия ЯМР Решаемые задачи: - установление структуры неизвестных веществ - подтверждение чистоты и индивидуальности соединения известной структуры Объекты анализа: Жидкие органические вещества, растворы органических веществ ИК спектроскопия Объекты анализа: Твердые, жидкие, газообразные вещества любой природы УФ спектроскопия Объекты анализа: Твердые, жидкие, газообразные вещества, имеющие в структуре кратные связи. Спектральные методы Предел обнаружения г


Возможности современных методов химического анализа в медицине Возможности современных методов химического анализа в медицине Высокоэффективная газожидкостная хроматография Метаболический профиль органических компонентов мочи здорового человека Метаболический профиль органических компонентов мочи здорового человека I t


Возможности современных методов химического анализа в медицине Возможности современных методов химического анализа в медицине I t ,2,3-триметилбензол 3 - 1,2,4-триметилбензол 5 - м,п-диметилтолуол 8 - п-ксилол 9 - м-ксилол 11 - этилбензол 12 - нонан 13 - толуол 14 - н-октан 15 - н-гептан метилгексан метилгексан 18 - н-гексан метилпентан 20 - н-пентан Анализ пробы воздуха (проба взята на Выборгской набережной)

Существует множество видов анализа. Их можно классифицировать по разным признакам:.

- по характеру получаемой информации . Различают качественный анализ (в этом случае выясняют, из чего состоит данное вещество, какие именно компоненты входят в его состав) и количественный анализ (определяют содержание тех или иных компонентов, например в % по массе, или соотношения разных компонентов). Грань между качественным и количественным анализом весьма условна, особенно при исследовании микропримесей. Так, если в ходе качественного анализа некоторый компонент не был обнаружен, то обязательно указывают, какое минимальное количество этого компонента можно было бы обнаружить с помощью данного метода. Возможно, отрицательный результат качественного анализа связан не с отсутствием компонента, а с недостаточной чувствительностью использованного метода! С другой стороны, количественный анализ всегда выполняется с учетом заранее найденного качественного состава исследуемого материала.

- классификация по объектам анализа: технический, клинический , криминалистический и др.

- классификация по объектам определения .

Не следует путать термины - анализировать и определять. Объектами определения называют компоненты, содержание которых требуется установить или достоверно обнаружить. С учетом природы определяемого компонента выделяют различные виды анализа (табл.1.1).

Таблица 1-1. Классификация видов анализа (по объектам определения или обнаружения)

Вид анализа Объект определения(или обнаружения) Пример Область применения
Изотопный Атомы с заданными значениями заряда ядра и массового числа (изотопы) 137 Cs, 90 Sr, 235 U Атомная энергетика, контроль загрязнения окружающей среды, медицина, археология и др.
Элементный Атомы с заданными значениями заряда ядра (элементы) Cs, Sr, U, Cr, Fe, Hg Повсеместно
Вещественный Атомы (ионы) элемента в данной степени окисления или в соединениях заданного состава (форма элемента) Сr(III), Fe 2+ , Hg в составе комплексных соединений Химическая технология, контроль загрязнения окружающей среды, геология, металлургия и др.
Молекулярный Молекулы с заданным составом и структурой Бензол, глюкоза, этанол Медицина, контроль загрязнения окружающей среды, агрохимия, химическая технология, криминалистика.
Структурно-групповойилифункциональный Сумма молекул с заданными структурными характеристиками и близкими свойствами (сумма изомеров и гомологов) Предельные углеводороды, моносахариды спирты Химическая технология, пищевая промышленность, медицина.
Фазовый Фаза или элемент в составе данной фазы Графит в стали, кварц в граните Металлургия, геология, технология стройматериалов.

Классификация «по объектам определения» очень важна, поскольку помогает выбрать подходящий способ проведения анализа (аналитический метод). Так, для элементного анализа часто применяют спектральные методы, основанные на регистрации излучения атомов на разных длинах волн. Большинство спектральных методов предполагает полную деструкцию (атомизацию) анализируемого вещества. Если же надо установить природу и количественное содержание разных молекул, входящих в состав исследуемого органического вещества (молекулярный анализ ), то одним из наиболее подходящих методов окажется хроматографический, не предполагающий деструкции молекул.

В ходе элементного анализа идентифицируют или количественно определяют элементы независимо от их степени окисления или от вхождения в состав тех или иных молекул. Полный элементный состав исследуемого материала определяют в редких случаях. Обычно достаточно определить некоторые элементы, существенно влияющие на свойства исследуемого объекта.

Вещественный анализ стали выделять в самостоятельный вид сравнительно недавно, раньше его рассматривали как часть элементного. Цель вещественного анализа - раздельно определить содержание разных форм одного и того же элемента. Например, хрома (III) и хрома (VI) в сточной воде. В нефтепродуктах раздельно определяют «серу сульфатную», «серу свободную» и «серу сульфидную». Исследуя состав природных вод, выясняют, какая часть ртути существует в виде прочных (недиссоциирующих) комплексных и элементоорганических соединений, а какая - в виде свободных ионов. Эти задачи труднее, чем задачи элементного анализа.

Молекулярный анализ особенно важен при исследовании органических веществ и материалов биогенного происхождения. Примером может быть определение бензола в бензине или ацетона в выдыхаемом воздухе. В подобных случаях необходимо учитывать не только состав, но и структуру молекул. Ведь в исследуемом материале могут находиться изомеры и гомологи определяемого компонента. Так, часто приходится определять содержание глюкозы в присутствии множества ее изомеров и других родственных соединений, например сахарозы.

Когда речь идет об определении суммарного содержания всех молекул, имеющих некоторые общие структурные особенности, одни и те же функциональные группы, а следовательно и близкие химические свойства, пользуются термином структурно-групповой (или функциональный) анализ. Например, сумму спиртов (органических соединений, имеющих ОН-группу) определяют, проводя общую для всех спиртов реакцию с металлическим натрием, а затем измеряя объем выделяющегося водорода. Сумму непредельных углеводородов (имеющих двойные или тройные связи) определяют, окисляя их иодом. Суммарные содержания однотипных компонентов иногда устанавливают и в неорганическом анализе - например, суммарное содержание редкоземельных элементов.

