Главная · Дисбактериоз · Эпигенетика основные понятия механизмы примеры заболеваний. Генетика предполагает, а эпигенетика располагает. Заболевания иммунной системы

Эпигенетика основные понятия механизмы примеры заболеваний. Генетика предполагает, а эпигенетика располагает. Заболевания иммунной системы

В эпигенетических исследованиях используется широкий спектр методов молекулярной биологии, в том числе - иммунопреципитация хроматина (различные модификации ChIP-on-chip и ChIP-Seq), гибридизация in situ , чувствительные к метилированию рестриктазы , идентификации ДНК-аденин-метилтрансферазы (DamID), бисульфитное секвенирование . Кроме того, всё большую роль играет использование методов биоинформатики (компьютерная эпигенетика).

Энциклопедичный YouTube

    1 / 5

    Эпигенетика. Рассказывает молекулярный биолог Борис Фёдорович Ванюшин.

    What is epigenetics? - Carlos Guerrero-Bosagna

    Елена Григоренко. Что изучает эпигенетика

    Эпигенетические ярлыки на ДНК

    Гордон - Диалоги: Эпигенетика

    Субтитры

Примеры

Одним из примеров эпигенетических изменений у эукариот является процесс клеточной дифференцировки . Во время морфогенеза плюрипотентные стволовые клетки формируют различные полипотентные клеточные линии эмбриона, которые в свою очередь дают начало полностью дифференцированным клеткам. Другими словами, одна оплодотворённая яйцеклетка - зигота - дифференцируется в различные типы клеток, включая: нейроны , мышечные клетки, эпителий , эндотелий сосудов и др., путём множественных делений. Это достигается активацией одних генов, и, в то же время, ингибированием других с помощью эпигенетических механизмов .

Второй пример может быть продемонстрирован на мышах-полевках . Осенью, перед похолоданием, они рождаются с более длинной и густой шерстью, чем весной, хотя внутриутробное развитие «весенних» и «осенних» мышей происходит на фоне практически одинаковых условий (температуры, длины светового дня, влажности и т. д.). Исследования показали, что сигналом, запускающим эпигенетические изменения, приводящие к увеличению длины шерсти, является изменение градиента концентрации мелатонина в крови (весной он снижается, а осенью - повышается). Таким образом, эпигенетические адаптивные изменения (увеличение длины шерсти) индуцируются ещё до наступления холодов, адаптация к которым выгодна для организма.

Этимология и определения

Термин «эпигенетика» (как и «эпигенетический ландшафт») был предложен Конрадом Уоддингтоном (Conrad Hal Waddington ) в 1942 году, как производное от слов «генетика» и аристотелевского слова «эпигенез». Когда Уоддингтон ввёл этот термин, физическая природа генов не была до конца известна, поэтому он использовал его в качестве концептуальной модели того, как гены могут взаимодействовать со своим окружением при формировании фенотипа.

Сходство со словом «генетика» породило много аналогий в использовании термина. «Эпигеном» является аналогом термина «геном», и определяет общее эпигенетическое состояние клетки. Метафора «генетический код» была также адаптирована, а термин «эпигенетический код» используется, чтобы описать набор эпигенетических особенностей, которые создают разнообразные фенотипы в различных клетках. Широко используется термин «эпимутация», которым обозначают вызванное спорадическими факторами изменение нормального эпигенома, передающееся в ряде клеточных поколений.

Молекулярные основы эпигенетики

Молекулярная основа эпигенетики достаточно сложна при том, что она не затрагивает первичную структуру ДНК, а изменяет активность определенных генов. Это объясняет, почему в дифференцированных клетках многоклеточного организма экспрессируются только гены, необходимые для их специфической деятельности. Особенностью эпигенетических изменений является то, что они сохраняются при клеточном делении. Известно, что большинство эпигенетических изменений проявляется только в пределах жизни одного организма. В то же время, если изменение в ДНК произошло в сперматозоиде или яйцеклетке, то некоторые эпигенетические проявления могут передаваться от одного поколения к другому .

Метилирование ДНК

Наиболее хорошо изученным к настоящему времени эпигенетическим механизмом является метилирование цитозиновых оснований ДНК. Начало интенсивным исследованиям роли метилирования в регуляции генетической экспрессии, в том числе при старении, было положено ещё в 70-е годы XX века пионерскими работами Бориса Фёдоровича Ванюшина и Геннадия Дмитриевича Бердышева с соавторами. Процесс метилирования ДНК заключается в присоединении метильной группы к цитозину в составе CpG-динуклеотида в позиции С5 цитозинового кольца. Метилирование ДНК , в основном, присуще эукариотам. У человека метилировано около 1 % геномной ДНК. За процесс метилирования ДНК отвечают три фермента, называемые ДНК-метилтрансферазами 1, 3a и 3b (DNMT1, DNMT3a и DNMT3b). Предполагается, что DNMT3a и DNMT3b - это de novo метилтрансферазы, которые осуществляют формирование профиля метилирования ДНК на ранних стадиях развития, а DNMT1 осуществляет метилирование ДНК на более поздних этапах жизни организма. Фермент DNMT1 имеет высокое сродство с 5-метилцитозином. Когда DNMT1 находит «полуметилированный сайт» (сайт, в котором метилирован цитозин только в одной цепи ДНК), он метилирует цитозин на второй нити в том же сайте. Функция метилирования заключается в активации/инактивации гена. В большинстве случаев, метилирование промоторных областей гена приводит к подавлению активности гена. Показано, что даже незначительные изменения в степени метилирования ДНК могут существенно изменять уровень генетической экспрессии.

Модификации гистонов

Хотя модификации аминокислот в гистонах происходят на всей молекуле белка, модификации N-хвостов происходит значительно чаще. Эти модификации включают: фосфорилирование, убиквитилирование, ацетилирование, метилирование , сумоилирование. Ацетилирование является наиболее изученной модификацией гистонов. Так, ацетилирование ацетилтрансферазой 14-го и 9-го лизинов гистона H3 (H3K14ac и H3K9ac, соответственно) коррелирует с транскрипционной активностью в данном районе хромосомы. Это происходит из-за того, что ацетилирование лизина меняет его положительный заряд на нейтральный, что делает невозможным его связь с негативно заряженными фосфатными группами в ДНК. В результате, происходит отсоединение гистонов от ДНК, что приводит к посадке на «голую» ДНК комплекса SWI/SNF и других транскрипционных факторов которые запускают транскрипцию. Это «цис»-модель эпигенетического регулирования.

Гистоны способны поддерживать своё модифицированное состояние и выступать матрицей для модификации новых гистонов, которые связываются с ДНК после репликации .

Ремоделирование хроматина

Эпигенетические факторы влияют на активность экспрессии определенных генов на нескольких уровнях, что приводит к изменению фенотипа клетки или организма. Одним из механизмов такого влияния является ремоделирование хроматина. Хроматин - это комплекс ДНК с белками, прежде всего, с белками-гистонами . Гистоны формируют нуклеосому , вокруг которой накручивается ДНК, в результате чего обеспечивается её компактизация в ядре. От густоты расположения нуклеосом в активно экспрессирующихся участках генома зависит интенсивность экспрессии генов . Хроматин, свободный от нуклеосом, называется открытым хроматином . Ремоделирование хроматина - это процесс активного изменения «густоты» нуклеосом и сродства гистонов с ДНК.

Прионы

МикроРНК

В последнее время большое внимание привлечено к изучению роли в процессах регуляции генетической активности малых некодирующих РНК (miRNA) . МикроРНК могут изменять стабильность и трансляцию мРНК путём комплементарного связывания с 3"-нетранслируемым участком мРНК.

Значение

Эпигенетическое наследование в соматических клетках играет важнейшую роль в развитии многоклеточного организма. Геном всех клеток почти одинаков, в то же время многоклеточный организм содержит различно дифференцированные клетки, которые по-разному воспринимают сигналы окружающей среды и выполняют различные функции. Именно эпигенетические факторы обеспечивают «клеточную память».

Медицина

Как генетические, так и эпигенетические явления оказывают значительное влияние на здоровье человека. Известно несколько заболеваний, которые возникают из-за нарушения метилирования генов, а также из-за гемизиготности по гену, подверженному геномному импринтингу . В настоящее время разрабатывается эпигенетическая терапия , направленная на лечение этих заболеваний посредством воздействия на эпигеном и коррекции нарушений. Для многих организмов доказана связь активности ацетилирования/деацетилирования гистонов с продолжительностью жизни. Возможно, эти же процессы влияют и на продолжительность жизни людей.

Эволюция

Хотя эпигенетику в основном рассматривают в контексте соматической клеточной памяти, существует также ряд трансгенеративных эпигенетических эффектов, при которых генетические изменения передаются потомкам. В отличие от мутаций эпигенетические изменения обратимы и, возможно, могут быть направлены (адаптивны) . Поскольку большинство из них исчезает через несколько поколений, они могут носить характер лишь временных адаптаций. Также активно обсуждается вопрос о возможности влияния эпигенетики на частоту мутаций в определенном гене геномным импринтингом , феноменом, при котором аллели гена имеют разный профиль метилирования в зависимости от того, от родителя какого пола они получены. Самыми известными случаями заболеваний, связанных с импринтингом, являются синдром Ангельмана и синдром Прадера - Вилли . Причиной развития обоих является частичная делеция в регионе 15q . Это связано с наличием геномного импринтинга в данном локусе.

