Главная · Диарея · Принцип работы лазерных аппаратов. Лазеры, применяемые в хирургии Применение лазерной хирургии

Принцип работы лазерных аппаратов. Лазеры, применяемые в хирургии Применение лазерной хирургии

Оперативная хирургия: конспект лекций И. Б. Гетьман

5. Лазеры в хирургии

5. Лазеры в хирургии

Механизм действия лазерного скальпеля основан на том, что энергия монохроматичного, когерентного светового пучка резко повышает температуру на соответствующем ограниченном участке тела и приводит к его мгновенному сгоранию и испарению. Тепловое воздействие на окружающие ткани при этом распространяется на очень небольшое расстояние, так как ширина сфокусированного пучка составляет 0,01 мм. Под влиянием лазерного излучения также происходит «взрывное» разрушение ткани от воздействия своеобразной ударной волны, образующейся при мгновенном переходе тканевой жидкости в газообразное состояние. Особенности биологического действия лазерного излучения зависят от ряда его характеристик: длины волны, длительности импульсов, структуры ткани, физических свойств ткани. Рассмотрим характеристики основных применяемых в хирургии лазеров.

Лазер с длиной волны 1064 нм. Излучение проникает относительно глубоко, до 5–7 мм. При температуре свыше 43 °C белковые молекулы необратимо повреждаются (денатурируют), ткань погибает, подвергаясь термической коагуляции; при температуре выше 100 °C начинается испарение воды; при температуре свыше 300 °C происходит горение с выделением продуктов сгорания и осаждением их на поверхности кратера.

Разрушение ткани путем формирования в ходе лазерной операции кратера, отверстия или разреза называется абляцией, а условия, при которых она происходит, – абляционным режимом работы лазера. При низкой мощности излучения и кратковременной экспозиции нагревание ткани относительно невелико и происходит лишь ее коагуляция или плавление (субабляционный режим).

Лазер с длиной волны от 3 до 10 нм действует на мягкие ткани схожим образом. Эти лазеры, как правило, работают в импульсном режиме. Они наиболее часто применяются при выполнении косметических операций на коже.

Эксимерные лазеры с длиной волны 300 нм обладают наибольшей, по сравнению с другими группами лазеров, мощностью. Энергия интенсивно поглощается не водными компонентами мягких и твердых тканей, включая белки ДНК. Зона термических поражений при его воздействии составляет несколько микрометров. Гемостатический эффект выражен слабо.

Интересными свойствами обладает лазер на парах меди с длинами волн 578 и 585 мкм. Кожные покровы для него «прозрачны», субстанцией, воспринимающей излучение, являются меланин и гемоглобин, что предоставляет уникальные возможности в лечении гемангиом и т. п. с отличными косметическими результатами.

Благодаря высоким коагулирующим и гемостатическим свойствам лазер нашел широкое применение в оперативной эндоскопии. Использование лазерного скальпеля удобно при вскрытии просвета полых органов живота, резекции кишки, формировании межкишечного или желудочно-кишечного анастомоза, при этом наиболее ответственный момент операции выполняется на «сухом» поле.

У онкологических больных уменьшается опасность распространения клеток злокачественной опухоли за пределы операционного поля вследствие коагулирующего и абластического действия лазерного луча. Заживление лазерных ран сопровождается минимальной воспалительной реакцией, что резко улучшает косметические результаты.

Из книги Избранное автора Абу Али ибн Сина

Хирургическая практика три раздела хирургии Таков леченья общего порядок. Скажу о хирургии. Буду краток. Средь операций, – первыми назвал их,- Есть на сосудах и больших, и малых. Второе – что мы делаем на тканях, И третье – на костях, при их

автора Е. В. Бачило

39. Развитие хирургии в России В конце XIX в. начала широко развиваться полостная хирургия, было произведено большое количество операций на брюшной полости. Например: гастроэнтерос-томия (Г. Матвеев, Т. Бильрот), пилоротомия (Ж. Пеан), иссечение слепой кишки (Т. Бильрот),

Из книги Оперативная хирургия автора И. Б. Гетьман

52. Понятие эндоскопической хирургии Эндоскопическая хирургия – область хирургии, позволяющая выполнять радикальные операции или диагностические процедуры через точечные проколы тканей, либо через естественные физиологические отверстия. Идея выполнения визуального

Из книги Оперативная хирургия: конспект лекций автора И. Б. Гетьман

5. Лазеры в хирургии Механизм действия лазерного скальпеля основан на том, что энергия монохроматичного, когерентного светового пучка резко повышает температуру на соответствующем ограниченном участке тела и приводит к его мгновенному сгоранию и испарению. Тепловое

Из книги Здоровье человека. Философия, физиология, профилактика автора Галина Сергеевна Шаталова

