Главная · Болезни желудка · Исследование экссудатов и транссудатов. Чем отличается транссудат от экссудата? Транссудат причины

Исследование экссудатов и транссудатов. Чем отличается транссудат от экссудата? Транссудат причины

Ультрафильтрат

плазмы

Трансудат

Экссудат

Плазма

Сосудистая проницаемость

Нормальная

Нормальная

Повышенная

Типы белков

Альбумины

Альбумины

Нет (фибриноген)

Относительная плотность

Воспаления

При остром воспалении наблюдается немедленное (но реверсивное) увеличение проницаемости венул и капилляров, благодаря активному сокращению филаментов актина в эндотелиальных клетках, приводящее к расширению межклеточных пор. К такому же результату может приводить прямое повреждение эндотелиальных клеток токсическими агентами. Через сосуды с нарушенной проницаемостью могут проникать большие количества жидкости и крупномолекулярные белки. Эти изменения проницаемости вызываются различными химическими медиаторами (табл. 1).

Экссудация жидкости: переход большого количества жидкости из кровотока в интерстициальную ткань вызывает припухлость (воспалительный отек) ткани. Увеличение перехода жидкости из микроциркуляторного русла в ткани из-за увеличения сосудистой проницаемости называется экссудацией . Состав экссудата приближается к составу плазмы (табл. 2); он содержит большое количество белков плазмы, включая иммуноглобулины, комплемент и фибриноген, ввиду того, что эндотелий с повышенной проницаемостью больше не предотвращает проникновение в ткани этих больших молекул. Фибриноген при остром воспалительном экссудате быстро преобразуется в фибрин под влиянием тромбопластинов тканей. Фибрин может обнаруживаться микроскопически в экссудате в виде розовых нитей или пучков. Макроскопически фибрин наиболее хорошо виден на воспаленной серозной оболочке, поверхность которой изменяется от нормальной блестящей до шероховатой, желтоватой, покрытой пленкой и коагулированными белками.

Экссудацию необходимо отличать от транссудации (табл. 2). Транссудация - это процесс увеличенного перехода жидкости в ткани через сосуды с нормальной проницаемостью. Сила, под влиянием которой происходит переход жидкости из кровотока в ткани, обусловлена увеличением гидростатического давления или уменьшением осмотического давления коллоидов плазмы. Транссудат имеет состав, аналогичный составу ультрафильтрата плазмы. В клинической практике идентификация отечной жидкости (транссудат или экссудат) имеет большую диагностическую ценность, так как она обеспечивает определение причин нарушений, например, при исследовании перитонеальной жидкости (при асците).

Экссудация обеспечивает снижение активности повреждающего агента путем:

Разведения его; - увеличения оттока лимфы; - наводнения плазмой, содержащей многочисленные защитные белки типа иммуноглобулинов и комплемента.

Увеличение лимфатического дренажа способствует переносу повреждающих агентов в регионарные лимфатические узлы, облегчая таким образом защитный иммунный ответ. Иногда при заражении вирулентными микроорганизмами этот механизм может стать причиной их распространения и возникновения лимфангита и лимфаденита.

Клеточные реакции:

Типы вовлеченных клеток: острое воспаление характеризуется активной эмиграцией воспалительных клеток из крови в область повреждения. Нейтрофилы (полиморфноядерные лейкоциты) доминируют в ранней стадии (в первые 24 часа). После первых 24-48 часов в очаге воспаления появляются фагоцитирующие клетки макрофагальной системы и иммунологически активные клетки типа лимфоцитов и плазматических клеток. Однако нейтрофилы остаются преобладающим типом клеток в течение нескольких дней.

Краевое стояние нейтрофилов: в нормальном кровеносном сосуде клеточные элементы сосредоточены в центральном осевом потоке, отделяясь от эндотелиальной поверхности зоной плазмы (рис. 3). Это разделение зависит от нормального тока крови, которое возникает под действием физических законов, влияние которых приводит к накоплению самых тяжелых клеточных частиц в центре сосуда. Так как скорость кровотока в расширенных сосудах при остром воспалении уменьшена, распределение клеточных элементов нарушается.

Эритроциты формируют большие агрегаты (“монетный столбик” из эритроцитов ) (так называемый “слажд”-феномен).

Лейкоциты перемещаются к периферии и вступают в контакт с эндотелием (маргинация, краевое стояние), на котором многие из них адгезируются . Это происходит в результате увеличения экспрессии (появления на поверхности клеток) различных молекул адгезии клеток (САМ , cell adhesion molecules) на лейкоцитах и эндотелиальных клетках. Например, экспрессия бета 2 интегринов (комплекс CD11-CD18), которые включают в себя лейкоцитарный функциональный антиген-1 (LFA-1, leukocyte function antigen-1), увеличивается из-за влияния таких хемотаксических факторов как C5a ("анафилатоксин”) комплемента, и лейкотриена В 4 ЛТB 4 . Синтез комплементарных CAM-молекул на эндотелиальных клетках аналогично регулируется действиями интерлейкина-1 (IL-1) и TNF (фактор некроза опухоли (tumor necrosis factor), который выявляется и вне опухолей); они включают ICAM 1, ICAM 2 и ELAM-1 (эндотелиальная молекула адгезии лейкоцитов, endothelial leukocyte adhesion molecule).

Эмиграция нейтрофилов: адзегированные нейтрофилы активно покидают кровеносные сосуды через межклеточные щели и проходят через базальную мембрану, попадая в интерстициальное пространство (эмиграция ). Проникновение через стенку сосуда длится 2-10 минут; в интерстициальной ткани нейтрофилы двигаются со скоростью до 20 мкм/мин.

Хемотаксические факторы (таблица 1): активная эмиграция нейтрофилов и направление движения зависят от хемотаксических факторов. Факторы комплемента C3a и C5a (образующие в комплексе анафилатоксин ) - мощные хемотаксические агенты для нейтрофилов и макрофагов, как и лейкотриен LTB4. Взаимодействие между рецепторами на поверхности нейтрофилов и этими "хемотаксинами" увеличивает подвижность нейтрофилов (путем увеличения притока ионов Ca 2+ в клетку, который стимулирует сокращение актина) и активирует дегрануляцию. Различные цитокины оказывают активирующую роль в процессах развития иммунного ответа.

Эритроциты попадают в воспаленную область пассивно, в отличие от активного процесса эмиграции лейкоцитов. Они выталкиваются из сосудов гидростатическим давлением через расширенные межклеточные щели вслед за эмигрирующими лейкоцитами (диапедез ). При тяжелых повреждениях, связанных с нарушением микроциркуляции, в очаг воспаления может попадать большое количество эритроцитов (геморрагическое воспаление).

Иммунный фагоцитоз (В) намного эффективнее неспецифического (А). Нейтрофилы имеют на своей поверхности рецепторы к Fc-фрагменту иммуноглобулинов и фактрорам комплемента. Макрофаги обладают такими же свойствами.

1. Распознавание - первым этапом фагоцитоза является распознавание повреждающего агента фагоцитарной клеткой, которое происходит или непосредственно (при распознавании больших, инертных частиц), или после того, как агент покрывается иммуноглобулинами или факторами комплемента (C3b) (опсонизация ). Облегченный опсонином фагоцитоз - механизм, участвующий в иммунном фагоцитозе микроорганизмов. IgG и C3b - эффективные опсонины. Иммуноглобулин, который обладает специфической реактивностью по отношению к повреждающему агенту (специфическое антитело) - наиболее эффективный опсонин. C3b образуется непосредственно в очаге воспаления путем активации системы комплемента. На ранних стадиях острого воспаления, прежде чем развивается иммунный ответ, доминирует неиммунный фагоцитоз, но по мере развития иммунного ответа он замещается более эффективным иммунным фагоцитозом.