Трансгенеративные эпигенетические эффекты

Маркус Пембри (Marcus Pembrey ) с соавторами установили, что внуки (но не внучки) мужчин, которые были подвержены голоду в Швеции в 19 веке, менее склонны к сердечно-сосудистым заболеваниям, но сильнее подвержены диабету, что, как считает автор, является примером эпигенетической наследственности .

Рак и нарушения развития

Многие вещества имеют свойства эпигенетических канцерогенов: они приводят к увеличению частоты возникновения опухолей, не проявляя при этом мутагенного эффекта (например, диэтилстилбестрола арсенит, гексахлорбензол, соединения никеля). Многие тератогены , в частности диэтилстилбестрол, оказывают специфическое воздействие на плод на эпигенетическом уровне .

Изменения в ацетилировании гистонов и метилировании ДНК приводят к развитию рака простаты путём изменения активности различных генов. На активность генов при раке простаты может влиять питание и образ жизни .

В 2008 году Национальный Институт Здоровья США объявил, что 190 миллионов долларов будет потрачено на изучение эпигенетики в течение следующих 5 лет. По мнению некоторых исследователей, которые стали инициаторами выделения средств, эпигенетика может играть бо́льшую роль в лечении заболеваний человека, чем генетика.

Статья на конкурс «био/мол/текст»: Эпигенетика — это бурно развивающееся в последние годы направление современной науки. Наиболее очевидна роль эпигенетических механизмов в процессах развития, когда из клеток раннего зародыша, ДНК которых совершенно одинакова, возникает множество различающихся между собой специализированных клеток взрослого организма. Оказалось, однако, что эта роль не исчерпывается только развитием и может проявляться и после его завершения. Исследования последних лет показали, что здоровье человека может в значительной степени зависеть от того, в каких условиях происходило его раннее развитие. Выявлено также, что эпигенетические модификации могут передаваться и последующим поколениям, влияя на различные фенотипические проявления у детей и даже внуков.


Стремительное изучение эпигенетики приближает нас к пониманию самых фундаментальных принципов устройства и функционирования внутренних систем всех живых организмов.

Знаете ли вы, что наши клетки обладают памятью? Они помнят не только то, что вы обычно едите на завтрак, но и чем питались во время беременности ваши мама и бабушка. Клетки хорошо помнят, занимаетесь ли вы спортом и как часто употребляете алкоголь. Память клеток хранит в себе ваши встречи с вирусами* и то, насколько сильно вас любили в детстве. Клеточная память решает, будете ли вы склонны к ожирению и депрессиям. И во многом благодаря клеточной памяти мы отличаемся от шимпанзе, хотя имеем с ним примерно одинаковый состав генома. Эту удивительную особенность наших клеток помогла понять наука эпигенетика .

* — Наиболее виртуозно это делает иммунная система, сохраняя антитела к большинству вирусов, когда-либо вторгавшихся в организм. Именно индивидуальные профили этих антител теперь можно «читать» с помощью метода ВироСкан, причем зафиксировать всю историю иммунных баталий можно по одному микролитру крови: «Следствие ведет ВироСкан. Новый подход выявляет большинство вирусов, с которыми сталкивался человек»

Эпигенетические ландшафты

Эпигенетика — довольно молодое направление современной науки. И пока она не так широко известна, как ее «родная сестра» — генетика. В переводе с греческого приставка «эпи-» означает «над», «выше», «поверх». Если генетика изучает процессы, которые ведут к изменениям в наших генах, в ДНК, то эпигенетика исследует изменения активности генов, при которых первичная структура ДНК остается прежней. Эпигенетика похожа на «командира», который в ответ на внешние стимулы (такие, как питание, эмоциональные стрессы, физические нагрузки) отдает приказы нашим генам усилить или, наоборот, ослабить их активность.*


* — Подробно об эпигенетических процессах и связанных с ними явлениях рассказано в статьях: «Развитие и эпигенетика, или история о минотавре» , «Эпигенетические часы: сколько лет вашему метилому?» , «Обо всех РНК на свете, больших и малых» , «Шестое ДНК-основание: от открытия до признания» .

Пожалуй, самое ёмкое и в то же время точное определение принадлежит выдающемуся английскому биологу, нобелевскому лауреату Питеру Медавару : «Генетика предполагает, а эпигенетика располагает».

Развитие эпигенетики как отдельного направления молекулярной биологии началось в сороковых годах прошлого столетия. Тогда английский генетик Конрад Уоддингтон сформулировал концепцию «эпигенетического ландшафта» (рис. 1), объясняющую процесс формирования организма . Прошло несколько десятилетий, прежде чем эпигенетику стали воспринимать серьезно, как новую научную дисциплину. Такое положение сохранялось долго потому, что эпигенетика своими выводами подрывала устоявшиеся в генетике догмы. Например, относительно наследования приобретенных признаков. Почти зеркально повторилась ситуация с открытием Б. Мак-Клинток мобильных элементов генома, в которые полвека мало кто хотел верить. Но после серии определяющих работ, проведенных в 70-х годах прошлого века Джоном Гёрдоном , Робином Холлидеем, Борисом Ванюшиным и другими, эпигенетику стали наконец воспринимать всерьез . И уже недавно, на рубеже тысячелетий, был проведен ряд блестящих экспериментов, после которых стало ясно, что эпигенетические механизмы влияния на геном не только играют важнейшую роль в работе систем организма, но и могут наследоваться несколькими поколениями. Сразу в нескольких лабораториях были получены свидетельства, заставившие генетиков сильно задуматься.

Рисунок 1. К.Х. Уоддингтон и его рисунок «эпигенетического ландшафта». Шарик вверху обозначает первоначальные неспециализированные клетки зародыша. Под воздействием генетических и эпигенетических сигналов клетке будет задана траектория онтогенеза (развития), и она станет специализированной — клеткой сердца, печени и т.д. Рисунок с сайтаwww.computerra.ru .


Так, в 1998 году Р. Паро и Д. Кавалли проводили опыты с трансгенными линиями дрозофил, подвергая их тепловому воздействию. После этого дрозофилы меняли цвет глаз, и этот эффект — уже без внешнего влияния — сохранялся у нескольких поколений (рис. 2). Как обнаружилось, хромосомный элемент Fab-7 передавал эпигенетическую наследственность в процессе как митоза, так и мейоза .

Рисунок 2. Глаза двух дрозофил.
Разная окраска глаз обусловлена
эпигенетическими изменениями.

Рисунок с сайтаwww.ethlife.ethz.ch .


В 2003 году американские ученые из Дюкского университета Р. Джиртл и Р. Уотерленд провели эксперимент с беременными трансгенными мышами агути (yellow agouti (Avy) mouse), которые имели желтую шерсть и предрасположенность к ожирению (рис. 3). Они добавляли в корм мышам фолиевую кислоту, витамин В12, холин и метионин. В результате этого появилось нормальное потомство без отклонений . Пищевые факторы, выступавшие донорами метильных групп, путем метилирования ДНК нейтрализовали ген агути, вызывавший отклонения: фенотип их Avy-потомства изменялся за счет метилирования CpG-динуклеотидов в локусе Avy. Причем воздействие диеты сохранялось и в нескольких последующих поколениях: детеныши мышей агути, родившиеся нормальными благодаря пищевым добавкам, и сами рожали нормальных мышей. Хотя питание у них было уже обычное, не обогащенное метильными группами.

Рисунок 3. Подопытные мыши из лаборатории Рэнди Джиртла.
Видно, как происходит изменение в окрасе шерсти детенышей в зависимости
от приема матерью доноров метильных групп — фолиевой кислоты,
витамина В 12 , холина и метионина.Рисунок из .


Вслед за этим, в 2005 году, журнал Science опубликовал работу Майкла Скиннера и его коллег из Вашингтонского университета. Они обнаружили, что, если в пищу беременным самкам крыс добавлять пестицид винклозолин, у их потомков мужского пола резко снижается количество и жизнеспособность сперматозоидов. И эти эффекты сохранялись на протяжении четырех поколений. Была четко установлена их связь с эпигеномом: ухудшение репродуктивной функции коррелировало с изменениями метилирования ДНК в зародышевой линии .

Ученые были вынуждены сделать сенсационный вывод: вызванные стрессом эпигенетические изменения, не затронувшие последовательность нуклеотидов ДНК, могут закрепляться и передаваться следующим поколениям!

Судьба записана не только в генах

Позже выяснилось, что и у людей влияние эпигенетических механизмов (рис. 4, 5) так же велико. Исследования, о которых дальше пойдет речь, приобрели широкую известность — они упоминаются почти в каждой научной работе по эпигенетике. Ученые из Голландии и США в конце 2000-х годов обследовали пожилых голландцев, родившихся сразу после Второй мировой войны. Период беременности их матерей совпал с очень тяжелым временем, когда в Голландии зимой 1944-1945 гг. был настоящий голод. Ученым удалось установить: сильный эмоциональный стресс и полуголодный рацион матерей самым негативным образом повлиял на здоровье будущих детей. Родившись с малым весом, они во взрослой жизни в несколько раз чаще были подвержены болезням сердца, ожирению и диабету, чем их соотечественники, родившиеся на год-два позже (или раньше) .