Противостояние: природа против… хирургии Не был исключением и организатор военного строительства, которого мне довелось лечить незадолго до описанного выше случая. Его состояние было еще более тревожным: он перенес три инфаркта и с угрозой четвертого лежал в

Из книги Новейшие победы медицины автора Гуго Глязер

Успехи мозговой хирургии Человечеству много тысяч лет назад была известна операция трепанации черепа. При раскопках древнейших могил и захоронений в глубоких пластах земли находили и теперь находят черепа с хорошо зажившими трепанационными отверстиями. Древние и

Из книги Сестринское дело: справочник автора Алла Константиновна Мышкина

Глава 2 Сестринское дело в хирургии Понятие о хирургических операцияхЛюбое оперативное вмешательство состоит из трех периодов: предоперационного, операционного и послеоперационного.Предоперационный периодК этому периоду относится время от момента поступления

Из книги 36 и 6 правил женского здоровья автора Борис Вилорович Мостовский

Правило № 30 Чудо пластической хирургии Реконструктивная хирургия позволяет исправить практически любой дефект, дать человеку «новое лицо». Однако это сложно и травматично. Если твоя внешность - необходимый/неотъемлемый инструмент карьерного роста, то тебе необходим

Из книги Закодируй себя на стройность автора Михаил Борисович Ингерлейб

Побочные эффекты хирургии

Из книги История медицины автора Павел Ефимович Заблудовский

Проблемы хирургии Советская хирургия добилась значительных успехов в разрешении проблем хирургии сердца и сосудов, хирургии органов дыхания, пищевода, желудка, нефрохирургии, трансплантологии. Для развития научных проблем в хирургии за годы Советской власти создана

Из книги Избранные лекции по факультетской хирургии: учебное пособие автора Коллектив авторов

Избранные лекции по факультетской хирургии Авторы: Доктора медицинских наук, профессора: Коханенко Н. Ю., Кабанов М. Ю., Ульянов Ю. Н., Павелец К. В.; кандидаты мед. наук, доц.: Ананьев Н. В., Латария Э. Д., Иванов А. Л., Луговой А. Л., Ширяев Ю. Н.; кандидаты мед. наук: Моргошия Т. Ш.,

Из книги Победа разума над медициной. Революционная методика оздоровления без лекарств автора Лисса Рэнкин

Целебная сила имитации хирургии Вскоре после услышанной истории мне на глаза попалась статья в журнале New England Journal of Medicine, в которой говорилось об известном хирурге-ортопеде докторе Брюсе Мосли, знаменитом своими операциями на колене с инвалидизирующей болью. Чтобы

Из книги Медики, изменившие мир автора Кирилл Сухомлинов

Из книги Философия здоровья автора Коллектив авторов -- Медицина

Из книги Лазерная коррекция зрения автора Амир Ринатович Габбасов

Из книги автора

Глава 5 Новинки рефракционной хирургии


Лазер (оптический квантовый генератор) - это оптический прибор, позволяющий получать направленное излучение в узком диапазоне длин волн, что и отличает его от излучений обычных источников света .
В принципе, в каждый лазер входят следующие основные компоненты:

  1. активное (рабочее) вещество, обладающее способностью переходить в особое возбужденное состояние и являющееся источником так называемого индуцированного излучения (например, газовая смесь, стержень из искусственного рубина, неодимового стекла и др.);
  2. источник возбуждения - устройство, которое сообщает активному веществу дополнительную энергию от внешнего источника (например, импульсные газоразрядные лампы - лампы накачки) и приводит его в возбужденное состояние;
  3. резонатор - устройство, позволяющее концентрировать поток излучения в определенном направлении;
  4. блок питания, обеспечивающий энергией источник возбуждения (батареи конденсаторов и др.).
В основе работы лазеров лежат принцип накопления активной средой световой энергии с последующим высвобождением ее в виде монохроматического пучка или процесс индуцированного излучения возбужденных квантовых систем, открытый А. Эн- штейном .
Световое излучение лазера обладает такими исключительными специфическими свойствами, как строгая направленность, высокая монохроматичность, когерентность (то есть постоянное во времени соотношение между фазами световых волн), обуславливающие распространение волны в пространстве с очень малым углом расхождения, что позволяет получать чрезвычайно высокую плотность энергии. Несфокусированный луч лазера обычно имеет ширину 1 -2 см, а при фокусировке - от 1 до 0,01 мм и меньше . Кроме того, лазеры способны излучать импульсы чрезвычайно короткой длительности - до 10~14 с.
По физическому состоянию активного вещества различают следующие типы лазеров:
  • твердотельные лазеры с твердым активным (рабочим) веществом (кристаллы рубина, неодимовые стекла, различные гранаты и т.д.); как правило, такие лазеры обладают большой мощностью излучения:
  • газовые лазеры, имеющие в качестве активного вещества различные газовые смеси (инертные газы неон и аргон, галогениды инертных газов и др.);
  • полупроводниковые лазеры (с использованием арсенида галлия и др.), обладающие большим КПД по сравнению с другими лазерами.
В зависимости от материала, служащего активным веществом, меняются интенсивность и длина волны излучения. Лазеры могут давать излучение как в невидимой (инфракрасной и ультрафиолетовой), так и в видимой части спектра. Длины волн лазерного излучения лежат в интервале от 0,3 до 300 мкм.
В зависимости от устройства лазера его излучение может происходить в виде отдельных импульсов (“выстрелов”) различной продолжительности (от нескольких миллисекунд до наносекунд) либо непрерывно. К первым относится, например, рубиновый или неодимовый лазер, а ко вторым - многие газовые лазе-

