Главная · Дисбактериоз · Важный отдел головного мозга — гипоталамус: что это такое и за что он отвечает, причины патологических изменений, диагностика и лечение заболеваний. Гипоталамус: что это такое, функции, гормоны, на что влияет и воздействует Что входит в состав гипоталамус

Важный отдел головного мозга — гипоталамус: что это такое и за что он отвечает, причины патологических изменений, диагностика и лечение заболеваний. Гипоталамус: что это такое, функции, гормоны, на что влияет и воздействует Что входит в состав гипоталамус

Гипоталамус располагается в глубине мозга, формируя стенки третьего желудочка.

Гипоталамус – это высший подкорковый центр интеграции вегетативных, эмоциональных и мотивационных реакций, регуляции двигательных (моторных), обменных, энергетических и иных ответов, направленных на адаптацию и корректировку поведения. Гипоталамус вместе со стволовыми структурами мозга поддерживает и регулирует кровообращение (функция сердца и тонус сосудов), регулирует обмен веществ (железы внутренней и внешней секреции), контролирует энергетический обмена организма, обмен воды, жиров, белков и углеводов. Он поддерживает и согласовывает все процессы в организме, обеспечивая постоянство внутренней среды (т.н. гомеостаз). При этом совместно с близлежащими структурами диэнцефальной области он контролирует эмоции, поведение, сон.

Гипоталамус расположен в самом центре мозга.

Он содержит около 48 ядер (скопление нервных клеток), часть из которых напрямую связана с гипофизом. Гипофиз - это центр эндокринной регуляции в организме, он регулирует функцию надпочечников, тимуса, щитовидной железой, паращитовидных желез, некоторые функции поджелудочной железы, половые железы.

Гипоталамус непосредственно участвует в сне, пробуждении, формировании настроения, в реакции на стресс и в самом стрессе, в мотивациях и поведенческих реакциях. Примерами нарушения функции гипоталамуса могут служить синдром гипервозбудимости (гиперактивные дети) и посттравматический стрессовый синдром .

Гипоталамус можно сравнить с центральным компьютером в организме человека, своеобразной релейной станцией, к которой стекается вся информация о многочисленных вегетативных (не подвластных сознанию) функциях организма. В его ведении частота сердечных сокращений, температуру тела, чувство голода и сытости, сон, половой рефлекс (поиск пары), он определяет темперамент (эмоции, агрессивность и др.). Подавляющий поток информации достигает гипоталамуса, но не поступает в кору головного мозга. Сознание человека не в состоянии обработать такой поток информации и сознательно сделать адекватную корректировку функций организма. Гипоталамус во многом самостоятельная «инстанция» мозга, которая запрограммирована на «автоматическую» регуляцию всех вегетативных процессов в организме. Осознанный анализ такого объема информации даже теоретически невозможен, «переварить» ее сознанию нереально. Да и не нужно. Система регуляции вегетативных функций отлажена природой и настроена по принципу обратной связи: запрос – ответ, больше - меньше... При этом параметры регуляции с участием гипоталамуса «откалиброваны» и реализуются в четких физиологических рамках.

На более низких уровнях (ствол мозга, спинной мозг) процессы регулируются рефлекторно. Задача же гипоталамуса, как у топ-менеджера – сбалансировать все процессы в организме и привести их к заданным физиологическим параметрам.

Например, физическая нагрузка или стресс протекают с учащением сердцебиения. При этом частота сердечных сокращений – это только видимая (ощутимая) часть регуляции. Одномоментно гипоталамус регулирует объем и силу сердечного выброса, тонус сосудов в различных участках тела, тем самым перераспределяя кровь в различные сосудистые бассейны. Например, нужно экстренно снабдить кровью работающие мышцы. При этом учащенное дыхание также требует крови к легким, которые интенсивно поглащают кислород, необходимый для мышц и, конечно же, сердца. Важно не забыть о мозге, который должен продолжать анализировать ситуацию, думать куда бежать и что делать. Чуть позже гипоталамус включает потоотделение для охлаждения кожи, дабы не допустить перегрева. При этом гипоталамус должен контролировать уровень стрессовых и иных гормонов, не обделить кровотоком почки (при критическом снижении почечного кровотока, почки проживут не более нескольких часов)…. А не только обеспечить приток к работающим при беге мышцам. Такова приблизительно роль гипоталамуса на примере только одного физиологического процесса – банальной физической нагрузке. Подобного рода процессов в организме несоизмеримо больше, в них участвуют все железы внутренней секреции – надпочечники, щитовидная железа, половые железы и многие другие органы, тесно связанные между собой. Все эти сложные процессы протекают скоординировано, одномоментно и регулируются гипоталмусом.

Любой сбой в регуляторной функции гипоталамуса приводит к серьезным поломкам. Например, ВСД (вегето-сосудистая дистония) , посттравматические стрессовые реакции (), гипоталамический синдром , лечение которых возможно только при понимании структурной организации гипоталамуса, локализации ядер (см. рис. ниже) и его многочисленных связей с другими структурами мозга и эндокринными органами. К примеру, лечение ВСД и затянувшихся посттравматических реакций не будет эффективным без стабилизации функции перивентрикулярных ядер гипоталамуса (врутренний протокол Института № 57/2001).

Для понимания сложности регулирующих систем гипоталамуса, ниже приведена схема регуляции желез внутренней секреции и гладких мышц (кишечник, протоки печени, поджедлудочной джедезы и др.) с участием психоэмоциональных факторов, завязанных на гипоталамусе. Схема приведена патофизиологом Д.Хьюбел

Хочешь узнать за что отвечает гипоталамус и в каких процессах организма человека участвует? Ок! Гипоталамус отвечает за сигналы в вегетативной нервной системе, за работу в нейросекреторных центрах и регулирует очень важные аспекты, но обо всем по порядку...

Архитекторы утверждают, что наука возведения зданий весьма приблизительна и строится на опыте. Положили балку полуметровой толщины — не выдержала, положили метровой — держит. Добавим, на всякий случай, коэффициент — и запишем, что это правильно...

Привет, друзья! Наш с вами мозг в миллионы раз сложнее любого архитектурного проекта. Не удивительно, что даже опытным путём невозможно разгадать все его тайны. Гипоталамус — это маленький участок в глубине черепной коробки, всего в пять граммов весом, руководит множеством функций... За что отвечает гипоталамус, ты сейчас узнаешь!

Сказ про мудрого оператора связи

За что отвечает гипоталамус и где находится интересующий нас объект? Это небольшая область в промежуточном мозге головного мозга у человека и животных. Как видно из названия — расположен он непосредственно под таламусом (на латыни «hypo» — означает — «под»). Он неоднороден, его формируют несколько групп разных клеток. На данном этапе учёные медики различают тридцать две такие группы. Их называют ядрами.

Далеко не с каждой стороны этот отдел мозга чётко отграничен, его клетки как бы проникают в структуру соседних участков. Он связан со всеми остальными частями ЦНС и особенно — с гипофизом.

По сути, он стоит между нашими нервной и эндокринной системами, отвечая и за сигналы в вегетативной нервной системе.

Мозг хорошо защищён. Все мы знаем, что у нашего тела единый кровоток, и если ввести в кровь лекарство, или яд — вещества эти очень быстро разнесутся по всему организму. Только ЦНС на особом «пропускном режиме». Не вдаваясь в подробности скажу, что в ней есть гемато-энцефалический барьер — уникальная «завеса», которая встаёт на пути большинства агрессивных факторов, не допуская их до мозгового вещества.

Гипоталамус — единственное место, где «завеса» не действует. Наш оператор обязан получать полную информацию о том, что делается во всём остальном теле. Иначе он не сможет правильно реагировать.

Простой пример: ты подцепил бактериальную инфекцию, информация об этом, через кровь, должна добраться до гипоталамуса. Он свяжется с гипофизом, тот через гормональную систему — с корой надпочечников, и в результате этой цепочки у тебя поднимется температура — защитная реакция, направленная на борьбу с чужеродными белками, коими являются микробы.