Специфическим видом анализа является фазовый анализ . Так, углерод в чугунах и сталях может растворяться в железе, может образовывать химические соединения с железом (карбиды), а может и образовывать отдельную фазу (графит). Физические свойства изделия (прочность, твердость и т.п.) зависят не только от общего содержания углерода, но и от распределения углерода между этими формами. Поэтому металлургов интересует не только общее содержание углерода в чугуне или стали, но и наличие в этих материалах отдельной фазы графита (свободного углерода), а также количественное содержание этой фазы.

Основное внимание в базовом курсе аналитической химии уделяется элементному и молекулярному анализу. В других видах анализа применяют весьма специфические методы, и в программу базового курса изотопный, фазовый и структурно-групповой анализы не входят.

Классификация по точности результатов, продолжительности и стоимости анализов. Упрощенный, быстрый и дешевый вариант анализа называют экспресс-анализом . Для их выполнения часто применяют тест-методы. Например, любой человек (не аналитик) может оценить содержание нитратов в овощах (сахара в моче, тяжелых металлов в питьевой воде и т.п.), воспользовавшись специальной индикаторной бумагой. Результат будет виден на глаз, поскольку содержание компонента определяется с помощью прилагаемой к бумаге шкалы окрасок. Тест-методы не требуют доставки пробы в лабораторию, какой-либо обработки исследуемого материала; в этих методах не применяется дорогостоящее оборудование, не проводятся расчеты. Важно лишь, чтобы результат не зависел от присутствия в исследуемом материале других компонентов, а для этого надо, чтобы реактивы, которыми пропитывают бумагу при ее изготовлении, были бы специфическими. Обеспечить специфичность тест-методов очень трудно, и широко распространенным этот вид анализа стал лишь в последние годы ХХ века.. Конечно, тест-методы не могут обеспечить высокой точности анализа, но она требуется далеко не всегда.

Прямая противоположность экспресс-анализу - арбитражный анализ. Основное требование к нему - обеспечить как можно большую точность результатов. Арбитражные анализы проводят довольно редко (например, для разрешения конфликта между изготовителем и потребителем промышленной продукции). Для выполнения таких анализов привлекают наиболее квалифицированных исполнителей, применяют самые надежные и многократно проверенные методики. Время, затраченное на выполнение такого анализа, как и его стоимость, - не имеют принципиального значения.

Промежуточное место между экспрессным и арбитражным анализом - по точности, длительности, стоимости и другим показателям - занимают так называемые рутинные анализы . Основная часть анализов, выполняемых в заводских и других контрольно-аналитических лабораториях, относится именно к этому типу.

Существуют и другие способы классификации, другие виды анализов. Например, учитывают массу исследуемого материала, непосредственно используемую в ходе анализа. В рамках соответствующей классификации выделяют макроанализ (килограммы, литры), полумикроанализ (доли грамма, миллилитры) и микроанализ . В последнем случае применяют навески порядка миллиграмма и менее, объемы растворов измеряют в микролитрах, а результат реакции иногда приходится наблюдать под микроскопом. Микроанализ используется в аналитических лабораториях довольно редко.

1.3. Методы анализа

Понятие «метод анализа» является важнейшим для аналитической химии. Этот термин используют, когда хотят выявить суть того или иного анализа, его основной принцип. Методом анализа называют достаточно универсальный и теоретически обоснованный способ проведения анализа, безотносительно к тому, какой компонент определяют и что именно анализируют. Существуют три основных группы методов (рис.1-1). Одни из них нацелены преимущественно на разделение компонентов исследуемой смеси (последующий анализ без этой операции оказывается неточным или вообще невозможным). В ходе разделения обычно происходит и концентрирование определяемых компонентов (см. главу 8). Примером могут быть методы экстрагирования или методы ионного обмена. Другие методы применяют в ходе качественного анализа, они служат для достоверного опознания (идентификации) интересующих нас компонентов. Третьи, наиболее многочисленные, предназначены для количественного определения компонентов. Соответствующие группы называют методами разделения и концентрирования, методами идентификации и методами определения. Методы двух первых групп, как правило, играют вспомогательную роль; они будут рассмотрены позднее. Наибольшее значение для практики имеют методы определения .

Кроме трех основных групп, существуют гибридные методы. На рис.1.1 эти методы не показаны. В гибридных методах разделение, идентификация и определение компонентов органично сочетаются в одним приборе (или в едином комплексе приборов). Важнейшим из таких методов является хроматографический анализ. В специальном приборе (хроматографе) компоненты исследуемой пробы (смеси) разделяются, поскольку они с разной скоростью двигаются сквозь колонку, заполненную порошком твердого вещества (сорбента). По времени выхода компонента из колонки судят о его природе и таким образом опознают все компоненты пробы. Вышедшие из колонки компоненты по очереди попадают в другую часть прибора, где специальное устройство – детектор - измеряет и записывает сигналы всех компонентов. Нередко тут же проводится автоматический расчет содержаний всех компонентов. Понятно, что хроматографический анализ нельзя считать только методом разделения компонентов, или только методом количественного определения, это именно гибридный метод.

Каждый метод определения объединяет множество конкретных методик, в которых измеряется одна и та же физическая величина. Например, для проведения количественного анализа можно измерить потенциал электрода, опущенного в исследуемый раствор, а потом по найденной величине потенциала рассчитать содержание некоторого компонента раствора. Все методики, где основной операцией является измерение потенциала электрода, считают частными случаями потенциометрического метода . При отнесении методики к тому или иному аналитическому методу не важно, какой объект исследуется, какие именно вещества и с какой точностью определяются, какой прибор используют и как проводят расчеты - важно лишь, какую величину мы измеряем. Измеряемую в ходе анализа физическую величину, зависящую от концентрации определяемого компонента, принято называть аналитическим сигналом .

