Главная · Запор · Сила растяжения пружины формула. Силы упругости, формулы

Сила растяжения пружины формула. Силы упругости, формулы

Как известно, физика изучает все законы природы: начиная от простейших и заканчивая наиболее общими принципами естествознания. Даже в тех областях, где, казалось бы, физика не способна разобраться, все равно она играет первоочередную роль, и каждый малейший закон, каждый принцип — ничто не ускользает от нее.

Вконтакте

Именно физика является основой основ, именно эта лежит в истоках всех наук.

Физика изучает взаимодействие всех тел, как парадоксально маленьких, так и невероятно больших. Современная физика активно изучает не просто маленькие, а гипотетические тела, и даже это проливает свет на суть мироздания.

Физика поделена на разделы, это упрощает не только саму науку и понимание ее, но и методологию изучения. Механика занимается движением тел и взаимодействием движущихся тел, термодинамика — тепловыми процессами, электродинамика — электрическими.

Почему деформацию должна изучать механика

Говоря о сжатиях или растяжениях, следует задать себе вопрос: какой раздел физики должен изучать этот процесс? При сильных искажениях может выделяться тепло, быть может, этими процессами должна заниматься термодинамика? Иногда при сжатии жидкостей, она начинает кипеть, а при сжатии газов — образуются жидкости? Так что же, деформацию должна познавать гидродинамика? Или молекулярно-кинетическая теория?

Всё зависит от силы деформации, от ее степени. Если деформируемая среда (материал, который сжимают или растягивают) позволяет, а сжатие невелико, есть смысл рассматривать этот процесс как движение одних точек тела относительно других.

А раз вопрос касается сугубо , значит, заниматься этим будет механика.

Закон Гука и условие его выполнения

В 1660 году известный английский ученый Роберт Гук открыл явление, при помощи которого можно механически описать процесс деформаций.

Для того чтобы понимать при каких условиях выполняется закон Гука, ограничимся двумя параметрами:

  • среда;
  • сила.

Есть такие среды (например, газы, жидкости, особо вязкие жидкости, близкие к твердым состояниям или, наоборот, очень текучие жидкости) для которых описать процесс механически никак не получится. И наоборот, существуют такие среды, в которых при достаточно больших силах механика перестает «срабатывать».

Важно! На вопрос: «При каких условиях выполняется закон Гука?», можно дать определенный ответ: «При малых деформациях».

Закон Гука, определение : деформация, которая возникает в теле, прямо пропорциональна силе, которая вызывает эту деформацию.

Естественно, это определение подразумевает, что:

  • сжатия или растяжения невелики;
  • предмет упругий;
  • он состоит из материала, при котором в результате сжатия или растяжения нет нелинейных процессов.

Закон Гука в математической форме

Формулировка Гука, которую мы привели выше, дает возможность записать его в следующем виде:

где — изменение длины тела вследствие сжатия или растяжения, F — сила, приложенная к телу и вызывающая деформацию (сила упругости), k — коэффициент упругости, измеряется в Н/м.

Следует помнить, что закон Гука справедлив только для малых растяжений.

Также отметим, что он при растяжении и сжатии имеет один и тот же вид. Учитывая, что сила — величина векторная и имеет направление, то в случае сжатия, более точной будет такая формула:

Но опять-таки, все зависит от того куда будет направлена ось, относительно которой вы проводите измерение .

В чем кардинальная разница между сжатием и растяжением? Ни в чем, если оно незначительно.

Степень применимости можно рассмотреть в таком виде:

Обратим внимание на график. Как видим, при небольших растяжениях (первая четверть координат) долгое время сила с координатой имеет линейную связь (красная прямая), но затем реальная зависимость (пунктир) становится нелинейной, и закон перестает выполняться. На практике это отражается таким сильным растяжением, что пружина перестает возвращаться в исходное положение, теряет свойства. При еще большем растяжении происходит излом, и разрушается структура материала.

При небольших сжатиях (третья четверть координат) долгое время сила с координатой имеет тоже линейную связь (красная прямая), но затем реальная зависимость (пунктир) становится нелинейной, и всё вновь перестает выполняться. На практике это отражается таким сильным сжатием, что начинает выделяться тепло и пружина теряет свойства. При еще большем сжатии происходит «слипание» витков пружины и она начинает деформироваться по вертикали, а затем и вовсе плавиться.