1.2. Механизмы действия лазерного излучения на биологические объекты
ры. Полупроводниковые лазеры могут работать как в импульсном, так и в непрерывном режиме. Импульсные лазеры, дающие кратковременные импульсы большей мощности, применяются в медицине в основном для одно- или многократного воздействия на различные патологические очаги, например, на опухоли и т.п. Менее мощные лазеры непрерывного действия предназначаются преимущественно для производства различных оперативных вмешательств .

С момента создания Майманом (Maiman) первого лазера в 1960 году лазерные системы стали широко применяться в разных областях науки, в том числе и в повседневной медицинской практике. Слово лазер (laser) представляет собой акроним, состовленное из начальных букв слов, указывающих принцип его работы: L ight A mplification by S timulated E mission of R adiation-усиление света вынужденным излучением . В последние годы значительно увеличилось количество разных лазеров, однако все лазерные устройства состоят из трех основных компонентов: источника энергии, активной среды и лазерного резонатора. Лазерный пучок, получаемый при вынужденном излучении в результате многократного отражения света между зеркалами лазерного резонатора, обладает следующими тремя специфическими свойствами :

  • когерентностью - все волны лазерного пучка имеют одинаковую фазу;
  • коллимированностью (направленностью) - очень малым расхождением лучей лазерного пучка даже на больших дистанциях, т.е. почти параллельные лучи;
  • монохроматичностью - все волны имеют одинаковую длину и частоту (экстремально узкая спектральная полоса излучения).

Механизм селективной фотокоагуляции заключается в избирательном поглощении различными компонентами биологических тканей лазерной энергии определённой длины волны, что приводит к их избирательному разрушению без нанесения ущерба окружающей ткани . При лечении патологии сосудистого генеза основное применение нашли высокоэнергетические диодные лазеры, генерирующие луч в диапазоне пиков абсорбции гемоглобина и карбоксигемоглобина (810-980 нм). В нашей практике комплексного лечения сосудистых заболевании мы применяем диодный лазер «Medilas D Skin Puls S» (фирмы «Dornier», Германия) с длиной волны 940 нм (Рис.1).

Рисунок 1. Диодный лазер «Medilas D Skin Puls S»

Диодный лазер применяется при следующих потологиях:

Сосудистые дисплазии:

  • винные пятна
  • венозные и артерио-венозные дисплазии
  • лимфангиоматозные, смешанные дисплазии

Гемангиомы

  • капилярные
  • кавернозные

Телеангиэктазии на лице

Сосудистые звёздочки

Ангиомы губ рта:

  • маленькие
  • большие

Старческие гемангиомы

Варикозное расширение вен нижных конечностей:

  • система большой подкожной вены (БПВ)
  • система малой подкожной вены (МПВ)
  • смешанные формы

Тромбофлебит варикозно расширенных вен:

  • участки основных стволов (БПВ и/или МПВ)
  • ветви основных стволов
  • смешанные формы

Варикозная болезнь вен нижних конечностей (ВБВНК), будучи одним из самых распростроненных заболеваний, сопровождается широким спектром проявлении функционального и органического характера, эстетических дефектов, существенно ухудшая качество жизни пациентов. Высокая травматичность традиционных операции при ВБВНК, длительный период послеоперационной нетрудоспособности, помножение количество ежегодно оперируемых, определяют медицинскую и социальную значимость этой проблемы. Ликвидация высокого вено-венозного сброса и магистрального варикоза в системе боьшой подкожной вены (БПВ) является основной задачей лечения у подавляющего большинства пациентов ВБВНК. В повседневной практике для ее решения обычно используют операцию Бебкока в классическом виде или в более современных модификациях (инверсионная флебэктомия, PIN-стриппинг, криофлебэктомия и др.). Однако зондовые методы удаления вены травматичны, нередко страдают венозные притоки, обрываются коммуникантные вены, повреждаются лимфатические коллекторы и нервные стволы, обширные гематомы в канале БПВ и подкожно-жировой клетчатке бедра вызывают длительный послеоперационный болевой синдром и замедляют темпы медико-социальной реабилитации пациентов .