Аналогичным образом можно выделить метод спектрального анализа. В этом случае основная операция - измерение интенсивности света, излучаемого пробой на определенной длине волны. Метод титриметрического (объемного) анализа основан на измерении объема раствора, затраченного на химическую реакцию с определяемым компонентом пробы. Слово «метод» часто опускают, говорят просто «потенциометрия», «спектральный анализ», «титриметрия» и т.п. В рефрактометрическом анализе сигналом является показатель преломления света исследуемым раствором, в спектрофотометрии – поглощение им света (на определенной длине волны). Перечень методов и соответствующих им аналитических сигналов можно продолжить, всего известно несколько десятков независимых методов.

Каждый метод определения имеет свои собственные теоретические основы и связан с применением специфического оборудования. Области применения разных методов существенно различаются. Одни методы преимущественно используются для анализа нефтепродуктов, другие – для анализа лекарственных препаратов, третьи – для исследования металлов и сплавов, и т.д. Аналогично можно выделять методы для проведения элементного анализа, методы изотопного анализа и т.д. Есть и универсальные методы, применяемые в анализе самых разных материалов и пригодные для определения в них самых разных компонентов. Например, спектрофотометрический метод может служить и для элементного, и для молекулярного, и для структурно-группового анализа.

Точность, чувствительность и другие характеристики отдельных методик, относящихся к одному и тому же аналитическому методу, различаются, но не так сильно, как характеристики разных методов. Любую аналитическую задачу всегда можно решить несколькими разными методами (скажем, хром в легированной стали можно определить и спектральным методом, и титриметрическим, и потенциометрическим). Аналитик выбирает метод, учитывая известные возможности каждого из них и конкретные требования к данному анализу. Нельзя раз и навсегда выбрать “лучшие” и “худшие” методы, все зависит от решаемой задачи, от требований к результатам анализа. Так, гравиметрический анализ дает, как правило, более точные результаты, чем спектральный, но требует больших затрат труда и времени. Поэтому гравиметрический анализ хорош для проведения арбитражных анализов, но не годится для экспресс-анализа.

Методы определения делят на три группы: химические, физические и физико-химические . Нередко физические и физико-химические методы объединяют общим названием “инструментальные методы”, поскольку в обоих случаях используются приборы, причем одни и те же. Вообще границы между группами методов весьма условны.

Химические методы основаны на проведении химической реакции между определяемым компонентом и специально добавляемым реагентом. Реакция проходит по схеме:

Здесь и далее символом Х обозначается определяемый компонент (молекула, ион, атом и т.п.), R - добавляемый реагент, Y - совокупность продуктов реакции. К группе химических методов относят классические (давно известные и хорошо изученные) методы определения, прежде всего гравиметрию и титриметрию. Число химических методов сравнительно невелико, все они имеют одни и те же теоретические основы (теорию химических равновесий, законы химической кинетики и т.п.). В качестве аналитического сигнала в химических методах обычно измеряют массу или объем вещества. Сложные физические приборы, за исключением аналитических весов, и специальные эталоны химического состава в химических методах не используются. Эти методы имеют много общего и по своим возможностям. Они будут рассмотрены в главе 4.

Физические методы не связаны с проведением химических реакций и применением реагентов. Их основной принцип – сопоставление однотипных аналитических сигналов компонента Х в исследуемом материале и в некотором эталоне (образце с точно известной концентрацией Х). Заранее построив градуировочный график (зависимость сигнала от концентрации или массы Х) и измерив значение сигнала для пробы исследуемого материала, рассчитывают концентрацию Х в этом материале. Существуют и другие способы расчета концентраций (см.главу 6). Физические методы обычно чувствительнее, чем химические, поэтому определение микропримесей ведут преимущественно физическими методами. Эти методы легко поддаются автоматизации, требуют меньших затрат времени на проведение анализа. Однако физические методы нуждаются в специальных эталонах, требуют довольно сложного, дорогого и весьма специализированного оборудования, К тому же они, как правило, менее точны, чем химические.

Промежуточное место между химическими и физическими методами по своим принципам и возможностям занимают физико-химические методы анализа. В этом случае аналитик проводит химическую реакцию, но за ее ходом или за ее результатом следит не визуально, а с применением физических приборов. Например, постепенно добавляет к исследуемому раствору другой – с известной концентрацией растворенного реагента, и при этом контролирует потенциал электрода, опущенного в титруемый раствор (потенциометрическое титрование ), По скачку потенциала аналитик судит об окончании реакции, измеряет затраченный на нее объем титранта и рассчитывают результат анализа. Такие методы, как правило, столь же точны, как и химические, и почти столь же чувствительны, как и физические методы.

Инструментальные методы часто разделяют по другому, более четко выраженному признаку – по природе измеряемого сигнала. В этом случае выделяют подгруппы оптических, электрохимических, резонансных, активационных и других методов. Существуют также немногочисленные и пока что недостаточно развитые методы биологические и биохимические методы.

ХИМИЧЕСКИЙ АНАЛИЗ

Аналитическая химия. Задачи и этапы химического ана­лиза. Аналитический сигнал. Классификации методов анали­ за. Идентификация веществ. Дробный анализ. Системати­ческий анализ.

Основные задачи аналитической химии

Одной из задач при проведении природоохранных меро­приятий является познание закономерностей причинно-след­ственных связей между различными видами человеческой деятельности и изменениями, происходящими в природной среде. Анализ - это главное средство контроля за загрязнен­ностью окружающей среды. Научной основой химического ана­лиза является аналитическая химия. Аналитическая химия - наука о методах и средствах определения химического состава веществ и материалов. Метод - это достаточно универсаль­ный и теоретически обоснованный способ определения состава.