За всё в ответе

Итак, система «гипоталамус и гипофиз» — это связующее звено между нервной и эндокринной системами. Эта парочка — оператор и исполнитель — способна на многие подвиги. В каких процессах организма человека участвует виновник нашего торжества?

В первую очередь, в регуляции гомеостаза, то есть, поддержке постоянного внутреннего равновесия.

Мы — существа теплокровные, сохраняем постоянную температуру тела и в жару, и в холод. Это позволяет нам активничать зимой и летом, в отличие от земноводных, которые с наступлением холодов вынуждены впадать в спячку.

Механизм таков: «оператор» считывает изменения температуры через циркулирующие жидкости — ликвор спинного мозга и кровь. Если снаружи холодно — посылает в гипофиз сигнал замедлить теплообмен с окружающей средой. Под действием нужных периферические сосуды суживаются, удерживая тепло у жизненно важных органов. Если во внешней среде становится жарко — «оператор» даёт обратный сигнал и «исполнитель» стимулирует выработку других гормонов, чтобы и потовые железы расширились, и мы избежали перегрева благодаря усиленному потоотделению. Надеюсь стало немного понятнее за что отвечает гипоталамус?

Прочие стороны внутреннего баланса

Не буду сравнивать, каковы функции таламуса и гипоталамуса. Они достаточно разные, у каждого объекта свои задачи. Лучше расскажу, за что ещё отвечает наш мудрый оператор. Выуживая информацию из поступающей в него крови и спинномозговой жидкости, он воздействует на нейросекреторные центры и регулирует следующие важные аспекты жизнедеятельности:

  • голод и жажду — оценивая осмотическое давление жидкости и содержание в плазме питательных веществ;
  • бодрствование и сон — осуществляется через суточные циклы, которым подчинены практически все живые существа и даже растения;
  • кислотно-щелочное равновесие, через ph крови;
  • половое поведение и влечение, которое напрямую зависит от соотношения ряда ;
  • восприятие так называемых феромонов (можно отнести к предыдущему пункту);
  • половой диморфизм (если в соответствующих ядрах гипоталамуса есть нарушения — человек теряет ориентацию, его начинают привлекать объекты его же пола, что совершенно неестественно для живого существа, одна из важных функций которого — размножение своего вида);

  • забота о своих детях (психологический и воспитательные аспекты важны, но и гормоны влияют на степень заинтересованности в потомстве);
  • существует связь между деятельностью нашего «оператора» и выработкой гормона роста — поэтому самцы, в основном, крупнее самок;
  • выведение продуктов метаболизма — гипоталамус через состав крови определяет их концентрацию и не допускает накапливаться до токсических доз;
  • связь «гипоталамус — гипофиз — АКТГ — кора надпочечников — адаптивные механизмы» говорит о прямом значении рассматриваемого участка мозга в приспособительных и защитных механизмах при ;
  • он влияет на память, эмоциональное поведение и подсознание, но механизм этих явлений мало изучен.

За что отвечает гипоталамус? По сути, наш «оператор» отвечает за всё, кроме автоматизма дыхательных движений и сокращений .

Не болей!

Самый умелый «стрелочник» иногда ошибается и заболевает. Например, при климаксе у женщин , и наш бессменный регулировщик ошибается, принимая глобальную гормональную перестройку за перегрев. Он включает механизмы выброса лишнего жара — приливы во время климакса.

Гормональная перестройка при половом созревании, беременности, так же может вызывать сбои в сигналах ЦНС к периферии, вызывая эмоциональные всплески, подавленность, агрессивность, нарушения в терморегуляции и даже ночное недержание мочи.

Различные опухоли, сдавливая наш участок мозга, не дают ему возможность адекватно реагировать на изменения в организме. Например, гамартома у детей — опухоль, симптомы которой говорят о дисфункции соответствующего отдела мозга.

Чтобы быть здоровым — надо, чтобы в теле всё работало, как часы. Любые излишки и недостатки питания, вредные привычки — это дополнительная нагрузка на нашего верного «оператора внутренней связи». Предлагаю позаботиться о нём по мере сил, пользоваться моим «Курсом Активного Похудения » и помнить, что самое главное для нас — равновесие.

На сегодня все.
Спасибо, что дочитали мой пост до конца. Делитесь этой статьей со своими друзьями. Подписывайтесь на мой блог.
И погнали дальше!

Гипоталамус - высший центр, регулирующий функцию вегетативной нервной и эндокринной систем. Он принимает участие в координации работы всех органов, способствует поддержанию постоянства внутренней среды организма.

Гипоталамус располагается в основании мозга и имеет большое количество двухсторонних связей с другими структурами нервной системы. Его клетки вырабатывают биологически активные вещества, способные влиять на работу эндокринных желез, внутренних органов и поведение человека.

Расположение и строение органа

Анатомия гипоталамуса

Гипоталамус находится в области промежуточного мозга. Здесь же расположены таламус и третий желудочек. Орган имеет сложное строение и состоит из нескольких частей:

  • зрительный тракт;
  • зрительный перекрест - хиазма;
  • серый бугор с воронкой;
  • сосцевидные тела.

Зрительный перекрест образуется волокнами зрительных нервов. В этом месте нервные пучки частично переходят на противоположную сторону. Он имеет форму поперечно расположенного валика, который продолжается в зрительный тракт и заканчивается в подкорковых нервных центрах. Кзади от хиазмы лежит серый бугор. Его нижняя часть образует воронку, которая соединяется с гипофизом. За бугром находятся сосцевидные тела, имеющие вид сфер с диаметром около 5 мм. Снаружи они покрыты белым веществом, а внутри содержат серое, в котором выделяют медиальные и латеральные ядра.

Клетки гипоталамуса образуют более 30 ядер, связанных друг с другом нервными путями. Различают три основные гипоталамические области, которые, согласно анатомии органа, представляют собой скопления различных по форме и размеру клеток:

  1. 1. Передняя.
  2. 2. Промежуточная.
  3. 3. Задняя.

В переднем участке находятся нейросекреторные ядра - паравентрикулярные и супраоптическое. В них вырабатывается нейросекрет, который по отросткам клеток, формирующих гипоталамо-гипофизарный пучок, поступает в заднюю долю гипофиза. К промежуточной зоне относятся нижнемедиальное, верхнемедиальное, дорсальное, серобугорные и другие ядра. Наиболее крупными образованиями задней части являются заднее гипоталамическое ядро, медиальное и латеральное ядра сосцевидного тела.

Основные функции гипоталамуса

Схема влияния рилизинг-факторов на работу гипофиза и желез внутренней секреции

Гипоталамус отвечает за многочисленные вегетативные и эндокринные функции. Его роль в организме человека заключается в следующем:

  • регуляция углеводного обмена;
  • поддержание водно-солевого баланса;
  • формирование пищевого и полового поведения;
  • координация биологических ритмов;
  • контроль постоянства температуры тела.

В клетках гипоталамуса вырабатываются вещества, которые оказывают влияние на работу гипофиза. К ним относятся рилизинг-факторы - статины и либерины. Первые способствуют уменьшению продукции тропных гормонов, а вторые - увеличению. Таким образом (через гипофиз) гипоталамус регулирует функцию других желез внутренней секреции. Поступление рилизинг-факторов в кровь имеет определенный суточный ритм.

Регуляция работы гипоталамуса осуществляется нейропептидами, вырабатывающимися в выше расположенных структурах. Их продукция меняется под действием факторов внешней среды и импульсов, поступающих из отделов коры головного мозга. Существуют обратные связи между гипоталамусом, гипофизом и другими железами эндокринной системы. При увеличении концентрации тропных и других гормонов в крови производство либеринов снижается, а выработка статинов - повышается.

