Главная · Диарея · Психофизиологическое воздействие музыки на организм человека. Методы психофизиологии Средства влияющие на психофизиологические реакции

Психофизиологическое воздействие музыки на организм человека. Методы психофизиологии Средства влияющие на психофизиологические реакции

Относится к

Методы психофизиологии


В этом разделе будут представлены систематика, способы регистрации и значение физиологических показателей, связанных с психи ческой деятельностью человека. Психофизиология - экспериментальная дисциплина, поэтому интерпретационные возможности психофизиологических исследований в значительной степени определяются совершенством и разнообразием применяемых методов. Правильный выбор методики, адекватн ое использование ее показателей и соответствующее разрешающим возможностям методики истолкование полученных результатов являются условиями, необходимыми для проведения успешного психофизиологического исследования.

2.1. Методы изучения работы головного мозга

  • 2.1.2. Вызванные потенциал ы головного мозга
  • 2.1.3. Топографическое картирование электрической активности мозга (ТКЭАМ)

Центральное место в ряду методов психофизиологического исследования занимают различные способы регистрации электрической активности центральной нервной системы, и в первую очередь головного мозга.

2.1.1. Электроэнцефалография

Электроэнцефалография - метод регистрации и анализа электроэнцефалограммы (ЭЭГ), т.е. суммарной биоэлектрической активности, отводимой как со скальпа, так и из глубоких структур мозга . Последнее у человека возможно лишь в клинических условиях.
В 1929 г. австрийский психи атр Х. Бергер обнаружил, что с поверхности черепа можно регистрировать "мозговые волны". Он установил, что электрические характеристики этих сигналов зависят от состояния испытуемого. Наиболее заметными были синхронные волны относительно большой амплитуды с характерной частотой около 10 циклов в секунду. Бергер назвал их альфа-волнами и противопоставил их высокочастотным "бета-волнам", которые проявляются тогда, когда человек переходит в более активное состояние. Открытие Бергера привело к созданию электроэнцефалографического метода изучения мозга, состоящего в регистрации, анализе и интерпретации биотоков мозга животных и человека.
Одна из самых поразительных особенностей ЭЭГ - ее спонтанный, автономный характер. Регулярная электрическая активность мозга может быть зафиксирована уже у плода (т.е. до рождения организма) и прекращается только с наступлением смерти. Даже при глубокой коме и наркозе наблюдается особая характерная картина мозговых волн.
Сегодня ЭЭГ является наиболее перспективным, но пока еще наименее расшифрованным источником данных для психофизиолога.

Условия регистрации и способы анализа ЭЭГ. В стационарный комплекс для регистрации ЭЭГ и ряда других физиологических показателей входит звукоизолирующая экранированная камера, оборудованное место для испытуемого, моногоканальные усилители, регистрирующая аппаратура (чернилопишущий энцефалограф, многоканальный магнитофон). Обычно используется от 8 до 16 каналов регистрации ЭЭГ от различных участков поверхности черепа одновременно. Анализ ЭЭГ осуществляется как визуально, так и с помощью ЭВМ. В последнем случае необходимо специальное программное обеспечение.

Следует подчеркнуть, что подобное разбиение на группы более или менее произвольно, оно не соответствует никаким физиологическим категориям. Зарегистрированы и более медленные частоты электрических потенциал ов головного мозга вплоть до периодов порядка нескольких часов и суток. Запись по этим частотам выполняется с помощью ЭВМ.

Основные ритмы и параметры энцефалограммы.
1. Альфа-волна - одиночное двухфазовое колебание разности потенциал ов длительностью 75-125 мс., по форме приближается к синусоидальной. 2. Альфа-ритм - ритмическое колебание потенциал ов с частотой 8-13 Гц, выражен чаще в задних отделах мозга при закрытых глазах в состоянии относительного покоя, средняя амплитуда 30-40 мкВ, обычно модулирован в веретена. 3. Бета-волна - одиночное двухфазовое колебание потенциал ов длительностью менее 75 мс. и амплитудой 10-15 мкВ (не более 30). 4. Бета-ритм - ритмическое колебание потенциал ов с частотой 14-35 Гц. Лучше выражен в лобно-центральных областях мозга. 5. Дельта-волна - одиночное двухфазовое колебание разности потенциал ов длительностью более 250 мс. 6. Дельта-ритм - ритмическое колебание потенциал ов с частотой 1-3 Гц и амплитудой от 10 до 250 мкВ и более. 7. Тета-волна - одиночное, чаще двухфазовое колебание разности потенциал ов длительностью 130-250 мс. 8. Тета-ритм - ритмическое колебание потенциал ов с частотой 4-7 Гц, чаще двухсторонние синхронные, с амплитудой 100-200 мкВ, иногда с веретенообразной модуляцией, особенно в лобной области мозга.

Другая важная характеристика электрических потенциал ов мозга - амплитуда, т.е. величина колебаний. Амплитуда и частота колебаний связаны друг с другом. Амплитуда высокочастотных бета-волн у одного и того человека может быть почти в 10 раз ниже амплитуды более медленных альфа-волн.
Важное значение при регистрации ЭЭГ имеет расположение электродов, при этом электрическая активность одновременно регистрируемая с различных точек головы может сильно различаться. При записи ЭЭГ используют два основных метода: биполярный и монополярный. В первом случае оба электрода помещаются в электрически активные точки скальпа, во втором один из электродов располагается в точке, которая условно считается электрически нейтральной (мочка уха, переносица). При биполярной записи регистрируется ЭЭГ, представляющая результат взаимодействия двух электрически активных точек (например, лобного и затылочного отведений), при монополярной записи - активность какого-то одного отведения относительно электрически нейтральной точки (например, лобного или затылочного отведения относительно мочки уха). Выбор того или иного варианта записи зависит от целей исследования. В исследовательской практике шире используется монополярный вариант регистрации, поскольку он позволяет изучать изолированный вклад той или иной зоны мозга в изучаемый процесс.
Международная федерация обществ электроэнцефалографии приняла так называемую систему "10-20", позволяющую точно указывать расположение электродов. В соответствии с этой системой у каждого испытуемого точно измеряют расстояние между серединой переносицы (назионом) и твердым костным бугорком на затылке (инионом), а также между левой и правой ушными ямками. Возможные точки расположения электродов разделены интервалами, составляющими 10% или 20% этих расстояний на черепе. При этом для удобства регистрации весь череп разбит на области, обозначенные буквами: F - лобная, О - затылочная область, Р - теменная, Т - височная, С - область центральной борозды. Нечетные номера мест отведения относятся к левому, а четные - к правому полушарию. Буквой Z - обозначается отведение от верхушки черепа. Это место называется вертексом и его используют особенно часто (см. Хрестомат. 2.2).

Клинический и статический методы изучения ЭЭГ. С момента возникновения выделились и продолжают существовать как относительно самостоятельные два подхода к анализу ЭЭГ: визуальный (клинический) и статистический.
Визуальной (клинический) анализ ЭЭГ используется, как правило, в диагностических целях. Электрофизиолог, опираясь на определенные способы такого анализа ЭЭГ, решает следуюшие вопросы: соответствует ли ЭЭГ общепринятым стандартам нормы; если нет, то какова степень отклонения от нормы, обнаруживаются ли у пациента признаки очагового поражения мозга и какова локализация очага поражения. Клинический анализ ЭЭГ всегда строго индивидуален и носит преимущественно качественный характер. Несмотря на то, что существуют общепринятые в клинике приемы описания ЭЭГ, клиническая интерпретация ЭЭГ в большей степени зависит от опыта электрофизиолога, его умения "читать" электроэнцефалограмму, выделяя в ней скрытые и нередко очень вариативные патологические признаки.
Следует, однако, подчеркнуть, что в широкой клинической практике грубые макроочаговые нарушения или другие отчетливо выраженные формы патологии ЭЭГ встречаются редко. Чаще всего (70-80% случаев) наблюдаются диффузные изменения биоэлектрической активности мозга с симптоматикой, трудно поддающейся формальному описанию. Между тем именно эта симптоматика может представлять особый интерес для анализа того контингента испытуемых, которые входят в группу так называемой "малой" психи атрии - состояний, граничащих между "хорошей" нормой и явной патологией. Именно по этой причине сейчас предпринимаются особые усилия по формализ ации и даже разработки компьютерных программ для анализа клинической ЭЭГ.
Статистические методы исследования электроэнцефалограммы исходят из того, что фоновая ЭЭГ стационарна и стабильна. Дальнейшая обработка в подавляющем большинстве случаев опирается на преобразование Фурье, смысл которого состоит в том, что волна любой сложной формы математически идентична сумме синусоидальных волн разной амплитуды и частоты.
Преобразование Фурье позволяет преобразовать волновой Паттерн - " onmouseout="nd();" href="javascript:void(0);">паттерн фоновой ЭЭГ в частотный и установить распределение мощности по каждой частотной составляющей. С помощью преобразования Фурье самые сложные по форме колебания ЭЭГ можно свести к ряду синусоидальных волн с разными амплитудами и частотами. На этой основе выделяются новые показатели, расширяющие содержательную интерпретацию ритмической организации биоэлектрических процессов.
Например, специальную задачу составляет анализ вклада, или относительной мощности, разных частот, которая зависит от амплитуд синусоидальных составляющих. Она решается с помощью построения спектров мощности. Последний представляет собой совокупность всех значений мощности ритмических составляющих ЭЭГ, вычисляемых с определенным шагом дискретизации (в размере десятых долей герца). Спектры могут характеризовать абсолютную мощность каждой ритмической составляющей или относительную, т.е. выраженность мощности каждой составляющей (в процентах) по отношению к общей мощности ЭЭГ в анализируемом отрезке записи.

Спектры мощности ЭЭГ можно подвергать дальнейшей обработке, например, корреляционному анализу, при этом вычисляют авто- и кросскорреляционные функции, а также когерентность , которая характеризует меру синхронности частотных диапазонов ЭЭГ в двух различных отведениях . Когерентность изменяется в диапазоне от +1 (полностью совпадающие формы волны) до 0 (абсолютно различные формы волн). Такая оценка проводится в каждой точке непрерывного частотного спектра или как средняя в пределах частотных поддиапазонов.
При помощи вычисления когерентности можно определить характер внутри- и межполушарных отношений показателей ЭЭГ в покое и при разных видах деятельности. В частности, с помощью этого метода можно установить ведущее полушарие для конкретной деятельности испытуемого, наличие устойчивой межполушарной асимметрии и др. Благодаря этому спектрально-корреляционный метод оценки спектральной мощности (плотности) ритмических составляющих ЭЭГ и их когерентности является в настоящее время одним из наиболее распространенных.

Источники генерации ЭЭГ. Парадоксально, но собственно импульсная активность - основная структурная и функциональная единица нервной системы. Нейрон принимает сигналы от рецептор ов и других нейрон ов, перерабатывает их и в форме нервных импульсов передает к эффектор ным нервным окончаниям.");" onmouseout="nd();" href="javascript:void(0);">нейрон ов не находит отражения в колебаниях электрического потенциал а, регистрируемого с поверхности черепа человека. Причина в том, что импульсная активность нейрон ов не сопоставима с ЭЭГ по временным параметрам. Длительность импульса (потенциал а действия) нейрон а составляет не более 2 мс. Временные параметры ритмических составляющих ЭЭГ исчисляются десятками и сотнями милисекунд.
Принято считать, что в электрических процессах, регистрируемых с поверхности открытого мозга или скальпа, находит отражение Синапсы - места функциональных контактов, образуемых нейрон ами.");" onmouseout="nd();" href="javascript:void(0);">синаптическая активность нейрон ов. Речь идет о потенциал ах, которые возникают в постсинаптической мембране нейрон а, принимающего импульс. Возбуждающие постсинаптические потенциал ы имеют длительность более 30 мс, а тормозные постсинаптические потенциал ы коры могут достигать 70 мс и более. Эти потенциал ы (в отличие от потенциал а действия нейрон а, который возникает по приниципу "все или ничего") имеют градуальный характер и могут суммироваться.
Несколько упрощая картину, можно сказать, что положительные колебания потенциал а на поверхности коры связаны либо с возбуждающими постсинаптическими потенциал ами в ее глубинных слоях, либо с тормозными постсинаптическими потенциал ами в поверхностных слоях. Отрицательные колебания потенциал а на поверности коры предположительно отражают противоположное этому соотношение источников электрической активности.
Ритмический характер биоэлектрической активности коры, и в частности альфа-ритма, обусловлен в основном влиянием подкорковых структур, в первую очередь таламуса (промежуточный мозг). Именно в таламусе находятся главные, но не единственные Пейсмекер - водитель ритма; отдельный нейрон и (или) нейрон ная сеть, отвечающие за генерацию ритма определенной частоты.");" onmouseout="nd();" href="javascript:void(0);">пейсмекеры или водители ритма. Одностороннее удаление таламуса или его хирургическая изоляция от неокортекса приводит к полному исчезновению альфа-ритма в зонах коры прооперированного полушария. При этом в ритмической активности самого таламуса ничто не меняется. Нейроны неспецифического таламуса обладают свойством авторитмичности. Эти нейрон ы через соответствующие возбуждающие и тормозные связи способны генерировать и поддерживать ритмическую активность в коре больших полушарий. Большую роль в динамике электрической активности таламуса и коры играет Ретикулярная формация - сетевидное образование, совокупность нервных структур, расположенных в центральных отделах стволовой части мозга (в продолговатом, среднем и промежуточном мозге). В области Р.ф. происходит взаимодействие поступающих в нее как восходящих - афферентных, так и нисходящих - эфферентных импульсов.");" onmouseout="nd();" href="javascript:void(0);">ретикулярная формация ствола мозга. Она может оказывать синхронизирующее влияние, т.е. способствующее генерации устойчивого ритмического Паттерн - " onmouseout="nd();" href="javascript:void(0);">паттерна , и дезинхронизирующее, нарушающее согласованную ритмическую активность (см. Хрестомат. 2.3).