Основные требования к методам и методикам аналити­ческой химии:

1) правильность и хорошая воспроизводимость;

2) низкий предел обнаружения - это наименьшее содержа­ние, при котором по данной методике можно обнаружить присутствие определяемого компонента с заданной дове­рительной вероятностью;

3) избирательность (селективность) - характеризует ме­шающее влияние различных факторов;

4) диапазон измеряемых содержаний (концентраций) с по­мощью данного метода по данной методике;

5)экспрессность;

6) простота в анализе, возможность автоматизации, экономичность определения.

Химический анализ - это сложный многостадийный про цесс, представляющий собой совокупность готовых приемов и соответствующих служб.

Задачи анализа

1. Идентификация объекта, т.е. установление природы объекта (проверка присутствия тех или иных основных компонентов, примесей).

2. Количественное определение содержания того или иногокомпонента в анализируемом объекте.

Этапы анализа любого объекта

1. Постановка задачи и выбор метода и схемы анализа.

2. Отбор проб (грамотный отбор части пробы позволяет сделать правильный вывод о составе всей пробы). Проба - эточасть анализируемого материала, представительно отра жающая его химический состав. В отдельных случаях в качестве пробы используют весь аналитический материал. Время хранения отобранных проб должно быть минималь ным. Условия и способы хранения должны исключать не контролируемые потери легколетучих соединений и любые другие физические и химические изменения в составе анализируемого образца.

3. Подготовка проб к анализу: переведение пробы в нужное состояние (раствор, пар); разделение компонентов или от­деление мешающих; концентрирование компонентов;

4. Получение аналитического сигнала. Аналитический сиг­нал - это изменение любого физического или физико-химического свойства определяемого компонента, функци­онально связанное с его содержанием (формула, таблица, график).

5. Обработка аналитического сигнала, т.е. разделение сигнала и шумов. Шумы - побочные сигналы, возникающие в из­мерительных приборах, усилителях и других аппаратах.

6. Применение результатов анализа. В зависимости от свой­ства вещества, положенного в основу определения, методы анализа подразделяются:

На химические методы анализа, основанные на хими­ческой аналитической реакции, которая сопровожда­ется ярко выраженным эффектом. К ним относятся гравиметрический и титриметрический методы;

- физико-химические методы, основанные на измере­нии каких-либо физических параметров химической системы, зависящих от природы компонентов системы и изменяющихся в процессе химической реакции (на­пример, фотометрия основана на изменении оптиче­ской плотности раствора в результате реакции);

- физические методы анализа, не связанные с исполь­зованием химических реакций. Состав веществ уста­навливается по измерению характерных физических свойств объекта (например, плотность, вязкость).

В зависимости от измеряемой величины все методы делятся на следующие виды.

Методы измерения физических величин

Измеряемая физическая величина

Название метода

Гравиметрия

Титриметрия

Равновесный потенциал электрода

Потенциометрия

Поляризационное сопротивление электрода

Полярография

Количество электричества

Кулонометрия

Электропроводность раствора

Кондуктометрия

Поглощение фотонов

Фотометрия

Испускание фотонов

Эмиссионный спектральный анализ

Идентификация веществ основывается на методах качественного распознавания элементарных объектов (атомом, молекул, ионов и др.), из которых состоят вещества и материалы.

Очень часто анализируемую пробу вещества переводят в форму, удобную для анализа, путем растворения в подходящем растворителе (обычно это вода или водные растворы кислот) или сплавления с каким-либо химическим соединением с последующим растворением.

Химические методы качественного анализа основаны на использовании реакций идентифицируемых ионов с опреде­ленными веществами - аналитическими реагентами. Такие реакции должны сопровождаться выпадением или растворением осадка; возникновением, изменением или исчезновением окраски раствора; выделением газа с характерным запахом; образованием кристаллов определенной формы.

Реакции, протекающие в растворах, по способу выполнения классифицируются на пробирочные, микрокристаллоскопичсеские и капельные. Микрокристаллоскопические реакции проводят на предметном стекле. Наблюдают образование кристаллов характерной формы. Капельные реакции выполняют на фильтровальной бумаге.

Аналитические реакции, применяемые в качественном анализе, по области применения делятся:

1.) на групповые реакции - это реакции для осаждения целой группы ионов (применяется один реагент, который называется групповым);

2;) характерные реакции:

а) селективные (избирательные) - дают одинаковые или сходные аналитические реакции с ограниченным числом ионов (2~5 шт.);

б) специфичные (высокоселективные) - избирательны по отношению к одному компоненту.

Селективных и специфичных реакций немного, поэтому их применяют в сочетании с групповыми реакциями и со специальными приемами для устранения мешающего влиянии компонентов, присутствующих в системе наряду с определяемым веществом.

Несложные смеси ионов анализируют дробным методом, без предварительного отделения мешающих ионов с помощью характерных реакций определяют отдельные ионы. Мешающий ион - это ион, который в условиях обнаружения искомого дает сходный аналитический эффект с тем же реак­тивом либо аналитический эффект, маскирующий нужную ре­акцию. Обнаружение разных ионов в дробном анализе проводят в отдельных порциях раствора. При необходимости устранения мешающих ионов пользуются следующими способами отделе­ния и маскировки.

1. Перевод мешающих ионов в осадок. В основе лежит раз­личие в величине произведения растворимости получаю­щихся осадков. При этом ПР соединения определяемого иона с реагентом должно быть больше, чем ПР соединения мешающего иона.

2. Связывание мешающих ионов в прочное комплексное соединение. Получаемый комплекс должен обладать необ­ходимой устойчивостью, чтобы осуществить полное связы­вание мешающего иона, а искомый ион - совсем не реаги­ровать с вводимым реагентом либо его комплекс должен быть непрочным.

3. Изменение степени окисления мешающих ионов.