Как видим формула, выражающая закон, позволяет находить силу, зная изменение длины тела, либо, зная силу упругости, измерить изменение длины:

Также, в отдельных случаях можно находить коэффициент упругости. Для того, чтобы понять как это делается, рассмотрим пример задачи:

К пружине подсоединен динамометр. Ее растянули, приложив силу в 20 , из-за чего она стала иметь длину 1 метр. Затем ее отпустили, подождали пока прекратятся колебания, и она вернулась к своему нормальному состоянию. В нормальном состоянии ее длина составляла 87, 5 сантиметров. Давайте попробуем узнать, из какого материала сделана пружина.

Найдем численное значение деформации пружины:

Отсюда можем выразить значение коэффициента:

Посмотрев таблицу, можем обнаружить, что этот показатель соответствует пружинной стали.

Неприятности с коэффициентом упругости

Физика, как известно, наука очень точная, более того, она настолько точна, что создала целые прикладные науки, измеряющие погрешности. Будучи эталоном непоколебимой точности, она не может себе позволить быть нескладной.

Практика показывает, что рассмотренная нами линейная зависимость, является ничем иным как законом Гука для тонкого и растяжимого стержня. Лишь в качестве исключения можно применять его для пружин, но даже это является нежелательным.

Оказывается, что коэффициент k — переменная величина, которая зависит не только от того из какого материала тело, но и от диаметра и его линейных размеров.

По этой причине, наши умозаключения требуют уточнений и развития, ведь иначе, формулу:

нельзя назвать ничем иным как зависимостью между тремя переменными.

Модуль Юнга

Давайте попробуем разобраться с коэффициентом упругости. Этот параметр, как мы выяснили, зависит от трех величин :

  • материала (что нас вполне устраивает);
  • длины L (что указывает на его зависимость от);
  • площади S.

Важно! Таким образом, если нам удастся каким-то образом «отделить» из коэффициента длину L и площадь S, то мы получим коэффициент, полностью зависящий от материала.

Что нам известно:

  • чем больше площадь сечения тела, тем больше коэффициент k, причем зависимость линейная;
  • чем больше длина тела, тем меньше коэффициент k, причем зависимость обратно пропорциональная.

Значит, мы можем, коэффициент упругости записать таким образом:

причем Е — новый коэффициент, который теперь точно зависит исключительно от типа материала.

Введем понятие “относительное удлинение”:

Следует признать, что эта величина более содержательна, чем , поскольку она отражает не просто на сколько пружина сжалась или растянулась, а во сколько раз это произошло.

Поскольку мы уже «ввели в игру» S, то введем понятие нормального напряжения, которое записывается таким образом:

Важно! Нормальное напряжение представляет собой долю деформирующей силы на каждый элемент площади сечения.

Закон Гука и упругие деформации

Вывод

Сформулируем закон Гука при растяжении и сжатии : при малых сжатиях нормальное напряжение прямо пропорционально относительному удлинению.

Коэффициент Е называется модулем Юнга и зависит исключительно от материала.

Если на середину доски, лежащей горизонтально на двух опорах поставить груз, то под действием силы тяжести некоторое время груз будет двигаться вниз, прогибая доску, а затем остановится.

Эту остановку можно объяснить тем, что кроме силы тяжести, направленной вниз, на доску подействовала другая сила, направленная вверх. При движении вниз доска деформируется, при этом возникает сила, с которой опора действует на тело, лежащее на ней, эта сила направленна вверх, то есть в сторону, противоположную силе тяжести. Такую силу называют силой упругости . Когда сила упругости становится равной силе тяжести, действующей на тело, опора и тело останавливаются.

Сила упругости — это сила, возникающая при деформации тела (то есть при изменении его формы, размеров) и всегда направлена в сторону, противоположную деформирующей силы.

Причина возникновения силы упругости

Причиной возникновения сил упругости является взаимодействие молекул тела . На малых расстояниях молекулы отталкиваются, а на больших – притягиваются. Конечно речь идёт о расстояниях сравнимых с размерами самих молекул.

