Главная · Дисбактериоз · Числовые последовательности и их свойства. Числовые последовательности

Числовые последовательности и их свойства. Числовые последовательности

Предположим, что каждому натуральному числу соответствует определенное действительное число: числу 1 соответствует а 1 , числу 2 – а 2 , числу n – а n . В таком случае мы говорим, что задана числовая последовательность, которую записывают так: а 1 , а 2 , …, а n , где а 1 – первый член, а 2 – второй член, …, а n – n-й член последовательности.

Существует три основных способа задания последовательности.

1. Аналитический. Последовательность задается формулой n-го члена; например, формулой а n = n/(n+1) задается последовательность а 1 , а 2 , …, а n , у которой

а 1 = 1/(1+1) = 1/2; а 2 = 2/(2+1) = 2/3 …;

т.е. последовательность 1/2, 2/3, 3/4, …, n/(n + 1).

2. Реккурентный. Любой член последовательности выражается через предшествующие члены. При данном способе задания последовательности обязательно указывается первый член последовательности и формула, которая позволяет вычислить любой член последовательности по известным предыдущим членам.

Найдем несколько членов последовательности а 1 = 1, а 2 = 1…, а n +2 = а n + а n +1.

а 3 = а 1 + а 2 = 1 + 1 = 2;

а 4 = а 2 + а 3 = 1 + 2 = 3 и др.

В результате получаем последовательность: 1, 1, 2, 3, 5 ….

3. Словесный. Это задание последовательности описанием. Например, последовательность десятичных приближений по недостатку числа е.

Последовательности бывают возрастающими и убывающими.

Последовательность (а n), каждый член которой меньше следующего за ним, т.е. если а n < а n +1 для любого n, называется возрастающей последовательностью.

Последовательность (а n), каждый член которой больше следующего за ним, т.е. если а n > а n +1 для любого n, называется убывающей последователностью.

Например:

а) 1, 4, 9, 16, 25, …, n 2 , … – последовательность возрастающая;

б) -1, -2, -3, -4, …, -n, … – последовательность убывающая;

в) -1, 2, -3, 4, -5, 6, …, (-1) n ∙ n, … – не возрастающая и не убывающая последовательность;

г) 3, 3, 3, 3, 3, 3, …, 3, … – постоянная (стационарная) последовательность.

Если каждый член последовательности (а n), начиная со второго, равен предыдущему, сложенному с одним и тем же числом d, то такая последовательность называется арифметической прогрессией. Число d получило название разности прогрессии.

Т.о., арифметическая прогрессия задана равенством: а n +1 = а n + d. Например,

а 5 = а 4 + d.

При d > 0 арифметическая прогрессия возрастает, при d < 0 убывает.

Последовательность 3, 5, 7, 9, 11, 13 … является арифметической прогрессией,
где а 1 = 3, d = 2 (5 – 3, 7 – 5, 9 – 7 и т.д.).

Иногда рассматривают не всю последовательность, являющуюся арифметической прогрессией, а лишь ее первые несколько членов. В этом случае говорят о конечной арифметической прогрессии.

Арифметическая прогрессия обладает тремя свойствами .

1. Формула n-го члена арифметической прогрессии:

а n = а 1 + d(n – 1)

2. Формулы суммы n первых членов арифметической прогрессии:

а) S n = ((a 1 + a n)/2) ∙ n;

б) S n = ((2a 1 + d(n – 1))/2) ∙ n.

Здесь S 1 = a 1 , S n = а 1 + а 2 + а 3 + … + а n .

3. Характеристическое свойство арифметической прогрессии: последовательность является арифметической последовательностью тогда и только тогда, когда каждый ее член, кроме первого (и последнего в случае конечной арифметической прогрессии), равен среднему арифметическому предыдущего и последующего членов:

a n = (a n -1 + a n +1) / 2.

Если первый член последовательности (b n) отличен от нуля и каждый член, начиная со второго, равен предыдущему, умноженному на одно и то же отличное от нуля число q, то такая последовательность называется геометрической прогрессией. Число q получило название знаменателя прогрессии.