4. Использование экстракции. Метод основан на извлечении из водных растворов мешающих ионов органическими растворителями и разделении системы на составные части (фазы), чтобы мешающий и определяемый компоненты были в разных фазах.

Преимущества дробного анализа:

Быстрота выполнения, так как сокращается время на дли­тельные операции последовательного отделения одних ионов от других;

Дробные реакции легко воспроизводимы, т.е. их можно повторять несколько раз. Однако в случае трудности под­бора селективных (специфических) реакций обнаружения ионов, маскирующих реагентов, расчета полноты

удаления ионов и других причин (сложность смеси) прибегают к выполнению систематического анализа.

Систематический анализ - это полный (подробный) анализ исследуемого объекта, который проводится путем разделения всех компонентов в пробе на несколько групп в определенной последовательности. Деление на группы идет на основе сходства (внутри группы) и различия (между группами) аналитических свойств компонентов. В выделенной группе анализа применяется ряд последовательных реакций разделения, пока в одной фазе останутся лишь компоненты, дающие характер­ные реакции с селективными реагентами (рис. 23.1).

Разработано несколько аналитических классификаций ка тионов и анионов на аналитические группы, в основе которых лежит применение групповых реагентов (т.е. реагентов для выделения в конкретных условиях целой группы ионов). Группповые реагенты в анализе катионов служат как для обнаружения, так и для разделения, а в анализе анионов - только для обнаружения (рис. 23.2).

Анализ смесей катионов

Групповыми реагентами в качественном анализе катионов являются кислоты, сильные основания, аммиак, карбонаты, фосфаты, сульфаты щелочных металлов, окислители и восстановители. Объединение веществ в аналитические группы осно­вано на использовании сходства и различий в их химических свойствах. К наиболее важным аналитическим свойствам отно­сятся способность элемента образовывать различные типы ионов, цвет и растворимость соединений, способность вступать в те или иные реакции.

Групповые реагенты выбирают из общих реактивов, по­скольку необходимо, чтобы групповой реагент выделял относи­тельно большое число ионов. Основной способ разделения - осаждение, т.е. деление на группы, основано на различной раст­воримости осадков катионов в определенных средах. При рас­смотрении действия групповых реагентов можно выделить следующие группы (табл. 23.2).

Кроме того, остаются три катиона (Na + , К + , NH4), не обра­зующие осадков с указанными групповыми реагентами. Их так­же можно выделить в отдельную группу.

Группы катионов

Помимо указанного общего подхода, при выборе групповых реагентов исходят из значений произведений растворимости осадков, так как, варьируя условия осаждения, можно разделить вещества из группы действием одного и того же реагента.

Наибольшее распространение получила кислотно-ocновная классификация катионов. Достоинства кислотно-основного метода систематического анализа:

а) используются основные свойства элементов - их отношение к кислотам, щелочам;

б) аналитические группы катионов в большей степени со ответствуют группам периодической системы элементов Д.И. Менделеева;

в) значительно сокращается время проведения анализа посравнению с сероводородным методом. Исследование начинают с предварительных испытаний, в которых устанавливают рН раствора по универсальному индикатору и обнаруживают ионы NH 4 , Fe 3+ , Fe 2+ специфическими и селективными реакциями.

Разделение на группы. Общая схема деления на группы дана в табл. 23.3. В анализируемом растворе прежде всего отделяют катионы I и II групп. Для этого 10-15 капель раствора помещают в пробирку и добавляют по каплям смесь 2М HCl и 1М H 2 S0 4 . Оставляют осадок на 10 мин, затем его центрифугируют и промывают водой, подкисленной НС1. В осадке остается смесь хлоридов и сульфатов Ag + , Pb 2+ , Ва 2+ , Са 2+ . Возможно присутствие основных солей сурьмы. В растворе - катионы III-vi групп.

Из раствора отделяют III группу прибавлением несколь­ких капель 3%-ного Н 2 0 2 и избытка NaOH при нагревании и пе­ремешивании. Избыток пероксида водорода удаляют кипяче­нием. В осадке - гидроксиды катионов IV-V групп, в раство­ре - катионы III и VI групп и частично Са 2+ , который может неполностью осадиться в виде CaS0 4 при отделении I и II групп.

Из осадка отделяют катионы V группы. Осадок обрабаты­вают 2н Na 2 CO 3 и затем избытком NH 3 при нагревании. КатионыV группы переходят в раствор в виде аммиакатов, в осадке - карбонаты и основные соли катионов IV группы.

Достоинство систематического анализа - получение достаточно полной информации о составе объекта. Недостаток - громоздкость, длительность, трудоемкость. Полностью схемы систематического качественного анализа осуществляются редко. Обычно их используют частично, если есть сведения о происхождении, приблизительном составе образца, a так же в учебных курсах аналитической химии.

Гидроксид магния растворяется в смеси NH 3 + NH 4 C1. Таким образом, по­сле разделения катионов на группы получили четыре пробирки, содержа­щие а) осадок хлоридов и сульфатов катионов I-П групп; б) раствор смеси катионов III и VI групп; в) раствор аммиакатов катионов V группы; г) осадок карбонатов и основных солей катионов IV группы. Каждый из этих объек­тов анализируют отдельно.

Анализ смесей анионов

Общая характеристика изучаемых анионов. Aнионы образуются в основном элементами групп IV, V, VI и VII периодической системы. Один и тот же элемент может образовывать несколько анионов, отличающихся своими свойствами. Haпример, сера образует анионы S 2 -, S0 3 2 ~, S0 4 2 ~, S 2 0 3 2 ~ и др.

Все анионы является составной частью кислот и соот ветствующих солей. В зависимости от того, в состав какого вещества входит анион, свойства его существенно меняются. Например, для иона SO 4 2 " в составе концентрированной cepной кислоты свойственны реакции окисления-восстановления, а в составе солей - реакции осаждения.