2. Поглощение - после распознавания нейтрофилом или макрофагом чужеродная частица поглощается фагоцитарной клеткой, в которой формируется ограниченная мембраной вакуоль, названная фагосомой, которая при слиянии с лизосомами образует фаголизосому.

3. Разрушение микроорганизмов - когда повреждающим агентом является микроорганизм, он должен быть убит, прежде чем произойдет гибель фагоцитирующей клетки. В процессе разрушения микроорганизмов участвуют несколько механизмов.

ПРОЛИФЕРАЦИЯ

Пролиферация (размножение) клеток является завершающей фазой воспаления. В очаге воспаления наблюдается пролиферация камбиальных клеток соединительной ткани, В- и Т-лимфоцитов, моноцитов, а также клеток местной ткани, в которой разворачивается процесс воспаления - мезотелиальных, эпителиальных клеток. Параллельно наблюдается клеточная дифференцировка и трансформация. В-лимфоциты дают начало образованию плазматических клеток, моноциты - гистиоцитам и макрофагам. Макрофаги могут быть источником образования эпителиоидных и гигантских клеток (клетки инородных тел и клетки типа Пирогова-Лангханса).

Камбиальные клетки соединительной ткани в дальнейшем могут дифференцироваться в фибробласты, продуцирующие белок коллаген и гликозаминогликаны. Вследствие этого очень часто в исходе воспаления разрастается волокнистая соединительная ткань.

РЕГУЛЯЦИЯ ВОСПАЛЕНИЯ

Регуляция воспаления осуществляется с помощью гормональных, нервных и иммунных факторов.

Известно, что некоторые гормоны усиливают воспалительную реакцию - это, так называемые,

провоспалительные гормоны (минералокортикоиды, соматотропный гормон гипофиза, гипофизарный тиреостимулин, альдостерон). Другие, наоборот, уменьшают ее. Это противовоспалительные гормоны , такие как глюкокортикоиды и адренокортикотропный гормон (АКТГ) гипофиза. Их антивоспалительный эффект успешно используется в терапевтической практике. Эти гормоны блокируют сосудистый и клеточный феномен воспаления, ингибируют подвижность лейкоцитов, усиливают лимфоцитолиз.

Холинергические вещества , стимулируя выброс медиаторов воспаления, действуют подобно провоспалительным гормонам, а адренергические , угнетая медиаторную активность, ведут себя подобно противовоспалительным гормонам.

На выраженность воспалительной реакции, темпы ее развития и характер влияет состояние иммунитета. Особенно бурно воспаление протекает в условиях антигенной стимуляции (сенсибилизации). В таких случаях говорят об иммунном, или аллергическом, воспалении.

Транссудатом называется жидкость невоспалительного про­исхождения, которая образуется вследствие пропотевания сыво­ротки крови через стенку сосудов в больше серозные полости (плевральную, брюшную, околосердечную) чаще при недостаточ­ности кровообращения, а также при нарушении местного крово­обращения.

Экссудат - жидкость, скапливающаяся в тех же полостях в результате воспалительного процесса. Воспалительный выпот наблюдается при туберкулезе, ревматизме, раке и некоторых других заболеваниях.

Определение физических свойств транссудатов и экссудатов

Определяют цвет, прозрачность, консистенцию, запах, удельный вес, характер выпота.

Транссудат и серозный экссудат прозрачны. Транссудат почти бесцветный или имеет бледножёлтый цвет. Серозный экссу­дат имеет различную окраску в зависимости от характера экссу­дата. Экссудат может быть следующего характера:

Серозный - прозрачная жидкость бдедно-желтого цвета.

Серозно-фибринозный - полупрозрачная жидкость, в которой при стоянии выпадает осадок,

Серозно-гнойный - мутная жидкость желтоватого цвета, гной, стоянии отмечается обильный осадок.

Гнойный - густая мутная жидкость желтовато-зеленого цве­та. При примеси крови жидкость приобретает красно-бурый цвет.

Гнилостный - мутная желтовато-зеленая или буро-зеленая жидкость с гнилостным запахом.

Геморрагический - красного или буровато-коричневого цвета мутная жидкость.

Хилёзный - жидкость молочного характера с большим содер­жанием жира.

Псевдохилозный - имеет вид разбавленного молока без аира.

Консистенция выпота может быть жидкой, полужидкой, густой. Запах в большинство случаев отсутствует, неприятным запахом обладает только гнилостный экссудат.

Удельный вес жидкости определяют при помощи урометра. Полостную жидкость наливают в цилиндр, опускают урометр, чтобы он свободно в нем плавал. Транссудаты имеют более низкий удельный вес, чем экссудаты. Удельный вес транссудата колеб­лется в пределах I005-I0I5, удельный вес экссудата выше 1015. Характер выпота определяется путем оценки указанных сеойств с последующей проверкой при микроскопической исследовании.

Химическое исследование

Сюда относится определение белка. Белок в выпотных жид­костях определяется по методу Робертса-Стольннкова. Метод основан на том, что при наслаивании жидкости, содержащей бе­лок, на 50% раствор азотной кислоты на границе двух жидкостей образуется белое кольцо, причем, если чёткое белое кольцо появляется на 3-ей минуте, то содержание белка разно 0,033% или 33 мг в 1000 мл жидкости.

Появление кольца раньше чем через 2 минуты свидетельству­ет о большом содержании белка в исследуемой жидкости, в этом случае экссудат следует развести физиологическим раствором или водой до появления тонкого белого кольца на 3-ей минуте. При разведении учитывают ширину кольца, его компактность, при этом каждое последущее разведение жидкости готовят из преды­дущего. Определение кольца производят на черном фоне. Количе­ство белка вычисляют, умножив полученное разведение на 0,033%. Содержание белка выражают в %. Белок в транссудате содержит­ся в меньшем количестве, чем в экссудате, не более 3%(обыч­но 0,5-2,55%), а в экссудате свыше 3%:


По количеству белка МОЖНО судить,о характере выпота. Иногда содержание белка в транссудате доходит до 4%. Для отличия транссудата от экссудата в таких случаях пользу­ются реакциями открывающими особое белковое тело, серозомуцин, присущее только экссудатам.

Реакция Ривальта. В цилиндр емкостью 100-200 мл наливают дистиллированную воду, которую подкисляют ледяной уксусной кислотой (2 капли ледяной уксусной кислоты на 100 мл воды). В этот pacтвор опускают 1-2 капли исследуемой жидкости. Если жидкость - транссудат, то помутнения по ходу капли не будет, реакцию считают отрицательной; если жидкость - экссудат, то по ходу капли образуется беловатое облачко, в этом случае реак­цию считают положительной.

Реакция Лукерини. На часовое стекло вносят 2 ил 3% раст­вора перекиси водорода, в нее добавляют I каплю исследуемой Жидкости, если появляется опалесцирующее помутнение, жидкость является экссудатом. Определение помутнения производят на чер­ном фоне.

Микроскопическое исследование

Для изучения клеточного состава жидкость центрифугируют. Проводят микроскопическое исследование нативных и окрашенных препаратов, приготовленных из осадка.

Нативные препараты готовят следующим образом: на предмет­ное стекло помещают кашпо отцентрифугированного осадка, накры­вают покровным стеклом и изучают под микроскопом вначале под малым, а затем под большим увеличением. При исследовании нативного препарата можно обнаружить: лейкоциты в небольшом количестве обнаруживаются в транссудатах, значительно больше их в экссудатах, особенно большое количество лейкоцитоз отме­чается при гнойных выпотах. Эритроциты в небольшом количестве Встречаются во всяком выпоте, большое количество ИХ наблюдает­ся при геморрагических экссудатах.