Основные виды и сферы влияния рилизинг-факторов представлены в таблице:

Рилизинг-фактор Влияние на тропные гормоны гипофиза Влияние на работу эндокринных желез
Гонадотропный рилизинг-гормон Стимулирует секрецию лютеинизирующего гормона (ЛГ) и фолликулостимулирующего гормона (ФСГ) Стимулирует синтез половых гормонов. Участвует в регуляции процессов сперматогенеза у мужчин и фолликулогенеза у женщин
Дофамин Подавляет секрецию пролактина Снижение синтеза прогестерона
Соматолиберин Стимулирует секрецию соматотропного гормона (гормона роста) Стимулирует образование инсулиноподобного фактора роста-1 (ИФР-1) в периферических клетках-мишенях
Соматостатин Подавляет секрецию гормона роста Уменьшает образование инсулиноподобного фактора роста-1 (ИФР-1) в периферических клетках-мишенях
Тиреолиберин Стимулирует секрецию тиреотропного гормона (ТТГ) Стимулирует синтез тироксина и трийодтиронина
Кортиколиберин Стимулирует секрецию кортикотропина Стимулирует производство глюкокортикоидов, минералокортикоидов и половых гормонов надпочечников

В нейросекреторных ядрах в виде предшественников синтезируются антидиуретический гормон (АДГ), или вазопрессин, и окситоцин. По отросткам нервных клеток (нейрогипофизарному тракту) они поступают в заднюю долю гипофиза. Во время перемещения веществ образуются их активные формы. Также АДГ частично попадает в аденогипофиз, где регулирует секрецию кортиколиберина.

Основная роль вазопрессина - контроль выделения и задержки воды и натрия почками. Гормон взаимодействует с разными типами рецепторов, которые расположены в мышечной стенке сосудов, печени, почках, надпочечниках, матке, гипофизе. В гипоталамусе находятся осморецепторы, которые реагируют на изменение осмолярности и объема циркулирующей жидкости путем повышения или снижения секреции АДГ. Также существует связь между синтезом вазопрессина и активностью центра жажды.

Окситоцин инициирует и усиливает родовую деятельность, способствует выделению молока у кормящих женщин. В послеродовом периоде под его действием происходит сокращение матки. Гормон оказывает большое влияние на эмоциональную сферу, с ним связывают формирование чувства привязанности, симпатии, доверия и покоя.

Заболевания органа

К дисфункции органа могут приводить различные факторы:

  • травмы головы;
  • токсические воздействия - наркотические вещества, алкоголь, вредные условия труда;
  • инфекции - грипп, вирусный паротит, менингит, ветряная оспа, очаговое поражение носоглотки;
  • опухоли - краниофарингиома, гамартома, менингиома;
  • сосудистые патологии;
  • аутоиммунные процессы;
  • оперативные вмешательства или облучение в гипоталамо-гипофизарной зоне;
  • системные инфильтративные заболевания - гистиоцитоз, туберкулез, саркоидоз.

В зависимости от локализации повреждения возможно нарушение производства тех или иных рилизинг-факторов, вазопрессина, окситоцина. При патологии органа часто страдают углеводный и водно-солевой обмены, меняется пищевое и половое поведение, возникают расстройства терморегуляции. При наличии объемного образования пациентов беспокоят головные боли, а при обследовании выявляются симптомы сдавления хиазмы - атрофия зрительных нервов, снижение остроты и сужение полей зрения.

Нарушение синтеза рилизинг-факторов

К нарушению продукции тропных гормонов чаще всего приводят опухоли, хирургические вмешательства и системные процессы. В зависимости от вида рилизинг-фактора, синтез которого страдает, развивается недостаточность секреции определенного вещества - гипопитуитаризм.

Гормональный фон при различных нарушениях производства рилизинг-факторов:

Название синдрома Гормоны гипоталамуса Гормоны гипофиза Периферические железы
Центральный гипотиреоз Снижение продукции тиреолиберина Снижение ТТГ Уменьшение продукции тироксина и трийодтиронина в щитовидной железе
Гипогонадотропный гипогонадизм Снижение продукции гонадотропного рилизинг-гормона Снижение ЛГ и ФСГ Уменьшение продукции половых гормонов
Третичная надпочечниковая недостаточность Снижение продукции кортиколиберина Снижение кортикотропина Уменьшение продукции надпочечниковых гормонов
Гиперпролактинемия Снижение продукции дофамина Повышение пролактина Нарушение репродуктивной функции
Гигантизм (у детей и подростков), акромегалия (у взрослых) Снижение продукции соматостатина Повышение гормона роста Увеличение продукции ИФР-1 в тканях-мишенях
Пангипопитуитаризм Снижение продукции всех рилизинг-факторов Снижение всех тропных гормонов Недостаточность работы всех эндокринных желез

Некоторые опухоли способны синтезировать избыточное количество гонадотропин-рилизинг-фактора, что проявляется преждевременным половым созреванием. В редких случаях возможна гиперпродукция соматолиберина, которая приводит к гигантизму у детей и развитию акромегалии у взрослых.

Тактика лечения гормональных нарушений зависит от причины. Для удаления опухолей применяют хирургические и лучевые методы, иногда - медикаментозные препараты. При гипопитуитаризме показана заместительная терапия. С целью нормализации уровня пролактина назначают агонисты дофамина - каберголин, бромокриптин.

Несахарный диабет

Наиболее частыми причинами развития заболевания у детей служат инфекции, а у взрослых - опухоли и метастатические поражения гипоталамуса, хирургические вмешательства, аутоиммунный процесс - образование антител к клеткам органа, травмы и прием лекарственных веществ - Винбластина, Фенитоина, антагонистов наркотиков. Под действием повреждающих факторов происходит подавление синтеза вазопрессина, которое может носить временный или постоянный характер.

Патология проявляется выраженной жаждой и увеличением объема мочи до 5–6 л в сутки и более. Наблюдается уменьшение потоотделения и выделения слюны, ночное недержание мочи, неустойчивость пульса с тенденцией к его учащению, эмоциональная неуравновешенность, бессонница. При выраженном обезвоживании происходит сгущение крови, падение давления, снижение массы тела, развиваются психические нарушения, повышается температура.

Для диагностики заболевания смотрят общий анализ мочи, определяют электролитный состав крови, проводят пробу Зимницкого, тесты с сухоедением и назначением десмопрессина - аналога АДГ, выполняют МРТ головного мозга. Лечение заключается в устранении причины патологии, применении заместительных доз препаратов десмопрессина - Натива, Минирин, Вазомирин.

Гипоталамический синдром

Гипоталамический синдром – это совокупность вегетативных, эндокринных и обменных расстройств, возникших вследствие поражения органа. Чаще всего развитию патологии способствуют нейроинфекции и травмы. Возможно возникновение синдрома вследствие конституциональной недостаточности гипоталамуса на фоне ожирения.

Болезнь проявляется вегетативно-сосудистыми, эндокринно-обменными симптомами, а также нарушением терморегуляции. Характерны слабость, утомляемость, увеличение веса, головные боли, излишняя тревожность и перепады настроения. У ряда пациентов выявляются повышенное артериальное давление, признаки функционального гиперкортицизма (усиление продукции гормонов надпочечников), нарушение толерантности к глюкозе. У женщин синдром приводит к дисменорее, поликистозу яичников, раннему климаксу.

Патология часто протекает в виде приступов, которые могут носить разный характер:

  • Симпатоадреналовые кризы - возникают внезапно, проявляются учащением работы сердца, похолоданием конечностей, дрожью в теле, расширением зрачков, страхом смерти. Возможно повышение температуры.
  • Вагоинсулярные кризы - начинаются с ощущения жара и прилива крови к голове. Беспокоит тошнота, рвота, чувство нехватки воздуха. Пульс урежается, возможно падения давления. Часто состоянию сопутствуют учащенное и обильное мочеиспускание, диарея.

Диагностика синдрома основывается на выяснении истории жизни пациента, его жалоб и внешнем осмотре. Проводят общеклиническое и биохимические исследования крови, оценку гормонального профиля, ряд инструментальных обследований - ЭКГ, МРТ головного мозга, ЭЭГ, УЗИ щитовидной железы и другие (по показаниям). Лечение патологии комплексное. Необходима коррекция всех выявленных нарушений, нормализация режима труда и отдыха, лечебная физкультура.

Что такое гипофиз и гипоталамус, какая связь между этими частями мозга? Они составляют гипоталамо-гипофизарный комплекс, отвечающий за нормальную и слаженную работу всего организма. Где расположен этот отдел мозга, какая его анатомия, гистология, строение и функции? За что отвечает каждая часть гипоталамуса (что это такое - подробно описывает Википедия).