Вот почему, с учетом современных тенденции развития флебологии, большую актуальность приобретает разработка и внедрение принципиально новых технологии лечения магистрального варикоза. Эндовенозная лазерная коагуляция (ЭВЛК) варикозно измененных вен высокоэнергетическим диодным 940 нм лазером Dorier Medilas D Skin Pulse S является альтернативой традиционным зондовным методам хирургического лечения. По данным разных авторов, ЭВЛК приводит к окклюзии сосуда в 95% , что является относительно хорошим результатом по сравнению с кклассической хирургией. Процедуры могут проводится амбулаторно или в стационаре, под местной инфилтрационной, проводниковой или внутривенной анестезией. При классическом варианте, по методике, описанной Proebstle с соавт., у медиальной лодыжки или в верхней трети голени по медиальной поверхности под визуальным и пальпаторным контролем или под контолем УЗИ пунктируется ствол БПВ толстой пункционной иглой (16-18G), через иглу вводится гибкий металлический J-проводник, затем обычный ангиографическийн катетр 5-6F (Cook, Cordis). Проводник удаляется и через катетр вводится гибкий световод, типа «AngioSpot», с наружным диаметром 1мм, подсоединенный к диодному лазеру. В условиях напряженной инфильтрации паравазальных тканей проводится лазерная коагуляция в импульсном режиме, при этом катетр со световодом извлекается с шагом 3-5мм в секунду (на один импульс) (Рис.2). Продолжительность самой манипуляции ЭВЛК не превышает 3,5-4,5 мин., общая длительность процедуры в среднем состовляет 60мин .

Рисунок 2. Этап ЭВЛК ствола БПВ на н/3 голени.

Механизм ЭВЛК на экспериментальной модели изучил Proebstle с соавт. (2003г.) из университетской клиники Майнца (Германия). Это исследование показало перфорацию стенок вен в зоне прямого лазерного воздействия и теплового поражения смежных участков стенок вен. Автор полагает, что эффект теплового поражения (и как результат-тромботическая окклюзия вены) обусловлен образованием пузырков пара в ходе лазерного воздействия. При этом кровь является хромофором, поглощяющим энергию лазерного излучения . Результаты морфологического исследования свидетельствуют о возникновении локального коагуляционного некроза эндотелия, являющегося в свою очередь основой формирования окклюзивного тромбоза коагулированной вены. Такой патогенез тромбоза теоретически не требует освобождения вены от крови и не лимитирует диаметр коагулируемой вены .

В нашей практике ЭВЛК мы применяем не как изолированный метод, а в комбинации с традиционной кроссэктомией и минифлебэктомией. Такая комбинация повышает радикальность операции и уменьшает процент возможных рецидивов, а также дает возможность применить метод при тромбофлебите основных венозных стволов и варикозных вен .

После завершения операции проводится эластическое бинтование конечности до суток. В далнейшем применяется компрессионный трикотаж на период до 1мес и более в зависимости от выраженности патологических изменении вен. В раннем послеоперационном периоде с целью обезболивания назначаются нестероидные противовосполительные препараты (диклофенак, кетонал), а также с целью профилактики тромбофлебита низкомолекулярные гепарины (фраксипарин, клексан) в профилактических дозах на срок до 5 дней. С первых суток послеоперационного наблюдения отмечается незначительная гиперемия по ходу коагулированной вены, пальпаторно определяется умеренно болезненный плотный тяж, в ряде случаев субфебрилитет в вечернее время. Операции выполняются в рамках «стационара одного дня» и 85% больных готовы покинуть клинику до 24ч после операции, что позволяет говорить о значительном снижении травматичности вмешательства .

Серезных осложнении от применения ЭВЛК не наблюдаются. В редких случаях, по ходу коагулированных вен отмечаются фрагментарные тромбофлебиты, преходящие парестезии по медиальной поверхности голени и стопы, гиперпигментация по ходу вены в течении 2-3мес, которые легко устраняются обычными консервативными методами .

Таким образом:

  • Метод ЭВЛК является малоинвазивной альтернативой традиционной флебэктомии.
  • ЭВЛК применима при всех стадиях ВБВНК для коагуляции БПВ и МПВ, их притоков, а также для вен большого диаметра. Применима также и при наличии тромбофлебита с обязательной, предварительной кроссэктомией.
  • Применение ЭВЛК значительно снижает операционную травму, определяет низкий процент послеоперационных осложнении и сокращает продолжительность пребывания больного в стационаре.