Т.о., геометрическая прогрессия задана равенством b n +1 = b n ∙ q. Например, b 7 = b 6 ∙ q.

Последовательность 100, 30, 9, 27/10, … является геометрической прогрессией, где b 1 = 100, q = 3/10.

Геометрическая прогрессия характеризуется тремя свойствами

1. Формула n-го члена геометрической прогрессии:

b n = b 1 ∙ q n -1 .

2. Формулы суммы первых n членов геометрической прогрессии:

а) S n = (b n q – b 1) / (q – 1);

б) S n = (b 1 (q n – 1)) / (q – 1).

3. Характеристическое свойство геометрической прогрессии: последовательность является геометрической последовательностью тогда и только тогда, когда каждый ее член, кроме первого (и последнего в случае конечной геометрической прогрессии), связан с предыдущим и последующим членами формулой:

b n 2 = b n -1 ∙ b n +1 .

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Рассмотрим ряд натуральных чисел: 1, 2, 3, , n – 1, n ,  .

Если заменить каждое натуральное число n в этом ряду некоторым числом a n , следуя некоторому закону, то получим новый ряд чисел:

a 1 , a 2 , a 3 , , a n –1 , a n , ,

кратко обозначаемый и называемыйчисловой последователь- ностью . Величина a n называется общим членом числовой последовательности. Обычно числовая последовательность задается некоторой формулой a n = f (n ) позволяющей найти любой член последовательности по его номеру n ; эта формула называется формулой общего члена. Заметим, что задать числовую последовательность формулой общего члена не всегда возможно; иногда последовательность задается путем описания ее членов.

По определению, последовательность всегда содержит бесконечное множество элементов: любые два разных ее элемента отличаются, по крайней мере, своими номерами, которых бесконечно много.

Числовая последовательность является частным случаем функции. Последовательность является функцией, определенной на множестве натуральных чисел и принимающей значения в множестве действительных чисел, т. е. функцией вида f : N R .

Последовательность
называетсявозрастающей (убывающей ), если для любого n N
Такие последовательности называютсястрого монотонными .

Иногда в качестве номеров удобно использовать не все натуральные числа, а лишь некоторые из них (например, натуральные числа, начиная с некоторого натурального числа n 0). Для нумерации также возможно использование не только натуральных, но и других чисел, например, n = 0, 1, 2,  (здесь в качестве еще одного номера к множеству натуральных чисел добавлен ноль). В таких случаях, задавая последовательность, указывают, какие значения принимают номера n .

Если в некоторой последовательности для любого n N
то последовательность называетсянеубывающей (невозрастающей ). Такие последовательности называются монотонными .

Пример 1 . Числовая последовательность 1, 2, 3, 4, 5, … является рядом натуральных чисел и имеет общий член a n = n .

Пример 2 . Числовая последовательность 2, 4, 6, 8, 10, … является рядом четных чисел и имеет общий член a n = 2n .

Пример 3 . 1.4, 1.41, 1.414, 1.4142, … − числовая последовательность приближенных значений с увеличивающейся точностью.

В последнем примере невозможно дать формулу общего члена последовательности.

Пример 4 . Записать первых 5 членов числовой последовательности по ее общему члену
. Для вычисленияa 1 нужно в формулу для общего члена a n вместо n подставить 1, для вычисления a 2 − 2 и т. д. Тогда имеем:

Тест 6 . Общим членом последовательности 1, 2, 6, 24, 120,  является:

1)

2)

3)

4)

Тест 7 .
является:

1)

2)

3)

4)

Тест 8 . Общим членом последовательности
является:

1)

2)

3)

4)

Предел числовой последовательности

Рассмотрим числовую последовательность, общий член которой приближается к некоторому числу А при увеличении порядкового номера n . В этом случае говорят, что числовая последовательность имеет предел. Это понятие имеет более строгое определение.

Число А называется пределом числовой последовательности
:

(1)

если для любого  > 0 найдется такое число n 0 = n 0 (), зависящее от , что
приn > n 0 .