Гипоталамус представляет собой незначительную по размерам область, размещающуюся в промежуточном мозге. Он состоит из большого количества групп клеток – ядер. Данный отдел мозга представляет из себя очень важный центр, который связан со многими частями центральной нервной системы. В их число входит спинной мозг, кора и ствол головного мозга, гиппокамп, миндалина и другие. Данный отдел расположен ниже таламуса, благодаря чему и получил свое название. Относительно ствола мозга он размещается немного выше.

Гипоталамус находится в части, которая отделена от таламуса гипоталамической бороздой. При этом его границы достаточно нечеткие, что объясняется те, что некоторая группа клеток заходит на соседние области, а другая – характеризуется неопределенностью в терминологии. Несмотря на такую неоднозначность, считается, что данный отдел расположен между верхним мозгом и конечной пластинкой, передней спайкой, зрительным перекрестом.

Строение

Анатомия данной части мозга подразумевает разделение на отделы гипоталамуса, которых насчитывают 12 штук. К ним относят область серого бугра, сосцевидных тел и другие. Ядра гипоталамуса – это группа нейронов, которые выполняют определенные функции в организме человека. Их количество превышает 30 штук. Преимущественно ядра гипоталамуса парные.

Анатомия и гистология для удобства изучения данных структур разделяет их на зоны:

  • перивентрикулярная или околожелудочковая;
  • медиальная;
  • латеральная.

Перивентрикулярная зона является тонкой полоской, которая находится около третьего желудочка. В медиальной части ядра гипоталамуса группируются в несколько областей, размещающихся в переднезаднем направлении. Преоптическая зона также принадлежит данному отделу, хоте ее логичнее относить к переднему мозгу.

В нижней области гипоталамуса выделяют такие части, как сосцевидные тела, воронка (ее средняя часть приподнята и носит название срединное возвышение) и серый бугор. Такое деление не однозначно и достаточно спорно, но часто используется в медицинской литературе. Медиальное возвышение гипоталамуса содержит большое количество кровеносных сосудов. Они обеспечивают перенос всех продуцируемых веществ в гипофиз, который таким образом связан с гипоталамусом. Нижняя часть воронки соединяется с ножкой питуитарной железы.

Деятельность гипоталамуса через гипофиз позволяет эффективно связать нервную и эндокринную системы. Такая функция возможна благодаря выделению как гормонов, так и нейропептидов. Ядерные зоны, которые способны продуцировать данные вещества, называют гипофизарной областью. Они содержат нейроны, способные выделять определенные гормоны.

Ядерные структуры

Деятельность гипоталамуса, строение которого достаточно сложное, обеспечивается совместной работой всех ядер. Почти невозможно выделить зоны, отвечающие за определенные функции в организме человека. Только супраоптическое и паравентрикулярное ядро имеют нейроны, отростки которых идут к гипофизу, и их нейросекреция обеспечивает выработку окситоцина и вазопрессина. Особенностью латеральной зоны считается то, что в ней нет отдельных ядерных областей. Нейроны находятся вокруг медиального пучка переднего мозга (диффузный характер распределения).

В группу ядер хиазматической области включаются переднее гипоталамическое, супраоптическое, паравентрикулярное и другие, а в околожелудочковой зоне размещается перивентрикулярное. Около серого бугра выделяют вентромедиальное, дорсомедиальное и аркуатное нейронное скопление. Находящийся в этой области пучок, называемый латеральным серобугорным ядром, ярко развит исключительно у человека и высших приматов. Также здесь присутствует туберомамиллярный комплекс, который разделяют на несколько частей.

Гормональная функция

При изучении гипоталамуса, функции которого заключаются в нейроэндокринной регуляции организма, понятно, что он определенным образом воздействует на гипофиз. Он, в свою очередь, выделяет гормоны, которые регулируют деятельность многих органов, желез и систем.

В гипоталамических ядрах происходит высвобождение рилизинг-факторов. В последующем они перемещаются по аксонам к гипофизу, где сохраняются определенное время и выпускаются в кровь при необходимости. К гормонам, которые вырабатываются в данной области, относят:

  • соматотропин;
  • кортикотропин;
  • соматостатин.

Нейротензин, орексин, вазопрессин вырабатываются в зоне срединного возвышения нейросекреторными клетками гипоталамуса. Также все гормоны, которые секретируются в данном отделе мозга, разделяют на либерины и статины. Первые воздействуют на гипофиз, пробуждая его функционирование. Статины характеризуются противоположным эффектом. Они, наоборот, понижают уровень определенных гормонов.

Функции

При воздействии на гипоталамус определенных раздражителей наблюдается его нейроэндокринная функция, которая заключается в следующем:

  • поддерживает в организме некоторые жизненно важные параметры – температуру тела, энергетический и кислотно-щелочной баланс;
  • обеспечивает гомеостаз, который заключается в сохранении постоянства внутреннего состояния тела при воздействии любых факторов внешней среды. Это дает возможность человеку выжить в неблагоприятных для него условиях;
  • регулирует деятельность нервной и эндокринной системы;

  • наблюдается влияние на поведение, что помогает человеку выжить. К этим функциям относят обеспечение памяти, желания добывать пищу, заботиться о потомстве, размножаться;
  • данный отдел мозга оперативно получает информацию о составе и температуре крови, спинномозговой жидкости, собирает сигналы от органов чувств, благодаря чему происходит корректировка поведения, наблюдаются соответствующие реакции автономной нервной системы;
  • отвечает за наличие дневных и сезонных ритмов деятельности организма из-за реакции на свет, его количество на протяжении суток;
  • регулирует аппетит;
  • устанавливает сексуальную ориентацию мужчин и женщин.

Нарушение работы данного отдела мозга

Нарушение нормальной работы данного отдела мозга может быть связано с образованием опухоли, травмированием или протеканием воспалительных процессов. Даже при незначительном повреждении гипоталамуса вследствие таких негативных факторов могут наблюдаться серьезные изменения. Также на характер расстройств может влиять длительность или тяжесть воздействия определенных патологий. Иногда их развитие может проходить почти незамеченным до определенного времени (при опухолевых процессах).

На фоне воздействия определенных негативных процессов могут наблюдаться следующие нарушения:

  • преждевременный пубертат объясняется гиперфункцией данного отдела мозга. Для этого заболевания характерно появление вторичных половых признаков в возрасте 8-9 лет. Причиной данного явления считается повышенная выработка гонадолиберинов;
  • гипофункция данного отдела мозга. Приводит к появлению несахарного диабета, который сопровождается обезвоживанием организма, слишком частым мочеиспусканием. Снижение концентрации вазопрессина провоцирует развитие этого заболевания.

Также нарушение работы данного отдела мозга может сопровождаться расстройством сна, гипотермией, пойкилотермией, эндокринными, эмоциональными и вегетативными нарушениями. Иногда наблюдается амнезия, полно отсутствие аппетита и чувства жажды или другие патологические процессы.

Список литературы

  1. Милку, Шт.-М. Терапия эндокринных заболеваний
  2. Изард К. Эмоции человека. – М., 1980.
  3. Фрейд З. Введение в психоанализ. – М., 1989.
  4. Попова, Юлия Женские гормональные заболевания. Самые эффективные методы лечения / Юлия Попова. - М.: Крылов, 2015. - 160 c
  5. Гремлинг С. Практикум по управлению стрессом / С. Гремлинг, С. Ауэрбах. – СПб., 2002, с. 37–44.

Кора большого мозга

Высшим отделом ЦНС является кора большого мозга (кора боль­ших полушарий). Она обеспечивает совершенную организацию по­ведения животных на основе врожденных и приобретенных в онто­генезе функций.