Клетки мезотелия - крупные клетки, обнаруживаются в боль­шом количестве в транссудатах, при сердечных и почечных забо­леваниях. Б экссудатах - при злокачественных новообразованиях и туберкулезной этиологии их обычно немного.

Окрашенные препараты. Небольшую каплю осадка помещают на предметное отекло, готовят мазок. Мазок высушивают на воздухе, затем фиксируют или абсолютным метиловым спиртом - 5 минут, или смесью Никифорова (равные объемы 96% этилового спирта и эфира) - 15 минут. Фиксированные препараты окрашивают краской Романовского-Гимза в течение 10 минут, затем смывают краску, мазок высушивают и исследуют под микроскопом с иммерсионной системой. В окрашенных препаратах подсчитывают процентное со­отношение отдельных видов лейкоцитов, исследуют морфологию других клеточных элементов. В окрашенных препаратах можно об­наружить:

нейтрофильные лейкоциты - преобладающие клетки гнойного экссудата. При серозном воспалении нейтрофиллы можно обнару­жить в начальной стадии процесса;

лимфоциты - встречаются в экссудате любой этиологии, в большом количестве наблюдаются при туберкулезках плевритах. Небольшое количество встречается в транссудатах;

клетки мезотелия - крупные, разной формы, с одним или двумя ядрами. Цитоплазма мезотелия окрашивается в синий дает. Постоянно обнаруживаются в транссудатах, в экссудатах - в начальной стадии воспалительного процесса;

атипичные (опухолевые) клетки - различной величины и обычно крупные до 40-50 мкм. Ядро занимает большую часть цитоплазмы. В ядрах клеток обнаруживаются нуклеолы. Цитоплазма окрашивается базофильно.

Бактериоскопическое исследование

Сухие фиксированные мазки окрашиваются по Цилю-Нильсону. Методику окрашивания см.раздел "Исследование мокроты".

Для исследования на туберкулезные бактерии экссудат подвергают длительному центрифугированию или обработке способом флотации.

ПРиложение: Посуда, оборудование, реактивы..

I.Пробирки. 2.Пипетки. 3. Цилиндры для определения удельного веса выпотных жидкостей и проведения реакции Ривальта. 4. Часовые стекла для проведения пробы Лукерини. 5. Черная бумага. 6. Урометры. 7. Предметные и покровные стекла. 8. Спиртовые горелки. 9. Центрифуга. 10. Микроскопы. II. Набор для окрашивания по Романовскому-Гимза. 12. Набор для окрашивания по Цилю-Нильсону. 13. Ледяная уксусная кисло­та. 14. 50% раствор азотной кислоты. 15. 3% раствор перекиси водорода.

В соответствии с существующей классификацией выпотные жидкости делят на экссудаты и транссудаты. Отдельно выделяют жидкость кистозных образований.

Транссудаты появляются вследствие разнообразных причин: изменения проницаемости сосудистых стенок; повышения внутрикапиллярного давления; расстройства местного и общего кро­вообращения (при сердечно-сосудистой недостаточности, цирро­зах печени; снижении онкотического давления в сосудах; нефротическом синдроме и др.). Обычно это прозрачная жидкость светло-желтого цвета слабощелочной реакции. Изменение цвета и прозрачности может наблюдаться в геморрагических и хилезных транссудатах. Относительная плотность жидкости колеблет­ся от 1,002 до 1,015, белок имеет концентрацию 5-25 г/л.

Экссудаты образуются в результате воспалительных процес­сов, вызываемых различными причинами. Это жидкость щелоч­ной реакции, относительная плотность которой выше 1,018, а кон­центрация белка более 30 г/л.

Экссудаты бывают серозные и серозно-фибринозные (при ревматических плевритах, плевритах и перитонитах туберкулез­ной этиологии), серозно-гнойные и гнойные (при бактериаль­ных плевритах и перитонитах), геморрагические (чаще всего при злокачественных новообразованиях, реже при инфаркте легкого, геморрагических диатезах, туберкулезе), хилезные (при затруд­нении лимфооттока через грудной проток вследствие сдавления опухолью, увеличенными лимфоузлами, а также разрыве лимфа­тических сосудов, обусловленном травмой или опухолью), холе­стериновые (застарелые, осумкованные выпоты, содержащие крис­таллы холестерина), гнилостные (при присоединении гнилостной флоры).

Выпотные жидкости получают путем пункции соответствую­щей полости. Полученный материал собирают в чистую сухую посуду. С целью предотвращения свертывания добавляют цитрат натрия из расчета 1 г на 1 л жидкости или раствор цитрата натрия (38 г/л) в соотношении 1: 9. ОПРЕДЕЛЕНИЕ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ

Цвет жидкости различен в зависимости от характера выпота. Транссудаты и серозные экссудаты светло-желтого цвета. Гной­ные экссудаты обычно желтовато-зеленые с бурым оттенком от наличия крови. Большая примесь крови придает жидкости крас­но-бурый оттенок (геморрагический экссудат). Молочно-белый цвет характерен для хилезных экссудатов. Холестериновый экс­судат желтовато-буроватый, иногда с коричневым оттенком.

Прозрачность жидкости также зависит от характера выпота. Транссудаты и серозные экссудаты прозрачны. Геморрагические, гнойные, хилезные - мутные.

Определение относительной, плотности проводят с помощью урометра, методами, описанными в разделе «Исследование мочи». Количественное определение белка осуществляют так же, как в моче с сульфосалициловой кислотой (30 г/л). Поскольку в выпотной жидкости всегда содержится белок в значительно боль­шем количестве, чем в моче, готовят основное разведение выпотной жидкости в 100 раз, для чего к 0,1 мл выпотной жидко­сти приливают 9,9 мл раствора хлорида натрия (9 г/л). При очень высоком содержании белка в экссудате разведение можно продолжать, пользуясь основным разведением. Расчет производят покалибровочному графику с учетом степени разведения жидкости.

Проба Ривальта предложена для дифференцирования транс­судатов и экссудатов. Экссудат содержит серомуцин (вещество глобулиновой природы), дающий положительную пробу Ривальта

Ход определения. В цилиндр емкостью 100 мл с дистиллиро­ванной водой, подкисленной 2-3 каплями концентрированной уксусной кислоты, добавляют 1-2 капли исследуемой жидкости. Если падающие капли образуют беловатое облачко (напоминает дым от сигареты), опускающееся до дна цилиндра, - проба по­ложительная. В транссудате помутнение по ходу капли не появ­ляется либо проявляется очень слабо и быстро исчезает. Проба Ривальта не всегда позволяет отличить транссудат от экссудата при смешанных жидкостях. Большое значение для их отличия имеет микроскопическое исследование.

Таблица 11

Отличительные признаки транссудатов и экссудатов

Свойства

Выпотнаяая жидкость

транссудат

экссудат

Лимонно-желтый

Лимонно-желтый, зеленова­то-желтый, бурый, желтый, буровато-красный, кровянис­тый, молочно-белый

Характер

Серозный

Серозный, серозно-гнойный, гнойный, гнилостный, гемор­рагический

Мутность

Прозрачный или слегка мут­новатый

Разная степень помутнения

Относительная плот­ность

< 1, 015

Свертываемость

Не свертывается

Свертывается

< 30 г/л

Проба Ривальта

Отрицательная

Положительная

Клеточный состав

В основном лимфоциты, ме- зотелиальные клетки

Различные лейкоциты, мак­рофаги, мезотелий, частью в состоянии пролиферации (разное количество), эритро­циты, кристаллы холестери­на, липофаги, капли жира, элементы злокачественных новообразований

Бактериальный состав

Обычно стерилен

Микобактерии туберкулеза, стрептококки, стафилококки

МИКРОСКОПИЧЕСКОЕ ИССЛЕДОВАНИЕ

Микроскопическое исследование выпотных жидкостей про­водят после центрифугирования в течение 5-10 мин при 1500- 3000 об/мин и приготовления препаратов из осадка. Микроско­пическое исследование следует производить в нативных и окра­шенных препаратах.