нейрон ов" height="314" alt="рисунок" src="methods_files/2-5.gif" width="428" border="0">
Синаптическая активность нейрон ов

Функциональное значение ЭЗГ и её составляющих. Существенное значение имеет вопрос о функциональном значении отдельных составляющих ЭЭГ. Наибольшее внимание исследователей здесь всегда привлекал Альфа-ритм - основной ритм электроэнцефалограммы в состоянии относительного покоя, с частотой в пределах 8 - 14 Гц и средней амплитудой в 30 - 70 мкВ.");" onmouseout="nd();" href="javascript:void(0);">альфа-ритм - доминирующий ритм ЭЭГ покоя у человека.
Существует немало предположений, касающихся функциональной роли альфа-ритма. Основоположник кибернетики Н. Винер и вслед за ним ряд других исследователей считали, что этот ритм выполняет функцию временного сканирования ("считывания") информации и тесно связан с механизмами восприятия и памяти. Предполагается, что альфа-ритм отражает реверберацию возбуждений, кодирующих внутримозговую информацию и создающих оптимальный фон для процесса приема и переработки Афферентация - поток нервных импульсов, поступающих от экстеро- и интерорецептор ов в ЦНС.");" onmouseout="nd();" href="javascript:void(0);">афферентных сигналов. Его роль состоит в своеобразной функциональной стабилизации состояний мозга и обеспечении готовности реагирования. Предполагается также, что альфа-ритм связан с действием селектирующих механизмов мозга, выполняющих функцию резонансного фильтра, и таким образом регулирующих поток сенсорных импульсов.
В покое в ЭЭГ могут присутствовать и другие ритмические составляющие, но их значение лучше всего выясняется при изменениии функциональных состояний организма (, 1992). Так, дельта-ритм у здорового взрослого человека в покое практически отсутствует, но он доминирует в ЭЭГ на четвертой стадии сна, которая получила свое название по этому ритму (медленноволновой сон или дельта-сон). Напротив, тэта-ритм тесно связан с эмоциональным и умственным напряжением. Его иногда так и называют стресс-ритм или ритм напряжения. У человека одним из ЭЭГ симптомов эмоционального возбуждения служит усиление тэта-ритма с частотой колебаний 4-7 Гц, сопровождающее переживание как положительных, так и отрицательных эмоций. При выполнении мыслительных заданий может усиливаться и дельта-, и тета-активность. Причем усиление последней составляющей положительно соотносится с успешностью решения задач. По своему происхождению тэта-ритм связан с Кортико-лимбическое взаимодействие = кортико - см. кора больших полушарий головного мозга; лимбическое - см. лимбическая система");" onmouseout="nd();" href="javascript:void(0);">кортико-лимбическим взаимодействием. Предполагается, что усиление тэта-ритма при эмоциях отражает активацию коры больших полушарий со стороны лимбической системы.
Переход от состояния покоя к напряжению всегда сопровождается реакцией десинхронизации, главным компонентом которой служит высокочастотная бета-активность. Умственная деятельность у взрослых сопровождается повышением мощности бета-ритма, причем значим ое усиление высокочастотной активности наблюдается при умственной деятельности, включающей элементы новизны, в то время как стереотипные, повторяющиеся умственные операции сопровождаются ее снижением. Установлено также, что успешность выполнения вербальны х заданий и тестов на зрительно-пространственные отношения оказывается положительно связанной с высокой активностью бета-диапазона ЭЭГ левого полушария. По некоторым предположениям, эта активность связана с отражением деятельности механизмов сканирования структуры стимула, осуществляемой нейрон ными сетями, продуцирующими высокочастотную активность ЭЭГ (см. Хрестомат. 2.1 ; Хрестомат. 2.5).

Магнитоэнцефалография - регистрация параметров магнитного поля, обусловленных биоэлектрической активностью головного мозга . Запись этих параметров осуществляется с помощью сверхпроводящих квантовых интерференционных датчиков и специальной камеры, изолирующей магнитные поля мозга от более сильных внешних полей. Метод обладает рядом преимуществ перед регистрацией традиционной электроэнцефалограммы. В частности, радиальные составляющие магнитных полей, регистрируемые со скальпа, не претерпевают таких сильных искажений, как ЭЭГ. Это позволяет более точно рассчитывать положение генераторов ЭЭГ-активности, регистрируемой со скальпа.

2.1.2. Вызванные потенциал ы головного мозга

Вызванные потенциал ы (ВП) - биоэлектрические колебания, возникающие в нервных структурах в ответ на внешнее раздражение и находящиеся в строго определенной временной связи с началом его действия. У человека ВП обычно включены в ЭЭГ, но на фоне спонтанной биоэлектрической активности трудно различимы (амплитуда одиночных ответов в несколько раз меньше амплитуды фоновой ЭЭГ). В связи с этим регистрация ВП осуществляется специальными техническими устройствами, которые позволяют выделять полезный сигнал из шума путем последовательного его накопления, или суммации. При этом суммируется некоторое число отрезков ЭЭГ, приуроченных к началу действия раздражителя.

Схематизированные эндогенные компоненты слуховых вызванных потенциал ов (B. Rockstroh et al., 1982):
а - в ответ на релевантные задаче стимулы; б - ответ на иррелевантный стимул

Широкое использование метода регистрации ВП стало возможным в результате компьютеризации психофизиологических исследований в 50-60 гг. Первоначально его применение в основном было связано с изучением сенсорных функций человека в норме и при разных видах аномалий. Впоследствии метод стал успешно применяться и для исследования более сложных психи ческих процессов, которые не являются непосредственной реакцией на внешний стимул.
Способы выделения сигнала из шума позволяют отмечать в записи ЭЭГ изменения потенциал а, которые достаточно строго связаны во времени с любым фиксированным событием. В связи с этим появилось новое обозначение этого круга физиологических явлений - событийно-связанные потенциал ы (ССП).

  • Примерами здесь служат:
    • колебания, связанные с активностью двигательной коры (моторный потенциал , или потенциал , связанный с движением);
    • потенциал , связанный с намерением произвести определенное действие (так называемая Е-волна);
    • потенциал , возникающий при пропуске ожидаемого стимула.

Эти потенциал ы представляют собой последовательность позитивных и негативных колебаний, регистрируемых, как правило, в интервале 0-500 мс. В ряде случаев возможны и более поздние колебания в интервале до 1000 мс. Количественные методы оценки ВП и ССП предусматривают, в первую очередь, оценку амплитуд и Латентный - скрытый, внешне не проявляющийся.");" onmouseout="nd();" href="javascript:void(0);">латентностей . Амплитуда - размах колебаний компонентов, измеряется в мкВ, латентность - время от начала стимуляции до пика компонента, измеряется в мс. Помимо этого, используются и более сложные варианты анализа.

  • В исследовании ВП и ССП можно выделить три уровня анализа:
    • феноменологический;
    • физиологический;
    • функциональный.

Феноменологический уровень включает описание ВП как многокомпонентной реакции с анализом конфигурации, компонентного состава и топографических особенностей. Фактически этот уровень анализа, с которого начинается любое исследование, применяющее метод ВП. Возможности этого уровня анализа прямо связаны с совершенствованием способов количественной обработки ВП, которые включают разные приемы, начиная от оценки латентностей и амплитуд и кончая производными, искусственно сконструированными показателями. Многообразен и математический аппарат обработки ВП, включающий факторный, дисперсионный, таксон омический и другие виды анализа.
Физиологический уровень. По этим результатам на физиологическом уровне анализа происходит выделение источников генерации компонентов ВП, т.е. решается вопрос о том, в каких структурах мозга возникают отдельные компоненты ВП. Локализация источников генерации ВП позволяет установить роль отдельных корковых и подкорковых образований в происхождении тех или иных компонентов ВП. Наиболее признанным здесь является деление ВП на экзогенные и эндогенные компоненты. Первые отражают активность специфических проводящих путей и зон, вторые - неспецифических ассоциативных проводящих систем мозга. Длительность тех и других оценивается по-разному для разных модальностей. В зрительной системе, например, экзогенные компоненты ВП не превышают 100 мс от момента стимуляции.
Третий уровень анализа - функциональный предполагает использование ВП как инструмента, позволяющего изучать физиологические механизмы поведения и познавательной деятельности человека и животных.

ВП как единица психофизиологического анализа. Под единицей анализа принято понимать такой объект анализа, который в отличие от элементов обладает всеми основными свойствами, присущими целому, причем свойства являются далее неразложимыми частями этого единства. Единица анализа - это такое минимальное образование, в котором непосредственно представлены существенные связи и существенные для данной задачи параметры объекта. Более того, подобная единица сама должна быть единым целым, своего рода системой, дальнейшее разложение которой на элементы лишит ее возможности представлять целое как таковое. Обязательным признаком единицы анализа является также то, что ее можно операционализировать, т.е. она допускает измерение и количественную обработку.
Если рассматривать психофизиологический анализ как метод изучения мозговых механизмов психи ческой деятельности, то ВП отвечают большинству требований, которые могут быть предъявлены единице такого анализа.
Во-первых , ВП следует квалифицировать как психонервную реакцию, т.е. такую, которая прямо связана с процессами психи ческого отражения.
Во-вторых , ВП - это реакция, состоящая из ряда компонентов, непрерывно связанных между собой. Таким образом, она структурно однородна и может быть операционализирована, т.е. имеет количественные характеристики в виде параметров отдельных компонентов (латентностей и амплитуд). Существенно, что эти параметры имеют разное функциональное значение в зависимости от особенностей экспериментальной модели.
В-третьих , разложение ВП на элементы (компоненты), осуществляемое как метод анализа, позволяет охарактеризовать лишь отдельные стадии процесса переработки информации, при этом утрачивается целостность процесса как такового.
В наиболее выпуклой форме идеи о целостности и системности ВП как корреляте поведенческого акта нашли отражение в исследованиях В.Б. Швыркова. По этой логике ВП, занимая весь временной интервал между стимулом и реакцией, соответствуют всем процессам, приводящим к возникновению поведенческого ответа, при этом конфигурация ВП зависит от характера поведенческого акта и особенностей функциональной системы, обеспечивающей данную форму поведения. При этом отдельные компоненты ВП рассматриваются как отражение этапов афферентного синтеза, принятия решения, включения исполнительных механизмов, достижения полезного результата. В такой интерпретации ВП выступают как единица психофизиологического анализа поведения.
Однако маги стральное русло применения ВП в психофизиологии связано с изучением физиологических механизмов и Корреля т - дополнительный показатель, статистически связанный с изучаемым процессом или явлением.");" onmouseout="nd();" href="javascript:void(0);">коррелятов познавательной деятельности человека. Это направление определяется как Когнитивный - познавательный, имеющий отношение к познанию.");" onmouseout="nd();" href="javascript:void(0);">когнитивная психофизиология. ВП в нем используются в качестве полноценной единицы психофизиологического анализа. Такое возможно, потому что, по образному определению одного из психофизиологов, ВП имеют уникальный в своем роде двойной статус, выступая в одно и то же время как "окно в мозг" и "окно в познавательные процессы" (см. Хрестомат. 2.4).

2.1.3. Топографическое картирование электрической активности мозга (ТКЭАМ)

ТКЭАМ - топографическое картирование электрической активности мозга - область электрофизиологии, оперирующая с множеством количественных методов анализа электроэнцефалограммы и вызванных потенциал ов (см. Видео). Широкое применение этого метода стало возможным при появлении относительно недорогих и быстродействующих персональных компьютеров. Топографическое картирование существенным образом повышает эффективность ЭЭГ-метода. ТКЭАМ позволяет очень тонко и дифференцированно анализировать изменения функциональных состояний мозга на локальном уровне в соответствии с видами выполняемой испытуемым психи ческой деятельности. Однако, следует подчеркнуть, что метод картирования мозга является не более чем очень удобной формой представления на экране дисплея статистического анализа ЭЭГ и ВП.

  • Сам метод картирования мозга можно разложить на три основные составляющие:
    • регистрацию данных;
    • анализ данных;
    • представление данных.

Регистрация данных. Используемое число электродов для регистрации ЭЭГ и ВП, как правило, варьирует в диапазоне от 16 до 32, однако в некоторых случаях достигает 128 и даже больше. При этом большее число электродов улучшает пространственное разрешение при регистрации электрических полей мозга, но сопряжено с преодолением больших технических трудностей.
Для получения сравнимых результатов используется система "10-20", при этом применяется в основном монополярная регистрация.
Важно, что при большом числе активных электродов можно использовать лишь один референтный электрод, т.е. тот электрод, относительно которого регистрируется ЭЭГ всех остальных точек постановки электродов. Местом приложения референтного электрода служат мочки ушей, переносица или некоторые точки на поверхности скальпа (затылок, вертекс). Существуют такие модификации этого метода, которые позволяют вообще не использовать референтный электрод, заменяя его значениями потенциал а, вычисленными на компьютере.

Анализ данных. Выделяют несколько основных способов количественного анализа ЭЭГ: временной, частотный и пространственный.
Временный представляет собой вариант отражения данных ЭЭГ и ВП на графике, при этом время откладывается по горизонтальной оси, а амплитуда - по вертикальной. Временной анализ применяют для оценки суммарных потенциал ов, пиков ВП, эпилептических разрядов.
Частотный анализ заключается в группировке данных по частотным диапазонам: дельта, тета, альфа, бета.
Пространственный анализ сопряжен с использованием различных статистических методов обработки при сопоставлении ЭЭГ из разных отведений. Наиболее часто применяемый способ - это вычисление когерентности.

Способы представления данных. Самые современные компьютерные средства картирования мозга позволяют легко отражать на дисплее все этапы анализа: "сырые данные" ЭЭГ и ВП, спектры мощности, топографические карты - как статистические, так и динамические в виде мультфильмов, различные графики, диаграммы и таблицы, а также, по желанию исследователя, - различные комплексные представления. Следует особо указать на то, что применение разнообразных форм визуализации данных позволяет лучше понять особенности протекания сложных мозговых процессов.

ЭЭГ-карты, представляющие топографическое расположение значений спектральной мощности ЭЭГ (по Н.Л. Горбачевской с соавт., 1991).
Под каждой картой указан диапазон анализируемых частот. Справа - шкала значений спектральной мощности ЭЭГ, мкВ

Топографические карты представляют собой контур черепа, на котором изображен какой-либо закодированный цветом параметр ЭЭГ в определенный момент времени, причем разные градации этого параметра (степень выраженности) представлены разными цветовыми оттенками. Поскольку параметры ЭЭГ постоянно меняются по ходу обследования, соответственно этому изменяется цветовая композиция на экране, позволяя визуально отслеживать динамику ЭЭГ процессов. Параллельно с наблюдением исследователь получает в свое распоряжение статистические данные, лежащие в основе карт.
Использование ТКЭАМ в психофизиологии наиболее продуктивно при применении психологических проб, которые являются "топографически контрастными", т.е. адресуются к разным отделам мозга (например, вербальны е и пространственные задания).