Одним из частых проявлении хронической венозной недостаточности является развитие телеангиэктазии - сосудистых «звездочек», «сеточек», «паучков», видимых на коже невооруженным глазом. Диаметр нормальных сосудов, находящихся в коже - около 20 микрон. Расширенные сосуды, диаметром 100 микрон (0,1мм) и больше, образуют телеангиэктазии. Термин телеангиэктазия произошел от трех латинских слов: tel, angio, ectasia, обозначающих расширенный кончик сосуда . Около 80% людей, страдающих от варикозного расширения вен, имеют так называемые «паукообразные вены». Зачастую они располагаются не только на ногах, но и на шее и лице. Сосудистые звездочки, сеточки и паучки чаще всего встречаются у женшин, которые наиболее чувствительны к такого рода косметическим дефектам. В этой связи вопросы лечения приобретают особое значени . В настоящее время наиболее эффективными методами лечения подобных состоянии являются компрессионная склеротерапия и чрескожанная лазерная коагуляция (ЧЛК) с применеием диодного лазера «Medilas D Skin Pulse S». Доставка лазерной энергии при ЧЛК осуществляется ручной фокусирующей насадкой со сменными оптическими элементамы типа «AngioSpot», обеспечивающими размер фокусного пятна 0,5; 1,0; 1,5мм (Рис.3) .

Рисунок 3. Чрескожанная лазерная коагуляция телеангиэктазии на голени.

Размер фокусного пятна при проведении лечения необходимо выбирать в соответствии с показаниями. Лечение больших сосудов выполняется гораздо быстрее при использовании пятна большого диаметра, в то время как для лечения небольших и малых сосудов чаще применяется малое фокусное пятно, позволяющее проводить прецизионную обработку. В таблицах 1 и 2 приведены типичные параметры для лечения тлеангиэктазии в зависимости от их размеров и расположении :

Таблица 1: Типичные параметры для лечения поражении поверхностно расположенных сосудов (лицевые телеангиэктазии)

Диаметр сосуда

(мм)

Диаметр пятна

(мм)

Длительность импульса

(мс)

Плотность энергии

(Дж/см2)

0,1-0,3

30-40

0,3-0,6

40-50

>0,6

60-70

Таблица 2: Типичные параметры для лечения поражении сосудов глубокой локализации (телеангиэктазии нижних конечностей)

Диаметр сосуда

(мм)

Диаметр пятна

(мм)

Длительность импульса

(мс)

Плотность энергии

(Дж/см2)

<0,3

30-40

500-800

0,3-0,6

50-60

300-360

>0,6

60-70

При проведении процедуры может отмечатся умеренное болезненность, которая практически не требует анестезии, в редких случаях может быть предложена местная анестезия кремом «Эмла», в нашей практике мы применяем местное охлаждение с помощью льда . Процесс лечения начинается с подбора оптимальной плотности энергии, при которой обработка визуально сопровождается исчезнованием или резким побледнением сосуда. Сосуды обработываются от периферии к центру с шагом 1-2мм за 1-2 перехода. Примерно через 5мин после окончания процедуры на коже появляется покраснение, исчезающее через 3-6ч . Эластическая компрессия после ЧЛК не применяется. Американские автори провели оценку эффективности компресии после ЧЛК телеангиэктазии нижих конечностей и не выявили статистически достоверных различий в результатах лечения с использованием компрессии и без нее . В результате лечения степень очищения 75-100% для локализации на нижних конечностях отмечается около 95% пациентов. Большая часть сосудов исчезает после первого сеанса лечения, однако для удаления большинства сосудов может потребоватся 2, 3 и даже 4 сеанса. Полное или почти полное исчезновение телеангиэктазии лица наблюдается у 90% пациентов. Без проблем лечатся расширенные сосуды щек, наиболее сложно лечить телеангиэктазии, локализованные на крыльях носа .

При правильно подобранных параметрах побочные эффекты носят умеренный и обратимый характер :

  1. Жжение в области проведения процедуры в течении 1-2ч.
  2. Гиперемия и умеренный отек кожи в течении суток.
  3. Гипопигментация в течение нескольких недель.
  4. Образование точечных корочек, которые исчезают в течени 7 дней.

В случае сосудов с диаметром более 1,5мм наиболее эффективным методом остается склеротерапия. Умелое сочетание этих двух методов дает хороший и устойчивый косметический результат .