Нативные препараты. Каплю осадка наносят на предметное стекло и накрывают покровным стеклом, микроскопируют, ис­пользуя окуляр 7, объектив 40. Исследование нативных препара­тов дает возможность ориентировочно судить о характере пато­логического процесса, количестве клеточных элементов, преоб­ладании различных форменных элементов, наличии комплексов клеток опухолевой природы, кристаллов и других элементов.

Лейкоциты в небольшом количестве (до 10-15 в поле зре­ния) обнаруживаются в транссудатах и в большом количестве в жидкостях воспалительного происхождения.Эритроциты в том или ином количестве присутствуют в лю­бой жидкости. В транссудатах и серозных экссудатах их выявляют в небольшом количестве за счет травматической примеси крови (в момент прокола). Геморрагические экссудаты обычно содер­жат очень много эритроцитов.

Клетки мезотелия - крупные клетки размером до 25 мкм и более. Обнаруживаются в большом количестве в транссудатах, располагаются одиночно, иногда в виде скоплений. Иногда вы- являются выраженные дегенеративные изменения в виде вакуо­лизации цитоплазмы (перстневидные клетки).

Опухолевые клетки расположены обычно в виде комплексов без четких границ с выраженными признаками полиморфизма вели­чины и формы.Жировые капли в виде резко преломляющих свет круглых ка­пель, окрашивающихся Суданом III в оранжевый цвет, встреча­ются в гнойных экссудатах с выраженным клеточным распадом и в хилезных экссудатах.

Кристаллы холестерина - бесцветные прозрачные пластинки с обломанными углами в виде ступенек. Обнаруживаются в ста­рых осумкованных холестериновых экссудатах, чаще туберкулез­ной этиологии.

Окрашенные препараты. Небольшую каплю осадка помещают на предметное стекло. Препарат готовят так же, как мазок кро­ви, высушивают на воздухе. Окраску производят после фиксации мазков обычными гематологическими красителями. Клеточные элементы экссудатов окрашиваются быстрее, чем элементы кро­ви, поэтому время окраски сокращается до 8-10 мин. В мазках подсчитывают процентное соотношение отдельных видов лейко­цитов, исследуют морфологию других клеточных элементов.

В окрашенных препаратах обнаруживают следующие клеточ­ные элементы.

Нейтрофилы преобладающие клетки гнойного экссудата. По морфологии нейтрофилов можно судить о тяжести воспалитель­ного процесса. Дегенеративные изменения нейтрофилов (ток- согенная зернистость и вакуолизация цитоплазмы, гиперсегмен­тация и пикноз ядер, кариорексис и кариолизис вплоть до кле­точного распада) наблюдаются при наиболее тяжелых случаях гнойного воспаления. Нейтрофилы с явлением фагоцитоза встречаются при более доброкачественных процессах.

Лимфоциты являются преобладающими клетками серозного экссудата (до 80-90% всех лейкоцитов). В небольшом количест­ве встречаются и в транссудатах. Морфология их не отличается от таковой в периферической крови.

Плазматические клетки могут встречаться при затяжном ха­рактере воспаления серозных оболочек.

Гистиоциты – тканевые моноциты, клетки различных размеров с нежной структурой ядра моноцитоидной формы и серовато-голубой цитоплазмы. Часто обнаруживаются в гнойных экссудатах в период санации полости.

Макрофаги – полиморфные клетки с ядром неправильной формы, бобовидной формы с включениями в цитоплазме. Обнаруживаются при кровоизлияниях в плевральную полость, опухолях, гнойных плевритах.

Клетки мезотелия выстилают серозные оболочки. Крупных размеров до 30 мкм округлой формы, круглое ядро чаще центрально и широкой от серого до темно-голубого цитоплазмой. Иногда могут быть двух- и многоядерные. Обнаруживаются в экссудатах и транссудатах в начальной стадии воспалительного прецесса, а также при опухолях. В жидкостях большой давности отмечаются дегенеративные изменения этих клеток (вакуолизация цитоплазмы, эксцентрично расположенное ядро).

Клетки злокачественных опухолей – клетки крупного размера 40-50 мкм с выраженным полиморфизмом (различная величина, структура и окраска ядер, нарушение ядерно-цитоплазматического отношения в пользу ядра, гиперхромия ядер, крупные множественные ядрышки). Обнаруживаются при канцероматозе плевры, брюшина вследствие первичного (мезотелиома) или вторичного поражения (метастазирование из др. органов).

10.Современные представления о гемостазе. Сосудисто-тромбоцитарное и плазменное звено гемостаза. Биологическое действие и механизмы активации. Лабораторные методы исследования сосудисто-тромбоцитарного и коагуляционного гемостаза.

Система гемостаза представляет собой совокупность многих биологических факторов и биохимических процессов, поддерживающих структурную целостность кровеносных сосудов, жидкое состояние крови и ее текучесть.

Функции:

Обеспечивает циркуляцию жидкой крови в сосудистом русле;

Способствует прекращению кровотечения при повреждении сосуда.

Функционально-морфологические компоненты:

1) эндотелий сосудов,

2)клетки крови (лейкоциты,эритроциты,тромбоциты) ,

3)система свертывания крови, включающая в себя плазменные и тромбоцитарные факторы, антикоагулянтное звено и фибринолитическую систему крови.

Гемостаз включает 3 основных этапа:

    Первичный гемостаз, в котором участвуют, в основном, сосуды и тромбоциты, он заканчивается образованием тромбоцитарного сгустка,

    Вторичный гемостаз – в котором участвуют преимущественно плазменные факторы, он закачивается образованием окончательного фибринового тромба.

    Фибринолиз, приводящий к растворению тромба.

В зависимости от механизма остановки кровотечения различают первичный и вторичный гемостаз.

Первичный гемостаз (микроциркуляторный или сосудисто-тромбоцитарный) осуществляется в мелких сосудах диаметром до 200мкм. Формируется первичный (тромбоцитарный) тромб, обеспечивающий остановку кровотечений из микрососудов, в которых давление крови невелико. Здоровый, не поврежденный эндотелий обладает тромборезистентными свойствами и поэтому кровь свободно циркулирует по сосудам, форменные элементы крови не прилипают к сосудистой стенке. При повреждении сосудистой стенки эндотелий приобретает тромбогенные свойства. Рефлекторно развивается спазм сосуда в месте повреждения. Главными стимуляторами адгезии тромбоцитов являются коллаген, обнажившийся после травмы эндотелия сосуда и фактор Виллебранда, синтезируемый клетками эндотелия и попадающий в кровоток после их повреждения. Тромбоциты начинают приклеиваться к краям поврежденного сосуда, накладываются друг на друга, закрепляются, склеиваются (адгезия и агрегация). Из тромбоцитов высвобождаются АДФ, серотонин и адреналин, которые еще больше усиливают сосудистый спазм и агрегацию тромбоцитов. Из поврежденных тканей и эндотелия сосудов выделяется тканевой тромбопластин, который взаимодействует с белковыми факторами плазмы (7,4,10,5,2) и образует некоторое некоторое количество тромбина. В результате агрегация становится необратимой и формируется первичный или тромбоцитарный тромб. На этом кровотечение из мелких сосудов купируется.

Лабораторная оценка сосудисто-тромбоцитарного гемостаза.

При этом исследуют состояние капилляров и тромбоцитов: их количество и функцию (адгезию и агрегацию).

Длительность капиллярного кровотечения определяют после строго дозированного прокола кожи. По методу Дюке осуществляют прокол кожи ногтевой фаланги безымянного пальца, по Айви – 3 прокола (насечки) наносят на коже верхней трети предплечья при создании давления с помощью манжетки 40-50 мм рт. ст.