2.1.4. Компьютерная томография (КТ)

Компьютерная томография (КТ) - новейший метод, дающий точные и детальные изображения малейших изменений плотности мозгового вещества. КТ соединила в себе последние достижения рентгеновской и вычислительной техники, отличаясь принципиальной новизной технических решений и математического обеспечения.
Главное отличие КТ от рентгенографии состоит в том, что рентген дает только один вид части тела. При помощи компьютерной томографии можно получить множество изображений одного и того же органа и таким образом построить внутренний поперечный срез, или "ломтик" этой части тела. Томографическое изображение - это результат точных измерений и вычислений показателей ослабления рентгеновского излучения, относящихся только к конкретному органу.
Таким образом, метод позволяет различать ткани, незначительно отличающиеся между собой по поглощающей способности. Измеренные излучение и степень его ослабления получают цифровое выражение. По совокупности измерений каждого слоя проводится компьютерный синтез томограммы. Завершающий этап - построение изображения исследуемого слоя на экране дисплея. Для проведения томографических исследований мозга используется прибор нейротомограф.
Помимо решения клинических задач (например, определения местоположения опухоли) с помощью КТ можно получить представление о распределении регионального мозгового кровотока. Благодаря этому КТ может быть использована для изучения обмена веществ и кровоснабжения мозга.
В ходе жизнедеятельности нейрон ы потребляют различные химические вещества, которые можно пометить радиоактивными изотопами (например, глюкозу). При активизации нервных клеток кровоснабжение соответствующего участка мозга возрастает, в результате в нем скапливаются меченые вещества и возрастает радиоактивность. Измеряя уровень радиоактивности различных участков мозга, можно сделать выводы об изменениях активности мозга при разных видах психи ческой деятельности. Последние исследования показали, что определение максимально активизированных участков мозга может осуществляться с точностью до 1 мм.

Ядерно-магнитно-резонансная томография мозга. Компьютерная томография стала родоночальницей ряда других еще более совершенных методов исследования: томографии с использованием эффекта ядерного магнитного резонанса (ЯМР-томография), позитронной эмиссионной томографии (ПЭТ), функционального магнитного резонанса (ФМР). Эти методы относятся к наиболее перспективным способам неинвазивного совмещенного изучения структуры, метаболизма и кровотока мозга.
При ЯМР-томографии получение изображения основано на определении в мозговом веществе распределения плотности ядер водорода (протонов) и на регистрации некоторых их характеристик при помощи мощных электромагнитов, расположенных вокруг тела человека. Полученные посредством ЯМР-томографии изображения дают информацию об изучаемых структурах головного мозга не только анатомического, но и физикохимического характера. Помимо этого преимущество ядерно-магнитного резонанса заключается в отсутствии ионизирующего излучения; в возможности многоплоскостного исследования, осуществляемого исключительно электронными средствами; в большей разрешающей способности. Другими словами, с помощью этого метода можно получить четкие изображения "срезов" мозга в различных плоскостях.
Позитронно-Эмиссионная трансаксиальная Томография (ПЭТ-сканеры ) сочетает возможности КТ и радиоизотопной диагностики. В ней используются ультракороткоживущие позитронизлучающие изотопы ("красители"), входящие в состав естественных метаболитов мозга, которые вводятся в организм человека через дыхательные пути или внутривенно. Активным участкам мозга нужен больший приток крови, поэтому в рабочих зонах мозга скапливается больше радиоактивного "красителя". Излучения этого "красителя" преобразуют в изображения на дисплее.
С помощью ПЭТ измеряют региональный мозговой кровоток и метаболизм глюкозы или кислорода в отдельных участках головного мозга. ПЭТ позволяет осуществлять прижизненное картирование на "срезах" мозга регионального обмена веществ и кровотока.
В настоящее время разрабатываются новые технологии для изучения и измерения происходящих в мозге процессов, основанные, в частности, на сочетании метода ЯМР с измерением мозгового метаболизма при помощи позитронной эмиссии. Эти технологии получили название метода функционального магнитного резонанса (ФМР) (см. Видео).

2.1.5. Нейрональная активность

- нервная клетка, через которую передается информация в организме, представляет собой морфофункциональную единицу ЦНС человека и животных. При достижении порогового уровня возбуждения, поступающего в нейрон из разных источников, он генерирует разряд, называемый потенциал ом действия. Как правило, нейрон должен получить много приходящих импульсов прежде, чем в нем возникнет ответный разряд. Все контакты нейрон а (Синапсы - места функциональных контактов, образуемых нейрон ами.");" onmouseout="nd();" href="javascript:void(0);">синапс ы ) делятся на два класса: возбудительные и тормозные. Активность первых увеличивает возможность разряда нейрон а, активность вторых - снижает. По образному сравнению, ответ нейрон а на активность всех его синапс ов представляет собой результат своеобразного "химического голосования". Частота ответов нейрон а зависит от того, как часто и с какой интенсивностью возбуждаются его синаптические контакты, но здесь есть свои ограничения. Генерация импульсов (спайков) делает нейрон недееспособным примерно на 0,001 с. Этот период называется рефрактерным, он нужен для восстановления ресурсов клетки. Период рефрактерности ограничивает частоту разрядов нейрон ов. Частота разрядов нейрон ов колеблется в широких пределах, по некоторым данным от 300 до 800 импульсов в секунду (см. Видео).

нейрон ных популяций, регистрируемых в различных корковых и подкорковых структурах." height="219" alt="рисунок" src="methods_files/2-10.gif" width="262" border="0"> Варианты осциллограмм импульсной активности нейрон ных популяций, регистрируемых в различных корковых и подкорковых структурах (по Н.П. Бехтеревой с соавт., 1985).
Вверху - отметки времени (100 мс). Латинские буквы справа - условные обозначения структур мозга человека

Регистрация ответов нейрон ов. Активность одиночного нейрон а регистрируется с помощью так называемых микроэлектродов, кончик которых имеет от 0,1 до 1 микрона в диаметре. Специальные устройства позволяют вводить такие электроды в разные отделы головного мозга, в таком положении электроды можно зафиксировать и, будучи соединены с комплексом усилитель - осциллограф, они позволяют наблюдать электрические разряды нейрон а.
С помощью микроэлектродов регистрируют активность отдельных нейрон ов, небольших ансамблей (групп) нейрон ов и множественных популяций (т.е. сравнительно больших групп нейрон ов). Количественная обработка записей импульсной активности нейрон ов представляет собой довольно сложную задачу особенно в тех случаях, когда нейрон генерирует множество разрядов и нужно выявить изменения этой динамики в зависимости от каких-либо факторов. С помощью ЭВМ и специального программного обеспечения оцениваются такие параметры, как частота импульсации, частота ритмических пачек или группирования импульсов, длительность межстимульных интервалов и др. Анализ функциональных характеристик активности нейрон ов в сопоставлении с поведенческими реакциями проводится на достаточно длительных отрезках времени от 25-30 с и выше. Активность нейрон ов регистрируют у животных в эксперименте, у человека в клинических условиях. Ценными объектами исследования функциональных свойств нейрон ов служат крупные и относительно доступные нейрон ы некоторых беспозвоночных. Многочисленные факты, касающиеся нейрон альной организации поведения, были получены при изучении импульсной активности нейрон ов в экспериментах на кроликах, кошках и обезьянах.
Исследования активности нейрон ов головного мозга человека осуществляются в клинических условиях, когда пациентам с лечебными целями вводят в мозг специальные микроэлектроды. В ходе лечения для полноты клинической картины больные проходят психологическое тестирование, в процессе которого регистрируется активность нейрон ов. Исследование биоэлектрических процессов в клетках, сохраняющих все свои связи в мозге, позволяет сопоставлять особенности их активности, с результатами психологических проб, с одной стороны, а также с интегративными физиологическими показателями (ЭЭГ, ВП, ЭМГ и др.)
Последнее особенно важно, потому что одной из задач изучения работы мозга является нахождение такого метода, который позволил бы гармонически сочетать тончайший анализ в изучении деталей его работы с исследованием интегральных функций. Знание законов функционирования отдельных нейрон ов, конечно, совершенно необходимо, но это только одна сторона в изучении функционирования мозга, не вскрывающая, однако, законов работы мозга как целостной функциональной системы.

2.1.6. Методы воздействия на мозг

Выше были представлены методы, общая цель которых - регистрация физиологических проявлений и показателей функционирования головного мозга человека и животных. Наряду с этим исследователи всегда стремились проникнуть в механизмы мозга, оказывая на него прямое или косвенное воздействие и оценивая последствия этих воздействий. Для психофизиолога использование различных приемов стимуляции - прямая возможность моделирования поведения и психи ческой деятельности в лабораторных условиях.

Сенсорная стимуляция. Самый простой способ воздействия на мозг - это использование естественных или близких к ним стимулов (зрительных, слуховых, обонятельных, тактильных и пр.). Манипулируя физическими параметрами стимула и его содержательными характеристиками, исследователь может моделировать разные стороны психи ческой деятельности и поведения человека.
Диапазон применяемых стимулов весьма широк:
в сфере зрительного восприятия - от элементарных зрительных стимулов (вспышки, шахматные поля, решетки) до зрительно предъявляемых слов и предложений, с тонко дифференцируемой семантикой;
в сфере слухового восприятия - от неречевых стимулов (тонов, щелчков) до фонем, слов и предложений.
При изучении тактильной чувствительности применяется стимуляция: механическая и электрическими стимулами, не достигающими порога болевой чувствительности, при этом раздражение может наноситься на разные участки тела.
Реакции ЦНС на такое воздействие изучены хорошо и путем регистрации активности нейрон ов, и методом вызванных потенциал ов. Помимо сказанного, в психофизиологии широко используются приемы ритмической стимуляции светом или звуком, вызывающие эффекты навязывания - воспроизведения в спектре ЭЭГ частот, соответствующих частоте действующего стимула (или кратных этой частоте).

Электрическая стимуляция мозга является плодотворным методом изучения функций его отдельных структур. Она осуществляется через введенные в мозг электроды в "острых" опытах на животных или во время хирургических операций на мозге у человека. Кроме того, возможна стимуляция и в условиях длительного наблюдения с помощью предварительно вживленных оперативным путем электродов. При хронически вживленных электродах можно изучать особый феномен электрической самостимуляции, когда животное с помощью какого-нибудь действия (нажатия на рычаг) замыкает электрическую цепь и таким образом регулирует силу раздражения собственного мозга. У человека электрическая стимуляция мозга применяется для изучения связи между психи ческими процессами и функциями и отделами мозга. Так, например, можно изучать физиологические основы речи, памяти, эмоций.
В лабораторных условиях используется метод микрополяризации, суть которого состоит в пропускании слабого постоянного тока через отдельные участки коры головного мозга. При этом электроды прикладываются к поверхности черепа в области стимуляции. Локальная микрополяризация не разрушает ткань мозга, а лишь оказывает влияние на сдвиги потенциал а коры в стимулируемом участке, поэтому она может быть использована в психофизиологических исследованиях.
Наряду с электрической допустима стимуляция коры мозга человека слабым электромагнитным полем. Основу этого метода составляет принципиальная возможность изменения характеристик деятельности ЦНС под влиянием контролируемых магнитных полей. В этом случае также не оказывается разрушающего воздействия на клетки мозга. В то же время, по некоторым данным, воздействие электромагнитным полем ощутимо влияет на протекание психи ческих процессов, следовательно, этот метод представляет интерес для психофизиологии.

Разрушение участков мозга. Повреждение или удаление части головного мозга для установления ее функций в обеспечении поведения - один из наиболее старых и распространенных методов изучения физиологических основ поведения. В чистом виде метод применяется в экспериментах с животными. Наряду с этим распространено психофизиологическое обследование людей, которым по медицинским показаниям было проведено удаление части мозга.

  • Разрушающее вмешательство может осуществляться путем:
    • перерезки отдельных путей или полного отделения структур (например, разделение полушарий путем рассечения межполушарной связки - мозолистого тела);
    • разрушения структур при пропускании постоянного тока (электролитическое разрушение) или тока высокой частоты (термокоагуляция) через введенные в соответствующие участки мозга электроды;
    • хирургического удаления ткани скальпелем или отсасыванием с помощью специального вакуумного насоса, выполняющего роль ловушки для отсасываемой ткани;
    • химических разрушений с помощью специальных препаратов, истощающих запасы медиаторов или разрушающих нейрон ы;
    • обратимого функционального разрушения , которое достигается за счет охлаждения, местной анестезии и других приемов.

Итак, в общем метод разрушения мозга включает в себя разрушение, удаление и рассечение ткани, истощение нейрохимических веществ, в первую очередь медиаторов, а также временное функциональное выключение отдельных областей головного мозга и оценку влияния вышеперечисленных эффектов на поведение животных.

2.2. Электрическая активность кожи

Методы регистрации. Измерение и изучение электрической активности кожи (ЭАК), или кожно-гальванической реакции (КГР (кожно-гальваническая реакция) - изменение электрической активности кожи; измеряется в двух вариантах на основе оценки электрического сопротивления или проводимости различных участков кожи; используется при диагностике функциональных состояний и эмоциональных реакций человека.");" onmouseout="nd();" href="javascript:void(0);">КГР ), впервые началось в конце 19 в., когда почти одновременно французский врач Фере и российский физиолог Тарханов зарегистрировали: первый - изменение сопротивления кожи при пропускании через нее слабого тока, второй - разность потенциал ов между разными участками кожи. Эти открытия легли в основу двух методов регистрации КГР: экзосоматического (измерение сопротивления кожи) и эндосоматического (измерение электрических потенциал ов самой кожи). Следует помнить, что эти методы дают несовпадающие результаты.
В настоящее время ЭАК объединяет целый ряд показателей: уровень потенциал а кожи, реакция потенциал а кожи, спонтанная реакция потенциал а кожи, уровень сопротивления кожи, реакция сопротивления кожи, спонтанная реакция сопротивления кожи. В качестве индикаторов стали использоваться также характеристики проводимости кожи: уровень, реакция и спонтанная реакция. Во всех трех случаях "уровень" означает тоническую составляющую ЭАК, т.е. длительные изменения показателей; "реакция" - фазическую составляющую ЭАК, т.е. быстрые, ситуативные изменения показателей ЭАК; спонтанные реакции - краткосрочные изменения, не имеющие видимой связи с внешними факторами.

Происхождение и значение ЭАК. Возникновение электрической активности кожи обусловлено, главным образом, активностью потовых желез в коже человека, которые в свою очередь находятся под контролем симпатической нервной системы.