В недеформированном теле молекулы находятся на таком расстоянии, при котором силы притяжения и отталкивания уравновешиваются. При деформации тела (при растяжении или сжатии) расстояния между молекулами изменяются – начинают преобладать либо силы притяжения, либо – отталкивания. В результате и возникает сила упругости, которая всегда направлена так, чтобы уменьшить величину деформации тела .

Закон Гука

Если к пружине повесить одну гирьку, то мы увидим, что пружина деформировалась — удлинилась на некоторую величину х . Если к пружине подвесить две одинаковые гирьки, то увидим, что удлинение стало в два раза больше. Удлинение пружины пропорционально силе упругости.

Сила упругости, возникающая при деформации тела, по модулю пропорциональна удлинению тела и направлена так, что стремится уменьшить величину деформации тела.

Закон Гука справедлив только для упругих деформаций, то есть таких видов деформации, которые исчезают, когда деформирующая сила перестаёт действовать!!!

Закон Гука можно записать в виде формулы:

где k — жёсткость пружины;
х — удлинение пружины (равно разнице конечной и начальной длине пружины);
знак «–» показывает, что сила упругости всегда направлена в противоположную сторону деформирующей силы.

«Разновидности» силы упругости

Силу упругости, которая действует со стороны опоры, называют силой нормальной реакции опоры . Нормальная от слова «нормаль», то есть реакция опоры всегда перпендикулярна поверхности.

Силу упругости, которая действует со стороны подвеса, называют силой натяжения нити (подвеса) .

Упругие силы и деформации

Определение 1

Сила, возникающая в теле в результате его деформации и стремящаяся вернуть его в начальное состояние, называется силой упругости.

Все тела материального мира подвержены деформациям различного рода. Деформации возникают в силу перемещения и, как следствие, изменения положения частиц тела друг относительно друга. По степени обратимости можно выделить:

  • упругие, или обратимые деформации;
  • пластические (остаточные), или необратимые деформации.

В случаях, когда тело по завершении воздействия сил, приводящих к деформации, восстанавливает свои первоначальные параметры, деформация называется упругой.

Стоит отметить, что при упругой деформации воздействие внешней силы на тело не превышает предела упругости. Таким образом, силы упругости компенсируют внешнее воздействие на тело.

В ином случае деформация является пластической или остаточной. Тело, подвергшееся воздействия такого характера не восстанавливает начальные размеры и форму.

Упругие силы, возникающие в телах, не способны полностью уравновесить силы, вызывающие пластическую деформацию.

В целом, различают ряд простых деформаций:

  • растяжение (сжатие);
  • изгиб;
  • сдвиг;
  • кручение.

Как правило, деформации нередко представляют собой совокупность нескольких представленных типов воздействия, что позволяет свести все деформации к двум наиболее распространенным типам, а именно к растяжению и сдвигу.

Характеристики сил упругости

Модуль силы упругости, действующий на единицу площади, есть физическая величина, названная напряжением (механическим).

Механическое напряжение, в зависимости от направления приложения силы, может быть:

  • нормальным (направленным по нормали к поверхности, $σ$);
  • тангенциальным (направленным по касательной к поверхности, $τ$).

Замечание 1

Степень деформации характеризуется количественной мерой – относительной деформацией.

Так, например, относительное изменение длины стержня можно описать формулой:

$ε=\frac{\Delta l}{l}$,

а относительное продольное растяжение (сжатие):

$ε’=\frac{\Delta d}{d}$, где:

$l$ – длина, а $d$ – диаметр стержня.

Деформации $ε$ и $ε’$ протекают одновременно и имеют противоположные знаки, в силу того, что при растяжении изменение длины тела положительно, а изменение диаметра отрицательно; в случаях с сжатием тела знаки меняются на противоположные. Их взаимосвязь описывается формулой:

Здесь $μ$ – коэффициент Пуассона, зависящий от свойств материала.

Закон Гука

По своей природе, упругие силы относятся к электромагнитным, не фундаментальным силам, и, следовательно, они описываются приближенными формулами.