Анализ их генома показал отсутствие метилирования ДНК именно в тех участках, где оно обеспечивает сохранность хорошего здоровья. Так, у пожилых голландцев, чьи матери пережили голод, существенно снижалось метилирование гена инсулиноподобного фактора роста 2 (ИФР-2), из-за чего количество ИФР-2 в крови повышалось. А этот фактор, как известно, имеет обратную связь с продолжительностью жизни: чем выше в организме уровень ИФР, тем жизнь короче .

Рисунок 4. Структура хроматина и механизмы эпигенетических модификаций. Хроматин — комплекс белков и нуклеотидов, обеспечивающий надежное хранение и нормальную работу ДНК. В наших клетках упаковка ДНК похожа на склад бижутерии . Иначе никак невозможно уложить спираль ДНК длиной в два метра в одно маленькое клеточное ядро. Нить ДНК наматывается в полтора оборота на многочисленные «бусинки», которые называются нуклеосомами. Этинуклеосомы , в свою очередь, состоят из нескольких специальных белков,гистонов . Гистоны имеют «хвостики» — белковые наросты, которые могут удлиняться или укорачиваться особыми ферментами. Длина такого «хвоста» напрямую влияет на уровень активности генов, находящихся вблизи него.Рисунок из .


Новозеландским ученым П. Глюкману и М. Хансону удалось сформулировать логическое объяснение взаимосвязи количества пищи во время беременности матери со здоровьем ребенка. В 2004 году в журнале Science вышла их статья, в которой они сформулировали «гипотезу несоответствия» (mismatch hypothesis) . В соответствии с ней в развивающемся организме на эпигенетическом уровне может происходить прогностическая адаптация к условиям обитания, которые ожидаются после рождения. Если прогноз подтверждается — это увеличивает шансы организма на выживание в мире, где ему предстоит жить, если нет — адаптация становится дезадаптацией, то есть болезнью. Например, если во время внутриутробного развития плод получает недостаточное количество пищи, в нем происходят метаболические перестройки, направленные на запасание пищевых ресурсов впрок, «на черный день».

Если после рождения пищи действительно мало, это помогает организму выжить. Если же мир, в который попадает человек, оказывается более благополучным, чем прогнозировалось, такой «запасливый» характер метаболизма может привести к ожирению и диабету 2-го типа на поздних этапах жизни. Именно этот вариант мы сегодня чаще всего и наблюдаем.

Рисунок 5. Рентгеновская кристаллическая структура нуклеосомы. Гистоны показаны желтым, красным, синим и зеленым цветами. Рисунок из .


В целом, можно уверенно сказать, что период беременности и первых месяцев жизни является самым важным в жизни всех млекопитающих, в том числе и человека. Все имеющиеся сегодня данные говорят, что именно в этот период закладываются все основы не только физического, но и психического здоровья человека. И влияние этого начального периода жизни настолько велико, что не исчезает до самой глубокой старости, формируя — так или иначе — судьбу человека. Как метко выразился немецкий нейробиолог Петер Шпорк, «в преклонных годах на наше здоровье порой гораздо сильнее влияет рацион нашей матери в период беременности, чем пища в текущий момент жизни» . В это трудно поверить, но факты прямо говорят об этом.

Эпигенетика помогла сделать очень важный вывод: от того, что ела мама во время беременности, в каком психологическом состоянии она находилась и сколько времени уделяла малышу в первые годы после его рождения, будет зависеть буквально вся дальнейшая жизнь ребенка. В это время закладываются основы всего.

Метилирование ДНК

Рисунок 6. Метилирование цитозинового основания ДНК. Схема метилированного цитозина. Зеленым овалом со стрелкой показан главный фермент метилирования — ДНК-метилтрансфера́за (DNMT), красным кругом — метильная группа (—СН 3). Рисунок с сайта www.myshared.ru .


Наиболее изученным механизмом эпигенетической регуляции активности генов является процесс метилирования, который заключается в добавлении метильной группы (одного атома углерода и трех атомов водорода, —CH3) к цитозиновым основаниям ДНК, находящимся в составе CpG-динуклеотида (рис. 6). Уже известно, что метилирование ДНК у эукариот видоспецифично, и у беспозвоночных степень метилирования генома очень незначительна по сравнению с позвоночными и растениями. Основы понимания функций метилирования были заложены еще полвека назад профессором МГУ Б.Ф. Ванюшиным и его коллегами. Хотя обычно считается (и вполне правильно), что метилирование «выключает» ген, не давая возможности регуляторным белкам связаться с ДНК, было обнаружено и обратное явление. Иногда метилирование ДНК выступает обязательным условием взаимодействия с белками — были описаны специальные m5CрG-связывающие белки .

Метилирование ДНК имеет наибольшее прикладное значение из всех эпигенетических механизмов, так как оно напрямую связано с рационом, эмоциональным статусом, мозговой деятельностью и другими факторами. Так что об этом стоит рассказать поподробнее. И начнем мы с рациона.

Сегодня уже известно, что многие пищевые продукты содержат компоненты, которые определенным образом влияют на эпигенетические процессы. Почти все женщины знают, что во время беременности очень важно потреблять достаточно фолиевой кислоты. Эпигенетика помогает понять исключительную важность этой кислоты в рационе: ведь всё дело в том самом метилировании ДНК. Фолиевая кислота вместе с витамином В12 и аминокислотой метионином является донором («поставщиком») метильных групп, необходимых для нормального метилирования. Метилирование непосредственно участвует во многих процессах, связанных с развитием и формированием всех органов и систем ребенка: и в инактивации Х-хромосомы у эмбриона, и в геномном импринтинге, и в клеточной дифференцировке*. Соответственно, принимая фолиевую кислоту, будущая мама имеет неплохие шансы выносить здорового ребенка без отклонений.

* — Подробно об этом написано в статьях на «биомолекуле»: «Загадочное путешествие некодирующей РНК Xist по X-хромосоме» и «Истории из жизни Х-хромосомы круглого червя-гермафродита» .

Витамин В12 и метионин почти невозможно получить из вегетарианского рациона, так как они содержатся преимущественно в животных продуктах. И дефицит витамина В12 и метионина, вызванный разгрузочными диетами беременной женщины, может иметь для ребенка самые неприятные последствия. Не так давно было обнаружено, что недостаток в рационе этих двух веществ, а также фолиевой кислоты, может стать причиной нарушения расхождения хромосом у плода. А это сильно повышает риск рождения ребенка с синдромом Дауна, что обычно считается простой трагической случайностью . В свете этих фактов ответственность родителей сильно увеличивается, и списывать всё на несчастный случай теперь будет затруднительно.

Также известно, что недоедание и стресс в период беременности меняют в «худшую сторону» концентрацию целого ряда гормонов в организмах матери и плода: глюкокортикоидов, катехоламинов, инсулина, гомона роста и др. Из-за этого у зародыша происходят негативные эпигенетические изменения (ремоделирование хроматина) в клетках гипоталамуса и гипофиза . Чем это чревато? Тем, что малыш появится на свет с искаженной функцией гипоталамо-гипофизарной регуляторной системы. Из-за этого он будет хуже справляться со стрессом самой различной природы: с инфекциями, физическими и психическими нагрузками и т.д. Вполне очевидно, что, плохо питаясь и переживая во время вынашивания, мама делает из своего будущего ребенка уязвимого со всех сторон неудачника.

Пластичность эпигенома: опасности и возможности

Выяснилось, что так же, как стресс и недоедание, на здоровье плода могут влиять многочисленные вещества, искажающие нормальные процессы гормональной регуляции (рис. 7). Они получили название «эндокринные дизрапторы» (разрушители). Эти вещества, как правило, имеют искусственную природу: человечество получает их промышленным способом для своих нужд. Самым ярким и негативным примером, пожалуй, является бисфенол А, который уже много лет применяется в качестве отвердителя при изготовлении изделий из пластмасс. Он содержится во всей пластиковой таре, которая используется сегодня в пищевой промышленности: в пластиковых бутылках для воды и напитков, в пищевых контейнерах и многом другом. Бисфенол А присутствует в жестяных банках консервов и напитков (им выстилают внутренний слой банок), а также в стоматологических пломбах.

Рисунок 7. Молекулярные составляющие развития отклонений под воздействием «эндокринных разрушителей»:бисфенола А (А) и фталатов (В) . Рисунок из . Нажмите на рисунок, чтобы просмотреть его в полном размере.