У человека имеется 2-3 миллиона потовых желез, но количество их на разных участках теле сильно варьирует. Например, на ладонях и подошвах около 400 потовых желез на один квадратный сантиметр поверхности кожи, на лбу около 200, на спине около 60. Выделение железами пота происходит постоянно, даже когда на коже не появляется ни капли. В течении дня выделяется около полулитра жидкости. При исключительно сильной жаре потеря жидкости может достигать 3,5 литра в час и 14 литров в день (см. Видео).
Существует два типа потовых желез: апокринные и эккринные .
Апокринные , расположенные в подмышечных впадинах и в паху, определяют запах тела и реагируют на раздражители, вызывающие стресс. Они непосредственно не связаны с регуляцией температуры тела.

Эккринные расположены по всей поверхности тела и выделяют обычный пот, главными компонентами которого являются вода и хлористый натрий. Их главная функция - терморегуляция, т.е. поддержание постоянной температуры тела. Однако те эккринные железы, которые расположены на ладонях и подошвах ног, а также на лбу и под мышками - реагируют в основном на внешние раздражители и стрессовые воздействия.
В психофизиологии электрическую активность кожи используют как показатель "эмоционального" потоотделения. Как правило, ее регистрируют с кончиков пальцев или ладони, хотя можно измерять и с подошв ног, и со лба. Следует сказать, однако, что природа КГР (кожно-гальваническая реакция) - изменение электрической активности кожи; измеряется в двух вариантах на основе оценки электрического сопротивления или проводимости различных участков кожи; используется при диагностике функциональных состояний и эмоциональных реакций человека.");" onmouseout="nd();" href="javascript:void(0);">КГР , или ЭАК, еще до сих пор не ясна.

2.3. Показатели работы сердечно-сосудистой системы

Сердечно-сосудистая система выполняет витальные функции, обеспечивая постоянство жизненной среды организма. Сердечная мышца и кровеносные сосуды действуют согласованно, чтобы удовлетворять постоянно меняющиеся потребности различных органов и служить сетью для снабжения и связи, поскольку с кровотоком переносятся питательные вещества, газы, продукты распада, гормоны.

  • Индикаторы активности сердечно-сосудистой системы включают:
    • ритм сердца (РС) - частоту сердечных сокращений (ЧСС);
    • силу сокращений сердца - силу, с которой сердце накачивает кровь;
    • минутный объем сердца - количество крови, проталкиваемое сердцем в одну минуту; артериальное давление (АД);
    • региональный кровоток - показатели локального распределения крови. Для измерения мозгового кровотока получили распространение методы томографии и реографии (см. п. 2.1).

Среди показателей сердечно-сосудистой системы часто используют также среднюю частоту пульса и ее дисперсию.
У взрослого человека в состоянии относительного покоя систолический объем каждого желудочка составляет 70-80 мл. Минутный объем сердца - количество крови, которое сердце выбрасывает в легочный ствол и аорту за 1 мин - измеряется как произведение величины систолического объема на частоту сердечных сокращений в 1 мин. В покое минутный объем составляет 3-5 л. При интенсивной работе минутный объем может существенно увеличиваться до 25-30 л., причем на первых этапах минутный объем сердца растет за счет повышения величины систолического объема, а при больших нагрузках в основном за счет увеличения сердечного ритма.
Артериальное давление - общеизвестный показатель работы сердечно-сосудистой системы. Оно характеризует силу напора крови в артериях. АД изменяется на протяжении сердечного цикла, оно достигает максимума во время систолы (сокращения сердца) и падает до минимума в диастоле, когда сердце расслабляется перед следующим сокращением. Нормальное артериальное давление здорового человека в покое около 130 / 70 мм рт.ст., где 130 - систолическое давление АД, а 70 - диастолическое АД. Пульсовое давление разность между систолическим и диастолическим давлением, и в норме составляет около 60 мм рт.ст.
Ритм сердца - показатель, часто используемый для диагностики функционального состояния человека, зависит от взаимодействия симпатических и парасимпатических влияний из вегетативной нервной системы. При этом возрастание напряженности в работе сердца может возникать по двум причинам - в результате усиления симпатической активности и снижения парасимпатической.

Электрокардиограмма (ЭКГ) - запись электрических процессов, связанных с сокращением сердечной мышцы . Впервые была сделана в 1903 г. Эйнтховеном. С помощью клинических и диагностических установок ЭКГ можно регистрировать, используя до 12 различных пар отведений; половина их связана с грудной клеткой, а другая половина - с конечностями. Каждая пара электродов регистрирует разность потенциал ов между двумя сторонами сердца, и разные пары дают несколько различную информацию о положении сердца в грудной клетке и о механизмах его сокращения. При заболеваниях сердца в одном или нескольких отведениях могут обнаруживаться отклонения от нормальной формы ЭКГ, и это существенно помогает при постановке диагноза.

В психофизиологии ЭКГ в основном используется для измерения частоты сокращения желудочков. С этой целью применяют прибор кардиотахометр. Ритм сердца, зарегистрированный с помощью кардиотахометра, как правило, соответствует частоте пульса, т.е. числу волн давления, распространяющихся вдоль периферических артерий за одну минуту. В некоторых случаях эти величины, однако, не совпадают.
Исследование нейрогуморальной регуляции ритма сердца является одним из наиболее распространенных подходов к оценке состояния адаптационных возможностей организма человека. Для исследования вегетативного тонуса широко используются записи ЭКГ или кардиоинтервалограммы (КИГ). Наиболее распространенным является метод обработки кардиоинтервалов с помощью гистографического анализа: вычисляется мода распределения, ее амплитуда и вариационный размах и на основании этих параметров вычислялся интегральный показатель - индекс напряжения (ИН). Индекс напряжения пропорционален средней частоте сердечных сокращений и обратно пропорционален диапазону, в котором варьирует интервал между двумя ударами сердца.
С начала 60-х гг. начали использоваться различные спектральные методы анализа RR-интервалов.

Плетизмография - метод регистрации сосудистых реакций организма . Плетизмография отражает изменения в объеме конечности или органа, вызванные изменениями количества находящейся в них крови. Конечность человека в изолирующей перчатке помещают внутрь сосуда с жидкостью, который соединен с манометром и регистрирующим устройством. Изменения давления крови и лимфы в конечности находят отражение в форме кривой, которая называется плетизмограммой. Широкое распространение получили пальцевые фотоплетизмографы, портативные устройства, которые также можно использовать для регистрации сердечного ритма.
В плетизмограмме можно выделить два типа изменений: фазические и тонические.
Фазические изменения обусловлены динамикой пульсового объема от одного сокращения сердца к другому.
Тонические изменения кровотока - это собственно изменения объема крови в конечности. Оба показателя обнаруживают при действии психи ческих раздражителей сдвиги, свидетельствующие о сужении сосудов.
Плетизмограмма - высоко чувствительный индикатор вегетативных сдвигов в организме.

2.4. Показатели активности мышечной системы

Мышечную систему образно определяют как биологический ключ человека к внешнему миру.

Электромиография - метод исследования функционального состояния органов движения путем регистрации биопотенциал ов мышц . Электромиография - это регистрация электрических процессов в мышцах, фактически запись потенциал ов действия мышечных волокон, которые заставляют ее сокращаться. Мышца представляет собой массу ткани, состоящую из множества отдельных мышечных волокон, соединенных вместе и работающих согласованно. Каждое мышечное волокно - это тонкая нить, толщиной всего лишь около 0,1 мм до 300 мм длиной. При стимуляции электрическим потенциал ом действия, приходящим к волокну от мотонейрон а, это волокно сокращается иногда примерно до половины первоначальной длины. Мышцы, участвующие в тонких двигательных коррекциях (фиксация объекта глазами), могут иметь в каждой единице всего по 10 волокон. В мышцах, осуществляющих более грубую регулировку при поддержании позы, в одной двигательной единице может быть до 3000 мышечных волокон.
Поверхностная электромиограмма (ЭМГ) суммарно отражает разряды двигательных единиц, вызывающих сокращение. Регистрация ЭМГ позволяет выявить намерение начать движение за несколько секунд до его реального начала. Помимо этого миограмма выступает как индикатор мышечного напряжения. В состоянии относительного покоя связь между действительной силой, развиваемой мышцей, и ЭМГ линейна.
Прибор, с помощью которого регистрируются биопотенциал ы мышц, называется электромиографом, а регистрируемая с его помощью запись электромиограммой (ЭМГ). ЭМГ, в отличие от биоэлектрической активности мозга (ЭЭГ), состоит из высокочастотных разрядов мышечных волокон, для неискаженной записи которых, по некоторым представлениям, требуется полоса пропускания до 10 000 Гц.

2.5. Показатели активности дыхательной системы

Дыхательная система состоит из дыхательных путей и легких.
Основной двигательный аппарат этой системы составляют межреберные мышцы, диафрагма и мышцы живота. Воздух, поступающий в легкие во время вдоха, снабжает протекающую по легочным капиллярам кровь кислородом. Одновременно из крови выходят двуокись углерода и другие вредные продукты метаболизма, которые выводятся наружу при выдохе. Между интенсивностью мышечной работы, совершаемой человеком, и потреблением кислорода существует простая линейная зависимость.
В психофизиологических экспериментах в настоящее время дыхание регистрируется относительно редко, главными образом для того, чтобы контролировать артефакты.

Для измерения интенсивности (амплитуды и частоты) дыхания используют специальный прибор - пневмограф. Он состоит из надувной камеры-пояса, плотно оборачиваемой вокруг грудной клетки испытуемого, и отводящей трубки, соединенной с манометром и регистрирующим устройством. Возможны и другие способы регистрации дыхательных движений, но в любом случае обязательно должны присутствовать датчики натяжения, фиксирующие изменение объема грудной клетки.
Этот метод обеспечивает хорошую запись изменений частоты и амплитуды дыхания. По такой записи легко анализировать число вдохов в минуту, а также амплитуду дыхательных движений в разных условиях. Можно сказать, что дыхание - это один из недостаточно оцененных факторов в психофизиологических исследованиях.

2.6. Реакции глаз

Для психофизиолога наибольший интерес представляют три категории глазных реакций: сужение и расширение зрачка, мигание и глазные движения.
Пупиллометрия - метод изучения зрачковых реакций. Зрачок - отверстие в радужной оболочке, через которое свет попадает на сетчатку. Диаметр зрачка человека может меняться в пределах от 1,5 до 9 мм. Величина зрачка существенно колеблется в зависимости от количества света, падающего на глаз: на свету зрачок сужается, в темноте - расширяется. Наряду с этим, размер зрачка существенно изменяется, если испытуемый реагирует на воздействие эмоционально. В связи с этим пупиллометрия используется для изучения субъективного отношения людей к тем или иным внешним раздражителям.
Диаметр зрачка можно измерять путем простого фотографирования глаза в ходе обследования или же с помощью специальных устройств, преобразующих величину зрачка в постоянно варьирующий уровень потенциал а, регистрируемый на полиграфе.
Мигание (моргание) - периодическое смыкание век . Длительность одного мигания приблизительно 0,35 с. Средняя частота мигания составляет 7,5 в минуту и может варьировать в пределах от 1 до 46 в минуту. Мигание выполняет разные функции в обеспечении жизнедеятельности глаз. Однако для психофизиолога существенно, что частота мигания изменяется в зависимости от психи ческого состояния человека.
Движение глаз широко исследуются в психологии и психофизиологии. Это разнообразные по функции, механизму и биомеханике вращения глаз в орбитах. Существуют разные типы глазных движений, выполняющие различные функции. Однако наиболее важная среди них функция движений глаз состоит в том, чтобы поддерживать интересующее человека изображение в центре сетчатки, где самая высокая острота зрения. Минимальная скорость прослеживающих движений около 5 угл. мин/с, максимальная достигает 40 град/с.
Электроокулография - метод регистрации движения глаз , основанный на графической регистрации изменения электрического потенциал а сетчатки и глазных мышц. У человека передний полюс глаза электрически положителен, а задний отрицателен, поэтому существует разность потенциал ов между дном глаза и роговицей, которую можно измерить. При повороте глаза положение полюсов меняется, возникающая при этом разность потенциал ов характеризует направление, амплитуду и скорость движения глаза. Это изменение, зарегистрированное графически, носит название электроокулограммы. Однако микродвижения глаз с помощью этого метода не регистрируются, для их регистрации разработаны другие приемы. (см. рис.)

2.7. Детектор лжи

Детектор лжи - условное название прибора полиграфа, одновременно регистрирующего комплекс физиологических показателей (КГР (кожно-гальваническая реакция) - изменение электрической активности кожи; измеряется в двух вариантах на основе оценки электрического сопротивления или проводимости различных участков кожи; используется при диагностике функциональных состояний и эмоциональных реакций человека.");" onmouseout="nd();" href="javascript:void(0);">КГР , ЭЭГ, плетизмограмму и др.) с целью выявить динамику эмоционального напряжения. С человеком, проходящем обследование на полиграфе, проводят собеседование, в ходе которого наряду с нейтральными задают вопросы, составляющие предмет специальной заинтересованности. По характеру физиологических реакций, сопровождающих ответы на разные вопросы, можно судить об эмоциональной реактивности человека и в какой-то мере о степени его искренности в данной ситуации. Поскольку в большинстве случаев специально необученный человек не контролирует свои вегетативные реакции, детект ор лжи дает по некоторым оценкам до 71% случаев обнаружения обмана.
Следует иметь в виду, однако, что сама процедура собеседования (допроса) может быть настолько неприятна для человека, что возникающие по ходу физиологические сдвиги будут отражать эмоциональную реакцию человека на процедуру. Отличить спровоцированные процедурой тестирования эмоции от эмоций, вызванных целевыми вопросам, невозможно. В то же время человек, обладающий высокой эмоциональной стабильностью, сможет относительно спокойно чувствовать себя в этой ситуации, и его вегетативные реакции не дадут твердых основания для вынесения однозначного суждения. По этой причине к результатам, полученных с помощью детект ора лжи, нужно относиться с должной мерой критичности (см. Видео).

Многоканальная регистрация наиболее часто изучаемых видов биоэлектрической активности человека (по В.Блоку, 1970)

2.8. Выбор методик и показателей

В идеале выбор физиологических методик и показателей должен логически вытекать из принятого исследователем методолог ического подхода и целей, поставленных перед экспериментом. Однако на практике нередко исходят из других соображений, например, доступности приборов и легкости обработки экспериментальных данных.
Более весомыми представляются аргументы в пользу выбора методик, если извлекаемые с их помощью показатели получают логически непротиворечивое содержательное толкование в контекст е изучаемой психологической или психофизиологической модели.