Состояние анионов в растворе зависит от среды раствора. Некоторые анионы разлагаются при действии концентрированных кислот с выделением соответствующих газов: С0 2 (анион СО 2- 3), H 2 S (анион S 2 "), N0 2 (анион N0 3) и др. При действии разбавленных кислот анионы МоО 4 2- , W0 4 2 ~, SiO 3 2 " образуют не растворимые в воде кислоты (H 2 Mo0 4 , H 2 W0 4 * H 2 0, H 2 Si О 3 ). Анионы слабых кислот (С0 3 2 ~, Р0 4 ", Si0 3 2 ~, S 2 ") в водных растворах частично или полностью гидролизуются, например:

S 2 " + H 2 0 →HS" + OH _ .

Большинство элементов, образующих анионы, обладают переменной валентностью и при действии окислителей или восстановителей изменяют степень окисления, при этом меняется состав аниона. Хлорид-ион, например, можно окислить до С1 2 , СlО", СlO 3 , СlO 4 . Иодид-ионы, например, окисляются до I 2 , IO 4 ; сульфид-ион S 2 ~ - до S0 2 , SO 4 2- ; анионы N0 3 можно восстано-вить до N0 2 , NO, N 2 , NH 3 .

Анионы-восстановители (S 2 ~, I - , CI -) восстанавливают в кислой среде ионы Мп0 4 - , вызывая их обесцвечивание. Ионы-окислители (NO 3 , CrO 4 2 ", V0 3 - , Mn0 4 ~) окисляют иодид-ионы в кислой среде до свободного иона, окрашивают дифениламин в синий цвет.Эти свойства используются для качественного анализа, окислительно-восстановительные свойства хромат-, нитрат-, йодид-, ванадат-, молибдат-, вольфрамат-ионов лежат в основе их характерных реакций.

Групповые реакции анионов. Реагенты по своему действию па анионы разделяют на следующие группы:

1) реактивы, разлагающие вещества с выделением газов. К таким реактивам относятся разбавленные минеральные кислоты (НС1, H 2 S0 4);

2) реактивы, выделяющие анионы из растворов в виде мало-растворенных осадков (табл. 23.4):

а) ВаС1 2 в нейтральной среде или в присутствии Ва(ОН) 2 осаждает: SO 2- , SO, 2 ", S 2 0 3 2 ~, СО 3 2 ", РО 4 2 ", В 4 0 7 2 ~, As0 3 4 ", SiO 3 2 ";

б) AgNO 3 в 2н HNO 3 осаждает: СГ, Br - , I - , S 2- (SO 4 2 только в концентрированных растворах);

3) реактивы-восстановители (KI) (табл. 23.5);

4) реактивы-окислители (КМп0 4 , раствор I 2 в KI, НNО 3(конц) , H 2 S0 4).

Анионы при анализе в основном не мешают обнаружению друг друга, поэтому групповые реакции применяют не для раз­деления, а для предварительной проверки наличия или отсут­ствия той или иной группы анионов.

Систематические методы анализа смеси анионов, основан­ные на делении их на группы, используются редко, главным обра­зом для исследования несложных смесей. Чем сложнее смесь анионов, тем более громоздкими становятся схемы анализа.

Дробный анализ позволяет обнаружить анионы, не мешаю­щие друг другу, в отдельных порциях раствора.

В полусистематических методах имеет место разделение анионов на группы с помощью групповых реактивов и последующее дробное обнаружение анионов. Это приводит к сокра­щению числа необходимых последовательных аналитических операций и в конечном итоге упрощает схему анализа смеси анионов.

Современное состояние качественного анализа не ограни­чивается классической схемой. В анализе как неорганических, так и органических веществ часто используются инструмен­тальные методы, такие как люминесцентный, абсорбционно-спектроскопический, различные электрохимические методы, «которые варианты хроматографии и т.д. Однако в ряде слу­чаев (полевые, заводские экспресс-лаборатории и др.) класси­ческий анализ ввиду простоты, доступности, дешевизны не утратил своего значения.

В основе химических методов обнаружения и определения лежат химические реакции трех типов: кислотно-основные, ОВР и комплексообразования. Наибольшее значение имеют гравиметрический и титриметрический.

Гравиметрический анализ заключается в выделении вещества в чистом виде и его взвешивании.

Чаще всего выделение проводят осаждением. Недостатком гравиметрических методов является длительность определения, особенно при серийных анализах большого числа проб, а также неселективность – реагенты-осадители редко бывают специфичными, поэтому часто необходимо предварительные разделения.

Титриметрический анализ заключается точном определении объема раствора химического реактива с известной концентрацией, который необходим для полного протекания реакции с данным объемом анализируемого раствора.

Титриметрический анализ широко применяется в клинических и санитарно-гигиенических лабораториях для анализа крови, желудочного сока, мочи, пищевых продуктов, питьевых и сточных вод.

Физико-химические методы

Помимо химических методов качественного анализа известны другие методы идентификации химических элементов и их соединений. Так, то или иное вещество можно обнаружить физическими методами анализа, не прибегая к химическим реакциям, или физико-химическими методами путем изучения и наблюдения физических явлений, происходящих при химических реакциях.

К таким методам, называемым часто инструментальными, относятся следующие методы качественного анализа:

Спектральный;

Люминесцентный;

Хроматографический;

Полярографический

некоторые другие.

Очень часто химические методы сочетают с физическими и физико-химическими методами анализа, что обеспечивает более высокую чувствительность и более точные результаты анализа. Повышение чувствительности и избирательности методов имеет большое значение для анализа особо чистых веществ, содержащих следовые количества примесей. Для определения малых количеств (следов) примесей используют методы предварительного выделения, концентрирования (обогащения) микропримесей. К числу этих методов относятся:

хроматографические методы;

экстрагирование;

соосаждение;

дистилляция (отгонка) летучих соединений и некоторые другие методы.