Диодный лазер с большим успехом использовается и при лечении врожденных заболеваний сосудов (CVD - congenital vascular disorders), таких как например наиболее часто встречающихся патологии из этой группы - ""винных пятен"" и капилярных гемангиом. Этими сосудистыми патологиями страдают от 1 до 3% населения, помимо риска развития осложнений, эти патологии сильно уродуют больного, являются постоянным источником психологического дискомфорта, особенно у детей и подростков . Лечение основано на концепции селективного фототермолиза аномальных сосудов, образующих «винные пятна» и гемангиомы, без повреждения самой кожи. Лазерная коагуляция выполняется методом «точка за точкой». Может потребоваться несколько сеансов с интервалом 2-3 месяца между ними. После операции обработанные места осветляются, на третий день покрываются корочкой, через неделю корочки отходят и остается розовое или красное пятно, которое держится полторы-две недели, потом пятно становится коричневатым и остается таким еще полторы-две недели. Через 2-3 месяца обработанная область приобретает цвет, свойственный коже пациента .

Таким образом можно констатировать, что лазерные технологии нашли стойкое применение в медицине, в том числе и в сосудистой и эстетической хирургии. Однако для вынесения окончательного суждения об истинных возможностях лазеров и показаниях к этому методу необходимо дальнейшее накопление клинического материала и изучение отдаленных результатов вмешательств.

Список литературы:

  1. Шевченко Ю.Л., Стойко Ю.М., Лыткина М.И.. Основы клиниеческой флебологии. 2005г, с.158-164, с.278-282.
  2. Шулутко А.М., Османов Э.Г., Чакеватзе Н.Г. Инновационные технологии на основе эндовазальной лазерной коагуляции при лечении острого варикотромбофлебита. Грудная и сердечно-сосудистая хирургия, N3, 2006, стр.28-31.
  3. Кириенко А.И., Богачев В.Ю., Золотухин И.А., Брюшков А.Ю., Журавлева О.В. Эндовенозная лазерная облитерация большой подкожной вены при варикозной болезни. Журнал «Ангиология и сосудистая хирургия», N1-2004г.
  4. Лядов К.В., Стойко Ю.М., Соколов А.Л., Баранник М.И., Белянина Е.О., Лавренко С.В. Лазерная облитерация подкожных вен в лечении варикозной болезни. Реф.-2004г.
  5. Суханов С.Г., Ронзин А.В., Власов П.Г. Комбинация компрессионной склереотерапии и лазеротерапии в лечении варикозной болезни и телеангиэктазии нижных конечностей. «Ангиология и сосудистая хирургия», том 5, 4-1999г.
  6. Богачев В.Ю. Обзор материалов международного флебологического конгресса (Сан Диего, США, 27-31.08.2003г.). «Ангиологиа и сосудистая хирургиа», том10, N2-2004г.
  7. Куликов С.В., Поспелов Н.В., Пономарев И.В., Пономарева О.Ю. Возможности лечения сосудистых патологии кожи лазером. «Лечащий врач». 2000г, N5-6, 79:80.
  8. Султанян Т.Л., Камалян Т.А., Аветисян А.А. Лазерная облитерация подкожных вен при лечении варикозной болезни. Материалы первого конгресса армянской асоциации флебологов и ангиологов с международным участием, Ереван, 4-6 окт. 2007г., с. 48-49.
  9. Геворкян Н.С., Камалян Т.А. Оценка эффективности эндовенозной лазерной коагуляции варикозных вен хижных конечностей методом дуплексного сканирования. Материалы первого конгресса армянской асоциации флебологов и ангиологов с международным участием, Ереван, 4-6 окт. 2007г., с. 50-51.
  10. Терапевтическое руководство по применению диодного лазера серии Дорнье Медилаз Д (940 нм), Берлин, 2000г. Laser-und Medizin-Technologie GmbH.
  11. Proebstle T.M. et al. Endovenous treatment of the greater saphenous vein with a 940-nm diode laser: Thrombotic occlusion after endoluminal thermal damage by laser-generated steam bubbles. Journal of Vascular Surgery, January 2002; 35:729-36.
  12. Proebstle T.M., Sandhover M., Kargl A. et al. Thermal damage of inner vein wall during endovenous laser treatment: key role of energy absorbtion by intravascular blood. Dermatol. Surg. 2002; 28(7):596-600.
  13. Proebstle T.M. et al. Consensus on the endovenous laser treatment of varicose veins. German Journal: “Phlebologie” 3/2004.
  14. Navarro L., Min R., Bone C. Endovenous laser: a new minimally invasive methods of treatment of varicose veins - preliminary observations using an 810nm diode laser. Dermatol. Surg. 2001; 27: 117-22.
  15. Min R.J., Zimmet S.E., Isaacs M.N., Forrestal. Endovenous laser treatment of the incompetent greater saphenous vein. J.Vasc.Surg. 2000;32:941-953.
  16. Merchant R.F., De Palma R.G., Kabnick L.S. Endovascular obliteration of saphenous reflux: A multicenter study. Journal of vascular surgery, 2002, N-6, p.1190-1196.
  17. Chandler J.G., Pichot O., Sissa C., Schneider-Petrovic S. et al. Treatment of primary venous insufficiency by endovenous saphenous vein obliteration. J. Vasc. Surg. 2000; 34: 201-14.
  18. Sadick N.S., Sorhaindo L. An evaluation of post-scleroterapy laser compression and its efficacy in the treatment of leg telangiectasias. Phlebology, 200