Это определение означает, что А есть предел числовой последовательности, если ее общий член неограниченно приближается к А при возрастании n . Геометрически это значит, что для любого  > 0 можно найти такое число n 0 , что, начиная с n > n 0 , все члены последовательности расположены внутри интервала (А – , А + ). Последовательность, имеющая предел, называется сходящейся ; в противном случае – расходящейся .

Числовая последовательность может иметь только один предел (конечный или бесконечный) определенного знака.

Пример 5 . Гармоническая последовательность имеет пределом число 0. Действительно, для любого интервала (–; +) в качестве номера N 0 можно взять какое-либо целое число, больше . Тогда для всехn > n 0 >имеем

Пример 6 . Последовательность 2, 5, 2, 5,  является расходящейся. Действительно, никакой интервал длины, меньшей, например, единицы, не может содержать всех членов последовательности, начиная с некоторого номера.

Последовательность называется ограниченной , если существует такое число М , что
для всехn . Всякая сходящаяся последовательность ограничена. Всякая монотонная и ограниченная последовательность имеет предел. Всякая сходящаяся последовательность имеет единственный предел.

Пример 7 . Последовательность
является возрастающей и ограниченной. Она имеет предел
=е .

Число e называется числом Эйлера и приблизительно равно 2,718 28.

Тест 9 . Последовательность 1, 4, 9, 16,  является:

1) сходящейся;

2) расходящейся;

3) ограниченной;

Тест 10 . Последовательность
является:

1) сходящейся;

2) расходящейся;

3) ограниченной;

4) арифметической прогрессией;

5) геометрической прогрессией.

Тест 11 . Последовательность не является:

1) сходящейся;

2) расходящейся;

3) ограниченной;

4) гармонической.

Тест 12 . Предел последовательности, заданной общим членом
равен.

Колыбель. Пелёнки. Плач.
Слово. Шаг. Простуда. Врач.
Беготня. Игрушки. Брат.
Двор. Качели. Детский сад.
Школа. Двойка. Тройка. Пять.
Мяч. Подножка. Гипс. Кровать.
Драка. Кровь. Разбитый нос.
Двор. Друзья. Тусовка. Форс.
Институт. Весна. Кусты.
Лето. Сессия. Хвосты.
Пиво. Водка. Джин со льдом.
Кофе. Сессия. Диплом.
Романтизм. Любовь. Звезда.
Руки. Губы. Ночь без сна.
Свадьба. Тёща. Тесть. Капкан.
Ссора. Клуб. Друзья. Стакан.
Дом. Работа. Дом. Семья.
Солнце. Лето. Снег. Зима.
Сын. Пелёнки. Колыбель.
Стресс. Любовница. Постель.
Бизнес. Деньги. План. Аврал.
Телевизор. Сериал.
Дача. Вишни. Кабачки.
Седина. Мигрень. Очки.
Внук. Пелёнки. Колыбель.
Стресс. Давление. Постель.
Сердце. Почки. Кости. Врач.
Речи. Гроб. Прощанье. Плач.

Жизненная последовательность

ПОСЛЕДОВАТЕЛЬНОСТЬ - (sequence), числа или элементы, расположенные в организованном порядке. Последовательности могут быть конечными (имеющие ограниченное число элементов) или бесконечными, как полная последовательность натуральных чисел 1, 2, 3, 4 ….… …

Научно-технический энциклопедический словарь

Определение: Числовой последовательностью называют числовую , заданную на множестве N натуральных чисел.Для числовых последовательностей обычно вместо f(n) пишут a n и обозначают последовательность так: (a n ). Числа a 1 , a 2 , …, a n,… называют элементами последовательности.

Обычно числовая последовательность определяется заданием n -го элемента или рекуррентной формулой, по которой каждый следующий элемент определяется через предыдущий. Также возможен описательный способ задания числовой последовательности. Например:

  • Все члены последовательности равны «1″ . Это значит, речь идет о стационарной последовательности 1, 1, 1, …, 1, ….
  • Последовательность состоит из всех простых чисел в порядке возрастания. Таким образом, задана последовательность 2, 3, 5, 7, 11, …. При таком способе задания последовательности в данном примере трудно ответить, чему равен, скажем, 1000-й элемент последовательности.