Сочетая те или иные методы концентрирования с физическими или физико-химическими методами анализа, можно достичь высокой степени чувствительности, во много раз превышающей чувствительность отдельных методов.

Электрохимические методы анализа и исследования основаны на изучении и использовании процессов, протекающих на поверхности электрода или в приэлектродном пространстве. Любой электрический параметр (потенциал, сила тока, сопротивление и др.), функционально связанный с концентрацией анализируемого раствора и измеренный, может служить аналитическим сигналом.



Различают прямые и косвенные электрохимические методы . В прямых методах используют зависимость силы тока (потенциала и т.д.) от концентрации определяемого компонента. В косвенных методах силу тока (потенциал и т.д.) измеряют с целью нахождение конечной точки титрования определяемого компонента подходящим титрантом, т.е. используют зависимость измеряемого параметра от объема титранта.

Существуют различные способы классификации электрохимических методов.

Классификация электрохимических методов анализа по измеряемому параметру электрохимической ячейки.

ЖУРНАЛ АНАЛИТИЧЕСКОЙ ХИМИИ, 2014, том 69, № 4, с. 359-362

СТАТЬИ ОБЩЕГО ХАРАКТЕРА

ХИМИЧЕСКИМ АНАЛИЗ И МЕДИЦИНА © 2014 г. Ю. А. Золотов

Московский государственный университет имени М.В. Ломоносова 119991 Москва, Ленинские горы, 1, стр. 3 Поступила в редакцию 27.06.2013 г., после доработки 14.10.2013 г.

Рассмотрены основные направления использования химического анализа в медицине: при диагностике заболеваний, санитарно-гигиеническом контроле, допинг-контроле, прямой идентификации микроорганизмов, ДНК-анализе и др.

Ключевые слова: химический анализ в медицине, медицинская диагностика, санитарно-гигиенический контроль, допинг-контроль, геномный анализ.

DOI: 10.7868/S0044450214040173

Тема "Химический анализ и медицина" слишком широка, чтобы ее можно было осветить сколько-нибудь детально. Однако она выбрана сознательно: хотелось бросить общий взгляд на эту область, попытаться ее оконтурить и классифицировать, вычленить важнейшие направления.

Объектами химического анализа в рассматриваемой области являются биологические жидкости (кровь, моча, пот, слюна, слезы, грудное молоко, желудочный сок и другие); волосы, срезы ногтей; мягкие ткани; выдыхаемый воздух; газы, выделяемые организмом через кожу. Ну и, конечно, лекарственные вещества. Что касается болезней, при профилактике, диагностике и лечении которых применяется химический анализ, то это практически все патологические состояния (да и нормальные тоже, если речь идет о диспансеризации, о массовом скрининге). Однако особенно нужен анализ в случае социально опасных заболеваний - диабета, рака, сердечно-сосудистых и легочных болезней. Перечень веществ (аналитов), которые нужно обнаруживать и количественно определять, включает химические элементы и формы их существования (причем последние - чем дальше, тем больше); некоторые неорганические вещества, особенно газообразные и пероксид водорода, многочисленные низкомолекулярные органические соединения - глюкозу, холестерин, жирные кислоты, катехоламины и другие; биополимеры (белки, нуклеиновые кислоты, липиды и т.д.); субстанции лекарств и примеси в фармпрепаратах.

Методы анализа, используемые для решения медицинских задач, конечно, разнообразны по принципам действия и аналитическим характеристикам. Однако в ряде случаев существует стремление применять методы, "мягко" действу-

ющие на объект, как, например, ионизация электрораспылением в масс-спектрометрии по сравнению с электронной ионизацией. Кроме того, существенна нацеленность на неинвазивные методы, а также на методы, пригодные для массового применения, в том числе, с одной стороны, за счет автоматизации, а с другой, путем широкого использования простых и недорогих тестов. В ряде случаев существует стремление к "миниатюрным" методам и средствам, особенно для анализа in vivo, и даже к дистанционно действующим. Разумеется, очень востребованы и самые мощные современные методы анализа, как, скажем, ГХ-МС, ЖХ-МС, МС-ИСП, особенно в научных исследованиях.

Направления самой медицины, использующие химический анализ, довольно многочисленны, хотя и неодинаковы по важности. Рассмотрим их.

Химический анализ как средство диагностики.

Существо этого направления заключается в нахождении, обычно совместно с медиками, ве-ществ-мйркеров, появление которых или существенное изменение их содержания, или изменение соотношения, например, в биожидкостях или выдыхаемом воздухе, свидетельствуют о патологии. Коль скоро такие вещества найдены, практика будет состоять в определении этих веществ в конкретных образцах.

Чтобы найти вещества, содержание которых может служить показателем заболевания, обычно требуется систематическое исследование большого числа здоровых и больных людей (их органов, тканей, биологических жидкостей), набор большого массива данных, их математическая обработка, теперь, как правило, средствами хемо-метрики. Например, чтобы найти мйркеры рака

яичников, исследовали содержание 169 белков в плазме крови больших групп здоровых и больных женщин; было установлено, что концентрация четырех белков (лептина, пролактина и др.) у здоровых и больных отличается. На этой основе разработан диагностический тест; если результаты показывают, что концентрация, по крайней мере, двух белков из этих четырех лежит за пределами нормы, это с вероятностью 95% говорит о заболевании. Или еще один пример из сотен других: проанализированы пробы мочи 62 женщин, больных раком молочной железы, и 100 здоровых женщин на содержание измененных нуклеози-дов. Статистическая обработка результатов показала, что для этих групп женщин наблюдаются различия в содержании нуклеозидов, и диагностическая ценность этих различий достаточно высока.

Обычный клинический лабораторный анализ и массовый биохимический анализ сформировались на основе подобных объемистых исследований, проводившихся в течение десятилетий, и накопленного опыта.