Морфофункциональная организация

Кора большого мозга имеет следующие морфофункциональные особенности:

Многослойность расположения нейронов;

Модульный принцип организации;

Соматотопическая локализация рецептирующих систем;

Экранность, т. е. распределение внешней рецепции на пло­скости нейронального поля коркового конца анализатора;

Зависимость уровня активности от влияния подкорковых структур и ретикулярной формации;

Наличие представительства всех функций нижележащих структур ЦНС;

Цитоархитектоническое распределение на поля;

Наличие в специфических проекционных сенсорных и мотор­ной системах вторичных и третичных полей с ассоциативными функциями;

Наличие специализированных ассоциативных областей;

Динамическая локализация функций, выражающаяся в воз­можности компенсаций функций утраченных структур;

Перекрытие в коре большого мозга зон соседних перифери­ческих рецептивных полей;

Возможность длительного сохранения следов раздражения;

Реципрокная функциональная взаимосвязь возбудительных и тормозных состояний;

Способность к иррадиации возбуждения и торможения;

Наличие специфической электрической активности.

Глубокие борозды делят каждое полушарие большого мозга на лобную, височную, теменную, затылочную доли и островок. Ост­ровок расположен в глубине сильвиевой борозды и закрыт сверху частями лобной и теменной долей мозга.

Кора большого мозга делится на древнюю (archicortex), старую (paleocortex) и новую (neocortex). Древняя кора наряду с другими функциями имеет отношение к обонянию и обеспечению взаимо­действия систем мозга. Старая кора включает поясную извилину, гиппокамп. У новой коры наибольшее развитие величины, диффе­ренциации функций отмечается у человека. Толщина новой коры колеблется от 1,5 до 4,5 мм и максимальна в передней центральной извилине.

Функции отдельных зон новой коры определяются особенностями ее структурно-функциональной организации, связями с другими структурами мозга, участием в восприятии, хранении и воспроиз­ведении информации при организации и реализации поведения, регуляции функций сенсорных систем, внутренних органов.

Особенности структурно-функциональной организации коры большого мозга обусловлены тем, что в эволюции происходила кортикализация функций, т. е. передача коре большого мозга фун­кций нижележащих структур мозга. Однако эта передача не озна­чает, что кора берет на себя выполнение функций других структур. Ее роль сводится к коррекции возможных нарушений функций взаимодействующих с ней систем, более совершенного, с учетом индивидуального опыта, анализа сигналов и организации оптималь­ной реакции на эти сигналы, формирование в своих и в других заинтересованных структурах мозга памятных следов о сигнале, его характеристиках, значении и характере реакции на него. В даль­нейшем, по мере автоматизации реакция начинает выполняться подкорковыми структурами.

Общая площадь коры большого мозга человека около 2200 см2, число нейронов коры превышает 10 млрд. В составе коры имеются пирамидные, звездчатые, веретенообразные нейроны.

Пирамидные нейроны имеют разную величину, их дендриты несут большое количество шипиков; аксон пирамидного нейрона, как правило, идет через белое вещество в другие зоны коры или в структуры ЦНС.

Звездчатые клетки имеют короткие хорошо ветвящиеся дендриты и короткий аскон, обеспечивающий связи нейронов в пределах самой коры большого мозга.

Веретенообразные нейроны обеспечивают вертикальные или го­ризонтальные взаимосвязи нейронов разных слоев коры.

Кора большого мозга имеет преимущественно шестислойное стро­ение

Слой I - верхний молекулярный, представлен в основном вет­влениями восходящих дендритов пирамидных нейронов, среди ко­торых расположены редкие горизонтальные клетки и клетки-зерна, сюда же приходят волокна неспецифических ядер таламуса, регу­лирующие через дендриты этого слоя уровень возбудимости коры большого мозга.

Слой II - наружный зернистый, состоит из звездчатых клеток, определяющих длительность циркулирования возбуждения в коре большого мозга, т. е. имеющих отношение к памяти.

Слой III - наружный пирамидный, формируется из пирамидных клеток малой величины и вместе со II слоем обеспечивают корко-корковые связи различных извилин мозга.

Слой IV - внутренний зернистый, содержит преимущественно звездчатые клетки. Здесь заканчиваются специфические таламокортикальные пути, т. е. пути, начинающиеся от рецепторов анализаторов.

Слой V - внутренний пирамидный, слой крупных пирамид, которые являются выходными нейронами, аксоны их идут в ствол мозга и спинной мозг.

Слой VI - слой полиморфных клеток, большинство нейронов этого слоя образуют кортико-таламические пути.

Клеточный состав коры по разнообразию морфологии, функции, формам связи не имеет себе равных в других отделах ЦНС. Ней­ронный состав, распределение нейронов по слоям в разных областях коры различны, что позволило выделить в мозге человека 53 цитоархитектонических поля. Разделение коры большого мозга на цитоархитектонические поля более четко формируется по мере со­вершенствования ее функции в филогенезе.

У высших млекопитающих в отличие от низших от двигательного 4 поля хорошо дифференцируются вторичные поля 6, 8 и 10, функци­онально обеспечивающие высокую координацию, точность движений; вокруг зрительного поля 17 - вторичные зрительные поля 18 и 19, участвующие в анализе значения зрительного стимула (организация зрительного внимания, управление движением глаза). Первичные слуховое, соматосенсорное, кожное и другие поля также имеют рядом расположенные вторичные и третичные поля, обеспечивающие ассо­циацию функций данного анализатора с функциями других анализа­торов. Для всех анализаторов характерен соматотопический принцип организации проекции на кору большого мозга периферических рецептирующих систем. Так, в сенсорной области коры второй цент­ральной извилины имеются участки представительства локализации каждой точки кожной поверхности, в двигательной области коры каж­дая мышца имеет свою топику (свое место), раздражая которую мож­но получить движение данной мышцы; в слуховой области коры име­ется топическая локализация определенных тонов (тонотопическая локализация), повреждение локального участка слуховой области ко­ры приводит к потере слуха на определенный тон.

Точно так же в проекции рецепторов сетчатки глаза на зрительное поле коры 17 имеется топографическое распределение. В случае гибели локальной зоны поля 17 изображение не воспри­нимается, если оно падает на участок сетчатки, проецирующийся на поврежденную зону коры большого мозга.

Особенностью корковых полей является экранный принцип их функционирования. Этот принцип заключается в том, что рецептор проецирует свой сигнал не на один нейрон коры, а на поле нейронов, которое образуется их коллатералями и связями. В результате сигнал фокусируется не точка в точку, а на множестве разнообразных нейронов, что обеспечивает его полный анализ и возможность пе­редачи в другие заинтересованные структуры. Так одно волокно, приходящее в зрительную область коры, может активировать зону размером 0,1 мм. Это значит, что один аксон распределяет свое действие на более чем 5000 нейронов.

Входные (афферентные) импульсы поступают в кору снизу, под­нимаются к звездчатым и пирамидным клеткам III-V слоев коры. От звездчатых клеток IV слоя сигнал идет к пирамидным нейронам III слоя, а отсюда по ассоциативным волокнам - к другим полям, об­ластям коры большого мозга. Звездчатые клетки поля 3 переключают сигналы, идущие в кору, на пирамидные нейроны V слоя, отсюда об­работанный сигнал уходит из коры к другим структурам мозга.

В коре входные и выходные элементы вместе со звездчатыми клетками образуют так называемые колонки - функциональные единицы коры, организованные в вертикальном направлении. До­казательством этого служит следующее: если микроэлектрод погру­жать перпендикулярно в кору, то на своем пути он встречает нейроны, реагирующие на один вид раздражения, если же микро­электрод вводить горизонтально по коре, то он встречает нейроны, реагирующие на разные виды стимулов.

Диаметр колонки около 500 мкм и определяется она зоной распределения коллатералей восходящего афферентного таламокортикального волокна. Соседние колонки имеют взаимосвязи, орга­низующие участки множества колонок в организации той или иной реакции. Возбуждение одной из колонок приводит к торможению соседних.

Каждая колонка может иметь ряд ансамблей, реализующих ка­кую-либо функцию по вероятностно-статистическому принципу. Этот принцип заключается в том, что при повторном раздражении в реакции участвует не вся группа нейронов, а ее часть. Причем каждый раз часть участвующих нейронов может быть разной по составу, т. е. формируется группа активных нейронов (вероятност­ный принцип), среднестатистически достаточная для обеспечения нужной функции (статистический принцип).