При рекуррентном способе указывают формулу, позволяющую выразить n -й член последовательности через предыдущие, и задают 1–2 начальных члена последовательности.

  • y 1 = 3; y n = y n-1 + 4 , если n = 2, 3, 4,…

Здесь y 1 = 3; y 2 = 3 + 4 = 7; y 3 = 7 + 4 = 11; ….

  • y 1 = 1; y 2 = 1; y n =y n-2 + y n-1 , если n = 3, 4,…

Здесь: y 1 = 1; y 2 = 1; y 3 = 1 + 1 = 2; y 4 = 1 + 2 = 3; y 5 = 2 + 3 = 5; y 6 = 3 + 5 = 8;

Последовательность, выраженная рекуррентной формулой y n = y n-1 + 4 может быть задана и аналитически: y n = y 1 +4*(n-1)

Проверим: y2=3+4*(2-1)=7, y3=3+4*(3-1)=11

Здесь нам не обязательно знать предыдущий член числовой последовательности для вычисления n-ного элемента, достаточно лишь задать его номер и значение первого элемента.

Как мы видим, этот способ задания числовой последовательности очень похож на аналитический способ задания функций. По сути, числовая последовательность является частным видом числовой функции, поэтому ряд свойств функций можно рассматривать и для последовательностей.

Числовые последовательности это очень интересная и познавательная тема. Эта тема встречается в заданиях повышенной сложности, которые предлагают учащимся авторы дидактических материалов, в задачах математических олимпиад, вступительных экзаменов в Высшие Учебные Заведения и на . И если вы хотите более подробно изучить различные виды числовых последовательностей, жмем сюда. Ну а если вам и так все понятно и просто, но попробуйте ответить на .

Приводится определение числовой последовательности. Рассмотрены примеры неограниченно возрастающих, сходящихся и расходящихся последовательностей. Рассмотрена последовательность, содержащая все рациональные числа.

Определение .
Числовой последовательностью { x n } называется закон (правило), согласно которому, каждому натуральному числу n = 1, 2, 3, . . . ставится в соответствие некоторое число x n .
Элемент x n называют n-м членом или элементом последовательности.

Последовательность обозначается в виде n -го члена, заключенного в фигурные скобки: . Также возможны следующие обозначения: . В них явно указывается, что индекс n принадлежит множеству натуральных чисел и сама последовательность имеет бесконечное число членов. Вот несколько примеров последовательностей:
, , .

Другими словами числовая последовательность - это функция, областью определения которой является множество натуральных чисел. Число элементов последовательности бесконечно. Среди элементов могут встречаться и члены, имеющие одинаковые значения. Также последовательность можно рассматривать как нумерованное множество чисел, состоящее из бесконечного числа членов.

Главным образом нас будет интересовать вопрос - как ведут себя последовательности, при n стремящемся к бесконечности: . Этот материал излагается в разделе Предел последовательности – основные теоремы и свойства . А здесь мы рассмотрим несколько примеров последовательностей.

Примеры последовательностей

Примеры неограниченно возрастающих последовательностей

Рассмотрим последовательность . Общий член этой последовательности . Выпишем несколько первых членов:
.
Видно, что с ростом номера n , элементы неограниченно возрастают в сторону положительных значений. Можно сказать, что эта последовательность стремится к : при .

Теперь рассмотрим последовательность с общим членом . Вот ее несколько первых членов:
.
С ростом номера n , элементы этой последовательности неограниченно возрастают по абсолютной величине, но не имеют постоянного знака. То есть эта последовательность стремится к : при .