Маркерами, индикаторами болезни могут служить низкомолекулярные неорганические и органические соединения (NO, NH3, CO, CH4, углеводороды, катехоламины, ацетон, сахара, органические кислоты); высокомолекулярные соединения органической природы - пептиды, многочисленные белки; отдельные химические элементы.

Значительный опыт накоплен, к примеру, по диагностике диабета путем контроля содержания глюкозы сначала в моче, потом в крови. Первые тесты на сахар в моче были созданы еще в XIX веке. Так, в 1841 г. Треммер предложил определять глюкозу в моче по реакции восстановления ме-ди(11) глюкозой в горячем щелочном растворе. Позднее для той же цели использовали бумагу, импрегнированную индигокармином; перед использованием бумажку смачивали щелочью. Потом были созданы гораздо более эффективные химические тест-средства, которые в ХХ веке выпускали многие фирмы. Современные же глюкоз-ные анализаторы имеют своим прародителем электрод Кларка - электрохимический сенсор для определения кислорода. В конце 50-х годов Кларк ввел в свой электрод глюкозоксидазу, что позволило определять глюкозу в крови с высокой чувствительностью. Первый массовый прибор для продажи создала фирма Yellow Springs Instrument. В настоящее время домашние глюкометры для определения глюкозы в крови составляют 95% мирового рынка электрохимических приборов. Известно, что при этом требуется очень малый объем крови, особенно в микрокулономет-рических глюкометрах, созданных А. Хеллером в Техасском университете (Остин, США). Решается, пока без особого успеха, задача определения

сахара в крови неинвазивным методом, т.е. вообще без отбора крови.

Для диагностики легочных заболеваний (да и не только легочных) перспективен анализ выдыхаемого воздуха. Еще древние врачи старались по запаху выдыхаемого воздуха определить, чем болен человек. Состав выдыхаемого воздуха начинал исследовать Лавуазье. В XIX веке в этом воздухе уже находили ацетон и этанол; большое число летучих органических веществ определял в выдыхаемом воздухе Лайнус Полинг в 70-х годах прошлого столетия, используя микроконцентрирование. Давно известно, что наличие ацетона в выдыхаемом воздухе служит признаком диабета. В последние годы анализу выдыхаемого воздуха уделяют много внимания и аналитики, и медики. Привлекаются разные методы, прежде всего газовая хромато-масс-спектрометрия, отчасти газовая хроматография с другими детекторами, а также лазерная спектроскопия.

Задача такого анализа довольно сложна, как минимум, по двум взаимосвязанным причинам. Во-первых, вещества, являющиеся маркерами заболеваний, могут находиться и в наружном воздухе, которым дышит пациент. Это означает, что необходимо не только проводить контрольные эксперименты, но и оценивать очень небольшие изменения в содержании этих веществ. Во-вторых, абсолютные количества выделяемых веществ-маркеров обычно очень малы, и обнаружить их можно лишь самыми чувствительными методами. Тем не менее, подобные определения не только возможны, но и уже осуществляются; данному направлению посвящены сотни работ.

При использовании хроматографических методов проблему решают, используя чаще всего сорбцию определяемых веществ, последующую термодесорбцию и определение газовой хромато-масс-спектрометрией. В исследовательском центре Менссана Рисерч (США) были исследованы пробы выдыхаемого воздуха нескольких десятков человек и обнаружено 3500 соединений, но только 27 из них были общими для всех обследованных людей. Самым распространенным летучим органическим компонентом выдыхаемого воздуха оказался изопрен - промежуточный продукт синтеза холестерина. Практически всегда в пробах присутствуют алканы, в том числе с большой молекулярной массой. Американское Агентство по пищевым продуктам и лекарственным препаратам (Food and Drug Administration) уже давно одобрило применение анализа выдыхаемого воздуха как теста для оценки состояния больных, перенесших операции на сердце.

С анализом выдыхаемого воздуха связывают и перспективы ранней диагностики рака легких. У больных в выдыхаемом воздухе возрастает концентрация алканов и метилалканов (С4-С20). Для

ХИМИЧЕСКИЙ АНАЛИЗ И МЕДИЦИНА

диагностики достаточно определить девять углеводородов: бутан, пентан, 3-метилтридекан, 7-метил-тридекан, 4-метилоктан, 3-метилгексан, гептан, 2-метилгексан, 5-метилдекан. Эти углеводороды присутствуют на уровне нано- или пикомолей, поэтому для их определения требуется предварительное концентрирование на адсорбентах, не поглощающих влагу.

Физики-спектроскописты для анализа выдыхаемого воздуха используют диодные лазеры, излучающие в ИК-диапазоне (Институт общей физики РАН). Этими методами можно определять, прежде всего, низкомолекулярные простые соединения, включая оксиды азота, аммиак, монооксид углерода, пероксид водорода, а также метан, метанол, этанол, сероуглерод и другие соединения в диапазоне от 0.1 до 10 мг/м3, а также проводить изотопный анализ (13С/12С).

Много работ посвящается оценке окислительного (оксидативного) стресса. Это та область, где профессиональные аналитики в России в последние годы активно работают.

БРУСНИКИНА ОЛЬГА АЛЕКСАНДРОВНА, ПЕСКОВ АНАТОЛИЙ НИКОЛАЕВИЧ - 2014 г.

  • МОРАЛЬНО-ЭТИЧЕСКИЕ, ПРАВОВЫЕ И МЕДИЦИНСКИЕ АСПЕКТЫ СТЕНДОВЫХ ИСПЫТАНИЙ И ПРАКТИЧЕСКОГО ВНЕДРЕНИЯ БИОЛОГИЧЕСКИ АКТИВНЫХ ВЕЩЕСТВ В СПОРТ ВЫСШИХ ДОСТИЖЕНИЙ

    ДРУЖИНИН А.Е., ОРДЖОНИКИДЗЕ Z.Г., РОЖКОВА Е.А., СЕЙФУЛЛА Р.Д. - 2008 г.