Так, эмпирически установлено, что для малых деформаций относительное удлинение и напряжение пропорциональны, или

Здесь $E$ – коэффициент пропорциональности, называемый также модулем Юнга. Он принимает такое значение, при котором относительное удлинение равно единице. Модуль Юнга измеряется в ньютонах на квадратный метр (паскалях).

Согласно закону Гука удлинение стержня при упругой деформации пропорционально действующей на стержень силе, или:

$F=\frac{ES}{l}\Delta l=k\Delta l$

Значение $k$ получило название коэффициента упругости.

Деформация твердых тел описывается законом Гука лишь до достижения предела пропорциональности. С повышением напряжения деформация перестает быть линейной, но, вплоть до достижения предела упругости, остаточные деформации не возникают. Таким образом, Закон Гука справедлив исключительно для упругих деформаций.

Пластические деформации

При дальнейшем возрастании воздействующих сил, возникают остаточные деформации.

Определение 2

Значение механического напряжения, при котором происходит возникновение заметной остаточной деформации, названо пределом текучести ($σт$).

Далее степень деформации возрастает без увеличения напряжения вплоть до достижения предела прочности ($σр$), когда происходит разрушение тела. Если графически изобразить возвращение тела в первоначальное состояние, то область между точками $σт$ и $σр$ получит название области текучести (области пластической деформации). В зависимости от размера этой области все материалы делятся на вязкие, у которых область текучести значительна, и хрупкие, у которых область текучести минимальна.

Отметим, что прежде мы рассматривали воздействие сил, приложенных по направлению нормали к поверхности. Если же внешние силы были приложены по касательной, возникает деформация сдвига. При этом в каждой точке тела возникает тангенциальное напряжение, определяемое модулем силы на единицу площади, или:

$τ=\frac{F}{S}$.

Относительный сдвиг в свою очередь может быть вычислен по формуле:

$γ=\frac{1}{G}τ$, где $G$ – модуль сдвига.

Модуль сдвига принимает такое значение тангенциального напряжения, при котором величина сдвига равна единице; измеряется $G$ так же, как и напряжение, в паскалях.

В природе все взаимосвязано и непрерывно взаимодействует друг с другом. Каждая ее часть, каждый ее компонент и элемент постоянно подвергается воздействию целого комплекса сил.

Несмотря на то, что количество достаточно велико, все их можно разделить на четыре типа:

1. Силы гравитационного характера.

2. Силы электромагнитного характера.

3. Силы сильного типа.

В физике есть такое понятие, как упругая деформация. Упругая деформация - это такое явление деформации, при котором она исчезает после того, как прекращают действовать внешние силы. После такой деформации тело принимает свою изначальную форму. Таким образом, сила упругости, определение которой говорит, что она возникает в теле после упругой деформации, является потенциальной силой. Потенциальная сила, или консервативная сила - это такая сила, у которой ее работа не может быть зависимой от ее траектории, а зависит только от начальной и конечной точки приложения сил. Работа консервативной или потенциальной силы по замкнутой траектории будет равна нулю.

Можно сказать, что сила упругости имеет электромагнитную природу. Эту силу можно оценить как макроскопическое проявление взаимодействия между молекулами вещества или тела. В любом случае, при котором происходит либо сжатие, либо растяжение тела, проявляется сила упругости. Она направлена против силы, производящей деформацию, в направлении, противоположном смещению частиц данного тела, и перпендикулярна поверхности тела, подвергающегося деформации. Также и вектор этой силы направлен в сторону, противоположную деформации тела (смещению его молекул).

Вычисление значения силы упругости, возникающей в теле при деформации, происходит по Согласно ему, сила упругости равна произведению жесткости тела на изменение коэффициента деформации этого тела. По закону Гука, возникающая при определенной деформации тела или вещества сила упругости прямо пропорциональна удлинению этого тела, а направлена она в сторону, противоположную направлению, по которому перемещаются частицы данного тела относительно остальных частиц в момент деформации.