В норме длительность кровотечения по Дюке составляет 2-4 мин, по Айви – 1-7 мин.

Время капилярного кровотечения зависит от состояния капиляров, количества и функциональной активности тромбоцитов, способности их к адгезии и агрегации.

Практическое значение имеет удлинение времени кровотечения: при тяжелых формах неполноценности тромбоцитов и резко выраженных тромбоцитопениях, особенно значительно оно удлиняется при болезни Виллебрандта. Время кровотечения увеличивается также при заболеваниях печени, ДВС-синдроме, злокачественных опухолях, С -гиповитаминозе, гипофункции коры надпочечников, отравлении гепатотоксическими веществами и т.д.

При нарушениях свертываемости крови оно обычно остается нормальным, так как остановка кровотечения в зоне микроциркуляции обеспечивается, в основном, тромбоцитами, а не гемокоагуляцией. При некоторых коагуляционных нарушениях (тяжелых тромбо-геморрагических синдромах, значительной гипергепаринемиях) время кровотечения может удлинятся.

Укорочение – свидетельствует лишь о повышенной спастической способности капилляров

Резистентность капилляров исследуют с помощью различных проб – щипка, жгута и др.

Проба щипка – в норме после щипка складки кожи под ключицей ни сразу, ни через 24 часа не должно быть ни петехий, ни кровоподтека.

Проба жгута – у здоровых людей после сдавления плеча манжеткой тонометра (80 мм рт. ст.) в течение 5 мин петехии не образуются или их не более 10 диаметром до 1 мм (в кругу диаметром 2,5 см) – отрицательная проба.

Снижение резистентности, (положительные пробы) свидетельствует о неполноценности стенок микрососудов. Это может быть результатом инфекционно-токсического воздействия, С-гиповитаминоза, эндокринных нарушений (менструальный период, патологический климакс) и т.д. Наиболее часто положительная проба жгута отмечается у больных тромбоцитопениями и тромбоцитопатиями всех видов, при ДВС-синдроме, при активации фибринолиза, передозировке антикоагулянтов непрямого действия, при дефиците факторов протромбинового комплекса.

Количество тромбоцитов (PL, PLT)определяют с помощью фазово-контрастного микроскопирования или на автоматическом анализаторе (норма – 150-450 * 10 9 /л).

Уменьшение количества тромбоцитов может быть при геморрагическом диатезе, ДВС-синдроме, идиопатической нической пурпуре (болезнь Верльгофа), тромботической тромбоцитопенической пурпуре (болезнь Мошковица), иммунных тромбоцитопениях, остром лейкозе, болезнях накопления (Гоше, Нимана-Пика и т.д.), апластических, В12 - и фолиеводефицитных анемиях, заболеваниях печени, коллагенозе. Ряд антибактериальных, противосудорожных, мочегонных, противоревматических, противомалярийных препаратов, аналгетики, гипогликемические средства способны вызвать лекарственную тромбоцитопению.

Первичный тромбоцитоз может быть эссенциальным, а также встречается при миелопролиферативных заболеваниях, вторичный - при злокачественных новообразованиях, острой кровопотере, воспалительных процессах, железодефицитной анемии, после операций, после интенсивной физической нагрузки.

Адгезивность томбоцитов

Известны прямые и непрямые методы оценки адгезивности тромбоцитов. Прямые заключаются в подсчете тромбоцитов, фиксированных в колонке со стеклянными шариками при пропускании со стандартной скоростью определенного объема крови Непрямые основаны на установлении разницы между количеством тромбоцитов в венозной крови и крови, вытекающей из ранки на коже пальца (адгезивность in nivo). Снижение адгезивности наблюдается при ряде тромбоцитопатий и при болезни Виллебранда. Нормальные значения – 20-55 % .

Уменьшение адгезивности вплоть до 0 % наблюдается при ряде врожденных тромбоцитопатий (тромбастения Глацманна, аспириноподобный синдром, синдром Бернара-Сулье) и при болезни Виллебранда.

Агрегация тромбоцитов

Исследование способности тромбоцитов к агрегации используют для:

– диагностики наследственных аномалий тромбоцитов (сохраненной реакции освобождения – тромбастения Гланцмана; нарушенной реакцией освобождения – "аспириноподобный синдром"; болезни недостаточного пула накопления – синдром "серых тромбоцитов"; заболевания с преимущественным нарушением адгезии – болезнь Виллебранда, синдром Бернара-Сулье);

– диагностики приобретенных патологий тромбоцитов (цирроз печени, уремия, атеросклероз, ИБС, сахарный диабет, гиперлипидемии, парапротеинемии и т. д.);

– подбора дозы и оценки эффективности антиагрегантной терапии;

– оценки функциональной активности тромбоцитов при переливании тромбомассы.

Может быть спонтанная или индуцированная. Чаще используют последнюю. В качестве индукторов используют АДФ, адреналин, коллаген, бычий фибриноген, ристомицин.

Выбор агреганта зависит от цели исследования.

Для оценки тромбоопасных состояний чаще всего используют АДФ в малых дозах, для оценки антиагрегационной терапии – АДФ в более высоких дозах, иногда коллаген. При исследовании геморагических проявлений используют комплекс агрегантов: АДФ, адреналин (для оценки состояния мембранных рецепторов); ристомицин (для оценки необходимых кофакторов); АДФ, адреналин, коллаген (оценки способности тромбоцитов к реакции освобождения).

Принцип агрегации тромбоцитов основан на измерении скорости и степени уменьшения оптической плотности тромбоцитарной плазмы при перемешивании с индукторами агрегации. Это может быть оценено визуально, с помощью микроскопа а также с помощью агрегометра.

Вторичный гемостаз (макроциркуляторный, коагуляционный).

Осуществляется при кровотечении из сосудов среднего и крупного калибра. Обеспечивается свертывающей системой, которая состоит из двух звеньев - прокоагулянтного и антикоагулянтного.

Процесс плазменного свертывания крови представляет собой каскад ферментативных реакций, в котором каждый предшествующий фактор превращается в активный фермент, последовательно активирующий следующий профермент. Конечным продуктом процесса свертывания крови является фибрин-полимер - нерастворимый белок, образующий сеть, в котором задерживаются тромбоциты и другие форменные элементы крови, формируется окончательный фибрин - тромбоцитарный сгусток (гемостатический тромб). Весь процесс делят на 4 фазы:

Первая фаза -образование протромбиназы , происходит 2-мя путями - по внешнему и внутреннему механизму. Внутренний механизм запускается активацией 12-го фактора при контакте с поврежденной сосудистой стенкой. Так же принимают участие плазменные факторы 11,10,9,8,5,4, фактор Флетчера, фактор Виллебранда, протеины С и S, 3-ий тромбоцитарный фактор. Образование кровяной протромбиназы занимает основное время свертывания крови 4мин 55сек – 9мин 55сек. Внешний механизм запускается с появления в кровяном русле 3-го фактора (тканевой тромбопластин) из поврежденной сосудистой стенки (в норме в плазме он отсутствует), который при взаимодействии с 7,10,5,4 плазменными факторами образует тканевую протромбиназу. Протекает в 2-3 раза быстрее.

Вторая фаза - образование тромбина . Протромбиназа превращает протромбин в тромбин (2-2а). В этой реакции принимают участие 5,7,10 и 3-ий тромбоцитарный факторы. Продолжительность 2-5сек. Кровь продолжает сохранять жидкую консистенцию.