Примеры последовательностей, сходящихся к конечному числу

Рассмотрим последовательность . Ее общий член . Первые члены имеют следующий вид:
.
Видно, что с ростом номера n , элементы этой последовательности приближаются к своему предельному значению a = 0 : при . Так что каждый последующий член ближе к нулю, чем предыдущий. В каком-то смысле можно считать, что есть приближенное значение для числа a = 0 с погрешностью . Ясно, что с ростом n эта погрешность стремится к нулю, то есть выбором n , погрешность можно сделать сколь угодно малой. Причем для любой заданной погрешности ε > 0 можно указать такой номер N , что для всех элементов с номерами большими чем N : , отклонение числа от предельного значения a не превзойдет погрешности ε : .

Далее рассмотрим последовательность . Ее общий член . Вот несколько ее первых членов:
.
В этой последовательности члены с четными номерами равны нулю. Члены с нечетными n равны . Поэтому, с ростом n , их величины приближаются к предельному значению a = 0 . Это следует также из того, что
.
Также как и в предыдущем примере, мы можем указать сколь угодно малую погрешность ε > 0 , для которой можно найти такой номер N , что элементы, с номерами большими чем N , будут отклоняться от предельного значения a = 0 на величину, не превышающую заданной погрешности. Поэтому эта последовательность сходится к значению a = 0 : при .

Примеры расходящихся последовательностей

Рассмотрим последовательность со следующим общим членом:

Вот ее первые члены:


.
Видно, что члены с четными номерами:
,
сходятся к значению a 1 = 0 . Члены с нечетными номерами:
,
сходятся к значению a 2 = 2 . Сама же последовательность, с ростом n , не сходится ни к какому значению.

Последовательность с членами, распределенными в интервале (0;1)

Теперь рассмотрим более интересную последовательность. На числовой прямой возьмем отрезок . Поделим его пополам. Получим два отрезка. Пусть
.
Каждый из отрезков снова поделим пополам. Получим четыре отрезка. Пусть
.
Каждый отрезок снова поделим пополам. Возьмем


.
И так далее.

В результате получим последовательность, элементы которой распределены в открытом интервале (0; 1) . Какую бы мы ни взяли точку из закрытого интервала , мы всегда можем найти члены последовательности, которые окажутся сколь угодно близко к этой точке, или совпадают с ней.

Тогда из исходной последовательности можно выделить такую подпоследовательность, которая будет сходиться к произвольной точке из интервала . То есть с ростом номера n , члены подпоследовательности будут все ближе подходить к наперед выбранной точке.

Например, для точки a = 0 можно выбрать следующую подпоследовательность:
.
= 0 .

Для точки a = 1 выберем такую подпоследовательность:
.
Члены этой подпоследовательности сходятся к значению a = 1 .

Поскольку существуют подпоследовательности, сходящиеся к различным значениям, то сама исходная последовательность не сходится ни к какому числу.

Последовательность, содержащая все рациональные числа

Теперь построим последовательность, которая содержит все рациональные числа. Причем каждое рациональное число будет входить в такую последовательность бесконечное число раз.

Рациональное число r можно представить в следующем виде:
,
где - целое; - натуральное.
Нам нужно каждому натуральному числу n поставить в соответствие пару чисел p и q так, чтобы любая пара p и q входила в нашу последовательность.

Для этого на плоскости проводим оси p и q . Проводим линии сетки через целые значения p и q . Тогда каждый узел этой сетки с будет соответствовать рациональному числу. Все множество рациональных чисел будет представлено множеством узлов. Нам нужно найти способ пронумеровать все узлы, чтобы не пропустить ни один узел. Это легко сделать, если нумеровать узлы по квадратам, центры которых расположены в точке (0; 0) (см. рисунок). При этом нижние части квадратов с q < 1 нам не нужны. Поэтому они не отображены на рисунке.


Итак, для верхней стороны первого квадрата имеем:
.
Далее нумеруем верхнюю часть следующего квадрата:

.
Нумеруем верхнюю часть следующего квадрата:

.
И так далее.

Таким способом мы получаем последовательность, содержащую все рациональные числа. Можно заметить, что любое рациональное число входит в эту последовательность бесконечное число раз. Действительно, наряду с узлом , в эту последовательность также будут входить узлы , где - натуральное число. Но все эти узлы соответствуют одному и тому же рациональному числу .