Как уже упоминалось, разные области коры большого мозга имеют разные поля, определяющиеся по характеру и количеству нейронов, толщине слоев и т. д. Наличие структурно различных полей предполагает и разное их функциональное предназначение (рис. 4.14). Действительно, в коре большого мозга выделяют сен­сорные, моторные и ассоциативные области.

Сенсорные области

Корковые концы анализаторов имеют свою топографию и на них проецируются определенные афференты проводящих систем. Кор­ковые концы анализаторов разных сенсорных систем перекрываются. Помимо этого, в каждой сенсорной системе коры имеются полисен­сорные нейроны, которые реагируют не только на «свой» адекватный стимул, но и на сигналы других сенсорных систем.

Кожная рецептирующая система, таламокортикальные пути проецируются на заднюю центральную извилину. Здесь имеется строгое соматотопическое деление. На верхние отделы этой извилины проецируются рецептивные поля кожи нижних конечностей, на средние - туловища, на нижние отделы - руки, головы.

На заднюю центральную извилину в основном проецируются болевая и температурная чувствительность. В коре теменной доли (поля 5 и 7), где также оканчиваются проводящие пути чувствительности, осуществляется более сложный анализ: локализация раздражения, дискриминация, стереогноз.

При повреждениях коры более грубо страдают функции дистальных отделов конечностей, особенно рук.

Зрительная система представлена в затылочной доле мозга: поля 17, 18, 19. Центральный зрительный путь заканчивается в поле 17; он информирует о наличии и интенсивности зрительного сигнала. В полях 18 и 19 анализируются цвет, форма, размеры, качества предметов. Поражение поля 19 коры большого мозга при­водит к тому, что больной видит, но не узнает предмет (зрительная агнозия, при этом утрачивается также цветовая память).

Слуховая система проецируется в поперечных височных извилинах (извилины Гешля), в глубине задних отделов латеральной (сильвиевой) борозды (поля 41, 42, 52). Именно здесь заканчиваются аксоны задних бугров четверохолмий и латеральных коленчатых тел.

Обонятельная система проецируется в области переднего конца гиппокампальной извилины (поле 34). Кора этой области имеет не шести-, а трехслойное строение. При раздражении этой области отмечаются обонятельные галлюцинации, повреждение ее ведет к аносмии (потеря обоняния).

Вкусовая система проецируется в гиппокампальной извилине по соседству с обонятельной областью коры (поле 43).

Моторные области

Впервые Фритч и Гитциг (1870) показали, что раздражение передней центральной извилины мозга (поле 4) вызывает двига­тельную реакцию. В то же время признано, что двигательная область является анализаторной.

В передней центральной извилине зоны, раздражение которых вызывает движение, представлены по соматотопическому типу, но вверх ногами: в верхних отделах извилины - нижние конечности, в нижних - верхние.

Спереди от передней центральной извилины лежат премоторные поля 6 и 8. Они организуют не изолированные, а комплексные, координированные, стереотипные движения. Эти поля также обес­печивают регуляцию тонуса гладкой мускулатуры, пластический тонус мышц через подкорковые структуры.

В реализации моторных функций принимают участие также вторая лобная извилина, затылочная, верхнетеменная области.

Двигательная область коры, как никакая другая, имеет большое количество связей с другими анализаторами, чем, видимо, и обус­ловлено наличие в ней значительного числа полисенсорных ней­ронов.

Ассоциативные области

Все сенсорные проекционные зоны и моторная область коры занимают менее 20% поверхности коры большого мозга (см. рис. 4.14). Остальная кора составляет ассоциативную область. Каждая ассоциативная область коры связана мощными связями с несколь­кими проекционными областями. Считают, что в ассоциативных областях происходит ассоциация разносенсорной информации. В ре­зультате формируются сложные элементы сознания.

Ассоциативные области мозга у человека наиболее выражены в лобной, теменной и височной долях.

Каждая проекционная область коры окружена ассоциативными областями. Нейроны этих областей чаще полисенсорны, обладают большими способностями к обучению. Так, в ассоциативном зри­тельном поле 18 число нейронов, «обучающихся» условнорефлекторной реакции на сигнал, составляет более 60% от числа фоновоактивных нейронов. Для сравнения: таких нейронов в проекци­онном поле 17 всего 10-12%.

Повреждение поля 18 приводит к зрительной агнозии. Больной видит, обходит предметы, но не может их назвать.

Полисенсорность нейронов ассоциативной области коры обеспе­чивает их участие в интеграции сенсорной информации, взаимо­действие сенсорных и моторных областей коры.

В теменной ассоциативной области коры формируются субъек­тивные представления об окружающем пространстве, о нашем теле. Это становится возможным благодаря сопоставлению соматосенсорной, проприоцептивной и зрительной информации.

Лобные ассоциативные поля имеют связи с лимбическим отделом мозга и участвуют в организации программ действия при реализации сложных двигательных поведенческих актов.

Первой и наиболее характерной чертой ассоциативных областей коры является мультисенсорность их нейронов, причем сюда посту­пает не первичная, а достаточно обработанная информация с вы­делением биологической значимости сигнала. Это позволяет фор­мировать программу целенаправленного поведенческого акта.

Вторая особенность ассоциативной области коры заключается в способности к пластическим перестройкам в зависимости от значи­мости поступающей сенсорной информации.

Третья особенность ассоциативной области коры проявляется в длительном хранении следов сенсорных воздействий. Разрушение ассоциативной области коры приводит к грубым нарушениям обу­чения, памяти. Речевая функция связана как с сенсорной, так и с двигательной системами. Корковый двигательный центр речи рас­положен в заднем отделе третьей лобной извилины (поле 44) чаще левого полушария и был описан вначале Даксом (1835), а затем Брока (1861).

Слуховой центр речи расположен в первой височной извилине левого полушария (поле 22). Этот центр был описан Вернике (1874). Моторный и слуховой центры речи связаны между собой мощным пучком аксонов.

Речевые функции, связанные с письменной речью, - чтение, письмо - регулируются ангулярной извилиной зрительной области коры левого полушария мозга (поле 39).

При поражении моторного центра речи развивается моторная афазия; в этом случае больной понимает речь, но сам говорить не может. При поражении слухового центра речи больной может го­ворить, излагать устно свои мысли, но не понимает чужой речи, слух сохранен, но больной не узнает слов. Такое состояние назы­вается сенсорной слуховой афазией. Больной часто много говорит (логорея), но речь его неправильная (аграмматизм), наблюдается замена слогов, слов (парафазии).

Поражение зрительного центра речи приводит к невозможности чтения, письма.

Изолированное нарушение письма - аграфия, возникает также в случае расстройства функции задних отделов второй лобной из­вилины левого полушария.

В височной области расположено поле 37, которое отвечает за запоминание слов. Больные с поражениями этого поля не помнят названия предметов. Они напоминают забывчивых людей, которым необходимо подсказывать нужные слова. Больной, забыв название предмета, помнит его назначения, свойства, поэтому долго опи­сывает их качества, рассказывает, что делают этим предметом, но назвать его не может. Например, вместо слова «галстук» боль­ной, глядя на галстук, говорит: «это то, что надевают на шею и завязывают специальным узлом, чтобы было красиво, когда идут в гости».

Распределение функций по областям мозга не является абсолют­ным. Установлено, что практически все области мозга имеют поли­сенсорные нейроны, т. е. нейроны, реагирующие на различные раз­дражения. Например, при повреждении поля 17 зрительной области его функцию могут выполнять поля 18 и 19. Кроме того, разные двигательные эффекты раздражения одного и того же двигательного пункта коры наблюдаются в зависимости от текущей моторной деятельности.

Если операцию удаления одной из зон коры провести в раннем детском возрасте, когда распределение функций еще не жестко закреплено, функция утраченной области практически полностью восстанавливается, т. е. в коре имеются проявления механизмов динамической локализации функций, позволяющих компенсировать функционально и анатомически нарушенные структуры.

Важной особенностью коры большого мозга является ее способ­ность длительно сохранять следы возбуждения.