Третья фаза -образование фибрина , длится 2-5сек. Тромбин отщепляет от фибриногена пептиды, переводя его в фибрин-мономер. Последний полимеризуется и выпадает в виде переплетающихся нитей фибрина. Эта сеть увлекает за собой форменные элементы крови. Образуется рыхлый красный тромб. Он очень лабилен и может растворяться фибринолизином, мочевиной. Тромбин в присутствии 4-го фактора может активизировать фибриназу (13-ый фактор), которая, воздействуя на лабильный красный тромб, может уплотнять его и делать ограниченно растворимым.

Четвертая - посткоагуляционная фаза - ретракция и фибринолиз . Осуществляется системой фибринолиза, которая включает в себя плазминоген, его активаторы и ингибиторы. Плазминоген после активации превращается в плазмин. Плазмин расщепляет фибрин на отдельные фрагменты (продукты деградации фибрина), которые удаляются фагоцитарной системой. Активация плазминогена в норме происходит на фибриновом сгустке при фиксации на нем 12-го активированного фактора и прекалликреина. Активация плазминогена может индуцироваться тканевыми протеиназами, бактериальными. Выполнив свою функцию плазмин инактивируется системой ингибиторов.

Часть X. Исследование экссудатов и транссудатов Экссудат

Экссудат (ехзис1а(ит ; лат ехзибаге - выходить наружу, выделяться) - жидкость, богатая белком исодержащая форменные элементы крови; образуется при воспалении. Процесс перемещения экссудата в окружающие ткани и полости организма называется экссудацией, или выпотеванием. Последняя возникает вслед за повреждением клеток и тканей в ответ на выделение медиаторов.

В зависимости от количественного содержания белка и вида эмигрировавших клеток различают серозный, гнойный, геморрагический, фибринозный экссудат. Встречаются также смешанные формы экссудата: серозно-фибринозный, серозно-геморрагический. Серозный экссудат состоит преимущественно из плазмы и небольшого числа форменных элементов крови. Гнойный экссудат содержит распавшиеся полиморфно-ядерные лейкоциты, клетки пораженной ткани и микроорганизмы. Для геморрагического экссудата характерно наличие

значительной примеси эритроцитов, а для фибринозного - большое содержание фибрина. Экссудат может рассасываться или подвергаться организации.

Транссудат

Транссудат (лат. (гапз - через, сквозь + зибаге - сочиться, просачиваться) -невоспалительный выпот, отечная жидкость, скапливающаяся в полостях тела и тканевых щелях. Транссудат обычно бесцветен или бледно-желтого цвета, прозрачный, реже мутноват из-за примеси единичных клеток спущенного эпителия, лимфоцитов, жира. Содержание белков в транссудате обычно не превышает 3%; ими являются сывороточные альбумины и глобулины. В отличие от экссудата в транссудате отсутствуют ферменты, свойственные плазме. Относительная плотность транссудата 1,006-1,012, а экссудата - 1,018-1,020.Иногда качественные различия между транссудатом и экссудатом исчезают: транссудат становится мутноватым, количество белка в нем возрастает до 4-5%). В таких случаях важное значение для дифференциации жидкостей имеет изучение всего комплекса клинических, анатомических и бактериологических изменений (наличие у больного боли, повышенной температуры тела, воспалительной гиперемии, кровоизлияний, обнаружение в жидкости микроорганизмов) . Для отличия транссудата от экссудата применяют пробу Ривальты, основанную на разном содержании в них белка.

Образование транссудата чаще всего обусловлено сердечной недостаточностью, портальной гипертензией, застоем лимфы, тромбозом вен, почечной недостаточностью. Механизм возникновения транссудата сложен и определяется рядом факторов: увеличенным гидростатическим давлением крови и сниженным коллоидно-осмотическим давлением ее плазмы, повышенной проницаемостью капиллярной стенки, задержкой в тканях электролитов, преимущественно натрия и воды. Скопление транссудата в полости перикарда называют гидроперикардом, в брюшной полости - асцитом, в плевральной - гидротораксом, в полости оболочек яичка - гидроцеле, в подкожной клетчатке - анасаркой. Транссудатлегко инфицируется, превращаясь в экссудат. Так, инфицирование асцита приводит к возникновению перитонита (асцит-перитонит). При длительном скоплении в тканях отечной жидкости развиваются дистрофия и атрофия паренхиматозных клеток, склероз. При благоприятном течении процесса транссудат может рассосаться.

Из книги Болезни щитовидной железы. Выбор правильного лечения, или Как избежать ошибок и не нанести вреда своему здоровью автора Юлия Попова

Ультразвуковое исследование (УЗИ) Эта простая процедура обладает большими преимуществами по сравнению с предыдущим, так как для нее не требуется использования изотопов. УЗИ можно делать детям раннего возраста и беременным женщинам. С помощью такого исследования можно

Из книги Заболевания крови автора М. В. Дроздова

Часть I. Гематология. Общая часть

Из книги Музыкальная терапия для детей с аутизмом автора Джульетта Алвин

Сравнительное исследование Музыка есть пространство человеческого опыта, который влияет на мышление, тело и эмоции. Она способна изменить поведение слушателя или исполнителя. Музыка проникает в подсознание и может вызвать к жизни многое из того, что там сокрыто. Она

Из книги Мула–Бандха. Ключ к мастерству автора Свами Сатьянанда Сарасвати

Практическая часть Глава 9. Мула-бандха как составная часть йогической практики Очень важно, чтобы человек, занимающийся йогой, воспринимал мула-бандху в комплексе с другими йогическими практиками. По традиции вместе с мула-бандхой ученик осваивает следующие аспекты

Из книги Гомеопатическое лечение хронических и острых состояний автора Леон Ванье

Клиническое исследование Пищеварительные заболеванияИзучим сперва больного с пищеварительным расстройством. Не будем забывать о том, что главными провоцирующими причинами при этом являются холод и испуг. У пищеварительного больного типа Аконита мы снова встречаемся

Из книги Учимся понимать свои анализы автора Елена В. Погосян

Клиническое исследование Антимониум крудум в общем подходит в равной мере для лиц любого возраста жизни - как ребёнку, так и взрослому или старику.Органы пищеваренияУ ребёнкаВнезапно, пососав грудь, младенец рвет свернувшимся молоком и отказывается снова взять грудь.

Из книги автора

Часть I. Исследование крови

Из книги автора

Часть II. Исследование мочи Не все отходы удаляются из организма именно почками, но почки - органы единственной системы тела, занятой главным образом удалением ненужных веществ. Все другие органы, которые также действуют как «уборщики отходов», находятся в других

Из книги автора

Часть III. Исследование содержимого желудка Желудочно-кишечный тракт (ЖКТ) - одна из систем организма, обеспечивающая механическую и химическую обработку пищи. Онсостоит из собственно пищеварительной трубки и вспомогательных желез. Желудок, тонкий кишечник, часть

Из книги автора

Из книги автора

Часть V Исследование кала Ободочная кишка (она называется также толстой кишкой) собирает и удаляет отходы, которые организм не способен переварить (переработать). К тому времени, когда остатки пищи достигают ободочной кишки, организм поглощает из нее почти все

Из книги автора

Часть VI. Исследование гормонального статуса Наше тело имеет два способа управления тканями. Первый - с помощью нервной системы, с ее бесконечными километрами нервных путей. Безусловное преимущество этого способа управления - быстрота действия. Эту скорость может

Из книги автора

Часть VII Исследование выделений половых органов Исследование выделений половых органов - это ряд клинических анализов, которые приходится делать и женщинам, посещающим гинекологический кабинет, и мужчинам, обращающимся к урологам. Эти анализы позволяют определить

Из книги автора

Часть VIII. Исследование мокроты Мокрота выделяется во время кашля из дыхательных путей. Когда больной собирает материал для анализа, он должен помнить об этом и не собирать вместо мокроты слюну или слизь из носоглотки.Состав, количество, цвет, запах и консистенция мокроты

Из книги автора

Часть IX. Исследование спинномозговой жидкости Цереброспинальная жидкость - жидкая биологическая среда организма, циркулирующая в желудочках головного мозга, субарахноидальном пространстве головного и спинного мозга. Выполняет в центральной нервной системе

Из книги автора

Часть XI Исследование костного мозга Красный костный мозг у взрослого человека находится в эпифизах (конечных участках) трубчатых костей и губчатом веществе плоских костей. Несмотря на разобщенное положение, функционально костный мозг связан в единый орган благодаря

Исследование жидкостей, добытых при помощи пробного прокола грудной и брюшной полостей, суставов, абсцессов и кист, ставит целью изучение свойств добытого пунктата. Данные этого рода исследования имеют большое диагностическое значение, во многих случаях решающее при определении характера болезненного процесса, вызвавшего скопление жидкости. Количество добытого пунктата при этом не имеет существенного значения. Оно важно лишь в прогностическом отношении. В то время как в одних случаях едва удаётся собрать лишь несколько кубических сантиметров выпота, в других - его можно удалять литрами. Вопрос о происхождении пунктата и характере заболевания в каждом отдельном случае по существу решается на основании данных исследования жидкости.

Путём пробного прокола грудной и брюшной полостей могут быть получены различного рода экссудаты, транссудаты, кровь, содержимое желудкаили кишечника, моча, содержимое различного рода кист и пузырей эхинококка.

Исследование пунктатов ставит задачей определение физических свойств жидкости, её химического состава, изучение форменных элементов, примешивающихся к выпоту, и, наконец, бактериологическое исследование.

При определении физических свойств обращают внимание на цвет выпота, его прозрачность, консистенцию, удельный вес и реакцию.

По внешнему виду различают выпоты: а) совершенно бесцветные, б) окрашенные в тот или другой цвет, в) прозрачные, г) опалесцирующие, д) мутные и е) молочно-белые.

Совершенно бесцветным и прозрачным, чистым, как вода, является содержимое пузырей эхинококка и мешётчатых опухолей - кист; к прозрачным, кроме того, относятся транссудаты и серозные экссудаты, а также моча, скопляющаяся в брюшной полости при разрыве мочевого пузыря. Цвет выпота и интенсивность его окраски при этом могут быть различными.

Серозные экссудаты и транссудаты представляют собой почти совершенно прозрачные, лишь слегка опалесцирующие жидкости, красивого лимонно-жёлтого цвета. Примесь небольшого количества красящего вещества крови придаёт им красноватый оттенок; при более резкой экстравазации жидкость становится красной и даже вишнёво-красной, по цвету не отличаясь существенно от крови.

К мутным жидкостям относятся серо-фибринозные, гнойные и ихорозные экссудаты, геморрагические экссудаты, скопляющиеся при туберкулёзных поражениях серозных оболочек, а также при злокачественных новообразованиях органов грудной и брюшной полости, содержимое желудка и кишечника и, наконец, геморрагические транссудаты, скопляющиеся в брюшной полости при тромбоэмболических коликах и некоторых формах илеуса.

Молочно-белыми являются экссудаты - хилёзные, хилусоподобные и псев-дохилёзные.

Молочно-белый цвет хилёзного экссудата, скопляющегося в брюшной полости при разрыве лимфатических сосудов полости, обусловливается примесью большого количества жира, при отстаивании скопляющегося в виде густой сметанообразной массы на её поверхности. После прибавления нескольких кубических сантиметров эфира, подщелочённого каплею едкого кали, жидкость, вследствие полного растворения жира, делается совершенно прозрачной. В обработанных Судан 111 препаратах при микроскопическом исследовании видна масса окрашенных в интенсивно красный цвет зёрнышек жира. При хроническом воспалении серозных оболочек, например, туберкулёзе, в полостях скопляются хилусоподобные экссудаты, характерная окраска которых зависит от скопления большого количества распавшихся жирно перерождённых клеток. Этого рода экссудаты содержат жира значительно меньше; после прибавления эфира жидкость, лишь несколько просветлевшая, остаётся мутной вследствие примеси большого количества взвешенных в ней эндотелиальных клеток и лейкоцитов.

Псевдохилёзные экссудаты, окраской напоминающие разбавленное молоко, содержат лишь очень небольшое количество жира. Они не просветляются после прибавления эфира и не образуют сливкоподобного слоя при отстаивании. Характерную их окраску одни объясняют присутствием лецитинсодержащих глобулинов, другие - нуклеидов и мукоидов.

По своей консистенции добытые путём прокола выпоты являются чаще всего совершенно жидкими; сюда относятся экссудаты, транссудаты, жидкость из эхинококкового пузыря, моча и т. д.; ясно слизистую консистенцию имеет лишь содержимое кист матки. Вследствие примеси большого количества псевдомуцина, пунктаты овариальных кист показывают ясно слизистую консистенцию и могут растягиваться в длинные тонкие нити. Содержимое матки, попадающее при её разрывах в брюшную полость, представляет собой густую, вязкую, растягивающуюся также в длинные нити массу. При микроскопическом исследовании в осадке обнаруживают много лейкоцитов и эпителиальных клеток.

При определении Удельного веса Пунктата обыкновенно пользуются Пробой Детре, Которая представляет собой лишь видоизменение пробы Гаммершляга. Определение при помощи ареометра не всегда удаётся вследствие быстрого свёртывания жидкости; кроме того, оно требует большого количества (до 25 куб. см) пунктата. Чтобы задержать свёртывание, рекомендуют собирать пунктат в сосуд, погружённый в подогретую до 38° воду. Исследование следует проводить с ареометрами, установленными для температуры в 36°.

В основе метода Детре лежит разница удельного веса основного раствора и исследуемой жидкости. Если опустить каплю выпота в жидкость более лёгкого удельного веса, она быстро опускается на дно, в растворе более тяжёлом капля плавает на поверхности. При тождестве удельных весов она оказывается взвешенной в растворе, плавает в нём, не поднимаясь и не опускаясь.

В качестве основных пользуются 4 растворами поваренной соли удельного веса 1,010 (1,380%), 1,020 (2,76%), 1,030 (4,14%) и 1,040 (5,52%). Основные растворы готовят на дестиллированной воде, прибавляя указанные количества поваренной соли. Удельный вес реактива должен быть выверен точно по ареометру. Вначале определяют концентрацию пограничных растворов. С этой целью одну каплю исследуемой жидкости опускают при помощи пипетки в разлитые по пробиркам основные растворы. Если в растворе с удельным весом 1,020 капля опускается на дно, а при удельном весе 1,030 плавает на поверхности, удельный вес исследуемой жидкости лежит где-то в пределах 1,020-1,030. Приготовив затем промежуточные концентрации путём соответствующего разведения раствора с удельным весом 1,030 дестиллированной водой (9+.1,8 + + 2,7 + 3 и т. д.), производят окончательное определение.

Удельный вес транссудата колеблется в пределах от 1,005 до 1,018. Самый высокий удельный вес обнаруживают в лунктатах при пневмотораксах, когда жидкость по своим свойствам стоит между транссудатами и экссудатами.

Экссудаты отличаются большею плотностью. Их удельный вес обычно выше 1,018. Однако различия в этом отношении между экссудатами и транссудатами далеко не всегда постоянны. Во многих случаях удельный вес экссудата оказывается ниже предельного, с другой стороны, встречаются нередко транссудаты с очень высоким удельным весом.

Реакция пунктата имеет большое значение при исследовании содержимого желудка и мочевого пузыря. Выпоты при водянках и воспалениях серозных-оболочек обыкновенно щелочной реакции. Наблюдающиеся при этом колебания концентрации водородных ионов очень непостоянны и не имеют существенного значения при диференцировке транссудатов от экссудатов. Содержимое желудка резко кислой реакции с кислым запахом и нередко содержит кровь; моча при разрыве мочевого пузыря у плотоядных чаще всего нейтральной, иногда кислой, реже заметно щелочной реакции.

Определение количества белка является основным моментом исследования выпота, так как в этом отношении установлены довольно значительные различия, помогающие диференцировать экссудаты от транссудатов. Наиболее точные результаты даёт метод взвешивания сухого осадка белка. Для осаждения пользуются 1 % раствором поваренной соли, подкисленной каплей уксусной кислоты. К 100 куб. см горячего раствора NaCl прибавляют 10 куб. см исследуемой жидкости и после основательного взбалтывания фильтруют; осадок промывают водой, подкисленной уксусной кислотой, спиртом, эфиром, высушивают в эксикаторе и взвешивают. Вычтя из общего веса вес фильтра и умножив полученную разность на 10, получают процентное содержание белка в жидкости.

Из более простых методов довольно точные результаты даёт способ Робертса - Стольникова (см. определение белка в моче). Так как удельный веспунктата зависит, главным образом, от количества растворённого в нём белка, его содержание в жидкости можно приблизительно вычислить по удельному весу при помощи формулы: х = аД (УД - вес - 1,000) - 2,88 для экссудатов Пх = г1я (УД - вес--1,000)-2,72 для транссудатов.

Наиболее простым и удобным методом, позволяющим определить не только общее количество белка, но и установить отношения между белковыми фракциями, является рефрактометрический способ.

Содержание белка в транссудатах, по сравнению с экссудатами, не особенно велико и обыкновенно ниже 2,5%. Только в редких случаях, как, например, при асцитах, водянках, вследствие пневмоторакса, количество его в транссудатах доходит до 3 и даже 4%. Содержание белка в экссудатах значительно выше 2,5 % и часто доходит до 4 и даже 5%. Такого рода соотношения помогают легко диференцировать воспалительные выпоты от механических. Однако нередко наблюдаются случаи, когда содержание белка в экссудате стоит несколько ниже указанной границы. Значительные услуги при оценке подобного рода выпота в таких случаях оказывает реакция Ривальта (Rivalt), а также Морица (Moritz).

Реакция Ривальта основана на выпадении особого белка, осаждаемого разведённой уксусной кислотой. Эта разновидность белковых веществ может быть установлена только в выпотах воспалительного характера. Транссудаты её совершенно не содержат. В качестве реактива применяют слабые растворы уксусной кислоты (2 капли на 100 куб. см дестиллированной воды). Техника крайне несложна. В узкий цилиндр ёмкостью 25 куб. см наливают 20 куб. см реактива. Затем при помощи пипетки наносят на его поверхность одну каплю исследуемой жидкости. В присутствии белка капля, медленно падая, оставляет облачко мути, причём на дне получается небольшой мутный осадок. Транссудаты быстро растворяются в реактиве, не давая помутнения.

Реакция Морица. К 2-3 куб. см пунктата добавляют несколько капель 5% уксусной кислоты. Экссудат даёт помутнение и осадок, транссудат - слабое помутнение.

На основании результатов этих проб, в тех случаях, когда нет резкой разницы по удельному весу и содержанию белка, можно точно диференцировать экссудат от транссудата.

Определение псевдомуцина. Содержимое овариальных кист представляющее собой желтоватую или грязно-коричневую вязкую жидкость с удельным весом от 1,005 до 1,050, отличается присутствием своеобразного белкового тел а -псевдомуцина. Псевдомуцин не осаждается ни уксусной, ни азотной кислотой, но выпадает в осадок под действием спирта. Однако эта разница не является доказательной, так как сывороточные белки - постоянная составная часть выпотов-также осаждаются алкоголем.

Для определения псевдомуцина к 25 куб. см пунктата прибавляют несколько капель спиртового раствора розоловой кислоты, подогревают до кипения и затем добавляют каплями п/10 раствора серной кислоты до слабо кислой реакции. Слегка пожелтевшую после этой обработки жидкость снова доводят до кипения и затем фильтруют. Полная прозрачность фильтрата указывает на отсутствие псевдомуцина.

Особенно большое значение при определении характера выпота и его происхождения придают микроскопическому исследованию осадка - Цитоскопии. Изучение морфологических элементов выпота не только даёт возможность отличать экссудаты от транссудатов, но вместе с тем позволяет иногда делать заключения и относительно этиологии заболевания, сопровождающегося скоплением выпота в полостях тела.

Для микроскопического исследования пользуются осадком, полученным путём центрифугирования. Чтобы удалить сгустки фибрина, которые значительно затрудняют исследование, жидкость лучше дефибринировать. С этой целью выпот помещают в толстостенную бутылку со стеклянными бусами и взбалтывают в течение 30-60 минут. Дефибринированную таким образом жидкость сливают в конические пробирки и центрифугируют до тех пор, пока пробная капля, взятая с поверхности, не будет больше содержать форменных элементов. Слив прозрачную жидкость, осадок осторожно размешивают при помощи стеклянной палочки. Полученную эмульсию используют для приготовления мазков и свежих препаратов.

Окрашивание свежих препаратов производят чаще всего 1 % водным раствором метиленовой синьки, одну каплю которого смешивают с каплей взятой эмульсии. Размешав осторожно смесь стеклянной палочкой, покрывают её покровным стеклом, удаляют фильтровальной бумажкой избыток жидкости, выступившей за край стёклышка, и немедленно исследуют. Под микроскопом легко различить крупные, рыхлые эндотелиальные клетки, компактные, с характерным ядром, белые кровяные тельца, безъядерные эритроциты, клетки различных новообразований и разнообразную микробную флору.

Свежие препараты приготовляют лишь для исследования ex tempore; они быстро портятся, сохранить их удаётся лишь при помощи особого рода консервирующих составов.

Гораздо удобнее в этом отношении сухие препараты, которые приготовляют, размазывая каплю эмульсии по поверхности предметного стекла.

После высушивания мазок фиксируется метиловым алкоголем и окрашивается по Гимза.

При оценке полученных результатов следует помнить, что реакция серозных оболочек на механические раздражения (транссудаты) выражается обильной десквамацией эндотелия; на пиогенные инфекции серозные оболочки отвечают нейтрофилией, для туберкулёза характерен лимфоцитоз.

В выпотах при сердечных и почечных заболеваниях поэтому обнаруживают громадное количество крупных эндотелиальных клеток, группирующихся в кучки по 5-10 клеток. Эти скопления иногда настолько обильны, что сплошь покрывают всё поле зрения. Их легко отличить от лейкоцитов по крупному, сильно вакуолизированному ядру, окрашивающемуся в фиолетовый цвет, и нежной розовой протоплазме, окружающей ядро толстым слоем. Кроме эндотелиальных клеток, в транссудатах обнаруживают большое количество эритроцитов, лимфоцитов и отдельные нейтрофилы.

При серозных плевритах и перитонитах, обусловленных действием пиогенных микробов, в экссудатах находят скопление большого количества сегмен-тоядерных и палочкоядерных нейтрофилов, а также эритроцитов. Эндотелиальные клетки и лимфоциты представлены скудно.

При туберкулёзных плевритах поле зрения покрыто массой мелких лимфоцитов, среди них встречаются отдельные клетки средней и крупной величины. К ним иногда в большом количестве примешиваются красные кровяные тельца. Нейтрофилы и эозинофилы представлены скудно. По Видалю, их количество не должно быть больше 10% общей массы лейкоцитов.

При злокачественных новообразованиях обнаруживают громадных размеров клетки с сильно вакуолизированной, часто перерождённой протоплазмой и крупным почковидным или овальным ядром, в котором можно заметить несколько (2-3) ядрышек. Этого рода клетки считаются специфичными для злокачественных новообразований.