В основе лазерной хирургии лежит использование усовершенствованных технологий. Они представляют собой устройства, содержащие газовую среду (углекислый газ, ксенон или аргон), и восстанавливающие мощные световые лучи.

Существует два вида лазеров. Низкочастотные лазеры применяются в терапии и служат для лечения многих заболеваний, начиная и заканчивая устранением раковых клеток. Свое наибольшее распространение высокочастотные лазеры нашли в операциях по и удаления рубцов.

Лазерная является практически бескровной (лазер прижигает поверхность сосудов) и не оставляет после себя рубцов и . Заживление ран после нее происходит за счет регенерации нормальной структуры кожного покрова. Сами раны продолжительное время остаются стерильными, а развитие воспалительного процесса сводится к минимуму.

Самыми первыми «клиентами» лазерной хирургии были по лечению аномалий глаз (дальнозоркости, близорукости, астигматизма и других патологий). Ткани глаза являются идеальными поверхностями, на которых можно сфокусировать лучи лазера.

Сами операции не считаются сложными. Последние модели лазеров обеспечивают безболезненность работы, возможность ее проведения на обоих глазах за один день и кратковременный реабилитационный период.

При помощи лазерной хирургии также можно устранить и многие другие заболевания, среди которых хочется отметить: злокачественные образования кожи, некоторые злокачественные болезни красной каймы губ или слизистой оболочки полости рта, ЛОР-заболевания, сосудистые, гнойно-воспалительные болезни кожи и подкожно-жировой клетчатки, а также нарушения женской половой сферы.

Лазерная хирургия активно применяется в косметологии и пластической хирургии. Она дает возможности устранить множество проблем, еще недавно казавшихся неразрешимыми, корректировать почти любые недостатки своего тела. К таким процедурам относят лазерную эпиляцию, удаление татуировок, пигментных пятен, бородавок, подкожных сосудов, родинок, послеоперационных рубцов, папиллом, растяжек, хирургию вросшего ногтя и лазерную шлифовку кожи.

В зависимости от вида операции применяются один или более видов лазерных лучей. Подбирается индивидуальная программа, которая может составлять один или несколько сеансов. Обычно при проведении лазерной хирургии необходимости в анестезии нет.

На протяжении некоторого времени после завершения работы на коже остается ровный розовый участок. Его следует защищать от воздействия ультрафиолетовых лучей. В противном случае может возникнуть процесс пигментации кожи.

Лазерная хирургия стала настоящим прорывом в лечении варикозного расширения век и настоящим помощником флебологам. Для этого используется эндовазальный метод с применением высокоэнергетических лазеров. Такие операции характеризуются безболезненностью, высокой эффективностью и легким течением послеоперационного периода.

Лазерные операции в наше время вошли в хирургическую практику как современный способ оперативного лечения, способный решить многие проблемы, которые недоступны обычному скальпелю. Практическое применение лазеров в медицинских целях в нашей стране началось в средине 60-х годов прошлого столетия, и за прошедший период они все шире внедряются в различные области хирургии. Точность фокусировки, безопасность, безболезненность и другие особенности этого излучения позволяют осуществлять уникальные операции, используя луч, как лазерный скальпель.

Сущность технологии

По своей сути, хирургический лазер – это оптический квантовый генератор, формирующий узконаправленный, монохроматический, когерентный поток излучения. Принцип действия лазера основывается на генерировании светового потока, составленного из фотонов, которые образуются при возбуждении атомов системы накачки активной среды. Важным свойством излучения становится возможность создания непрерывного светового луча с высокой энергией и одной длины волны. Излучаемые фотоны имеют очень маленький угол рассеивания, что дает возможность тонкого фокусирования луча. Все эти особенности обеспечивают эффективное применение лазеров в медицине.

В хирургии находят применение достаточно мощные лазерные установки. Их использование позволяет обеспечивать удаление и разрушение пораженных тканей (в частности, выпаривание), а также термический клеточный некроз. Наиболее известные методы воздействия лазерного луча: абляция или непосредственное удаление тканей; прижигание, коагуляция; соединение, сварка; дробление при формировании волны ударного (импульсного) типа.