Следовые процессы в спинном мозге после его раздражения сохраняются в течение секунды; в подкорково-стволовых отделах (в форме сложных двигательно-координаторных актов, доминантных установок, эмоциональных состояний) длятся часами; в коре мозга следовые процессы могут сохраняться по принципу обратной связи в течение всей жизни. Это свойство придает коре исключительное значение в механизмах ассоциативной переработки и хранения ин­формации, накопления базы знаний.

Сохранение следов возбуждения в коре проявляется в колебаниях уровня ее возбудимости; эти циклы длятся в двигательной области коры 3-5 мин, в зрительной - 5-8 мин.

Основные процессы, происходящие в коре, реализуются двумя состояниями: возбуждением и торможением. Эти состояния всегда реципрокны. Они возникают, например, в пределах двигательного анализатора, что всегда наблюдается при движениях; они могут возникать и между разными анализаторами. Тормозное влияние одного анализатора на другие обеспечивает сосредоточенность вни­мания на одном процессе.

Реципрокные отношения активности очень часто наблюдаются в активности соседних нейронов.

Отношение между возбуждением и торможением в коре прояв­ляется в форме так называемого латерального торможения. При латеральном торможении вокруг зоны возбуждения формируется зона заторможенных нейронов (одновременная индукция) и она по протяженности, как правило, в два раза больше зоны возбуждения. Латеральное торможение обеспечивает контрастность восприятия, что в свою очередь позволяет идентифицировать воспринимаемый объект.

Помимо латерального пространственного торможения, в нейронах коры после возбуждения всегда возникает торможение активности и наоборот, после торможения - возбуждение - так называемая последовательная индукция.

В тех случаях когда торможение не в состоянии сдерживать возбудительный процесс в определенной зоне, возникает иррадиация возбуждения по коре. Иррадиация может происходить от нейрона к нейрону, по системам ассоциативных волокон I слоя, при этом она имеет очень малую скорость - 0,5-2,0 м/с. В другом случае иррадиация возбуждения возможна за счет аксонных связей пира­мидных клеток III слоя коры между соседними структурами, в том числе между разными анализаторами. Иррадиация возбуждения обеспечивает взаимоотношение состояний систем коры при органи­зации условнорефлекторного и других форм поведения.

Наряду с иррадиацией возбуждения, которое происходит за счет импульсной передачи активности, существует иррадиация состояния торможения по коре. Механизм иррадиации торможения заключа­ется в переводе нейронов в тормозное состояние под влиянием импульсов, приходящих из возбужденных участков коры, например, из симметричных областей полушарий.

Электрические проявления активности коры большого мозга

Оценка функционального состояния коры большого мозга чело­века является трудной и до настоящего времени нерешенной задачей. Одним из признаков, косвенно свидетельствующем о функциональ­ном состоянии структур головного мозга, является регистрация в них колебаний электрических потенциалов.

Каждый нейрон имеет заряд мембраны, который при активации уменьшается, а при торможении - чаще увеличивается, т. е. раз­вивается гиперполяризация. Глия мозга также имеет заряд клеток мембран. Динамика заряда мембраны нейронов, глии, процессы, происходящие в синапсах, дендритах, аксонном холмике, в аксоне - все это постоянно изменяющиеся, разнообразные по интенсивности, скорости процессы, интегральные характеристики которых зависят от функционального состояния нервной структуры и суммарно оп­ределяют ее электрические показатели. Если эти показатели реги­стрируются через микроэлектроды, то они отражают активность локального (до 100 мкм в диаметре) участка мозга и называются фокальной активностью.

В случае, если электрод располагается в подкорковой структуре, регистрируемая через него активность называется субкортикограммой, если электрод располагается в коре мозга - кортикограммой. Наконец, если электрод располагается на поверхности кожи головы, то регистрируется суммарная активность как коры, так и подкор­ковых структур. Это проявление активности называется электроэн­цефалограммой (ЭЭГ) (рис. 4.15).

Все виды активности мозга в динамике подвержены усилению и ослаблению и сопровождаются определенными ритмами электриче­ских колебаний. У человека в покое при отсутствии внешних раздражений преобладают медленные ритмы изменения состояния коры мозга, что на ЭЭГ находит отражение в форме так называемого альфа-ритма, частота колебаний которого составляет 8-13 в се­кунду, а амплитуда - приблизительно 50 мкВ.

Переход человека к активной деятельности приводит к смене альфа-ритма на более быстрый бета-ритм, имеющий частоту коле­баний 14-30 в секунду, амплитуда которых составляет 25 мкВ.

Переход от состояния покоя к состоянию сосредоточенного вни­мания или ко сну сопровождается развитием более медленного тета-ритма (4-8 колебаний в секунду) или дельта-ритма (0,5-3,5 колебаний в секунду). Амплитуда медленных ритмов составляет 100-300 мкВ (см. рис. 4.15).

Когда на фоне покоя или другого состояния мозгу предъявляется новое быстрое нарастающее раздражение, на ЭЭГ регистрируются так называемые вызванные потенциалы (ВП). Они представляют собой синхронную реакцию множества нейронов данной зоны коры.

Латентный период, амплитуда ВП зависят от интенсивности наносимого раздражения. Компоненты ВП, количество и характер его колебаний зависят от адекватности стимула относительно зоны регистрации ВП.

ВП может состоять из первичного ответа или же из первичного и вторичного. Первичные ответы представляют собой двухфазные, позитивно-негативные колебания. Они регистрируются в первичных зонах коры анализатора и только при адекватном для данного анализатора стимуле. Например, зрительная стимуляция для пер­вичной зрительной коры (поле 17) является адекватной (рис. 4.16). Первичные ответы характеризуются коротким латентным периодом (ЛП), двухфазностью колебания: вначале положительная, затем - отрицательная. Первичный ответ формируется за счет кратковре­менной синхронизации активности близлежащих нейронов.

Вторичные ответы более вариабельны по ЛП, длительности, амплитуде, чем первичные. Как правило, вторичные ответы чаще возникают на сигналы, имеющие определенную смысловую нагруз­ку, на адекватные для данного анализатора стимулы; они хорошо формируются при обучении.

Межполушарные взаимоотношения

Взаимоотношение полушарий большого мозга определяется как функция, обеспечивающая специализацию полушарий, облегчение выполнения регуляторных процессов, повышение надежности уп­равления деятельностью органов, систем органов и организма в целом.

Роль взаимоотношений полушарий большого мозга наиболее чет­ко проявляется при анализе функциональной межполушарной асим­метрии.

Асимметрия в функциях полушарий впервые была обнаружена в XIX в., когда обратили внимание на различные последствия повреждения левой и правой половины мозга.

В 1836 г. Марк Дакс выступил на заседании медицинского об­щества в Монпелье (Франция) с небольшим докладом о больных, страдающих потерей речи - состояния, известного специалистам под названием афазии. Дакс заметил связь между потерей речи и поврежденной стороной мозга. В его наблюдениях более чем у 40 больных с афазией имелись признаки повреждения левого полуша­рия. Ученому не удалось обнаружить ни одного случая афазии при повреждении только правого полушария. Суммировав эти наблю­дения, Дакс сделал следующее заключение: каждая половина мозга контролирует свои, специфические функции; речь контролируется левым полушарием.

Его доклад не имел успеха. Спустя некоторое время после смерти Дакса Брока при посмертном исследовании мозга больных, страдав­ших потерей речи и односторонним параличом, отчетливо выявил в обоих случаях очаги повреждения, захватившие части левой лобной доли. С тех пор эта зона стала известна как зона Брока; она была им определена, как область в задних отделах нижней лобной из­вилины.

Проанализировав связь между предпочтением одной из двух рук и речью, он предположил, что речь, большая ловкость в движениях правой руки связаны с превосходством левого полушария у праворуких.

Через 10 лет после публикации наблюдений Брока концепция, известная теперь как концепция доминантности полушарий, стала основной точкой зрения на взаимоотношения двух полушарий мозга.