Негативные воздействия даже небольших концентраций бисфенола А многочисленны и разнообразны, а распространение его таково, что сегодня почти невозможно найти человека без бисфенола А в организме. Его постоянно обнаруживают не только в крови, но и в грудном молоке и пуповинной крови беременных. Причем в амниотической жидкости (жидкости, окружающей эмбрион) концентрация бисфенола А в несколько раз превышает его содержание в сыворотке крови матери . В 2003-2004 гг. американскими исследователями из Центра по контролю и профилактике заболеваний были получены такие результаты распространенности бисфенола А: из 2517 обследованных человек у 92% в моче содержался бисфенол, и его концентрация была значительно выше в организмах детей и подростков, у которых еще плохо сформированы «очистные системы» организма .

Очевидно, что, так или иначе, в результате контактов пищи с пластиком какая-то часть бисфенола попадает в организм человека. Последствия такого «обогащения» находятся сегодня в стадии активного изучения. Но уже всплывают тревожные факты.

Так, биологи с медицинского факультета Гарварда — Кэтрин Раковски и ее коллеги — обнаружили способность бисфенола А тормозить созревание яйцеклетки и тем самым приводить к бесплодию. Бисфенол сильно увеличивал частоту хромосомных аномалий в яйцеклетках. Вывод ученых был однозначным: «Поскольку соприкосновение с этим веществом происходит повсеместно, медикам надо знать, что бисфенол А может вызывать значительные нарушения в репродуктивной системе» .

Их коллеги из Колумбийского университета в экспериментах с животными выявили еще один тревожный факт. Они обнаружили способность бисфенола А стирать различия между полами и стимулировать рождение потомства с гомосексуальными наклонностями. Под воздействием бисфенола нарушалось нормальное метилирование генов, кодирующих рецепторы к эстрогенам — женским половым гормонам. Из-за этого мыши-самцы рождались с «женским» характером — покладистыми и спокойными. Исчезала разница в поведении самцов и самок. Профессор Ф. Шемпейн и его коллеги вынуждены были сказать: «Мы показали, что воздействие малых доз бисфенола А вызывает неизгладимые эпигенетические нарушения в головном мозге, что, возможно, лежит в основе прочных воздействий бисфенола А на функции мозга и поведение — особенно в отношении межполовых различий» .

Другие проведенные исследования показывают, что бисфенол А обладает очень сильно выраженной эстрогенной активностью (не зря его называют «вездесущим ксеноэстрогеном») и способен изменять во время развития эмбриона профиль метилирования, а значит, и активность некоторых генов (например, Hoxa10) . Последствия этого для здоровья человека могут быть самыми неблагоприятными — во взрослом возрасте повышается риск развития некоторых болезней (ожирения, диабета, нарушений репродукции и др.) .

Но, к счастью, есть и противоположные примеры. Так, известно, что регулярное употребление зеленого чая может снижать риск онкозаболеваний, поскольку в нём содержится вещество эпигаллокатехин-3-галлат, которое может активизировать гены — супрессоры (подавители) опухолевого роста, деметилируя их ДНК. Очень популярным в последние годы модулятором эпигенетических процессов является генистеин, содержащийся в продуктах из сои. Многие исследователи напрямую связывают содержание сои в рационе жителей азиатских стран с их меньшей подверженностью некоторым возрастным болезням.

Характер — это судьба?

Эпигенетика также помогла понять, почему одни люди отличаются психологической устойчивостью и оптимизмом, а другие склонны к паническим настроениям и депрессии*. Как это заведено в научном мире, вначале были проведены эксперименты с животными. Эта серия работ приобрела широкую известность и название «licking and grooming» (вылизывание и уход). Канадские биологи из Университета Макгилла — Майкл Мини и его коллеги — начали изучать влияние материнской заботы у крыс в первые месяцы жизни потомства . Разделив крысят на две группы, они отнимали одну часть выводка у матерей сразу после рождения. Не получавшие материнской заботы в виде вылизывания, такие крысята все поголовно вырастали «неадекватными»: нервными, необщительными, агрессивными и трусливыми.

* — Дополнительно об этом — в статьях на «биомолекуле»: «Развитие и эпигенетика, или история о минотавре» и «Эпигенетика поведения: как бабушкин опыт отражается на ваших гена» .

Все детеныши в группе, получавшей материнскую заботу в полном объеме, развивались так, как это и положено крысам: энергичными, хорошо обучаемыми и социально активными. В чём же причина такого разительного отличия? Почему материнский уход оказал решающее влияние на развитие психических особенностей у потомства? Анализ ДНК помог ответить на эти вопросы.

Исследовав ДНК крыс, ученые выяснили, что у детенышей, которых не вылизывали матери, произошли негативные эпигенетические изменения в области мозга под названием гиппокамп. В гиппокампе оказалось уменьшено количество рецепторов к стрессовым гормонам. И именно из-за этого наблюдалась неадекватная реакция нервной системы на внешние раздражители: гипофиз подавал команду на избыточное производство стрессовых гормонов. Другими словами, те ситуации, которые переносились спокойно обычными крысами, у потомства, не получившего материнского ухода, вызывали неадекватно сильный стресс.

Как оказалось, всё вышеописанное абсолютно точно подходит и к человеческому развитию. Были проведены многочисленные исследования детей, которые в раннем детстве лишались родительской заботы или подвергались какому-либо насилию. Все эти дети без исключения вырастали потом с той или иной искаженной функцией нервной системы. И эти искажения были эпигенетически закреплены в клетках мозга. Всем таким детям была свойственна неадекватная реакция даже на слабые раздражители, которые нормально воспринимались благополучными детьми. Всё это формировало во взрослом возрасте склонность к алкоголизму, наркомании, суицидам и прочим неадекватным поступкам . Вот почему первые годы после рождения являются решающими в формировании социального поведения и закладывают все основы характера. От того, сколько времени родители уделяли своему малышу в этот период, будет зависеть всё его будущее: будет ли он психологически устойчивым, коммуникабельным и успешным или же склонным депрессиям и расстройствам.

Очевидно, что влияние эпигенома распространяется и на процессы, связанные со старением . С возрастом можно наблюдать общее понижение метилирования, в том числе загадочных участков генома, которые составляют почти половину всей последовательности ДНК, — мобильных генетических элементов (МГЭ). Они были открыты полвека назад нобелевским лауреатом Барбарой Мак-Клинток как последовательности, способные — в отличие от обычных генов — удивительным образом перемещаться по ДНК*. Излишне активизируясь с возрастом из-за деметилирования, МГЭ дестабилизируют геном, вызывая нежелательные хромосомные перестройки .

Также с возрастом становятся отчетливыми изменения в метилировании генов, связанных с возрастными заболеваниями: атеросклерозом, гипертонией, диабетом, болезнью Альцгеймера и др. . Кроме этого, была обнаружена прямая связь изменений эпигенома с продукцией активных форм кислорода, а также с функцией одного из белков, к которым приковано большое внимание геронтологов: белка p66Shc, названного академиком В.П. Скулачёвым «посредником запрограммированной гибели организма» . И потому знание эпигенетических основ возрастных изменений может принести нам существенную пользу в борьбе за продление жизни и здоровую старость.

Итоги и перспективы

Изучение эпигенетических механизмов помогло понять очень важную истину: человеческая судьба формируется большей частью не астрологическими прогнозами, а поведением самогό человека и его родителей. Эпигенетика совершенно ясно показывает, что очень многое в жизни зависит от нас, и в наших силах поменять жизнь к лучшему.

Эпигенетика также стирает границы между человеком и внешней средой. Очевидно, что никто не может чувствовать себя в безопасности, пока практикуется масштабное использование опасных химических веществ. Пестициды винклозолин и метоксихлор, применяющиеся в сельском хозяйстве и действующие как «эндокринные разрушители», ртуть из промышленных отходов и бисфенол А из разлагающегося пластика проникают в почву и в воду рек и морей. А потом вместе с продуктами и водой попадают в организм человека. И это — реальная угроза для человечества.

Но есть и хорошие новости. В отличие от относительно стабильной генетической информации, эпигенетические «метки» при определенных условиях могут быть обратимыми. И это позволяет разработать принципиально новые стратегии и методы борьбы с самыми распространенными болезнями: методы, нацеленные на устранение* тех эпигенетических модификаций, которые возникли у человека при воздействии неблагоприятных факторов. Не случайно нынешнее столетие некоторые ученые называют веком эпигенетики. При изучении истории развития естественных наук, биологии и генетики в частности, может сложиться впечатление, что все предыдущие годы были большим подготовительным этапом, накоплением сил перед открытиями действительно сверхважного значения. И, вероятно, мы сегодня стоим на пороге этих открытий.

* — Как это может реализовываться (и реализуется ужé), описано в статье «Пилюли для эпигенома»

Эпигенетика — сравнительно недавнее направление биологической науки и пока не так широко известно, как генетика. Под ней понимают раздел генетики, который изучает наследуемые изменения активности генов во время развития организма или деления клеток.

Эпигенетические изменения не сопровождаются перестановкой последовательности нуклеотидов в дезоксирибонуклеиновой кислоте (ДНК).

В организме существуют различные регуляторные элементы в самом геноме, которые контролируют работу генов, в том числе в зависимости от внутренних и внешних факторов. Долгое время эпигенетику не признавали, т. к. было мало информации о природе эпигенетических сигналов и механизмах их реализации.