При хирургических операциях, как правило, используется способность концентрации значительной энергии в тонком луче, что обеспечивает сильный разогрев биологической ткани. На этом принципе основан так называемый лазерный скальпель. Так, при мощности излучателя порядка 20 Вт и фокусировки луча диаметром 1 мм развивается объемная плотность мощности излучения порядка 500 кВт/кв.см. При такой мощности ткань разогревается до нескольких сотен градусов практически мгновенно, что обеспечивает ее резку путем испарения. При этом глубина резания будет зависеть от продолжительности воздействия потока.

В чем преимущество технологии

Применение лазерной технологии в хирургической практики имеет ряд несомненных преимуществ по сравнению с классическим хирургическим вмешательством:


Уникальность лазерного излучения заключается в многогранности решаемых задач: эффективная вапоризация и деструкция пораженных тканей; сухая операционная зона; минимизация повреждения соседних органов; обеспечение гемостаза и аэростаза; купирование лимфатических потоков; возможность совмещения с эндоскопией и лапароскопией.

Использование лазерных установок позволяет проводить такие виды оперативного лечения: микрохирургия (наиболее популярны подобные операции в офтальмологии); устранение опухолевых образований небольшого размера; операции избирательного характера (устранение пигментных пятен, различных подкожных образований и дефектов, в частности татуировок); восстановление сосудистой проходимости; остановка кровотечений и операции на органах, в которые произошло кровоизлияние; соединение и сварка разрушенных тканей.

Возможности лазерной хирургии

Операции с использованием лазера проводятся во многих областях хирургии. Можно выделить следующие распространенные области применения:

Тонкости лазерных операций

При проведении рассматриваемых операций применяется специальный медицинский лазер с различной рабочей средой. Различаться может и способ доступа к очагу патологии. При проведении хирургического вмешательства с открытым доступом рассечение мягких тканей лазерным лучом не рекомендуется, так как оплавленные края тканей дольше срастаются и могут оставить значительный рубец. Лазером иссекается уже непосредственно оперируемый орган после обеспечения доступа другими методами.

Лазерная операция может осуществляться по эндоскопической технологии. В этом случае доступ к очагу обеспечивается, как правило, через физиологические проходы (пищевод, трахея, носовая или ротовая полость, мочеиспускательный канал, влагалище и т. д.), а также через маленькие прорезаемые искусственно отверстия.

В такие проходы с помощью эндоскопа вводятся зонды для внедрения специального миниатюрного инструмента, обеспечивающего лазерное излучение. При этом фотонный поток с заданными параметрами подводится по катетеру с гибким световодом.

Лазерные установки

При планировании операции особое внимание уделяется выбору типа медицинского лазера. В различных областях хирургии используется такие разновидности установок: СО2-лазер; неодимовый, гольмиевый, эрбиевый и диодный лазер. Установки различаются по рабочей среде накачки, что обеспечивает разные свойства лазерному излучению.

Достаточно распространено применение СО2-лазера, работающего на углекислом газе. Этот тип излучателя дает поток, имеющий высокое поглощение в воде и органических соединениях при обычной глубине проникновения порядка 0,1 мм. Такие свойства дают возможность осуществления операций в гинекологии, оториноларингологии, общей хирургии, дерматологии, кожной пластике и косметологии. Неглубокое проникновение луча позволяет разрезать биологическую ткань без значительного ожога, что особенно важно в офтальмологии.

Неодимовый лазер относится к твердотельному типу и работает с использованием кристаллов алюмоиттриевого граната, активированных ионами неодима. Глубина проникновения излучения достигает 7-9 мм. Основное применение в хирургии: объемная и глубинная коагуляция при урологических, гинекологических и онкологических операциях; ликвидация внутренних кровотечений.

В гольмиевом лазере устанавливаются кристаллы алюмоиттриевого граната, активированные ионами гольмия. Данный луч рассекает биологическую ткань на глубину 0,4-0,6 мм, что близко к характеристикам СО-лазера. Излучение гольмиевого источника легко передается по кварцевому оптическому волокну, что удобно при использовании малоинвазивной эндоскопической технологии. Этот лазер хорошо себя зарекомендовал при коагуляции сосудов размером до 0,6 мм, что вполне достаточно для эффективного оперативного лечения, а при оперировании глаз обеспечивает нужную безопасность.

Эрбиевый лазер обеспечивает проникновение с глубиной 0,05 мм, что обеспечивает очень эффективное поверхностное воздействие. Главные сферы его хирургического использования: микрошлифовка кожного покрова, перфорация кожи, испарение твердых зубных тканей, испарение поверхности глазной роговицы при лечении дальнозоркости. Следует особо выделить безопасность эрбиевого излучения при операциях на глазах.