В 1864 г. английский невролог Джон Джексон писал: «Не так давно редко кто сомневался в том, что оба полушария одинаковы как в физическом, так и в функциональном плане, но теперь, когда благодаря исследованиям Дакса, Брока и других стало ясно, что повреждение одного полушария может вызвать у человека полную потерю речи, прежняя точка зрения стала несостоятельной».

Д. Джексон выдвинул идею о «ведущем» полушарии, которую можно рассматривать как предшественницу концепции доминант­ности полушарий. «Два полушария не могут просто дублировать друг друга, - писал он, - если повреждение только одного из них может привести к потере речи. Для этих процессов (речи), выше которых ничего нет, наверняка должна быть ведущая сторона». Далее Джексон сделал вывод о том, «что у большинства людей ведущей стороной мозга является левая сторона так называемой воли, и что правая сторона является автоматической».

К 1870 г. и другие исследователи стали понимать, что многие типы расстройств речи могут быть вызваны повреждением левого полушария. К. Вернике нашел, что больные при повреждении задней части височной доли левого полушария часто испытывали затруд­нения и в понимании речи.

У некоторых больных при повреждении левого, а не правого полушария обнаруживались затруднения при чтении и письме. Счи­талось также, что левое полушарие управляет и «целенаправлен­ными движениями».

Совокупность этих данных стала основой представления о вза­имоотношении двух полушарий. Одно полушарие (у праворуких обычно левое) рассматривалось как ведущее для речи и других высших функций, другое (правое), или «второстепенное», считали находящимся под контролем «доминантного» левого.

Выявленная первой речевая асимметрия полушарий мозга пред­определила представление об эквипотенциальности полушарий боль­шого мозга детей до появления речи. Считается, что асимметрия мозга формируется при созревании мозолистого тела.

Концепция доминантности полушарий, согласно которой во всех гностических и интеллектуальных функциях ведущим у «правшей» является левое полушарие, а правое оказывается «глухим и немым», просуществовала почти столетие. Однако постепенно накапливались свидетельства, что представление о правом полушарии как о вто­ростепенном, зависимом, не соответствует действительности. Так, у больных с нарушениями левого полушария мозга хуже выполня­ются тесты на восприятие форм и оценку пространственных взаи­мосвязей, чем у здоровых. Неврологически здоровые испытуемые, владеющие двумя языками (английским и идиш), лучше иденти­фицируют английские слова, предъявленные в правом поле зрения, а слова на идиш - в левом. Был сделан вывод, что такого рода асимметрия связана с навыками чтения: английские слова читаются слева направо, а слова идиш - справа налево.

Почти одновременно с распространением концепции доминант­ности полушарий стали появляться данные, указывающие на то, что правое, или второстепенное, полушарие также обладает своими особыми способностями. Так, Джексон выступил с утверждением о том, что в задних долях правого мозга локализована способность к формированию зрительных образов.

Повреждение левого полушария приводит, как правило, к низким показателям по тестам на вербальные способности. В то же время больные с повреждением правого полушария обычно плохо выпол­няли невербальные тесты, включавшие манипуляции с геометриче­скими фигурами, сборку головоломок, восполнение недостающих частей рисунков или фигур и другие задачи, связанные с оценкой формы, расстояния и пространственных отношений.

Обнаружено, что повреждение правого полушария часто сопро­вождалось глубокими нарушениями ориентации и сознания. Такие больные плохо ориентируются в пространстве, не в состоянии найти дорогу к дому, в котором прожили много лет. С повреждением правого полушария были связаны также определенные виды агнозий, т. е. нарушений в узнавании или восприятии знакомой информации, восприятии глубины и пространственных взаимоотношений. Одной из самых интересных форм агнозии является агнозия на лица. Больной с такой агнозией не способен узнать знакомого лица, а иногда вообще не может отличать людей друг от друга. Узнавание других ситуаций и объектов, например, может быть при этом не нарушено. Дополнительные сведения, указывающие на специали­зацию правого полушария, были получены при наблюдении за больными, страдающими тяжелыми нарушениями речи, у которых, однако, часто сохраняется способность к пению. Кроме того, в клинических сообщениях содержались данные о том, что повреж­дение правой половины мозга может привести к утрате музыкальных способностей, не затронув речевых. Это расстройство, называемое амузией, чаще всего отмечалось у профессиональных музыкантов, перенесших инсульт или другие повреждения мозга.

После того как нейрохирурги осуществили серию операций с комиссуротомией и были выполнены психологические исследования на этих больных, стало ясно, что правое полушарие обладает соб­ственными высшими гностическими функциями.

Существует представление, что межполушарная асимметрия в решающей мере зависит от функционального уровня переработки информации. В этом случае решающее значение придается не ха­рактеру стимула, а особенностям гностической задачи, стоящей перед наблюдателем. Принято считать, что правое полушарие спе­циализировано в переработке информации на образном функцио­нальном уровне, левое - на категориальном. Применение такого подхода позволяет снять ряд трудноразрешимых противоречий. Так, преимущество левого полушария, обнаруженное при чтении нотных и пальцевых знаков, объясняется тем, что эти процессы протекают на категориальном уровне переработки информации. Сравнение слов без их лингвистического анализа успешнее осуществляется при их адресации правой гемисфере, поскольку для решения этих задач достаточна переработка информации на образном функциональном уровне.

Межполушарная асимметрия зависит от функционального уровня переработки информации: левое полушарие обладает способностью к переработке информации как на семантическом, так и на перцептивном функциональных уровнях, возможности правого полуша­рия ограничиваются перцептивным уровнем.

В случаях латерального предъявления информации можно вы­делить три способа межполушарных взаимодействий, проявляющих­ся в процессах зрительного опознания.

1. Параллельная деятельность. Каждое полушарие перерабаты­вает информацию с использованием присущих ему механизмов.

2. Избирательная деятельность. Информация перерабатывается в «компетентном» полушарии.

3. Совместная деятельность. Оба полушария участвуют в пере­работке информации, последовательно играя ведущую роль на тех или иных этапах этого процесса.

Основным фактором, определяющим участие того или иного полушария в процессах узнавания неполных изображений, является то, каких элементов лишено изображение, а именно какова степень значимости отсутствующих в изображении элементов. В случае, если детали изображения удалялись без учета степени их значи­мости, опознание в большей мере было затруднено у больных с поражениями структур правого полушария. Это дает основание счи­тать правое полушарие ведущим в опознании таких изображений. Если же из изображения удалялся относительно небольшой, но высокозначимый участок, то опознание нарушалось в первую очередь при поражении структур левого полушария, что свидетельствует о преимущественном участии левой гемисферы в опознании подобных изображений.

В правом полушарии осуществляется более полная оценка зри­тельных стимулов, тогда как в левом оценнваются наиболее суще­ственные, значимые их признаки.

Когда значительное число деталей изображения, подлежащего опознанию, удалено, вероятность того, что наиболее информативные, значимые его участки не подвергнутся искажению или удалению, невелика, а потому левополушарная стратегия опознания значи­тельно ограничена. В таких случаях более адекватной является стратегия, свойственная правому полушарию, основанная на ис­пользовании всей содержащейся в изображении информации.

Трудности в реализации левополушарной стратегии в этих ус­ловиях усугубляются еще и тем обстоятельством, что левое по­лушарие обладает недостаточными «способностями» к точной оценке отдельных элементов изображения. Об этом свидетельствуют также исследования, согласно которым оценка длины и ориентации линий, кривизны дуг, величины углов нарушается прежде всего при пора­жениях правого полушария.

Иная картина отмечается в случаях, когда большая часть изо­бражения удалена, но сохранен наиболее значимый, информативный его участок. В подобных ситуациях более адекватным является способ опознания, основанный на анализе наиболее значимых фраг­ментов изображения - стратегия, используемая левым полушарием.

В процессе узнавания неполных изображений участвуют струк­туры как правого, так и левого полушария, причем степень участия каждого из них зависит от особенностей предъявляемых изображе­ний, и в первую очередь от того, содержит ли изображение наиболее значимые информативные элементы. При наличии этих элементов преобладающая роль принадлежит левому полушарию; при их уда­лении преимущественную роль в процессе опознания играет правое полушарие.