Психофизиологические модели. В науке под моделью понимается упрощенное знание, несущее определенную, ограниченную информацию об объекте/явлении, отражающее те или иные его свойства. С помощью моделей можно имитировать функционирование и прогнозировать свойства изучаемых объектов, процессов или явлений. В психологии моделирование имеет два аспекта: моделирование психи ки и моделирование ситуаций . Под первым подразумевается знаковая или техническая имитация механизмов, процессов и результатов психи ческой деятельности, под вторым организация того или иного вида человеческой деятельности путем искусственного конструирования среды, в которой осуществляется эта деятельность.
Оба аспекта моделирования находят место в психофизиологических исследованиях. В первом случае моделируемые особенности деятельности человека, психи ческих процессов и состояний прогнозируются на основе объективных физиологических показателей, нередко зарегистрированных вне прямой связи с изучаемым феноменом. Например, показано, что некоторые индивидуальные особенности восприятия и памяти можно прогнозировать по характеристикам биотоков мозга. Во втором случае психофизиологическое моделирование включает имитацию в лабораторных условиях определенной психи ческой деятельности, с целью выявления ее физиологических коррелятов и /или механизмов. Обязательным при этом является создание некоторых искусственных ситуаций, в которых так или иначе включаются исследуемые психи ческие процессы и функции. Примером такого подхода служат многочисленные эксперименты по выявлению физиологических коррелятов восприятия, памяти и т.д.
При интерпретации результатов в подобных экспериментах исследователь должен четко представлять себе, что модель никогда не бывает полностью идентична изучаемому явлению или процессу. Как правило, в ней учитываются лишь какие-то отдельные стороны реальности. Следовательно, каким бы исчерпывающим ни казался, например, какой-либо психофизиологический эксперимент по выявлению нейрофизиологических коррелятов процессов памяти, он будет давать лишь частичное знание о природе ее физиологических механизмов, ограниченное рамками данной модели и используемых методических приемов и показателей. Именно по этой причине психофизиология изобилует разнообразием несвязанных между собой, а иногда и просто противоречивых экспериментальных данных. Полученные в контекст е разных моделей такие данные представляют фрагментарное знание, которое в перспективе, вероятно, должно объединиться в целостную систему, описывающую механизмы психофизиологического функционирования.

Интерпретация показателей. Особого внимания заслуживает вопрос о том, какое значение экспериментатор придает каждому из используемых им показателей. В принципе физиологические показатели могут выполнять две основные роли: целевую (смысл овую) и служебную (вспомогательную). Например, при изучении биотоков мозга в процессе умственной деятельности целесообразно параллельно регистрировать движения глаз, мышечное напряжение и некоторые другие показатели. Причем в контекст е такой работы только показатели биотоков мозга несут смысл овую нагрузку, связанную с данной задачей. Остальные показатели служат для контроля артефактов и качества регистрации биотоков (регистрация глазных движений), контроля эмоциональных состояний испытуемого (регистрация КГР (кожно-гальваническая реакция) - изменение электрической активности кожи; измеряется в двух вариантах на основе оценки электрического сопротивления или проводимости различных участков кожи; используется при диагностике функциональных состояний и эмоциональных реакций человека.");" onmouseout="nd();" href="javascript:void(0);">КГР ), поскольку, хорошо известно, что глазные движения и эмоциональное напряжение могут привносить помехи и искажать картину биотоков, особенно когда испытуемый решает какую-либо задачу. В то же время в другом исследовании регистрация и глазных движений, и КГР может играть смысл овую, а не служебную роль. Например, когда предмет исследования - стратегия визуального поиска или изучение физиологических механизмов эмоциональной сферы человека.
Таким образом, один и тот же физиологический показатель может быть использован для решения разных задач. Другими словами, специфика использования показателя определяется не только его собственными функциональными возможностями, но также и тем психологическим контекст ом, в который он включается. Хорошее знание природы и всех возможностей используемых физиологических показателей - важный фактор в организации психофизиологического эксперимента.

Значение экспериментов, выполненных на животных. Как уже отмечалось выше, многие задачи в психофизиологии решались и продолжают решаться в экспериментах на животных. (В первую очередь речь идет об изучении активности нейрон ов.) В связи с этим особое значение приобретает проблема, сформулированная еще Л.С. Выготским. Это проблема специфического для человека соотношения структурных и функциональных единиц в деятельности мозга и определения новых по сравнению с животными принципов функционирования систем, внутри- и межсистемных взаимодействий.
Следует прямо указать, что проблема "специфического для человека соотношения структурных и функциональных единиц в деятельности мозга и определения новых по сравнению с животными" принципов функционирования систем, к сожалению, пока не получила продуктивного развития. Как пишет О.С. Андрианов (1993): "Стремительное "погружение" биологии и медицины... в глубины живой материи отодвинуло на задний план изучение важнейшей проблемы - эволюционной специфики мозга человека. Попытки найти на молекулярном уровне некий материальный субстрат, характерный только для мозга человека и определяющий особенности наиболее сложных психи ческих функций, пока не увенчались успехом".
Таким образом, встает вопрос о правомерности переноса данных полученных на животных для объяснения мозговых функций у человека. Широко принята точка зрения, в соответствии с которой существуют универсальные механизмы клеточного функционирования и общие принципы кодирования информации, что позволяет осуществлять интерпол яцию результатов (см., например: Основы психофизиологии под ред. Ю.И. Александрова, 1998).
Один из основателей отечественной психофизиологии Е.Н. Соколов , решая проблему переноса результатов исследований, выполненных на животных, на человека, сформулировал принцип психофизиологического исследования следующим образом: человек - нейрон - модель. Это значит, что психофизиологическое исследование начинается с изучения поведенческих (психофизиологических) реакций человека, Затем оно переходит к изучению механизмов поведения с помощью микроэлектродной регистрации нейрон ной активности в опытах на животных, а у человека - с использованием электроэнцефалограммы и вызванных потенциал ов. Интеграция всех данных осуществляется путем построения модели из нейроподобных элементов. При этом вся модель как целое должна воспроизводить исследуемую функцию, а отдельные нейроподобные элементы должны обладать характеристиками и свойствами реальных нейрон ов. Перспективы исследований такого рода заключаются в построении моделей "специфически человеческого типа" таких, например, как нейроинтеллект.

Заключение. Приведенные выше материалы свидетельствуют о большом разнообразии и разноуровневости психофизиологических методов. В сферу компетентности психофизиолога входит многое, начиная от динамики нейрон альной активности в глубоких структурах мозга до локального кровотока в пальце руки. Закономерно возникает вопрос, каким образом объединить столь различные по способам получения и содержанию показатели в логически непротиворечивую систему. Решение его, однако, упирается в отсутствие единой общепринятой психофизиологической теор ии.
Психофизиология, которая родилась как экспериментальная ветвь психологии, в значительной степени остается таковой и по сей день, компенсируя несовершенство теор етического фундамента многообразием и изощренностью методического арсенала. Богатство этого арсенала велико, его ресурсы и перспективы представляются неисчерпаемыми. Стремительный рост новых технологий неизбежно расширит возможности проникновению в тайны человеческой телесности. Он приведет к созданию новых обрабатывающих устройств, способных формализ овать сложную систему зависимости переменных величин, используемых в объективных физиологических показателях, закономерно связанных с психи ческой деятельностью человека. Независимо от того, будут ли новые решения результатом дальнейшего развития электронно-вычислительной техники, эвристических моделей или других, еще неизвестных нам способов познания, развитие науки в наше время предвосхищает коренное преобразование психофизиологического мышлени я и методов работы

Словарь терминов

  1. альфа-ритм
  2. пейсмекер
  3. ретикулярная формация
  4. афферентация
  5. кортико-лимбическое взаимодействие
  6. кожно-гальваническая реакция (КГР)

Вопросы для самопроверки

  1. Как связаны ритмические составляющие электроэнцефалограммы с состоянием человека?
  2. Чем обусловлена кожно-гальваническая реакция?
  3. Как различаются пневмография и спирография?
  4. Что дает оценка состояния периферических сосудов?
  5. Как интерпретируют показатели детект ора лжи?

Список литературы

  1. Анохин П.К. Очерки по физиологии функциональных систем. М.: Медицина, 1975.
  2. Буреш Я., Бурешова О., Хьюстон Д.П. Методики и основные эксперименты по изучению мозга и поведения. М.: Высшая школа, 1991.
  3. Беленков Н.Ю. Принцип целостности в деятельности мозга. М.: Медицина, 1980.
  4. Бернштейн Н.А. Очерки по физиологии движений и по физиологии активности. М.: Медицина, 1966.
  5. Бехтерева Н.П., Бундзен П.В., Гоголицын Ю.Л. Мозговые коды психи ческой деятельности. Л.: Наука, 1977.
  6. Гнездицкий В.В. Вызванные потенциал ы мозга в клинической практике. Таганрог: ТГТУ, 1997.
  7. Данилова Н.Н. Психофизиология. М.: Аспект Пресс, 1998.
  8. Дубровский Д.И. Психика и мозг: результаты и перспективы исследований // Психологический журнал. 1990. Т.11. № 6. С. 3-15.
  9. Естественнонаучные основы психологии / Под. ред. А.А. Смирнова, А.Р. Лурия, В.Д. Небылицына. М.: Педагогика, 1978.
  10. Иваницкий А.М., Стрелец В.Б., Корсаков И.А. Информационные процессы мозга и психи ческая деятельность. М.: Наука, 1984.
  11. Ломов Б.Ф. Методологические и теор етические проблемы психологии. М.: Наука, 1984.
  12. Нейрокомпьютер как основа мыслящих ЭВМ. М.: Наука, 1993.
  13. Мерлин В.С. Очерк интегрального исследования индивидуальности. М.: Педагогика, 1986.
  14. Методика и техника психофизиологического эксперимента. М.: Наука, 1987.
  15. Основы психофизиологии / Под ред. Ю.И. Александрова. М., 1998.
  16. Тихомиров О.К. Психология мышлени я. М.: МГУ, 1984.
  17. Чуприкова Н.И. Психика и сознание как функция мозга. М.: Наука, 1985.
  18. Хэссет Дж. Введение в психофизиологию. М.: Мир, 1981.
  19. Ярвилехто Т. Мозг и психи ка. М.: Прогресс, 1992.

Психические процессы составляют основу психической деятельности и являются динамическим отражением действительности. Психические состояния человека отличаются разнообразием и временным характером, В процессе деятельности реакция организма на внешние изменения не остается постоянной. Организм стремится приспособиться к изменяющимся условиям деятельности, преодолеть трудности и опасности.

Реакцией организма на резкое увеличение нагрузки является стресс, состоящий из целого ряда физиологических сдвигов в организме

Сам по себе стресс является не только целесообразной защитной реакцией человеческого организма, но и механизмом, содействующим успеху трудовой деятельности в условиях помех, трудностей и опасностей, если он не превышает.критического уровня. Превышение ведет к сбоям саморегуляции и чрезмерным формам психического напряжения..

Можно выделить два типа запредельного психического напряжения - тормозной и возбудимый.

Тормозной тип характеризуется скованностью и замедленностью движений. Снижается скорость ответных реакций. Замедляется мыслительный процесс, ухудшается воспоминание, проявляются рассеянность и другие отрицательные признаки, несвойственные данному человеку в спокойном состоянии.

Возбудимый тип проявляется гиперактивностью, многословностью, дрожанием рук и голоса, грубость, раздражительность, неспокойность.. Длительные психические напряжения и особенно их запредельные формы ведут к выраженным состояниям утомления.

Умеренное напряжение - нормальное рабочее состояние, возникающее под мобилизирующим влиянием трудовой деятельности. Это состояние психической активности является необходимым условием успешного выполнения действий и сопровождается умеренным изменением физиологических реакций организма, проявляется в хорошем самочувствии, стабильном и уверенном выполнении действий. Умеренное напряжение соответствует работе в оптимальном режиме. Оптимальный режим работы осуществляется в комфортных условиях, нормальной работе технических устройств. В оптимальных условиях промежуточные и конечные цели труда достигаются при невысоких нервно-психических затратах. Обычно здесь имеют место длительное сохранение работоспособности, отсутствие грубых нарушений, ошибочных действий, отказов, срывов и других аномалий.

Повышенное напряжение сопровождает деятельность, протекающую в экстремальных условиях, требующих от работающего максимального напряжения физиологических и психических функций, резко выходящего за пределы физиологической нормы.

Экстремальный режим - это работы в условиях, выходящих за пределы оптимума. Отклонения от оптимальных условий деятельности требуют повышенного волевого усилия или, иначе говоря, вызывают напряжение.

Монотония - напряжение, вызванное однообразием выполняемых действий, невозможностью переключения внимания, повышенными требованиями как к концентрации, так и к устойчивости внимания.

Политония - напряжение, вызванное необходимостью переключений внимания, частых и в неожиданных направлениях.

Физическое напряжение - напряжение организма, вызванное повышенной нагрузкой на двигательный аппарат человека.

Эмоциональное напряжение - напряжение, вызванное конфликтными условиями, повышенной вероятностью возникновения аварийной ситуации, неожиданностью либо длительным напряжением различных видов.

Напряжение ожидания - напряжение, вызванное необходимостью поддержания готовности рабочих функций в условиях отсутствия деятельности.

Мотивационное напряжение связано с борьбой мотивов, с выбором критериев для принятия решения.

Утомление - напряжение, связанное с временным снижением работоспособности, вызванное длительной работой.

Эргономические основы безопасности жизнедеятельности

Безопасность жизнедеятельности является комплексной дисциплиной, опирающейся на разработки и достижения разных наук. Одной из таких наук является эргономика.

Эргономика занимается вопросами повышения эффективности целенаправленной деятельности человека в основном во время трудовой деятельности. Однако существуют такие направления, как “Эргономика в быту”, “Эргономика спорта” и др.

Эргономика исследует взаимодействие человека с искусственной (технической) средой. При этом человеку свойственны некоторые ограничения, которые конструктору необходимо принимать во внимание. Сложность исследования связана с особенностями человек а и разнообразием проектируемых ситуаций , которые следует учитывать. Конструкции, порождающие те или иные ситуации, могут быть как относительно простые (рукоятки инструментов, вспомогательные приспособления) так и чрезвычайно сложные (щиты управления блоками электростанции, приборные панели самолёта).

Важной частью эргономики является анатомия человека, которая составляет теоретическую основу антропометрии и биомеханики.

Например, замечено, что рост работников управленческого аппарата, в среднем, на несколько сантиметров выше, чем неквалифицированных рабочих.

Биомеханика изучает приложение сил телом человека. При этом необходимо учитывать, что:

· человека необходимо учить эффективному приложению сил, так как в условиях техносферы инстинктивные способности, зачастую, не реализуются;

· человек, в отличие от низших животных, может приложить мышечную силу того же порядка, что и масса тела.

Эффективная биомеханика требует знания анатомии, в частности, расположения основных групп мышц, их состава и способа приведения их в действие.

Физиология вносит в эргономику два важных компонента: физиологию труда и гигиену труда. Физиология труда изучает процесс производства энергии организмом человека. Энерготраты исследуются для определения количества потребляемой химической энергии, содержащейся в человеческом организме, что, в свою очередь, учитывается для определения ожидаемой продолжительности непрерывной работы в течение смены, частоты и продолжительности перерывов в работе.

Эргономика учитывает рекомендации по гигиене труда , которые зависят от параметров окружающей среды - метеорологических условий, освещения, шума, вибрации, наличие электромагнитных полей, ионизирующего излучения и др. При этом учитываются такие характеристики человека как возраст, пол, пригодность к работе и т.д.

Учитывая, что во многих авариях и катастрофах виноват сам человек и, при этом, цена таких ошибок постоянно возрастает, можно сказать, что существенный вклад в эргономику вносит психология , которая может оказаться полезной в определении человеческих ошибок и даёт возможность разобраться, почему люди их совершают.

В процессе трудовой деятельности неизбежно взаимодействие с другими людьми, поэтому необходимо иметь определенные познания о закономерностях общения людей, руководства, поведения отдельного работника в организации, группового поведения, а также о взаимодействии людей с окружающей средой.

Рекомендации эргономики, зачастую, ставят цель обеспечить выполнение конкретной работы с определённым эффектом. Под эффектом будем понимать не только экономический результат, но и устранение вредного воздействия на здоровье, и сведение риска несчастных случаев к минимуму.

25. ЧРЕЗВЫЧАЙНЫЕ СИТУАЦИИ ТЕХНОГЕННОГО ХАРАКТЕРА

Классификация чрезвычайных ситуаций имеющие техногенный характер

Такими ситуациями называют аварии, взрывы, пожары и другие происшествия, вызванные хозяйственной деятельностью человека. В связи с наполнением производства и сферы услуг новейшей техникой и технологией значительно возрастает количество вышеперечисленных катастроф.

Транспортные аварии

Транспортная авария - опасное техногенное происшествие, возникшее в процессе движения по дороге транспортного средства и с его участием, при котором погибли или ранены люди, повреждены транспортные средства или был нанесен ущерб окружающей среде.

Пожары и взрывы

Пожары и взрывы являются наиболее распространенными чрезвычайными ситуациями, несут собой огромный ущерб и гибель населения. Эти ЧС наносят немалый урон природной среде, а иногда уничтожают большие территории. По своей химической природе, пожары и взрывы являются разновидностью неконтролируемых горений. Аварии с угрозой выброса сильнодействующих ядовитых веществ (СДЯВ)СДЯВ используются в транспортной и промышленной сфере. При авариях на таких объектах, возможны выбросы СДЯВ, которые попадают в атмосферу и гидросферу, вызывая многочисленные заражения людей.

Аварии с угрозой выброса радиоактивных веществ (РВ)

Радиация губительно действует на любое живое существо. При радиационном облучении, возникает лучевая болезнь, которая разрушает генетику живого организма. Радиационное заражение местности происходит при авариях на предприятии, которое использует радиоактивные материалы в производстве или занимается утилизацией радиоактивных отходов.

Аварии с угрозой выброса биологически опасных веществ (БОВ)

Биологически опасные вещества ведут к многочисленным заболеваниям животных и людей. Человек способен заразиться даже при попадании очень малых количеств БОВ в организм. БОВ включает в себя бактерии и микробы, которые способны вызвать очень опасные инфекционные заболевания.

Непредвиденный обвал строений

Авария такого плана, как правило, связана с сопутствующими обстоятельствами. Это может быть и значительное движение на пике трудового дня, большое количество людей или автомобилей, сосредоточенных одновременно в одном месте.

По большей части обвалы строений случаются при строительстве на оседающих почвах из-за нарушения строительных нормативов. Также такое возможно из-за неправильных расчетов надежности строений и конструкционных элементов, при повреждении фундамента здания при строительстве.

Такое случается в городах, где особо активное движение, значительное количество заводов и жителей. Последствиями таких разрушений является не только материальная сторона вопроса. Среди жителей возникает паника, к тому же люди страдают морально.

Авария на электроэнергетических системах:

Аварии на автономных электростанциях с долговременным перерывом электроснабжения.

Аварии на электроэнергетических сетях с долговременным перерывом электроснабжения потребителей и территорий.

Выход из строя транспортных электрических контактных сетей.

Аварии в коммунальных системах жизнеобеспечения

В основном происходят в городах и крупных поселках, где наблюдается большое скопление людей, промышленных предприятий. Помимо материального ущерба такие аварии наносят серьезный моральный ущерб и имеют негативные последствия среди населения.

Четыре группы аварий:

На канализационных системах;

На тепловых сетях;

В системах водоснабжения;

На коммунальных газопровода

Человечеству давно известно о потенциале, который заложен в музыке, о различных психофизиологических реакциях, возникающих у людей под ее воздействием.

В самых древних свидетельствах и документах дошедших до нас музыка фигурирует как лечебное средство.

В античной мифологии содержатся многочисленные образы, и представления в которой музыка осознается и переживается как явление магического характера. Например, это представление о музыке отражается в мифе об Орфее. Знаменитый герой, своим пением не только смягчал нрав людей, но и укрощал диких зверей и птиц.

В эпосе об Одиссее приводится описание того, как от музыки и пения рана Одиссея перестала кровоточить. Древнегреческий герой Ахилл приступы своей ярости усмирял пением и игрой на лире. Представление о волшебном, колдовском значении музыки отражается у Гомера в образе Сирен, которые своим сладостным пением завлекают на свой остров путников.

Культуру, какой бы страны мы не взяли везде можно найти сведения об использовании музыки в нормализации душевного состояния людей. В Китае и Индии, Египте и древней Греции, врачи и жрецы, философы и музыканты использовали звуки музыки для врачевания.

В античных трудах мы находим множество свидетельств, говорящих о чудесных исцелениях, достигнутых при помощи музыки. Великий врачеватель древности Авиценна называл мелодию “нелекарственным” способом лечения наряду с диетой, запахами и смехом. Боэций, в трактате “ Наставления к музыке”, рассказывает, как музыканты Терпандр и Арион посредством пения избавили жителей Лесбоса и ионян от тяжелых болезней. Врач Асклепиад звуками музыки усмирял раздоры, а звуками трубы восстанавливал слух глухим. Знаменитый оратор Гай Гракх всегда, когда выступал перед народом, держал позади себя раба– музыканта, который звуками флейты давал ему верный тон и ритм речи, умеряя или возбуждая дух красноречия своего господина.

Античные мыслители рассматривали музыку как важнейшее средство воздействия на нравственный мир человека, как средство исправления и воспитания характеров, создания определенного психологической настроенности личности – этоса. Существовала четкая классификация этических свойств музыкальных ладов, ритмов, мелодий, инструментов. Выделялись те, которые представлялись более подходящими для воспитания мужественной, героической личности. Платон, великий Учитель древности, очень серьезно относился к подбору мелодий для прослушивания населением. По его мнению, могущественность и сила государства напрямую зависит от того, какая музыка в нем звучит, в каких ладах и в каких ритмах. Музыкальные ритмы и лады обладают способностью делать души людей сообразными им самим.

Идеи Пифагора и Платона наибольшее развитие получили в трудах Аристотеля, разработавшего учение о мимесисе – представлении о внутреннем мире человека и способности воздействия на него при помощи искусства. Теории мимесиса была разработана концепция катарсиса. Этим понятием пользовались древнегреческие философы, подразумевая под этим психологическое очищение, которое испытывает человек после общения с искусством.

В XVII–XVIII веках учение об использовании музыки в медицинских целях получило название “Jatromusica”. В русле этого направления изучались физиологические реакции, происходящие в организме при прослушивании музыки.

Философской основой музыкальной эстетической мысли XVII века явилось учение об аффектах. Оно развивалось в русле античной теории музыкального этоса, которая в связи с развитием рационалистической философии и психологии постепенно трансформировалось в теорию аффектов. Она изучала воздействие различных ритмов, мелодий и гармоний на эмоциональное состояние человека. Теоретическое обоснование учение получило у основоположника французской рационалистической философии Рене Декарта (1596 – 1650).

В начале XIX в. французский врач-психиатр Жан Этьен Доминик Эскироль стал использовать музыку в психиатрических учреждениях. В конце XIX века И. Р. Тарханов своими исследованиями доказал, что мелодии, доставляющие человеку радость, благотворно влияет на его организм: замедляют пульс, увеличивают силу сердечных сокращений, способствуют расширению сосудов, нормализует артериальное давление, стимулирует пищеварение, повышает аппетит. Приятные эмоции, вызываемые музыкой, повышают тонус коры головного мозга, улучшают обмен веществ, стимулируют дыхание, усиливают внимание, тонизируют центральную нервную систему.

В начале XX века наблюдалась активизация эксперементальной работы. Большая заслуга в этом направлении принадлежит В. М. Бехтереву. Он считал, что с помощью музыкального ритма можно установить равновесие в деятельности нервной системы человека. Умереть слишком возбужденные темпераменты и растормозить заторможенных, урегулировать неправильные и лишние движения. Для этого необходимо выявить ритмические рефлексы и приспособить организм человека отвечать на определенные раздражители (слуховые и зрительные).

В последствии, специальные исследования С. С. Корсакова, И. М. Догеля, И. М. Сеченова, Г. П. Шипулина и др. подтвердили мысль о положительном влияние музыки на различные системы организма человека: сердечно-сосудистую, двигательную, дыхательную, центральную нервную систему.

Во второй половине XX века музыка начала применятся, как самостоятельный вид терапии (музыкотерапия) в разных странах. В России, в начале XX века, большое количество работ по музыкальной психологии выходят у Теплова Б.М. и Выготского Л.С.

После Первой Мировой войны (в 10-е годы XX века) на ряду с психологическими возможностями воздействия музыки на человека стали использоваться и физиологические (в Германии, Австрии, Италии, Франции, России).

2. Механизмы воздействия музыки на организм человека.

В музыке заложен колоссальный потенциал для оздоровления в силу воздействия на многие сферы жизнедеятельности через три основных фактора: вибрационный, физиологический и психологический.

Искусное применение соответствующей музыки облегчает проявление специфических содержаний – эмоциональной или физической боли, сексуальности и чувственности, борьбы за биологическое рождение, экстатических взлетов, океанической атмосферы пребывания в утробе.

По данным физиологии воздействие на человека музыки и пения выражается в создании определенных эмоциональных переживаний, оказывающих влияние на: психику человека; на интенсивность обменных процессов, дыхательной и сердечно-сосудистой системы; на повышение тонуса головного мозга и кровообращения.

Любая музыка представляет собой звуковую волну, ее воздействие можно разделить на физическое (на рецепторы кожи) и психофизиологическое (на мозг).

Все органы чувств посылают в мозг жизненно важные сигналы, однако информация, полученная через звуковые рецепторы, оказывается наиболее значимой. Она мобилизует нейроны и приводит к возникновению четких ощущений, а вместе с тем и реакции на ощущение в виде эмоций и чувств. При передаче сигнала в мозг о раздражении звукового рецептора человеческое тело реагирует рефлекторно. Реакции на музыку возникает благодаря вегетативной нервной системе – части нервной системы, которая контролирует функции внутри органов, желез, сосудов и не контролируется сознанием.

Звук улавливается ухом. Его рецепторы воспринимают вибрацию и передают ее в мозг. Он реагирует на воздействие. А поскольку все функции организма так или иначе связаны с мозгом, то изменения происходящие в нем влияют на физиологические процессы в организме. Вибрация звуков создает особые энергетические поля, заставляющие резонировать каждую клеточку нашего организма. Человек поглощает музыкальную энергию, и она нормализует ритм нашего дыхания, пульс, артериальное давление, снимает мышечное напряжение.

При восприятии музыки, особенно важны следующие моменты:

1. Громкость звука (при громкости звука превышающем 150 дБ возможен летальный исход). Кроме того, усиление громкости может свидетельствовать о неосознаваемой потребности увеличить воздействие на организм вибрации определённой частоты, содержащейся в конкретном звукоряде.

2. Продолжительность воздействия звуковых колебаний.

3. Шум. Особенно влияет так называемый “белый шум” (фоновый шум). Его уровень, который составляет примерно 20 – 30 дБ, безвреден для человека, так как является естественным.

Человек живет в определенном ритме (труда и отдыха, бодрствования и сна, напряжения и расслабления). Его органы кровообращения, дыхания, система обмена веществ функционируют в определенном ритме.

Есть основание предполагать, что в процессе восприятия музыкального ритма биоритмы мозга непроизвольно настраиваются на его частоту. При этом наиболее сильные переживания могут возникнуть в момент совпадения доминирующего биоритма с частотой музыкальной пульсацией, поэтому использование музыки можно уподобить предъявлению положительного условного стимула, который приводит в действие некий механизм, синхронизирующий ритмическую активность различных участков головного мозга.

Умело подобранная музыка оказывает влияние на целенаправленную деятельность человека, способствуя такой ритмической перестройке организма, при которой физиологические процессы протекают более эффективно. Положительное эмоциональное возбуждение при звучании приятных мелодий усиливает внимание, активизирует ЦНС, стимулирует мыслительную деятельность, ослабляет нагрузку на работающие звенья, увеличивает работоспособность человека.

Проводимые эксперименты выявили, что музыкальное сопровождение во время еды влияет на процесс усвоения пищи. Например, ужин с Моцартом способствует пищеварению, а современная музыка, особенно в быстром темпе, ритмично бьет “ударной установкой” по желудочно-кишечному тракту.

Музыкальный терапевт Адам Книст в результате исследования о воздействии поп – музыки на человека, пришел к выводу, что основная проблема действия поп – музыки на пациентов обусловлена мощностью звука, который вызывает истощение, панику, расстройство пищеварения, гипертонию и т. п. Сочетание определенных ритмов и большой громкости звучания воздействует на область нашего мозга, которая отвечает за восприятие внешней информации, и оказывает негативное действие, снижая порог действительности. Результаты экспериментов, оценивающих влияние рок – ритмов на животный и растительный мир, поражают своей мрачной очевидностью.

Нейрохирурги Илионского университета, изучая феномен воздействия музыкальных ритмов на подкорковые области головного мозга, пришли к выводу о существовании новой патологии – синдрома, который они назвали "ритмический токсикоз". Согласно гипотезе, выдвинутой учеными, звуковые сигналы определенного ритма и тембра разрушительно воздействуют на иммунную систему человека, что может привести к необратимым последствиям.

Вокалотерапия – новый вид музыкотерапии, использующий собственный голосовой аппарат человека, принципы классического пения явления фонационной вибрации для повышения функциональных возможностей кардиореспираторной системы и организма в целом. В процессе пения во внутренних органах вибрационные волны, интенсивность которых зависит от высоты взятого звука. Вокалотерапевтическое воздействие вызывает существенные изменения в функциях внешнего дыхания и кровотоке внутренних органов.

Систематическое применение этого метода приводит к существенному повышению адаптивно-приспособительных функций организма и оказывает выраженный корригирующий эффект при различных нарушениях функций дыхания. А так же вокалотерапия является исключительно эффективным антистрессовым средством.

3. Механизмы воздействие музыки на эмоционально-волевую сферу человека.

Нельзя забывать и о том, что музыка и любой звук вообще действуют не только как факторы физические, то есть как колебания определённой частоты, но и содержат своеобразный психоэмоциональный ассоциативный ряд.

Музыка – это не просто определенное сочетание звуков, гармоний и ритмов. Ее звучание в душе каждого, ее восприятие – значительно более сложный процесс с участием психо-эмоциональных, эстетических, культурных, социальных и др. факторов.

Искусство для людей является средством для уравновешивания со средой в критических точках их поведения. Это уравновешивание упорядочивает работу организма, дает нужную разрядку чувству. Эту способность человека переживать эмоциональную природу музыки врачи, психологи широко используют в одной из форм психотерапии – музыкотерапии.

В необычных состояниях сознания музыка может выполнять ряд различных функций. Она помогает мобилизовать старые эмоции и сделать их доступными для выражения, она интенсифицирует и углубляет процесс, она создает значимый контекст переживаний. Постоянный поток музыки создает несущую волну, помогающую человеку пройти через трудные переживания и тупики, преодолеть психологическую защиту, отдаться происходящему и войти в его поток.

В соответствии с нашей структурой восприятия слух действует гораздо сильнее на эмоциональное состояние человека, чем другие виды рецепторов.

В настоящее время выявлено влияние музыки на нейроэндокринную функцию, в частности на уровень гормонов в крови, играющих чрезвычайно важную роль во всех эмоциональных реакциях. В моделировании эмоций основную роль играют лад и темп, другие же компоненты музыкальной ткани (мелодия, ритм, динамика, гармония, ритм, тембр) при всей их значимости, являются дополнительными.

В некоторых случаях музыка на некоторых людей влияет острее, чем слово. Связь психического и физического состояния известна. Те же механизмы что и в случае с физиологией срабатывают и при воздействии музыки на психику: музыкальный звук заставляет ответным образом "вибрировать" человеческие эмоции, отвечая на звуковые колебания.

Процесс восприятия художественного произведения – эмоциональное вчувствование в его содержание. Человек воспринимает мир в зависимости от его собственных психологических особенностей, его жизненного опыта, темперамента, состояния в данный момент. А так же возраста, уровня образования, места и условия жительства, социального статуса.

Все чаще музыку используют в медицинских, медико-педагогических, психолого-педагогических учреждениях, как расслабляющее и успокаивающее средство.

Музыка – это испытанное средство обезболивания при местных хирургических вмешательствах. В целом ряде стран она в обязательном порядке включается в схему предоперационной подготовке тех пациентов, которым назначены обширные полосные операции. Во Франции, в Национальном институте переливания крови, во время операций передается музыка, подобранная в строгом соответствии с ее физиологическим действием на организм, индивидуальными особенностями человека и характером заболевания. В голландских больницах проводятся исследования по выявлению воздействия музыки на течение болезней сердца. В Московском медицинском центре "Эйдос" музыкотерапия используется для лечения сахарного диабета – там выявили прямую связь между уровнем сахара в крови и психологическом состоянием человека. В этом центре применяют звуки природы (шум моря, шелест деревьев, пение птиц и т.п.) для расслабления больных, медитации.

4. “Музыкальная фармакология".

Музыка может умиротворять, расслаблять и активизировать, облегчать печаль и вселять веселье; может усыплять и вызывать приток энергии, а то будоражить, создавать напряжение, развязывать агрессивность. Излишне громкая музыка с подчеркнутыми ритмами ударных инструментов вредна не только для слуха, но и для нервной системы. Те современные ритмы, которые, как горный обвал, обрушиваются на человека, подавляют нервную систему, увеличивают содержание адреналина в крови, чем могут вызвать стресс.

В Гетингемском университете (Германия) провели эксперимент: на группе добровольцев испытывали эффективность средств для сна и записи колыбельных песен. На удивление, мелодии оказались намного эффективнее медикаментов – сон был крепким и глубоким.

Михаил Лазарев, врач педиатр, директор московского детского центра восстановительного лечения, описывает влияние музыки на беременных женщин. Классическая музыка прекрасно воздействует на формирование костной структуры плода, благотворно влияет на щитовидную железу. Вибрации оказывают влияние, на весь организм, массируя внутренние органы, достигая глубоко лежащих тканей, стимулируя в них кровообращение. Установлено, что при использовании музыки число осложнений при родах резко уменьшается, а малыши появившиеся на свет более спокойные.

Малыши, прошедшие внутриутробное музыкальное “обучение”, обычно характеризуются повышенными адаптационными способностями и опережением стандартных темпов физического и речевого развития.

В ходе экспериментов было обнаружено, что плод успокаивается при звуках музыки Вивальди и Моцарта, а при проигрывании произведений Бетховена или Брамса начинает энергично толкаться.

При развитии плода внутри матки рудименты ушей появляются уже спустя первые несколько недель после зачатия. Спустя 4,5 месяца развития, уши уже функционально способны. Т.е. половину срока пребывания в утробе матери ребенок может слышать и реагировать на звуки, особенно музыку.

Очень полезно беременным пение. Переходы поющего голоса от высоких звуков к низким и наоборот активизируют рост тех органов и систем ребенка, которые настроены на определенные звуковые частоты. Орган слуха малыша получает необходимую ему тренировку и стимулирует мозг.

Несколько десятилетий назад знаменитый французский акушер Мишель Оден организовывал в своей клинике хоры а-cappella из будущих мам. Специально для них были разработаны несложные вокальные упражнения. В результате на свет появлялись более жизнеспособные, спокойные и крепкие малыши.

В Швецких городах в палатах для рожениц часто звучат звуки музыки (особенно произведения Моцарта). Ученые считают, что именно ей акушеры обязаны необычайно низким показателем ранней детской смертности.

В Японии тоже беременные женщины по совету врача предоставляют не родившемуся ребенку возможность слушать определенные мелодии.

Применяя иглорефлексотерапию в комплексе с музыкотерапией в лечении функциональных нарушений толстой кишки, В. П. Лапшин показал высокую клиническую эффективность такого терапевтического сочетания, позволившего получить положительную динамику в моторике толстой кишки с одновременной оптимизацией общего состояния, уменьшением эмоциональной лабильности, улучшением вегетососудистых реакций.

И. В. Темкин исследовал вегетативные реакции в зависимости от характера музыки и пришел к выводу: “Мажорная музыка быстрого темпа учащала пульс, повышала максимальное артериальное давление, увеличивала тонус мышц, повышала температуру кожных покровов предплечья”[ Голдмен Дж. Целительные звуки – М., 2003, стр. 218].

Существующие исследования показали, что наиболее возбуждающим действием обладает музыка Вагнера, “Балеро” Равеля, “Весна священная” Стравинского с их нарастающим ритмом. Эти произведения оказывают наибольший эффект в работе с вялыми детьми. “Каприз №24” Паганини в современной обработке повышает тонус организма, настроение.

Уравновешиванию нервной системы способствуют записи со звуками природы: шум моря, леса, пение птиц и т.п., также пьесы из цикла "Времена года" Чайковского, “Лунная соната” Бетховена.

“Полезной” для здоровья также считаются: К.Монтеверди – мадригалы, Ж.Б.Люлли – сюиты для оркестра, А.Вивальди – концерт для двух мандолин, И.С.Бах – “ХТК” и “Рождественская оратория”, Глюк –“Орфей и Эвридика”, любые произведения Моцарта и Бетховена, Россини – “Севильский цирюльник”, Глинка – “Камаринская”, Лист – “Прелюды”, “Фантазия на венгерские народные темы”, Верди – “Риголетто”, “Травиата”, Брамс – “Венгерские танцы”, Чайковский – “Евгений Онегин”, “Лебединое озеро”, “Щелкунчик”, Григ – “Пер Гюнт” и т.д.

Ученые отмечают, что направление лечебного воздействия музыки зависит не только от ее характера, но и от музыкального инструмента, на котором ее исполняют. Например, звучание кларнета положительно влияет на систему кровообращения, струнные инструменты действуют преимущественно на сердечно-сосудистую систему, а флейта позитивно воздействует на легкие и бронхи слушателей.

Самой полезной для здоровья и красоты специалисты считают музыку Моцарта. Произведения Моцарта рекомендуются для снятия стресса, эффективного усвоения учебного материала, от головной боли, а также во время восстановительного периода, например, после студенческой сессии, ночной смены, экстремальных ситуаций и т.д.

Использованная литература:

  1. Абрамова Т. Увертюра Моцарта для еще не родившегося ребенка// Будь здоров – 1995 – № 1.
  2. Блаво Р. Исцеление музыкой – Спб., 2003.
  3. Велентинова З. Целительные звуки//Целительные силы – М., 1996 – № 1.
  4. Дворецкий Л.И. Музыка и медицина: Размышление врача о музыке и музыкантах – М., 2002.
  5. Мозгот В.Г. Введение в музыкальную психофизиологию.– Майкоп, 2005.
  6. Флетчер М. Музыка, которая лечит. http:\\www/iamik.ru./html./
  7. Шестаков В. От этоса к аффекту. История музыкальной эстетики от античности до XVIII века – М., 1975.
  8. Шушарджан С.В. Физиологические особенности воздействия вокалотерапии на организм человека// автореф. дисс. на соиск. уч. ст. канд. мед. наук – М., 1996.
Информационный стресс Бодров Вячеслав Алексеевич

4.1. Вегето-соматические и психофизиологические реакции

Не всякое экстремальное, субъективно значимое воздействие вызывает развитие последующий стресс-реакции. По общим представлениям в качестве стрессовой может быть признана только такая реакция организма, которая достигает тех пороговых уровней, где его физиологические и психологические интегративные способности напряжены до предела. Предел безвредного, обратимого напряжения интегративных способностей обусловлен, по В. Д. Небылицыну , индивидуальными особенностями психики данной личности, уровнем ее выносливости, функциональной устойчивости, параметрами реактивности. Поэтому в развитии психологического (информационного) стресса большое значение имеют компоненты психологической структуры личности.

Когда субъекту что-то угрожает, то его психическая деятельность интенсифицируется, а поведение организуется таким образом, чтобы устранить надвигающуюся опасность (избежать ее, воздействовать на угрожающий агент или выбрать какую-то защитную реакцию). В зависимости от выбранной или ранее выработанной стратегии поведения проявление того или иного ответа на угрозу (страха, гнева, депрессии и т. п.) или на само воздействие (восприятие сложности задания, опасности ситуации) будет различаться, причем эти различия будут касаться и моторно-поведенческих, и биохимических, и физиологических, и аффективных реакций.

Имеется много экспериментальных данных, подтверждающих зависимость различий в реакциях вегетативной нервной системы на угрозу от природы защитного процесса . Они свидетельствуют о том, что характер реактивности автономной нервной системы, по крайней мере частично, определяется тем типом деятельности, в которую вовлечен субъект для того, чтобы справиться с угрозой. Реакция зависит от характера угрозы (и неблагоприятного стимула), по-видимому, при посредничестве защитного процесса, порождаемого этой угрозой. Эти результаты противоречат точке зрения, защищаемой Н. Selye , относительно общей адаптации, не зависящей от типа неблагоприятного стимула. «Эмоциям можно приписать свои специфические качественные характеристики, наряду с количественными характеристиками, которые общие для всех» .

Под влиянием взглядов Г. Селье внимание многих исследователей фиксировалось на физиологических, биохимических или морфологических изменениях, возникающих в результате действия стресс-факторов. В то же время особенности зарождения и развития психологического стресса обусловливают необходимость рассмотрения реакций организма не только в связи с особенностями стресс-воздействия, но и с психологическими факторами конкретной личности. Как справедливо замечает А. В. Вальдман с соавт.: «У многих исследователей возникает неудовлетворенность при попытках изолированного рассмотрения стресс-реакции как комплекса биохимических (энергетических) процессов или исследования отдельных нейрофизиологических, вегетативных коррелятов психологического стресса» .

Известно, что проявления ответных реакций на психологический стресс возникают в зависимости от функциональной системы ответного реагирования и тех процессов, которые формируют поведение организма и личности при взаимодействии с окружающей средой. Характер реакции на стрессогенный фактор в значительной степени зависит от личностного фактора. Но существенную роль играет интенсивность и темп нарастания внешнего воздействия. Еще В. А. Гиляровский (по ) отмечал, что при остром интенсивном вредоносном факторе реакция обычно бывает грубая, массивная, в ней маскируются особенности личности. При менее интенсивном и медленном воздействии экзогенных факторов роль личностной реакции проявляется более отчетливо.

Биохимические показатели более адекватны для установления коррелятов с острыми стрессовыми состояниями, чем с хроническими. Однако они никак не могут быть непосредственно соотнесены ни с самим эмоциональным состоянием, порождаемым стресс-стимулом, ни со всем своеобразием этих стимулов, действующих на организм. Было предпринято немало попыток выявления наиболее чувствительных показателей (маркеров) психологического стресса. Отмечено, что резкие сдвиги отдельных показателей (биохимических или физиологических) возникают у тех лиц, у которых уровень этих констант в норме был выше или ниже, чем у остальных. Однако обнаружить какие-то определенные «маркеры» психологического направления, естественно, не удалось. И биохимические, и физиологические показатели эмоционально-стрессовой реакции индивидуально очень изменчивы. Однако информативность показателей сердечного ритма и кожно-гальванического рефлекса, этих двух компонентов эмоционального напряжения не вызывают разногласий: оба показателя испытывают на себе влияния основных составляющих эмоциональной реакции (силы потребности и прогностической оценки эффективности действий, направленных на ее удовлетворение). При этом по данным П. В. Симонова сердечный компонент более непосредственно связан с мотивационно-эмоциональной составляющей - с перцептивным звеном, потребностью, в то время кожно-гальванический рефлекс - с эффективным выражением эмоций, с организацией приспособительных действий.

Во все периоды развития, формирования и проявления психического напряжения или эмоционально-стрессовой реакции происходит определенная динамика вегетативных процессов. А. В. Вальдман с соавт. отмечает, что можно выделить вегетативные сдвиги, которые сопутствуют процессам перцепции сигнала, психологическому (эмоциональному) сдвигу, выражению эмоции, психологической адаптации, эмоционально-поведенческой реакции. Гностические процессы протекают достаточно скоро. Поэтому по отношению к динамике эмоционально-поведенческого процесса, еще до развития типичных, поведенческих явлений, формируется и проявляется комплекс вегетативных сдвигов. Вегетативная реакция опережает моторную и формируется вместе с акцептором будущего результата действия, поэтому при состоянии страха (в ситуации «угрозы») ответная реакция может быть очень различна, в зависимости от того, последует ли активно - (побег) или пассивно-оборонительная (замирание) реакция. В период выполнения ответной поведенческой реакции, обусловленной острым эмоционально-стрессовым воздействием, вегетативные сдвиги определяются и связаны, главным образом, с моторными процессами, их следствиями, обменными реакциями, процессами гомеостаза. Они теряют свою специфичность и могут быть полностью схожи с вегетативными проявлениями, наблюдаемыми при аналогичных действиях неэмоционального происхождения. Таким образом, характер вегетативных проявлений при психологическом стрессе в значительной мере определяется природой защитного процесса.

В связи с этим возникает вопрос, в какой мере функционально предопределены биологически целесообразные комплексы вегетативных и соматических проявлений стрессовых реакций, насколько специфичны стереотипизированные реакции, присущие разным типам эмоциональных состояний. Могут ли быть найдены физиологические конфигурации вегетативных и гормональных индексов, настолько специфичные, чтобы по ним можно было провести различия между тревогой, страхом, депрессией? Обсуждая эту проблему Р. Лазарус склоняется к положительному ответу. Однако J. Lacey делает более скептическое заключение. Причинным фактором вариаций в ответных реакциях является сам индивид с его предрасположенностью реагировать на стресс-ситуацию определенным образом. Упомянутыми авторами выдвинуто понятие реактивной стереотипии, согласно которому на одну и ту же ситуацию один индивид будет, например, постоянно реагировать повышением кровяного давления и тахикардией, а другой - урежением ритма сердечной деятельности и снижением артериального давления.

Физиологические, биохимические и эмоциональные реакции организма, характеризующие развитие психического напряжения и психологического стресса, свойственны и для ряда других психических состояний, что видно из табл. 4 и 5 (с. 168–170). В этом отношении данные реакции можно рассматривать как не специфический ответ организма на воздействие стресс-факторов. Но в тоже время они формируют синдромы вегето-соматических, биохимических и психофизиологических проявлений адаптиционного процесса, характерные для каждой конкретной формы функционального состояния.

Из книги 5 спасительных шагов от депрессии к радости автора

Соматические жалобы без органических причин, а также ипохондрическая настроенность Этот симптом, как мы уже говорили, может быть чуть ли не единственным признаком депрессивного расстройства (маскированные депрессии), однако соматические жалобы далеко не всегда играют

Из книги Психология труда: конспект лекций автора Прусова Н В

11. Психофизиологические основы эргономики Данная отрасль эргономики изучает, прежде всего, индивидуальные особенности трудового поведения человека как психического, так и физиологического свойства.Психическая деятельность представлена тремя факторами –

Из книги Информационный стресс автора Бодров Вячеслав Алексеевич

4.1. Вегето-соматические и психофизиологические реакции Не всякое экстремальное, субъективно значимое воздействие вызывает развитие последующий стресс-реакции. По общим представлениям в качестве стрессовой может быть признана только такая реакция организма, которая

Из книги Основы гипнотерапии автора Моисеенко Юрий Иванович

Психосоматические и соматические расстройства В целом при самых различных заболеваниях обычный ресурсный транс с эго-укрепляющими внушениями может быть очень полезен и делает более гладким течение таких заболеваний, как эссенциальная артериальная гипертензия,

Из книги Смертельные эмоции автора Колберт Дон

Из книги Язык и сознание автора Лурия Александр Романович

Психофизиологические основы регулирующей функции речи Итак, факты говорят о постепенном развитии самой простой формы регулирующей функции речи у детей - возможности подчинять движения речевому приказу взрослого. Возникает вопрос, каковы те физиологические механизмы,

Из книги Гипнотерапия. Практическое руководство автора Карл Гельмут

Глава 7. Соматические и психосоматические расстройства В настоящее время полностью признано, что психологические факторы двояким образом взаимосвязаны со всеми соматическими заболеваниями и расстройствами. Физическое страдание порождает определенные эмоциональные и

Из книги Страсти и их воплощение в соматических и нервно-психических болезнях автора Гурьев Николай Дмитриевич

Соматические (телесные) болезни Всякому известны состояния, возникающие в ситуациях опасных, радостных или просто небезразличных для человека.Предвкушение свидания, очевидно подготавливаемое нападение, ожидание экзамена - все влечет за собой учащение дыхания и

Из книги Основы общей психологии автора Рубинштейн Сергей Леонидович

Психофизиологические закономерности Характеристика ощущений не исчерпывается психофизическими закономерностями. Для чувствительности органа имеет значение и физиологическое его состояние (или происходящие в нем физиологические процессы). Значение физиологических

Из книги Опоздания и невыполненные обещания автора Красникова Ольга Михайловна

Психофизиологические закономерности В зрительных ощущениях отчетливо проявляются все основные психофизиологические закономерности рецепторной деятельности - адаптация, контрастность, последействие, так же как и взаимодействие.Адаптацияглаза заключается в

Из книги Психология детского творчества автора Николаева Елена Ивановна

Психофизиологические причины Некоторые люди имеют особенности нервной системы, приводящие к непунктуальности. Эти люди живут с хроническим чувством вины. Однако этого можно было бы избежать, если бы их в свое время, когда они были еще маленькими, научили правильно

Из книги Психосоматика. Психотерапевтический подход автора Курпатов Андрей Владимирович

2.5. Психофизиологические основы творчества Гипотетическим свойством нервной системы человека, которое могло бы в ходе индивидуального развития предопределять возможность творчества, считается «пластичность». Она обнаруживается как на клеточном, так и на

Из книги Драматерапия автора Валента Милан

Глава 1.2 Соматические заболевания с психической обусловленностью и

Из книги Семь смертных грехов родительства. Главные ошибки воспитания, которые могут повлиять на дальнейшую жизнь ребенка автора Рыженко Ирина

3.4.4. Релаксационные и психофизиологические методы Применяемые в психотерапии релаксация и другие психофизиологические приемы опираются на известные закономерности, что физические упражнения влияют на психическую деятельность и что, наоборот, с помощью психики можно

Из книги Психиатрия войн и катастроф [Учебное пособие] автора Шамрей Владислав Казимирович

Откуда берутся психологические и соматические симптомы? Родители, у которых есть определенные ожидания относительно ребенка, очень довольны, когда ребенок улыбается и спит по часам. Такие родители также огорчаются, когда ребенок капризничает и заявляет о своих

Из книги автора

8.4. Психофизиологические особенности деятельности спасателей 8.4.1. Требования к психофизиологическим качествам личности и психическая адаптация Профессия спасателя входит в десятку самых опасных и рискованных профессий нашей страны. Прежде всего, это работа, требующая

Не всякое экстремальное, субъективно значимое воздействие вызывает развитие последующий стресс-реакции. По общим представлениям в качестве стрессовой может быть признана только такая реакция организма, которая достигает тех пороговых уровней, где его физиологические и психологические интегративные способности напряжены до предела. Предел безвредного, обратимого напряжения интегративных способностей обусловлен, по В. Д. Небылицыну , индивидуальными особенностями психики данной личности, уровнем ее выносливости, функциональной устойчивости, параметрами реактивности. Поэтому в развитии психологического (информационного) стресса большое значение имеют компоненты психологической структуры личности.

Когда субъекту что-то угрожает, то его психическая деятельность интенсифицируется, а поведение организуется таким образом, чтобы устранить надвигающуюся опасность (избежать ее, воздействовать на угрожающий агент или выбрать какую-то защитную реакцию). В зависимости от выбранной или ранее выработанной стратегии поведения проявление того или иного ответа на угрозу (страха, гнева, депрессии и т. п.) или на само воздействие (восприятие сложности задания, опасности ситуации) будет различаться, причем эти различия будут касаться и моторно-поведенческих, и биохимических, и физиологических, и аффективных реакций.

Имеется много экспериментальных данных, подтверждающих зависимость различий в реакциях вегетативной нервной системы на угрозу от природы защитного процесса . Они свидетельствуют о том, что характер реактивности автономной нервной системы, по крайней мере частично, определяется тем типом деятельности, в которую вовлечен субъект для того, чтобы справиться с угрозой. Реакция зависит от характера угрозы (и неблагоприятного стимула), по-видимому, при посредничестве защитного процесса, порождаемого этой угрозой. Эти результаты противоречат точке зрения, защищаемой Н. Selye , относительно общей адаптации, не зависящей от типа неблагоприятного стимула. «Эмоциям можно приписать свои специфические качественные характеристики, наряду с количественными характеристиками, которые общие для всех» .

Под влиянием взглядов Г. Селье внимание многих исследователей фиксировалось на физиологических, биохимических или морфологических изменениях, возникающих в результате действия стресс-факторов. В то же время особенности зарождения и развития психологического стресса обусловливают необходимость рассмотрения реакций организма не только в связи с особенностями стресс-воздействия, но и с психологическими факторами конкретной личности. Как справедливо замечает А. В. Вальдман с соавт.: «У многих исследователей возникает неудовлетворенность при попытках изолированного рассмотрения стресс-реакции как комплекса биохимических (энергетических) процессов или исследования отдельных нейрофизиологических, вегетативных коррелятов психологического стресса» .


Известно, что проявления ответных реакций на психологический стресс возникают в зависимости от функциональной системы ответного реагирования и тех процессов, которые формируют поведение организма и личности при взаимодействии с окружающей средой. Характер реакции на стрессогенный фактор в значительной степени зависит от личностного фактора. Но существенную роль играет интенсивность и темп нарастания внешнего воздействия. Еще В. А. Гиляровский (по ) отмечал, что при остром интенсивном вредоносном факторе реакция обычно бывает грубая, массивная, в ней маскируются особенности личности. При менее интенсивном и медленном воздействии экзогенных факторов роль личностной реакции проявляется более отчетливо.

Биохимические показатели более адекватны для установления коррелятов с острыми стрессовыми состояниями, чем с хроническими. Однако они никак не могут быть непосредственно соотнесены ни с самим эмоциональным состоянием, порождаемым стресс-стимулом, ни со всем своеобразием этих стимулов, действующих на организм. Было предпринято немало попыток выявления наиболее чувствительных показателей (маркеров) психологического стресса. Отмечено, что резкие сдвиги отдельных показателей (биохимических или физиологических) возникают у тех лиц, у которых уровень этих констант в норме был выше или ниже, чем у остальных. Однако обнаружить какие-то определенные «маркеры» психологического направления, естественно, не удалось. И биохимические, и физиологические показатели эмоционально-стрессовой реакции индивидуально очень изменчивы. Однако информативность показателей сердечного ритма и кожно-гальванического рефлекса, этих двух компонентов эмоционального напряжения не вызывают разногласий: оба показателя испытывают на себе влияния основных составляющих эмоциональной реакции (силы потребности и прогностической оценки эффективности действий, направленных на ее удовлетворение). При этом по данным П. В. Симонова сердечный компонент более непосредственно связан с мотивационно-эмоциональной составляющей – с перцептивным звеном, потребностью, в то время кожно-гальванический рефлекс – с эффективным выражением эмоций, с организацией приспособительных действий.

Во все периоды развития, формирования и проявления психического напряжения или эмоционально-стрессовой реакции происходит определенная динамика вегетативных процессов. А. В. Вальдман с соавт. отмечает, что можно выделить вегетативные сдвиги, которые сопутствуют процессам перцепции сигнала, психологическому (эмоциональному) сдвигу, выражению эмоции, психологической адаптации, эмоционально-поведенческой реакции. Гностические процессы протекают достаточно скоро. Поэтому по отношению к динамике эмоционально-поведенческого процесса, еще до развития типичных, поведенческих явлений, формируется и проявляется комплекс вегетативных сдвигов. Вегетативная реакция опережает моторную и формируется вместе с акцептором будущего результата действия, поэтому при состоянии страха (в ситуации «угрозы») ответная реакция может быть очень различна, в зависимости от того, последует ли активно - (побег) или пассивно-оборонительная (замирание) реакция. В период выполнения ответной поведенческой реакции, обусловленной острым эмоционально-стрессовым воздействием, вегетативные сдвиги определяются и связаны, главным образом, с моторными процессами, их следствиями, обменными реакциями, процессами гомеостаза. Они теряют свою специфичность и могут быть полностью схожи с вегетативными проявлениями, наблюдаемыми при аналогичных действиях неэмоционального происхождения. Таким образом, характер вегетативных проявлений при психологическом стрессе в значительной мере определяется природой защитного процесса.

В связи с этим возникает вопрос, в какой мере функционально предопределены биологически целесообразные комплексы вегетативных и соматических проявлений стрессовых реакций, насколько специфичны стереотипизированные реакции, присущие разным типам эмоциональных состояний. Могут ли быть найдены физиологические конфигурации вегетативных и гормональных индексов, настолько специфичные, чтобы по ним можно было провести различия между тревогой, страхом, депрессией? Обсуждая эту проблему Р. Лазарус склоняется к положительному ответу. Однако J. Lacey делает более скептическое заключение. Причинным фактором вариаций в ответных реакциях является сам индивид с его предрасположенностью реагировать на стресс-ситуацию определенным образом. Упомянутыми авторами выдвинуто понятие реактивной стереотипии, согласно которому на одну и ту же ситуацию один индивид будет, например, постоянно реагировать повышением кровяного давления и тахикардией, а другой – урежением ритма сердечной деятельности и снижением артериального давления.

Физиологические, биохимические и эмоциональные реакции организма, характеризующие развитие психического напряжения и психологического стресса, свойственны и для ряда других психических состояний, что видно из табл. 4 и 5 (с. 168-170). В этом отношении данные реакции можно рассматривать как не специфический ответ организма на воздействие стресс-факторов. Но в тоже время они формируют синдромы вегето-соматических, биохимических и психофизиологических проявлений адаптиционного процесса, характерные для каждой конкретной формы функционального состояния.