Показатель жесткости определенного тела или пропорциональный коэффициент зависит от материала, который используется для изготовления тела. Также жесткость зависит от геометрических пропорций и формы данного тела. В отношении силы упругости существует еще такое понятие, как Таким напряжением называют отношение модуля силы упругости к единице площади в данной точке рассматриваемого сечения. Если связать закон Гука с напряжением этого типа, то его формулировка прозвучит несколько иначе. Напряжение механического типа, которое возникает в теле при его деформации, всегда пропорционально относительному удлинению этого тела. Необходимо иметь в виду, что действие закона Гука ограничено только небольшими деформациями. Существуют пределы деформации, при которых действует данный закон. Если же они будет превышены, то сила упругости будет вычисляться по сложным формулам вне зависимости от закона Гука.

Сила упругости - одна из сил взаимодействия тел, и ее изучением занимается механика. Как она возникает, от чего зависит, куда направлена? Прочитав статью, вы узнаете ответы на эти вопросы.

Как и когда возникает сила упругости?

Проведем эксперимент:

  • укрепим пружинку с помощью пластилина на нижней стороне горизонтальной поверхности, например, стола;
  • подвесим к свободному концу пружинки небольшой груз.

Рис. 1. Сила упругости

Из-за действия силы тяжести груз должен был упасть. Почему же этого не произошло? Причина - сила упругости, которая подействовала на груз со стороны пружинки. В общем случае ее возникновение обусловлено деформацией: растяжением, сжатием, сдвигом, кручением или изгибом. В нашем эксперименте она возникла из-за растяжения пружинки.

Направление силы упругости

Каждое тело содержит молекулы и атомы, которые состоят из заряженных частиц. Они притягиваются и отталкиваются друг от друга с определенной силой. Какое из этих взаимодействий будет преобладать, зависит от расстояния между ними.

Рис. 2. Заряженные частицы

Увеличение расстояния ведет к увеличению действия сил притяжения, уменьшение - к преобладанию сил отталкивания. В состоянии же покоя тела обе силы находятся в равновесии.

Из вышесказанного можно однозначно сказать, почему и куда направлена сила упругости. Ее направление противоположно движению атомов и молекул тела, так как она стремится восстановить первоначальную форму тела.

Взаимодействия между заряженными частицами обуславливают электромагнитную природу силы упругости.

Всегда ли деформация приводит к появлению силы упругости?

Вспомните, как легко пружинка восстанавливает свою форму, а вот пластилин всегда ее сохраняет. Происходит это из-за существования двух предельных случаев деформаций. Пример с пружинкой демонстрирует проявление упругой, а с пластилином - пластической деформации.

Когда мы говорим о силе упругости, то имеем в виду только упругую деформацию. Причем, значение ее невелико, и длится она недолго. Для пластической деформации характерны другие силы. Они зависят от скорости возникновения деформаций. Их не изучают в курсе физики 10 класса.

Связь между силой упругости и деформацией

Какова связь между силой упругости и деформацией? Как найти ее? Ответы на эти вопросы нашел английский изобретатель и естествоиспытатель Роберт Гук. Результаты его экспериментов показали линейный характер связи. В письменном виде установленный им закон выглядит следующим образом:

Fупр=k|Δl| или Fупр=k|x| ,

где k - коэффициент упругости, Δl , или x - абсолютное удлинение.

Δl , или x – разница между длиной деформированного тела и начальной длиной в метрах (м).

k -жесткость. Она выражается в ньютонах на метр (Н/м), ее значение обуславливают размеры тела и свойства материала. Единица измерения Fупр – ньютон (Н).

Обратите внимание, что закон Гука применяется только в случае малых упругих деформаций.

Рис. 3. Закон Гука

Если размеры не играют никакой роли, а важны только свойства материала, то в формулу силы упругости можно подставит постоянную E и записать закон так:

Fупр=ESΔl/l0 или Δl/l0=Fупр/ES ,

где E - модуль упругости (модуль Юнга) в Н/м2=Па, S - площадь поперечного сечения в м2, Δl/l0 - относительная деформация, Fупр/S - напряжение.

Что мы узнали?

Прочитав статью, мы узнали, от чего зависит сила упругости, чему равны коэффициенты в законе Гука. Теперь вы сможете смело решать задачки на определение силы упругости.

Оценка доклада

Средняя оценка: 3.9 . Всего получено оценок: 7.