Структура генома человека

В 2002 г. в результате многолетних усилий большого числа ученых разных стран закончена расшифровка строения наследственного аппарата человека, который заключен в главной молекуле ДНК. Это одно из выдающихся достижений биологии начала ХХI века.

ДНК, в которой находится вся наследственная информация о данном организме, называется геномом. Гены — это отдельные участки, занимающие очень небольшую часть генома, но при этом составляют его основу. Каждый ген отвечает за передачу в организме человека данных о строении рибонуклеиновой кислоты (РНК) и белка. Структуры, которые передают наследственную информацию, называют кодирующими последовательностями. В результате проекта «Геном» были получены данные, согласно которым геном человека оценивался в более чем 30 000 генов. В настоящее время, в связи с появлением новых результатов масс-спектрометрии, геном предположительно насчитывает около 19 000 генов .

Генетическая информация каждого человека содержится в ядре клетки и расположена в особых структурах, получивших название хромосомы. Каждая соматическая клетка содержит два полных набора (диплоидный) хромосом. В каждом единичном наборе (гаплоидном) присутствует 23 хромосомы — 22 обычные (аутосомы) и по одной половой хромосоме — Х или Y.

Молекулы ДНК, содержащиеся во всех хромосомах каждой клетки человека, представляют собой две полимерные цепи, закрученные в правильную двойную спираль.

Обе цепи удерживают друг друга четырьмя основаниями: аденин (А), цитозин (Ц), гуанин (Г) и тиамин (Т). Причем основание А на одной цепочке может соединиться только с основанием Т на другой цепочке и аналогично основание Г может соединяться с основанием Ц. Это называется принципом спаривания оснований. При других вариантах спаривание нарушает всю целостность ДНК.

ДНК существует в виде тесного комплекса со специализированными белками, и вместе они составляют хроматин.

Гистоны — это нуклеопротеины, основная составляющая хроматина. Им свойственно образование новых веществ путем присоединения двух структурных элементов в комплекс (димер), что является особенностью для последующей эпигенетической модификации и регуляции.

ДНК, хранящая генетическую информацию, при каждом клеточном делении самовоспроизводится (удваивается), т. е. снимает с самой себя точные копии (репликация). Во время клеточного деления связи между двумя цепями двойной спирали ДНК разрушаются и нити спирали разделяются. Затем на каждой из них строится дочерняя цепь ДНК. В результате молекула ДНК удваивается, образуются дочерние клетки.

ДНК служит матрицей, на которой происходит синтез разных РНК (транскрипция). Этот процесс (репликация и транскрипция) осуществляется в ядрах клеток, а начинается он с области гена, называемой промотором, на котором связываются белковые комплексы, копирующие ДНК для формирования матричной РНК (мРНК).

В свою очередь последняя служит не только носителем ДНК-информации, но и переносчиком этой информации для синтеза белковых молекул на рибосомах (процесс трансляции).

В настоящее время известно, что зоны гена человека, кодирующие белки (экзоны), занимают лишь 1,5% генома . Большая часть генома не имеет отношения к генам и инертна в плане передачи информации. Выявленные зоны гена, не кодирующие белки, называются интронами.

Первая копия мРНК, полученная с ДНК, содержит в себе весь набор экзонов и интронов. После этого специализированные белковые комплексы удаляют все последовательности интронов и соединяют друг с другом экзоны. Этот процесс редактирования называется сплайсингом.

Эпигенетика объясняет один из механизмов, с помощью которого клетка способна контролировать синтез производимого ею белка, определяя в первую очередь, сколько копий мРНК можно получить с ДНК.

Итак, геном — это не застывшая часть ДНК, а динамическая структура, хранилище информации, которую нельзя свести к одним генам.

Развитие и функционирование отдельных клеток и организма в целом не запрограммированы автоматически в одном геноме, но зависят от множества различных внутренних и внешних факторов. По мере накопления знаний выясняется, что в самом геноме существуют множественные регуляторные элементы, которые контролируют работу генов. Сейчас это находит подтверждение во множестве экспериментальных исследований на животных .

При делении во время митоза дочерние клетки могут наследовать от родительских не только прямую генетическую информацию в виде новой копии всех генов, но и определенный уровень их активности. Такой тип наследования генетической информации получил название эпигенетического наследования.

Эпигенетические механизмы регуляции генов

Предметом эпигенетики является изучение наследования активности генов, не связанной с изменением первичной структуры входящей в их состав ДНК. Эпигенетические изменения направлены на адаптацию организма к изменяющимся условиям его существования.

Впервые термин «эпигенетика» предложил английский генетик Waddington в 1942 г. Разница между генетическими и эпигенетическими механизмами наследования заключается в стабильности и воспроизводимости эффектов .

Генетические признаки фиксируются неограниченное число, пока в гене не возникает мутация. Эпигенетические модификации обычно отображаются в клетках в пределах жизни одного поколения организма. Когда данные изменения передаются следующим поколениям, то они могут воспроизводиться в 3-4 генерациях, а затем, если стимулирующий фактор пропадает, эти преобразования исчезают.

Молекулярная основа эпигенетики характеризуется модификацией генетического аппарата, т. е. активации и репрессии генов, не затрагивающих первичную последовательность нуклеотидов ДНК.

Эпигенетическая регуляция генов осуществляется на уровне траскрипции (время и характер транскрипции гена), при отборе зрелых мРНК для транспорта их в цитоплазму, при селекции мРНК в цитоплазме для трансляции на рибосомах, дестабилизации определенных типов мРНК в цитоплазме, избирательной активации, инактивации молекул белков после их синтеза.

Совокупность эпигенетических маркеров представляет собой эпигеном. Эпигенетические преобразования могут влиять на фенотип.

Эпигенетика играет важную роль в функционировании здоровых клеток, обеспечивая активацию и репрессию генов, в контроле транспозонов, т. е. участков ДНК, способных перемещаться внутри генома, а также в обмене генетического материала в хромосомах .

Эпигенетические механизмы участвуют в геномном импритинге (отпечаток) — процессе, при котором экспрессия определенных генов осуществляется в зависимости от того, от какого родителя поступили аллели. Импритинг реализуется через процесс метилирования ДНК в промоторах, в результате чего транскрипция гена блокируется.

Эпигенетические механизмы обеспечивают запуск процессов в хроматине через модификации гистонов и метилирование ДНК. За последние два десятилетия существенно изменились представления о механизмах регуляции транскрипции эукариот. Классическая модель предполагала, что уровень экспрессии определяется транскрипционными факторами, связывающимися с регуляторными областями гена, которые инициируют синтез матричной РНК. Гистонам и негистоновым белкам отводилась роль пассивной упаковочной структуры для обеспечения компактной укладки ДНК в ядре.

В последующих исследованиях была показана роль гистонов в регуляции трансляции. Был обнаружен так называемый гистоновый код, т. е. модификация гистонов, неодинаковая в разных районах генома. Видоизмененные гистоновые коды могут приводить к активизации и репрессии генов .

Модификациям подвергаются различные части структуры генома. К концевым остаткам могут присоединяться метильные, ацетильные, фосфатные группы и более крупные белковые молекулы.

Все модификации являются обратимыми и для каждой существуют ферменты, которые ее устанавливают или удаляют.

Метилирование ДНК

У млекопитающих метилирование ДНК (эпигенетический механизм) было изучено раньше других. Показано, что он коррелирует с репрессией генов. Экспериментальные данные показывают, что метилирование ДНК является защитным механизмом, подавляющим значительную часть генома чужеродной природы (вирусы и др.).

Метилирование ДНК в клетке контролирует все генетические процессы: репликацию, репарацию, рекомбинацию, транскрипцию, инактивацию Х-хромосомы. Метильные группы нарушают ДНК-белковое взаимодействие, препятствуя связыванию транскрипционных факторов. Метилирование ДНК влияет на структуру хроматина, блокирует транскрипционные репрессоры .

Действительно, повышение уровня метилирования ДНК коррелирует с относительным увеличением содержания некодирующей и повторяющейся ДНК в геномах высших эукариот. Экспериментальные данные показывают, что это происходит потому, что метилирование ДНК служит главным образом как защитный механизм, чтобы подавлять значительную часть генома чужеродного происхождения (реплицированные перемещающиеся элементы, вирусные последовательности, другие повторяющиеся последовательности).

Профиль метилирования — активирование или угнетение — меняется в зависимости от средовых факторов. Влияние метилирования ДНК на структуру хроматина имеет большое значение для развития и функционирования здорового организма, чтобы подавлять значительную часть генома чужеродного происхождения, т. е. реплицированные перемещающиеся элементы, вирусные и другие повторяющиеся последовательности.

Метилирование ДНК происходит путем обратимой химической реакции азотистого основания — цитозина, в результате чего метильная группа СН3 присоединяется к углероду с образованием метилцитозина. Этот процесс катализируется ферментами ДНК-метилтрансферазами. Для метилирования цитозина необходим гуанин, в результате образуется два нуклеотида, разделенные фосфатом (СрG).

Скопление неактивных последовательностей СрG называется островками СрG. Последние представлены в геноме неравномерно . Большинство из них выявляются в промоторах генов. Метилирование ДНК происходит в промоторах генов, в транскрибируемых участках, а также в межгенных пространствах.

Гиперметилированные островки вызывают инактивацию гена, что нарушает взаимодействие регуляторных белков с промоторами.

Метилирование ДНК оказывает огромное влияние на экспрессию генов и, в конечном счете, на функцию клеток, тканей и организма в целом. Установлена прямая зависимость между высоким уровнем метилирования ДНК и количеством репрессированных генов.

Удаление метильных групп из ДНК в результате отсутствия метилазной активности (пассивное деметилирование) реализуется после репликации ДНК. При активном деметилировании участвует ферментативная система, превращающая 5-метилцитозин в цитозин независимо от репликации. Профиль метилирования меняется в зависимости от средовых факторов, в которых находится клетка.

Утрата способности поддерживать метилирование ДНК может приводить к иммунодефициту, злокачественным опухолям и другим заболеваниям .

Долгое время механизм и ферменты, вовлеченные в процесс активного деметилирования ДНК, оставались неизвестными.

Ацетилирование гистонов

Существует большое число посттрансляционных модификаций гистонов, которые формируют хроматин. В 1960-е годы Винсент Олфри идентифицировал ацетилирование и фосфорилирование гистонов из многих эукариот .

Ферменты ацетилирования и деацетилирования (ацетилтрансферазы) гистонов играют роль в ходе транскрипции. Эти ферменты катализируют ацетилирование локальных гистонов. Деацетилазы гистонов репрессируют транскрипцию.

Эффект ацетилирования это ослабление связи между ДНК и гистонами из-за изменения заряда, в результате чего хроматин становится доступным для факторов транскрипции.

Ацетилирование представляет собой присоединение химической ацетил-группы (аминокислоты лизин) на свободный участок гистона. Как и метилирование ДНК, ацетилирование лизина представляет собой эпигенетический механизм для изменения экспрессии генов, не влияющих на исходную последовательность генов. Шаблон, по которому происходят модификации ядерных белков, стали называть гистоновым кодом.

Гистоновые модификации принципиально отличаются от метилирования ДНК. Метилирование ДНК представляет собой очень стабильное эпигенетическое вмешательство, которое чаще закрепляется в большинстве случаев.

Подавляющее большинство гистоновых модификаций более вариативно. Они влияют на регуляцию экспрессии генов, поддержание структуры хроматина, дифференциацию клеток, канцерогенез, развитие генетических заболеваний, старение, репарацию ДНК, репликацию, трансляцию. Если гистоновые модификации идут на пользу клетки, то они могут продолжаться довольно долго .

Одним из механизмов взаимодействия между цитоплазмой и ядром является фосфорилирование и/или дефосфорилирование транскрипционных факторов. Гистоны были одними из первых белков, фосфорилирование которых было обнаружено. Это осуществляется с помощью протеинкиназ.

Под контролем фосфорилируемых транскрипционных факторов находятся гены, в том числе гены, регулирующие пролиферацию клеток. При подобных модификациях в молекулах хромосомных белков происходят структурные изменения, которые приводят к функциональным изменениям хроматина.

Помимо описанных выше посттрансляционных модификаций гистонов имеются более крупные белки, такие как убиквитин, SUMO и др., которые могут присоединяться с помощью ковалентной связи к боковым аминогруппам белка-мишени, оказывая воздействие на их активность.

Эпигенетические изменения могут передаваться по наследству (трансгенеративная эпигенетическая наследственность). Однако в отличие от генетической информации, эпигенетические изменения могут воспроизводиться в 3-4 поколениях, а при отсутствии фактора, стимулирующего эти изменения, исчезают. Передача эпигенетической информации происходит в процессе мейоза (деления ядра клетки с уменьшением числа хромосом вдвое) или митоза (деления клеток).

Модификации гистонов играют фундаментальную роль в нормальных процессах и при заболеваниях.

Регуляторные РНК

Молекулы РНК выполняют в клетке множество функций. Одной из них является регуляция экспрессии генов. За эту функцию отвечают регуляторные РНК, к которым относятся антисмысловые РНК (aRNA), микроРНК (miRNA) и малые интерферирующие РНК (siRNA)

Механизм действия разных регуляторных РНК схож и заключается в подавлении экспрессии генов, реализующейся путем комплементарного присоединения регуляторной РНК к мРНК, с образованием двухцепочечной молекулы (дцРНК). Само по себе образование дцРНК приводит к нарушению связывания мРНК с рибосомой или другими регуляторными факторами, подавляя трансляцию. Также после образования дуплекса возможно проявление феномена РНК-интерференции — фермент Dicer, обнаружив в клетке двухцепочечную РНК, «разрезает» ее на фрагменты. Одна из цепей такого фрагмента (siRNA) связывается комплексом белков RISC (RNA-induced silencing complex) .

В результате деятельности RISC одноцепочечный фрагмент РНК соединяется с комплементарной последовательностью молекулы мРНК и вызывает разрезание мРНК белком семейства Argonaute. Данные события приводят к подавлению экспрессии соответствующего гена.

Физиологические функции регуляторных РНК разно-образны — они выступают основными небелковыми регуляторами онтогенеза, дополняют «классическую» схему регуляции генов.

Геномный импритинг

Человек обладает двумя копиями каждого гена, один из которых унаследован от матери, другой от отца. Обе копии каждого гена имеют возможность быть активной в любой клетке. Геномный импритинг это эпигенетически избирательная экспрессия только одного из аллельных генов, наследуемых от родителей. Геномный импритинг затрагивает и мужское и женское потомство. Так, импритингованный ген, активный на материнской хромосоме, будет активным на материнской хромосоме и «молчащим» на отцовской у всех детей мужского и женского пола. Гены, подверженные геномному импритингу, в основном кодируют факторы, регулирующие эмбриональный и неонатальный рост .

Импритинг представляет сложную систему, которая может ломаться. Импритинг наблюдается у многих больных с хромосомными делециями (утраты части хромосом). Известны заболевания, которые у человека возникают в связи с нарушением функционирования механизма импритинга.

Прионы

В последние десятилетие внимание привлечено к прионам, белкам, которые могут вызывать наследуемые фенотипические изменения, не изменяя нуклеотидной последовательности ДНК. У млекопитающих прионный белок расположен на поверхности клеток. При определенных условиях нормальная форма прионов может изменяться, что модулирует активность этого белка.

Викнер выразил уверенность в том, что этот класс белков является одним из многих, которые составляют новую группу эпигенетических механизмов, требующих дальнейшего изучения. Он может находиться в нормальном состоянии, а в измененном состоянии прионные белки могут распространяться, т. е. стать инфекционными .

Первоначально прионы были открыты как инфекционные агенты нового типа, но сейчас считают, что они представляют собой феномен общебиологический и являются носителями информации нового типа, хранимой в конформации белка. Феномен прионов лежит в основе эпигенетической наследственности и регуляции экспрессии генов на посттрансляционном уровне.

Эпигенетика в практической медицине

Эпигенетические модификации контролируют все стадии развития и функциональную активность клеток. Нарушение механизмов эпигенетической регуляции напрямую или косвенно связано с множеством заболеваний.

К заболеваниям с эпигенетической этиологией относят болезни импринтинга, которые в свою очередь делятся на генные и хромосомные, всего в настоящее время насчитывают 24 нозологии.

При болезнях генного импринтинга наблюдается моноаллельная экспрессия в локусах хромосом одного из родителей. Причиной являются точечные мутации в генах, дифференцированно экспрессирующихся в зависимости от материнского и отцовского происхождения и приводящих к специфическому метилированию цитозиновых оснований в молекуле ДНК. К ним относят: синдром Прадера-Вилли (делеция в отцовской хромосоме 15) — проявляется черепно-лицевым дисморфизмом, низким ростом, ожирением, мышечной гипотонией, гипогонадизмом, гипопигментацией и задержкой умственного развития; синдром Ангельмана (делеция критического района, находящегося в 15-й материнской хромосоме), основными признаками которого являются микробрахицефалия, увеличенная нижняя челюсть, выступающий язык, макростомия, редкие зубы, гипопигментация; синдром Беквитта-Видемана (нарушение метилирования в коротком плече 11-й хромосомы), проявляющийся классической триадой, включающей макросомию, омфалоцеле макроглоссию и др. .

К числу важнейших факторов, влияющих на эпигеном, относятся питание, физическая активность, токсины, вирусы, ионизирующая радиация и др. Особенно чувствительным периодом к изменению эпигенома является внутриутробный период (особенно охватывающий два месяца после зачатия) и первые три месяца после рождения. В период раннего эмбриогенеза геном удаляет большую часть эпигенетических модификаций, полученных от предыдущих поколений. Но процесс репрограммирования продолжается в течение всей жизни .

К заболеваниям, где нарушение генной регуляции является частью патогенеза, можно отнести некоторые виды опухолей, сахарный диабет, ожирение, бронхиальную астму, различные дегенеративные и другие болезни .

Эпигоном при раке характеризуется глобальными изменениями в метилировании ДНК, модификации гистонов, а также изменением профиля экспрессии хроматин-модифицирующих ферментов.

Опухолевые процессы характеризуются инактивацией посредством гиперметилирования ключевых генов-супрессоров и посредством гипометилирования активацией целого ряда онкогенов, факторов роста (IGF2, TGF) и мобильных повторяющихся элементов, расположенных в районах гетерохроматина .

Так, в 19% случаев гипернефроидные опухоли почки ДНК островков СрG была гиперметилированной, а при раке груди и немелкоклеточной карциноме легких выявлена взаимосвязь между уровнями гистонового ацетилирования и экспрессией супрессора новообразований — чем ниже уровни ацетилирования, тем слабее экспрессия гена.

В настоящее время уже разработаны и внедрены в практику противоопухолевые лекарственные препараты, основанные на подавлении активности ДНК-метилтрансфераз, что приводит к снижению метилирования ДНК, активации генов-супрессоров опухолевого роста и замедлению пролиферации опухолевых клеток. Так, для лечения миелодиспластического синдрома в комплексной терапии применяют препараты децитабин (Decitabine) и азацитидин (Azacitidine) . С 2015 г. для лечения множественной миеломы в сочетании с классической химиотерапией применяют панобиностат (Panibinostat), являющийся ингибитором гистоновой деацитилазы . Данные препараты по данным клинических исследований оказывают выраженный положительный эффект на уровень выживаемости и качество жизни пациентов.

Изменения экспрессии тех или иных генов могут происходить и в результате действия на клетку факторов внешней среды. В развитии сахарного диабета 2-го типа и ожирения играет роль так называемая «гипотеза экономного фенотипа», согласно которой недостаток питательных веществ в процессе эмбрионального развития приводит к развитию патологического фенотипа . На моделях животных был выявлен участок ДНК (локус Pdx1), в котором под влиянием недостаточности питания снижался уровень ацетилирования гистонов, при этом наблюдались замедление деления и нарушения дифференцировки B-клеток островков Лангерганса и развития состояния, схожего с сахарным диабетом 2-го типа .

Активно развиваются и диагностические возможности эпигенетики. Появляются новые технологии, способные анализировать эпигенетические изменения (уровень метилирования ДНК, экспрессию микроРНК, посттрансляционные модификации гистонов и др.), такие как иммунопреципитация хроматина (CHIP), проточная цитометрия и лазерное сканирование, что дает основания полагать, что в ближайшее время будут выявлены биомаркеры для изучения нейродегенеративных заболеваний, редких, многофакторных болезней и злокачественных новообразований и внедрены в качестве методов лабораторной диагностики .

Итак, в настоящее время эпигенетика бурно развивается. С ней связывают прогресс в биологии и медицине.

Литература

  1. Ezkurdia I., Juan D., Rodriguez J. M. et al. Multiple evidence strands suggest that there may be as few as 19,000 human protein-coding genes // Human Molecular Genetics. 2014, 23 (22): 5866-5878.
  2. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome // Nature. 2001, Feb. 409 (6822): 860-921.
  3. Xuan D., Han Q., Tu Q. et al. Epigenetic Modulation in Periodontitis: Interaction of Adiponectin and JMJD3-IRF4 Axis in Macrophages // Journal of Cellular Physiology. 2016, May; 231 (5): 1090-1096.
  4. Waddington C. H. The Epigenotpye // Endeavour. 1942; 18-20.
  5. Бочков Н. П. Клиническая генетика. М.: Гэотар.Мед, 2001.
  6. Jenuwein T., Allis C. D. Translating the Histone Code // Science. 2001, Aug 10; 293 (5532): 1074-1080.
  7. Коваленко Т. Ф. Метилирование генома млекопитающих // Молекулярная медицина. 2010. № 6. С. 21-29.
  8. Элис Д., Дженювейн Т., Рейнберг Д. Эпигенетика. М.: Техносфера, 2010.
  9. Taylor P. D., Poston L. Development programming of obesity in mammals // Experemental Physiology. 2006. № 92. P. 287-298.
  10. Льюин Б. Гены. М.: БИНОМ, 2012.
  11. Plasschaert R. N., Bartolomei M. S. Genomic imprinting in development, growth, behavior and stem cells // Development. 2014, May; 141 (9): 1805-1813.
  12. Wickner R. B., Edskes H. K., Ross E. D. et al. Prion genetics: new rules for a new kind of gene // Annu Rev Genet. 2004; 38: 681-707.
  13. Мутовин Г. Р. Клиническая генетика. Геномика и протеомика наследственной патологии: учеб. пособие. 3-е изд., перераб. и доп. 2010.
  14. Романцова Т. И. Эпидемия ожирения: очевидные и вероятные причины // Ожирение и метаболизм. 2011, № 1, с. 1-15.
  15. Bégin P., Nadeau K. C. Epigenetic regulation of asthma and allergic disease // Allergy Asthma Clin Immunol. 2014, May 28; 10 (1): 27.
  16. Martínez J. A., Milagro F. I., Claycombe K. J., Schalinske K. L. Epigenetics in Adipose Tissue, Obesity, Weight Loss, and Diabetes // Advances in Nutrition. 2014, Jan 1; 5 (1): 71-81.
  17. Dawson M. A., Kouzarides T. Cancer epigenetics: from mechanism to therapy // Cell. 2012, Jul 6; 150 (1): 12-27.
  18. Kaminskas E., Farrell A., Abraham S., Baird A. Approval summary: azacitidine for treatment of myelodysplastic syndrome subtypes // Clin Cancer Res. 2005, May 15; 11 (10): 3604-3608.
  19. Laubach J. P., Moreau P., San-Miguel J..F, Richardson P. G. Panobinostat for the Treatment of Multiple Myeloma // Clin Cancer Res. 2015, Nov 1; 21 (21): 4767-4773.
  20. Bramswig N. C., Kaestner K. H. Epigenetics and diabetes treatment: an unrealized promise? // Trends Endocrinol Metab. 2012, Jun; 23 (6): 286-291.
  21. Sandovici I., Hammerle C. M., Ozanne S. E., Constância M. Developmental and environmental epigenetic programming of the endocrine pancreas: consequences for type 2 diabetes // Cell Mol Life Sci. 2013, May; 70 (9): 1575-1595.
  22. Szekvolgyi L., Imre L., Minh D. X. et al. Flow cytometric and laser scanning microscopic approaches in epigenetics research // Methods Mol Biol. 2009; 567: 99-111.

В. В. Смирнов 1 , доктор медицинских наук, профессор
Г. Е. Леонов

ФГБОУ ВО РНИМУ им. Н. И. Пирогова МЗ РФ, Москва

Наука

Что если ваше решение сегодня съесть еще один пакет чипсов или выкурить еще одну сигарету может повлиять не только на ваше здоровье, но и на здоровье ваших детей? Более того, что если ваш образ жизни влияет на здоровье ваших детей, ваших внуков и правнуков? Как оказалось, от нашего повседневного выбора зависит намного больше, чем мы себе представляли.

Традиционный взгляд на ДНК заключается в том, что она выражает себя через наши гены, которые помогают нам выживать, размножаться, развиваться, а также, что ДНК – это постоянная величина, заложенная природой на протяжении многих тысячелетий. Теперь, однако, представляется, что условия окружающей среды, такие как стресс, питание и окружение оказывают влияние на то, как ведет себя не только наша ДНК, но и ДНК наших детей, даже если они еще только в проекте.

Все это относится к сравнительно новой науке, которая называется эпигенетика. Ниже мы рассмотрим пять самых значимых открытий эпигенетики, а также что они означают для нашего здоровья.

5. То, что ДНК может сделать намного важнее, чем ее структура

ДНК – это важная структура, однако, она не ответственна за все. Подобные надзорные функции принадлежат эпигеному. Как описывал Джон Клауд (John Cloud), эпигеном берет бразды правления в верхней части генома и говорит каждому гену работать или нет посредством эпигенетических маркеров. Это основа эпигенетики, изучение изменений в поведении наших генов, которые могут быть переданы, фактически не изменяя наш генетический код. Потенциально, это означает, что наш организм может обладать биологическими реакциями на условия окружающей среды, которые позитивно или негативно сказываются на нашем здоровье, не меняя при этом ДНК.

К примеру, Клауд предлагает проиллюстрировать эпигенетику, рассмотрев близнецов, которые обладают идентичным генетическим материалом. Почему же тогда близнецы не страдают от одних и тех же заболеваний, таких как, к примеру, астма или психические расстройства? Играет ли в данном случае роль эпигенетика? В настоящее время именно этими вопросами и занята наука. Кроме того, исследователи изучают, существуют ли лекарственные препараты или методы, которые можно использовать для того, чтобы в лучшую сторону изменить генетическое поведение.

4. Когда дело доходит до развития заболевания, эпигенетика задает тон

Хорошо, что можно использовать ДНК в качестве козла отпущения, однако, есть и другие факторы, увеличивающие наши шансы на развитие того или иного заболевания, среди которых: экологические проблемы, плохое питание, социальные взаимодействия и воздействия окружающей среды, которые способствуют эпигенетическим изменениям.

Как отмечает Сара Бальдауф (Sarah Baldauf), специалист по эпигенетике, выражение эпигенетических изменений в более позднем возрасте может быть причиной возрастных заболеваний, таких, как, к примеру, болезнь Альцгеймера. "С возрастом, стареют и наши гены, поэтому они могут просто отключиться, что и приводит к болезни", - говорит она. Что это может означать? Исследователи надеются разработать препараты, которые будут управлять эпигенетическими изменениями и которые защитят нас или остановят болезнь.

Далее она приводит один пример работы исследовательской команды, которая обнаружила эпигенетические изменения у мышей, приведшие к развитию у грызунов волчанки. Однако, им удалось полностью вылечить мышей, создав лекарственный препарат, который вызвал эпигенетические изменения.

3. Эпигенетика тесно связана с развитием рака

Ранее раковые заболевания уже были включены в список потенциальных болезней, связанных с эпигенетическими изменениями. Эта тема заслуживает дальнейшего обсуждения из-за вероятности ее близкой связи с наукой.

Исследователи рассматривают возможность того, что изменения в эпигеноме вызывают рост опухоли. Некоторое время назад эксперты полагали, что рак связан либо с мутациями, из-за которых наши клетки перестают нас защищать либо с потерей этой защиты при делении клеток. Это правда, однако, существует и третья причина. Опухоли могут расти, потому что хорошие клетки с отличной защитой получают эпигенетический сигнал не выполнять свою работу. С помощью лекарственных препаратов и даже меняя образ жизни, мы, возможно, в будущем сможем изменить эпигенетическое поведение, и вернуть эти защитные клетки к работе.

На недавней конференции американского института раковых исследований была рассмотрена связь между эпигенетикой и раком. К примеру, один из специалистов Родерик Дэшвуд (Roderick Dashwood) описывал исследование, которое показало, что с помощью определенных продуктов питания, таких как брокколи, удалось "выключить" работу особых белков, которые развиваются в организме человека вместе с раком и не позволяют клетками умереть естественным путем.

2. Дородовой уход необходим для того, чтобы следить за эпигенетическими изменениями

Что произойдет, если беременную крысу подвергать воздействию инсектицидов и фунгицидов? Повлияет ли это на ее потомство? Безусловно, да. В ходе исследования во время такого воздействия произошли эпигенетические изменения, которые привели к увеличению случаев мужского бесплодия или же способствовали очень слабому производству спермы. Более того, эти эпигенетические изменения сохранились на протяжении следующих четырех (!) поколений. Поэтому дородовой уход является ключом к здоровью наших потомков и будущих поколений.

Таким образом, если дородовой уход важен, есть ли определенный период беременности, во время которого нужен особый контроль? Похоже, что так. Проведенное колумбийским университетом исследование связывает недостаточное питание во время беременности с негативными последствиями для здоровья ребенка на протяжении всей его жизни. Однако, еще более интригующим оказался тот факт, что особенно опасно недоедание в первые 10 недель беременности.

1. Эпигенетика связана не только с экологией, но и социальными взаимодействиями

Когда дело доходит до эпигенетики, подсчет того, сколько раз в день вы обнимаете своего ребенка, обретает совершенно иной смысл. Похоже, что эпигенетические изменения также связаны с социальными и поведенческими взаимодействиями.

Одно из проведенных исследований показало, что от того, как крыса ухаживает за своими детенышами, зависит поведение малышей в будущем и их эпигенетические маркеры. Более того, команда исследователей показала, что они могут восполнить нехватку заботы при помощи специальных лекарственных препаратов, тем самым меняя эпигенетический фон.

Что касается людей, то когда в их жизни происходят стрессовые ситуации, они также накладывают свой отпечаток на то, как ведет себя наш геном. Кроме того, эпигенетические изменения сохраняются даже после того, как гормон стресса покидает наш организм.

Эпигенетика - относительно новая отрасль генетики, которую называют одним из наиболее важных биологических открытий с момента обнаружения ДНК. Раньше считалось, что набор генов, с которым мы рождаемся, необратимо определяет нашу жизнь. Однако теперь известно, что гены можно «включать» и «выключать», а также добиться их большей или меньшей экспрессии под воздействием различных факторов образа жизни. сайт расскажет, что такое эпигенетика, как она работает, и что Вы можете сделать, чтобы повысить шансы на выигрыш в «лотерею здоровья».

Эпигенетика: изменения в образе жизни - ключ к изменению генов

Эпигенетика - наука, которая изучает процессы, приводящие к изменению активности генов без изменения последовательности ДНК. Проще говоря, эпигенетика изучает воздействие внешних факторов на активность генов.

В ходе проекта «Геном человека» было идентифицировано 25,000 генов в человеческой ДНК. ДНК можно назвать кодом, который организм использует для построения и перестройки самого себя. Однако генам и самим нужны «инструкции», по которым они определяют необходимые действия и время их выполнения.

Эпигенетические модификации и являются теми самыми инструкциями. Существует несколько видов таких модификаций, однако двумя основными из них являются те, которые затрагивают метильные группы (углерод и водород) и гистоны (белки).

Чтобы понять, как работают модификации, представим, что ген - это лампочка. Метильные группы действуют в роли выключателя света (т.е. гена), а гистоны - в качестве регулятора силы света (т.е. они регулируют уровень активности генов). Так вот, считается, что у человека есть четыре миллиона таких выключателей, которые приводятся в действие под влиянием образа жизни и внешних факторов.

Ключом к пониманию влияния внешних факторов на активность генов стали наблюдения за жизнью однояйцевых близнецов. Наблюдения показали, насколько сильными могут быть изменения в генах таких близнецов, ведущих разный образ жизни в разных внешних условиях. По идее, у однояйцевых близнецов болезни должны быть «общими», однако зачастую это не так: алкоголизм, болезнь Альцгеймера, биполярное расстройство, шизофрения, диабет, рак, болезнь Крона и ревматоидный артрит могут проявляться только у одного близнеца в зависимости от различных факторов. Причиной этого является эпигенетический дрифт - возрастное изменение экспрессии генов.

Секреты эпигенетики: как факторы образа жизни влияют на гены

Исследования в области эпигенетики показали, что только 5% генных мутаций, связанных с болезнями, являются полностью детерминированными; на остальные 95% можно повлиять посредством питания, поведения и прочих факторов внешней среды. Программа здорового образа жизни позволяет изменить активность от 4000 до 5000 различных генов.

Мы не просто являемся суммой генов, с которыми были рождены. Именно человек является пользователем, именно он управляет своими генами. При этом не столь важно, какие «генетические карты» раздала Вам природа - важно, что Вы с ними будете делать.

Эпигенетика находится на начальной стадии развития, многое еще предстоит узнать, однако существуют сведения о том, какие основные факторы образа жизни влияют на экспрессию генов.

  1. Питание, сон и упражнения

Не удивительно, что питание способно влиять на состояние ДНК. Рацион, насыщенный переработанными углеводами, приводит к «атакам» ДНК высокими уровнями глюкозы в крови. С другой стороны, обратить повреждения ДНК могут:

  • сульфорафан (содержится в брокколи);
  • куркумин (в составе куркумы);
  • эпигаллокатехин-3-галлат (есть в зеленом чае);
  • ресвератрол (содержится в винограде и вине).

Что касается сна, всего неделя недосыпа негативно сказывается на активности более 700 генов. На экспрессии генов (117) положительно сказываются занятия спортом.

  1. Стресс, отношения и даже мысли

Эпигенетики утверждают, что не только такие «материальные» факторы, как диета, сон и спорт, влияют на гены. Как оказывается, стресс, отношения с людьми и Ваши мысли тоже являются весомыми факторами, влияющими на экспрессию генов. Так:

  • медитация подавляет экспрессию провоспалительных генов, помогая бороться с воспалениями, т.е. защититься от болезни Альцгеймера, рака, болезней сердца и диабета; при этом эффект такой практики виден уже через 8 часов занятий;
  • 400 научных исследований показали, что проявление благодарности, доброта, оптимизм и различные техники, которые задействуют разум и тело, положительно влияют на экспрессию генов;
  • отсутствие активности, плохое питание, постоянные негативные эмоции, токсины и вредные привычки, а также травмы и стрессы запускают негативные эпигенетичекие изменения.

Длительность результатов эпигенетических изменений и будущее эпигенетики

Одним из наиболее потрясающих и противоречивых открытий является то, что эпигенетические изменения передаются следующим поколениям без изменения последовательности генов. Доктор Митчелл Гейнор, автор книги «План генной терапии: Возьмите генетическую судьбу под контроль при помощи питания и образа жизни», считает, что экспрессия генов также передается по наследству.

Эпигенетика, считает доктор Рэнди Джиртл, доказывает, что мы также несем ответственность за целостность нашего генома. Раньше мы считали, что от генов зависит все. Эпигенетика позволяет понять, что наше поведение и привычки могут повлиять на экспрессию генов у будущих поколений.

Эпигенетика - сложная наука, которая имеет огромный потенциал. Специалистам предстоит проделать еще много работы, чтобы определить, какие именно факторы окружающей среды влияют на наши гены, как мы можем (и можем ли) обратить заболевания вспять или максимально эффективно их предотвратить.