Тогда из построенной нами последовательности, мы можем выделить подпоследовательность (имеющую бесконечное число элементов), все элементы которой равны наперед заданному рациональному числу. Поскольку построенная нами последовательность имеет подпоследовательности, сходящиеся к различным числам, то последовательность не сходится ни к какому числу.

Заключение

Здесь мы дали точное определение числовой последовательности. Также мы затронули вопрос о ее сходимости, основываясь на интуитивных представлениях. Точное определение сходимости рассматривается на странице Определение предела последовательности . Связанные с этим свойства и теоремы изложены на странице

Прежде чем мы начнем решать задачи на арифметическую прогрессию , рассмотрим, что такое числовая последовательность, поскольку арифметическая прогрессия - это частный случай числовой последовательности.

Числовая последовательность - это числовое множество, каждый элемент которого имеет свой порядковый номер . Элементы этого множества называются членами последовательности. Порядковый номер элемента последовательности обозначается индексом:

Первый элемент последовательности;

Пятый элемент последовательности;

- "энный" элемент последовательности, т.е. элемент, "стоящий в очереди" под номером n.

Между значением элемента последовательности и его порядковым номером существует зависимость. Следовательно, мы можем рассматривать последовательность как функцию, аргументом которой является порядковый номер элемента последовательности. Другими словами можно сказать, что последовательность - это функция от натурального аргумента:

Последовательность можно задать тремя способами:

1 . Последовательность можно задать с помощью таблицы. В этом случае мы просто задаем значение каждого члена последовательности.

Например, Некто решил заняться личным тайм-менеджментом, и для начала посчитать в течение недели, сколько времени он проводит ВКонтакте. Записывая время в таблицу, он получит последовательность, состоящую из семи элементов:

В первой строке таблицы указан номер дня недели, во второй - время в минутах. Мы видим, что , то есть в понедельник Некто провел ВКонтакте 125 минут, , то есть в четверг - 248 минут, а , то есть в пятницу всего 15.

2 . Последовательность можно задать с помощью формулы n-го члена.

В этом случае зависимость значения элемента последовательности от его номера выражается напрямую в виде формулы.

Например, если , то

Чтобы найти значение элемента последовательности с заданным номером, мы номер элемента подставляем в формулу n-го члена.

То же самое мы делаем, если нужно найти значение функции, если известно значение аргумента. Мы значение аргумента подставляем вместо в уравнение функции:

Если, например, , то

Ещё раз замечу, что в последовательности, в отличие от произвольной числовой функции, аргументом может быть только натуральное число.

3 . Последовательность можно задать с помощью формулы, выражающей зависимость значения члена последовательности с номером n от значения предыдущих членов. В этом случае нам недостаточно знать только номер члена последовательности, чтобы найти его значение. Нам нужно задать первый член или несколько первых членов последовательности.

Например, рассмотрим последовательность ,

Мы можем находить значения членов последовательности один за другим , начиная с третьего:

То есть каждый раз, чтобы найти значение n-го члена последовательности, мы возвращаемся к двум предыдущим. Такой способ задания последовательности называется рекуррентным , от латинского слова recurro - возвращаться.

Теперь мы можем дать определение арифметической прогрессии. Арифметическая прогрессия - это простой частный случай числовой последовательности.

Арифметической прогрессией называется числовая последовательность, каждый член которой, начиная со второго, равен предыдущему, сложенному с одним и тем же числом.


Число называется разностью арифметической прогрессии . Разность арифметической прогрессии может быть положительной, отрицательной, или равной нулю.

Если title="d>0">, то каждый член арифметической прогрессии больше предыдущего, и прогрессия является возрастающей .

Например, 2; 5; 8; 11;...

Если , то каждый член арифметической прогрессии меньше предыдущего, и прогрессия является убывающей .

Например, 2; -1; -4; -7;...

Если , то все члены прогрессии равны одному и тому же числу, и прогрессия является стационарной .

Например, 2;2;2;2;...

Основное свойство арифметической прогрессии:

Посмотрим на рисунок.

Мы видим, что

, и в то же время

Сложив эти два равенства, получим:

.

Разделим обе части равенства на 2:

Итак, каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому двух соседних:

Больше того, так как

, и в то же время

, то

, и, следовательно,

Каждый член арифметической прогрессии, начиная с title="k>l">, равен среднему арифметическому двух равноотстоящих.

Формула го члена.

Мы видим, что для членов арифметической прогрессии выполняются соотношения:

и, наконец,

Мы получили формулу n-го члена.

ВАЖНО! Любой член арифметической прогрессии можно выразить через и . Зная первый член и разность арифметической прогрессии можно найти любой её член.

Сумма n членов арифметической прогрессии.

В произвольной арифметический прогрессии суммы членов, равноотстоящих от крайних равны между собой:

Рассмотрим арифметическую прогрессию, в которой n членов. Пусть сумма n членов этой прогрессии равна .

Расположим члены прогрессии сначала в порядке возрастания номеров, а затем в порядке убывания:

Сложим попарно:

Сумма в каждой скобке равна , число пар равно n.

Получаем:

Итак, сумму n членов арифметической прогрессии можно найти по формулам:

Рассмотрим решение задач на арифметическую прогрессию .

1 . Последовательность задана формулой n-го члена: . Докажите, что эта последовательность является арифметической прогрессией.

Докажем, что разность между двумя соседними членами последовательности равна одному и тому же числу.

Мы получили, что разность двух соседних членов последовательности не зависит от их номера и является константой. Следовательно, по определению, эта последовательность является арифметической прогрессией.

2 . Дана арифметическая прогрессия -31; -27;...

а) Найдите 31 член прогрессии.

б) Определите, входит ли в данную прогрессию число 41.

а) Мы видим, что ;

Запишем формулу n-го члена для нашей прогрессии.

В общем случае

В нашем случае , поэтому

Получаем:

б) Предположим, что число 41 является членом последовательности. Найдем его номер. Для этого решим уравнение:

Мы получили натуральное значение n, следовательно, да, число 41 является членом прогрессии. Если бы найденное значение n не было бы натуральным числом, то мы бы ответили, что число 41 НЕ является членом прогрессии.

3 . а) Между числами 2 и 8 вставьте 4 числа так, чтобы они вместе с данными числами составляли арифметическую прогрессию.

б) Найдите сумму членов полученной прогрессии.

а) Вставим между числами 2 и 8 четыре числа:

Мы получили арифметическую прогрессию, в которой 6 членов.

Найдем разность этой прогрессии. Для этого воспользуемся формулой n-го члена:

Теперь легко найти значения чисел:

3,2; 4,4; 5,6; 6,8

б)

Ответ: а) да; б) 30

4. Гру­зо­вик пе­ре­во­зит пар­тию щебня мас­сой 240 тонн, еже­днев­но уве­ли­чи­вая норму пе­ре­воз­ки на одно и то же число тонн. Из­вест­но, что за пер­вый день было пе­ре­ве­зе­но 2 тонны щебня. Опре­де­ли­те, сколь­ко тонн щебня было пе­ре­ве­зе­но на две­на­дца­тый день, если вся ра­бо­та была вы­пол­не­на за 15 дней.

По условию задачи количество щебня, которое перевозит грузовик, каждый день увеличивается на одно и то же число. Следовательно, мы имеем дело с арифметической прогрессией.

Сформулируем эту задачу в терминах арифметической прогрессии.

За пер­вый день было пе­ре­ве­зе­но 2 тонны щебня: a_1=2.

Вся ра­бо­та была вы­пол­не­на за 15 дней: .

Гру­зо­вик пе­ре­во­зит пар­тию щебня мас­сой 240 тонн:

Нам нужно найти .

Сначала найдем разность прогрессии. Воспользуемся формулой суммы n членов прогрессии.

В нашем случае: