Главная · Болезни кишечника · Мононуклеарная фагоцитирующая система. Мононуклеарная фагоцитарная система Какие клетки относятся к системе мононуклеарных фагоцитов

Мононуклеарная фагоцитирующая система. Мононуклеарная фагоцитарная система Какие клетки относятся к системе мононуклеарных фагоцитов

Мононуклеарная фагоцитарная (МФ) система - это совокупность клеток, происходящих из моноцитов, обладающих фагоцитарной активностью. Кроме того, к фагоцитирующим клеткам относятся полинуклеарные фагоциты (ПМЯЛ) - нейтрофилы, эозинофилы, базофилы, микроглия (на рис. затушеваны).

Важную роль в механизмах неспецифичкской защиты играют также ретикулярные, эндотелиальные клетки, которые не выполняют фагоцитарной функции, а поддерживают целостность лимфоидной ткани и кровеносных сосудов (Эндотелиальные клетки выстилают сосуды, ретикурные является основой кроветворных органов, образуются из мезенхимы).

Фагоцит, описанный И.И. Мечниковым, состоит из 7 следующих фаз:

1) Хемотаксис - движение клеток в направлении градиента молекул, выделенных микроорганизмами.

Хемотаксические факторы упорядочивают движения фагоцитов. Они воздействуют на специфические рецепторы на плазмолемме фагоцитов стимуляция которых передается на элементы его цитоскелета и изменяет экспрессию адгезивных молекул. Вследствие этого формируются псевдоподии, которые обратимо прикрепляются к элементам соединительной ткани, что обеспечивает направленную миграцию клеток.

2) Адгезия (прикрепление) клетки к объекту фагоцитоза Происходит при взаимодействии её рецепторного аппарата с молекулами на поверхности бактерии. Протекает в две стадии: -обратимая и непрочная -необратимая, прочная.

3) Захват бактерии клетки с формированием фагосомы Псевдоподии охватывают бактерию, заключая ее в мембранный пузырек - фагосому. Если бактерия инкапсулирована, то на нее садятся IgG или СЗВ. В таком случае бактерия опсонизирована.

4) Слияние гранул нейтрофила с фагосомой с образованием фаголизосомы Содержимое гранул выливается в просвет фаголизосомы (рН кислая).

5) Повреждение и внутриклеточное переваривание бактерии Гибель бактерии наступает вследствие действия на нее антимикробных веществ, далее он подвергается перевариванию лизосомальными ферментами. Бактерицидный эффект усиливается действием токсичных реактивных биоокислителей (перикисью водорода, молекул. Кислородом, супероксидными радикалами, гипохлоритом...)

Фагоцитоз, являясь механизмом неспецифической защиты (фагоцитироваться могут любые инородные частицы независимо от наличия иммунизации), в то же время способствует иммунологическим механизмам защиты. Это связано, во-первых, с тем, что поглощая макромолекулы и расщепляя их, фагоцит как бы раскрывает структурные части молекул, отличающиеся чужеродностью. Во-вторых, фагоцитоз в условиях иммунологической защиты протекает быстрее и эффективнее. Таким образом, явление фагоцитоза занимает промежуточное место между механизмами специфической и неспецифической защиты. Это еще раз подчеркивает условность деления механизмов защиты клеточного гомеостаза на специфические и неспецифические.

Нефагоцитарный механизм разрушения микробов характерен для ситуаций, когда микроорганизмы имеют столь большие размеры, что клетки не могут их поглощать. В таких случаях фагоциты скапливаются вокруг бактерии и выбрасывают содержимое своих гранул, уничтожая микроб большими концентрациями антимикробных веществ.

Воспалительная реакциия также относится к клеточным неспецифическим реакциям. Она является эволюционно выработанным процессом защиты внутренней среды от проникновения чужеродных макромолекул, поскольку внедрившиеся в ткань чужеродные начала, например, микроорганизмы, фиксируются в месте внедрения, разрушаются и даже удаляются из ткани во внешнюю среду с жидкой средой очага воспаления - экссудатом. Клеточные элементы как тканевого происхождения, так и выходящие в очаг из крови (лейкоциты), образуют вокруг места внедрения своеобразный защитный вал, препятствующий распространению чужеродных частиц по внутренней среде. В очаге воспаления особенно эффективно протекает процесс фагоцитоза

Гуморальные факторы внутренней среды, обеспечивающие механизмы неспецифической защиты, представлены пропердиновой системой и системой комплемента, осуществляющие лизис чужеродных клеток. При этом система комплемента, хотя и может активироваться неиммунологическим путем, обычно вовлекается в иммунологические процессы и поэтому скорее должна относиться к специфическим механизмам защиты.

Пропердиновая система реализует свой защитный эффект независимо от иммунных реакций.

К числу гуморальных факторов неспецифической защиты относят также содержащиеся в плазме крови и тканевой жидкости лейкин ы, плакины, бетализины, л и з о ц м и т.д.. Лейкины выделяются лейкоцитами, плакины - тромбоцитами крови, они оказывают отчетливое бактериолитическое действие. Еще большим литическим эффектом на стафилококки и анаэробные микроорганизмы обладают бета-лизины плазмы крови. Содержание и активность этих гуморальных факторов не меняются при иммунизации, что дает основание считать их неспецифическими факторами защиты. К числу последних следует также отнести и довольно большой спектр веществ тканевой жидкости, обладающих способностью подавлять ферментативную активность микроорганизмов и жизнедеятельность вирусов. Это ингибиторы гиалуронидазы, фосфолипаз, коллагеназы, плазмина и интерферон лейкоцитов.

Система мононуклеарных фагоцитов (греч. monox один + лат. nucleos ядро: греч. рhagos пожирающий, поглощающий + гистол. суtus клетка; синоним: макрофагальная система, моноцитарно-макрофагальная система) - физиологическая защитная система клеток, обладающих способностью поглощать и переваривать чужеродный материал. Клетки, входящие в состав этой системы, имеют общее происхождение, характеризуются морфологическим и функциональным сходством и присутствуют во всех тканях организма.

Основой современного представления о cистема мононуклеарных фагоцитов является фагоцитарная теория, разработанная И.И. Мечниковым в конце 19 в., и учение немецкого патолога Ашоффа (К. А.L. Aschoff) о ретикулоэндотелиальной системе (РЭС). Первоначально РЭС была выделена морфологически как система клеток организма, способных накапливать витальный краситель кармин. По этому признаку к РЭС были отнесены гистиоциты соединительной ткани, моноциты крови, клетки Купфера печени, а также ретикулярные клетки кроветворных органов, эндотелиальные клетки капилляров, синусов костного мозга и лимфатического узлов.

По мере накопления новых знаний и совершенствования морфологических методов исследования стало ясно, что представления о ретикулоэндотелиальной системе расплывчаты, не конкретны, а в ряде положений просто ошибочны. Так, например, ретикулярным клеткам и эндотелию синусов костного мозга и лимфатических узлов длительное время приписывалась роль источника фагоцитирующих клеток, что оказалось неверным. В настоящее время установлено, что мононуклеарные фагоциты происходят из циркулирующих моноцитов крови. Моноциты созревают в костном мозге, затем поступают в кровяное русло, откуда мигрируют в ткани и серозные полости, становясь макрофагами. Ретикулярные клетки выполняют опорную функцию и создают так называемое микроокружение для кроветворных и лимфоидных клеток. Эндотелиальные клетки осуществляют транспорт веществ через стенки капилляров. Непосредственного отношения к защитной системе клеток ретикулярные клетки и эндотелий сосудов не имеют. В 1969 г. на конференции в Лейдене, посвященной проблеме РЭС, понятие «ретикулоэндотелиальная система» было признано устаревшим. Вместо него принято понятие «система мононуклеарных фагоцитов».

К этой системе относят гистиоциты соединительной ткани, клетки Купфера печени (звездчатые ретикулоэндотелиоциты), альвеолярные макрофаги легких, макрофаги лимфатических узлов, селезенки, костного мозга, плевральные и перитонеальные макрофаги, остеокласты костной ткани, микроглию нервной ткани, синовиоциты синовиальных оболочек, клетки Лангергаиса кожи, беспигментные гранулярные дендроциты. Различают свободные, т.е. перемещающиеся по тканям, и фиксированные (резидентные) макрофаги, имеющие относительно постоянное место.

Макрофаги тканей и серозных полостей, по данным сканирующей электронной микроскопии, имеют форму, близкую к сферической, с неровной складчатой поверхностью, образованной плазматической мембраной (цитолеммой). В условиях культивирования макрофаги распластываются на поверхности субстрата и приобретают уплощенную форму, а при перемещении образуют множественные полиморфные псевдоподии. Характерным ультраструктурным признаком макрофага служит наличие в его цитоплазме многочисленных лизосом и фаголизосом, или пищеварительных вакуолей. Лизосомы содержат различные гидролитические ферменты, обеспечивающие переваривание поглощенного материала.

Макрофаги - активные секреторные клетки, которые освобождают в окружающую среду ферменты, ингибиторы, компоненты комплемента. Основным секреторным продуктом макрофагов является лизоцим. Активированные макрофаги секретируют нейтральные протеиназы (эластазу, коллагеназу), активаторы плазминогена, факторы комплемента, такие как С2, С3, С4, С5, а также интерферон.

Клетки cистема мононуклеарных фагоцитовобладают рядом функций, в основе которых лежит их способность к эндоцитозу, т.е. поглощению и перевариванию инородных частиц и коллоидных жидкостей. Благодаря этой способности они выполняют защитную функцию. Посредством хемотаксиса макрофаги мигрируют в очаги инфекции и воспаления, где осуществляют фагоцитоз микроорганизмов, их умерщвление и переваривание. В условиях хронического воспаления могут появляться особые формы фагоцитов - эпителиоидные клетки (например, в инфекционной гранулеме) и гигантские многоядерные клетки типа клеток Пирогова - Лангханса и типа клеток инородных тел. которые образуются путем слияния отдельных фагоцитов в поликарион - многоядерную клетку. В гранулемах макрофаги вырабатывают гликопротеид фибронектин, который привлекает фибробласгы и способствует развитию склероза.

Клетки cистема мононуклеарных фагоцитов принимают участие в иммунных процессах. Так, непременным условием развития направленного иммунного ответа является первичное взаимодействие макрофага с антигеном. При этом антиген поглощается и перерабатывается макрофагом в иммуногенную форму. Иммунная стимуляция лимфоцитов происходит при непосредственном контакте их с макрофагом, несущим преобразованный антиген. Имунный ответ в целом осуществляется как сложное многоэтапное взаимодействие Г- и В-лимфоцитов с макрофагами.

Макрофаги обладают противоопухолевой активностью и проявляют цитотоксические свойства в отношении опухолевых клеток. Эта активность особенно выражена у так называемых иммунных макрофагов, осуществляющих лизис опухолевых клеток-мишеней при контакте с сенсибилизированными Т-лимфоцитами, несущими цитофильные антитела (лимфокины).

Клетки cистема мононуклеарных фагоцитов принимают участие в регуляции миелоидного и лимфоидного кроветворения. Так, островки кроветворения в красном костном мозге, селезенке, печени и желточном мешке эмбрионе формируются вокруг особой клетки - центрального макрофага, организующего эритропоэз эритробластического островка. Клетки Купфера печени участвуют в регуляции кроветворения путем выработки эритропоэтина. Моноциты и макрофаги вырабатывают факторы, стимулирующие продукцию моноцитов, нейтрофилов и эозинофилов. В вилочковой железе (тимусе) и тимусзависимых зонах лимфоидных органов обнаружены так называемые интердигитирующие клетки - специфические стромальные элементы, также относящиеся к cистемs мононуклеарных фагоцитов, ответственные за миграцию и дифференцировку лимфоцитов.

Обменная функция макрофагов заключается в их участии в обмене железа. В селезенке и костном мозге макрофаги осуществляют эритрофагоцитоз, при этом в них происходит накопление железа в форме гемосидерина и ферритина, которое питом может реутилизироваться эритробластами.

  • II. Организм как целостная система. Возрастная периодизация развития. Общие закономерности роста и развития организма. Физическое развитие……………………………………………………………………………….с. 2
  • 7 Сист монон-рных фагоцитов обьединяет на основе единства происхождения, морфологии и функции моноциты переферической крови тканевые макрофаги различной локализации. Моноциты переферической крови в присутствии определенных факторов могут дифференцироваться не только в тканевые макрофаги но и в дендритные клетки(ДК). Такими факторами явл-ся ГМ-КСФ и ИЛ-4. В рез-те действия этих цитокинов обр-ся мономорфная популяция ДК, имеющая хар-ки незрелых ДК переферических тканей. Созревание, дифференцировка и активация макрофагов зависят от ростовых факторов(ИЛ-3, ГМ-КСФ,М-КСФ) и от активирующих цитокинов (IFN-y).Среди функций IFN-y одной из важнейшей явл-ся активация эффекторных функций макрофагов: их внутриклеточной микробицидности и цитотоксичности, продукции ими цитокинов, супероксидных и нитроксидных радикалов, простагландинов.

    Осн. Ф-ии макрофагов: 1) Фагоцитоз и пиноцитоз-поглощение частиц или клеток за счет обтекания их псевдоподиями. Благодаря фагацитозу макрофаги участвуют в удалении из орг-ма иммунных комплексов и клеток, подвергшихся апоптозу. 2)участие в процессах репарации и заживления ран-макрофаги секретируют несколько ростовых факторов, стимулирующих ангиогенез и индуцируют формирование грануляционной ткани и реэпитализацию: базисный фактор роста фибробластов(bFGF), ростовые трансформирующие факторы GTF-a, GTF-b, инсулиноподобный ростовой фактор (IGF). 3) Секреторная-секретируют более 100 различных видов молекул. А) ферменты неспецифической противоинфекционной защиты(перксидаза, активные формы кислорода, окись азота, катионные белки, лизоцим и интерферон) Б) ферменты, активные в отношении внелеточных белков-коллагеназа, эластаза, активаторы плазминогена, лизосомные ферменты. В) БАВ, являющиеся медиаторами и модуляторами различных физиологических процессов, в первую очередь-воспаления: простагландины, лейкотриены, циклические нуклеотиды. Г) вещества, активирующие или регулирующие иммунные реакции. 4) регуляция иммунного ответа-моноциты крови и тканевые макрофаги синтезируют ряд факторов, влияющих на дифференцировку, пролиферацию и функциональную активность других участников иммунного ответа-определенных субпопуляций Т- и В-лимфоцитов 5) эффекторные функции макрофагов при специфическом иммунном ответе-проявляются в реакциях ГЗТ, когда в инфильтратах находят, в осн. Моноциты. Рецепторы макрофагов-на пов-ти макрофагов сод-ся большой набор рецепторов, обеспечивающих участие макофагов в широком круге физиологических реакций, в т.ч. и участие в специфическом иммунном ответе. Так, на мембране макрофагов экспрессированы различные рецепторы для захвата микроорганизмов: маннозный рецептор (MMR). Рецепторы для бактериальных липополисахаридов (CD14), на мембране макрофагов эксперссированы рецепторы для захвата опсонизированных микроорганизмов: FcR для иммуноглобулинов, а также CR1, CR3, CR4-для фрагментов активированного комплемента. На мембране макрофагов эксперссированы гликопротеиновы рецепторы для многих цитокинов. Связывание цитокина со своим рецептором служит первым звеном в цепи передачи сигнала активации к ядру клетки.



    Неспецифические механизмы защиты. Характеристика макро- и микрофагов.

    Неспецифические (врожденные) клеточные механизмы защиты обеспечиваются фагоцитами: 1. макрофаги (мононуклеарные клетки). 2. микрофаги (полинуклеарные клетхи).

    Фагоциты:

    макрофаги (мононуклеарные клетки) (нейтро- . зоэино- ,базофилы)



    Моноциты

    Фагоциты открыты в 1882 Мечниковым.

    Макрофаги являются мононукпеарными клетками и раньше объе­диняются в мононуклеарную фагоцитарную систему - моноциты красного костного мозга, свободные тканевые макрофаги и фиксированные тканевые макрофаги. Моноциты красного костного мозга находятся в центре эритробластического островка (недифференциротанные клетки) и даёт начало всем-макрофагам: моноциты красного костного мозга выходят а кровь и сущест­вуют там в качестве моноцитов крови (6-8% от лимфоцитов крови). Моноциты крови способны проходить сквозь эпителий кровеносных сосудов тканей, где он превращается в макрофаг. Назад макрофаги в кровь не возвращаются. Если моноциты крови имеют диаметр 11-20 нм. то тканевые макрофаги имеют размеры 40-50 мкм. Т. е. макрофаги увеличиваются в размерах и называются распластанными макрофагами, которые могут взаимодействовать с лимфоцитами. Еще на их поверхности образуются рецепторы для взаимодействия с lg G и комплементом. Такое взаимодейст­вие макрофагов с lo G и комплементами способствует фагоцитозу.

    Макрофаги делятся на: 1. макрофаги легких (альвеолярные). 2. макрофаги соединительной ткани (гистиоциты) 3. макрофаги серозных полостей. 4. макрофаги воспалительных экссудатов.

    Свободные макрофаги диффузно рассеяны по всему организму и свободно перемещаются, что способствует освобождению организма от чужеродного материала. Распластанные макрофаги способны склеиваться между собой, создавая конгиамераты, которые создают условия (механиче­ское препятствие) для распространения микроорганизмов. Кроме того макрофаги являются АПК.

    Тканевые (связанные) макрофаги входят в состав идентичных ор­ганов: 1. макрофаги печени (купферовские клетки) - с большим количеством отростков, очищают кровь поступающую по воротной вене от кишечника. Участвуют в обмене НЬ и желчных пигментов. 2. макрофаги селезенки (находятся в корковом и мозговом слое) - имеют множество отростков, обладают фагоцитарной силой, уничтожают старые эритроциты. 3. макрофа­ги лимфоузлов - находятся в корковом и мозговом веществе, обезвреживают микроорганизмы лимфы. 4. макрофаги плаценты - защищают плаценту от бактерий. 5. макрофаги микрогпии - фагоцитируют продукты распада нервной ткани и запасают жир.

    Все макрофаги продуцируют БАВ - цитокины, которые связывают функции макрофаги воедино.

    Микрофаги полинуклеарные фагоциты, происходят из стволовых клеток красного костного мозга, на 2/3 состоят из иейтрофилов, эозинофилов до 5%, базофилов до1%. i

    Нейтрофилы, эозинофилы. базофилы выходят из кровяного русла; в ткани и превращаются в микрофаги, назад не возвращаются. Самые сильные нейтрофилы могут уничтожить до 30 бактерий. Сила их оценивает­ся по фагоцитарной и бактериальной активности и хемотаксическим свойствам. При инфекции микрофаги устремляются из кровяного русла в ткани, т. к. увеличивается проницаемость сосудов для них. Это обусловлено повышением гистамина при воспалительных процессах. Второй пик проницаемости через 6-8 часов после проникновения и связан с действием.

    / 25
    ХудшийЛучший

    В систему мононуклеарных фагоцитов входят моноциты крови и различные макрофаги (купферовские клетки печени, альвеолярные макрофаги, макрофаги соединительной ткани, клетки Лангерганса, астроциты глии, остеокласты). Все они возникают из гемопоэтической стволовой клетки и проходят ряд стадий: монобласт-промоноцит-моноцит-макрофаг.

    Созревают под влиянием четырех гранулоцитарно-макрофагальных колониестимулирующих факторов (ГМ-КСФ), выделяемых Т-лимфоцитами, фибробластами и макрофагами. В зависимости от последующей локализации макрофаги приобретают специфические структурные и морфологические черты. Они несут на поверхности маркеры: CD14, Fc-рецепторы для иммуноглобулинов, рецепторы для СЗ-компонента комплемента и HLA-DR антигены. CD14 молекулы связывают липополисахариды бактерий вместе с белком сыворотки крови, при активации макрофагов они сбрасываются с клетки.

    Фагоциты обладают развитым лизосомальным аппаратом, где содержится большое количество ферментов.

    Функции макрофагов:

    Распознавание и представление (презентация) антигенов,

    Секреция медиаторов системы иммунитета (монокинов).

    Фагоцитоз. Феномен фагоцитоза открыт в 1883 году И. И. Мечниковым (см. историю развития иммунологии).

    Процесс фагоцитоза происходит в несколько стадий:

    Стадия хемотаксиса представляет собой целенаправленное движение макрофагов к объекту фагоцитоза (корпускулярный антиген), который выделяет хемотаксические факторы (бактериальные компоненты, анафилатоксины, лимфокины и т. д.).

    Стадия адгезии реализуется 2 механизмами: иммунным и неиммунным. Неиммунный фагоцитоз осуществляется за счет неспецифической адсорбции антигена на поверхности макрофага. В иммунном фагоцитозе участвуют Fc-рецепторы макрофагов к иммуноглобулинам. В одних случаях макрофаг несет на своей поверхности антитела, за счет которых прикрепляется к клетке-мишени. В других - с помощью Fc-рецептора он сорбирует уже образовавшийся иммунный комплекс за счет свободных Fc-фрагментов антител. Антитела и факторы комплемента, усиливающие фагоцитоз, называют опсонинами.

    Стадия эндоцитоза (поглощения). При этом происходит инвагинация мембраны фагоцита и обволакивание объекта фагоцитоза псевдоподиями с образованием фагосомы. В дальнейшем фагосома сливается с лизосомами и образуется фаголизосома.

    Стадия переваривания. В эту стадию происходит активация лизосомальных ферментов, разрушающих объект фагоцитоза.

    Различают завершенный и незавершенный фагоцитоз. При завершенном фагоцитозе происходит полное переваривание и бактериальная клетка погибает. При незавершенном фагоцитозе микробные клетки остаются жизнеспособными. Это обеспечивается различными механизмами. Так, микобакгерии туберкулеза и токсоплазмы препятствуют слиянию фагосом с лизосомами; гонококки, стафилококки и стрептококки могут быть устойчивыми к действию лизосомальных ферментов, риккетсии и хламидии могут долго персистировать в цитоплазме вне фаголизосомы.

    Распознавание и представление антигенов макрофагами.

    В результате фагоцитоза и переваривания антигенов образуется большое количество низкомолекулярных антигенных фрагментов. Часть из них в виде пептидов перемещается на поверхность макрофага.

    Если перевариванию подвергался собственный АГ организма, то он связывается с молекулами HLA I класса (HLA-A, HLA-B, HLA-C). Экзоантигены - пептиды длиной 12-25 аминокислот связываются с молекулами 2 класса (HLA-DR, HLA-DP, HLA-DQ). Только после этого они взаимодействуют с Т-хелперами. Таким образом, макрофаги представляют переработанный антиген Т-хелперам в комплексе со своими HLA антигенами (1-й сигнал).

    Секреция медиаторов иммунной системы (монокинов). Вторым сигналом для активации Т-хелперов является выделение макрофагами интерлейкина I - монокина с многообразным биологическим и пирогенным действием. Кроме этого, макрофаги выделяют другие медиаторы: ИЛ-3, 6, 8, 10, 15, фактор некроза опухоли (ФНО), простагландины, лейкотриены, интерфероны? и?, факторы комплемента, ферменты.

    ИЛ-1 и ФНО - основные медиаторы макрофагов, выделяются под действием эндотоксина - липополисахарида многих видов бактерий, индуцируют синтез белков острой фазы воспаления, септический шок. Основным их свойством является провоспалительное действие. Они стимулируют пролиферацию клеток-киллеров, направленных против опухоли, а также непосредственно разрушают многие клетки. ФНО увеличивает продукцию интерферонов, ИЛ-1 и ИЛ-2. Кроме этого, он оказывает и системное действие, в частности усиливает выделение гормонов гипоталамусом.

    Мононуклеарным фагоцитам (моноцитам и макрофагам) принадлежит важнейшая роль в иммунных реакциях, защите организма от инфекций, а также восстановлении и перестройке тканей. Не бывает человека, у которого отсутствовала бы эта линия клеток, поскольку макрофаги, по-видимому, необходимы для удаления примитивных тканей по мере их замещения новыми в процессе эмбрионального развития.

    Моноциты и различные формы тканевых макрофагов составляют систему мононуклеарных фагоцитов. Это именно система, так как все мононуклеары имеют общее происхождение, сходное строение и одинаковые функции (фагоцитоз).

    Основная локализация макрофагов в тканях :
    Печень (купферовские клетки).
    Легкие (интерстициальные и альвеолярные макрофаги).
    Соединительная ткань.
    Серозные полости (плевральные и перитонеальные макрофаги).
    Кости (остеокласты).

    Головной мозг (реактивные клетки микроглии).
    Селезенка, лимфатические узлы, костный мозг.
    Стенка кишечника.
    Грудное молоко.
    Плацента.
    Гранулемы (многоядерные гигантские клетки).

    Моноциты - циркулирующие в крови предшественники тканевых - развиваются в костном мозге быстрее и остаются в крови дольше нейтрофилов. Первый предшественник моноцита, монобласт, превращается в промоноцит, несколько более крупную клетку с цитоплазматическими гранулами и вдавленным ядром, состоящую из небольших глыбок хроматина, и, наконец, - в полностью развитый моноцит.

    Зрелый моноцит по своим размерам больше нейтрофила, и его цитоплазма заполнена гранулами, содержащими гидролитические ферменты. Превращение монобласта в зрелый моноцит крови занимает около 6 сут. Моноциты сохраняют некоторую способность к делению и после попадания в ткани подвергаются дальнейшей дифференцировке; в тканях они могут оставаться в течение нескольких недель и месяцев.

    В отсутствие воспаления моноциты , по-видимому, случайным образом попадают в ткани. Оказавшись там, они трансформируются в тканевые макрофаги, морфологические, а иногда и функциональные свойства которых зависят от конкретной ткани. Органоспецифические факторы влияют на дифференцировку моноцитов и определяют их метаболические и структурные особенности. В печени они превращаются в купферовские клетки, которые соединяют синусоиды, разделяющие соседние пластинки гепатоцитов.

    В легких они представлены крупными эллипсоидными альвеолярными макрофагами , в костях - остеокластами. Все макрофаги обладают по крайней мере тремя основными функциями - антигенпредставляющей, фагоцитарной и иммуномодулирующей, связанной с секрецией многих цитокинов. В очагах воспаления моноциты и макрофаги могут сливаться друг с другом, образуя многоядерные гигантские клетки - последняя стадия развития мононуклеарных фагоцитов. Под действием некоторых цитокинов моноциты крови дифференцируются в дендритные клетки, которые особенно эффективно представляют антигены лимфоцитам.

    682 0

    Несмотря на высокий питотоксический потенциал макрофагов, их непосредственное использование в адоптивной иммунотерапии еще не получило большого распространения, что во многом объясняется сложностями их получения.

    Однако в последнее время появилась ограниченная информация об использовании адоптивного переноса макрофагов, в частности для лечения глиобластом.

    Макрофаги в лечении рака

    Активация мононуклеарных фагоцитов биспецифическими антителами, распознающими FcR и EGFR на клетках глиобластомы, обусловила усиление экспрессии HLA-DR, фагоцитоз и цитотоксичность; эти данные позволили сделать заключение о том, что мононуклеарные фагоциты вместе с указанными биспецифическими антителами могут быть использованы для адоптивной иммунотерапии глиобластом, клетки которых экспрессируют EGFR.

    Практически весь опыт иммунотерапии рака прошлых лет, начиная с использования различных бактериальных субстанций и их продуктов (различные коринебактерии, сальмонеллы, дифтерийный, холерный, столбнячный токсины, продукты стенки бактерий различных видов, простейшие и др.), показал, что в механизме терапевтического действия такой иммунотерапии важное место принадлежит их влиянию на мононуклеарные фагоциты. Существенная роль отводится макрофагам и в реализации эффекта имммуномодуляторов растительного и синтетического происхождения (мурамидципептид, хитозан и др.).

    Данные, которые представлены ниже, в основном содержат доказательства участия макрофагов в различных видах современной иммунотерапии рака. Уже первый опыт применения IL-2 для лечения различных метастазирующих опухолей (использовали большие дозы IL-2 или его сочетание с другими цитокинами - IFNoc, TNFa, ЛАК, полученные из лимфоцитов периферической крови, а также инфильтрирующих опухоль и др.) показал, что в участках регрессии опухоли отмечали инфильтрацию макрофагами, CD4+- и СD8+Т-лимфоцитами. Эти данные свидетельствовали о том, что ответ на IL-2-терапию в равной степени ассоциируется как с Т-лимфоцитами, так и с макрофагами.

    В последующем было показано, что макрофаги активно участвуют в реализации ремиссии опухолевого процесса и при совместном применении IL-2 и IL-12 при лимфоме мышей. При этом противоопухолевая активность макрофагов антителозависима и может осуществляться неспецифическим и специфическим путем (в процессе терапии обнаружены специфические антитела IgG2A). Особенно важным представляется вывод о том, что на первых этапах сочетанной терапии IL-2 и IL-12 основная роль принадлежит макрофагам и лишь на последующих - другим клеткам.

    Нельзя не отметить и роль макрофагов в терапевтическом эффекте комбинированной терапии IL-2, IFNy и гистамина (в качестве адъюванта) при лечении метастазирующих меланом. Исследование моноцитов периферической крови и биопсийного материала показало, что хороший эффект от терапии сочетается с уровнем инфильтрации мононуклеарными фагоцитами.

    Как эффекторные клетки макрофаги проявляют себя и при изолированной IL-12, а также сочетанной (IL-12 и IL-18) терапии. При введении IL-12 мышам с опухолями МСА 207 показано, что макрофаги превалируют в клеточном составе асцитической жидкости. Такие макрофаги обладают цитотоксической эффективностью и осуществляют лизис контактзависимым механизмом. Под влиянием IL-12 и IL-18 макрофаги продуцируют IFNy и NO и вместе с цитотоксическими лимфоцитами (ЦТЛ) и естественными киллерами (ЕК) обеспечивают лизис клеток глиомы.

    Практически полную регрессию наблюдали после трансфекции плазмиды IL-13Ra в клетки плоскоклеточного рака; указанная регрессия опухоли сопровождалась выраженной инфильтрацией макрофагами и ЕК.

    При исследовании IL-12-зависимой цитотоксичности установлено, что макрофаги могут действовать, используя ранее неизвестный механизм, который предусматривает контакт макрофагов с клетками-мишенями, но не зависит от перфорина, Fas/FasL и NO; эта способность макрофагов особенно выражена при сочетанном применении IL-12 с циклофосфамидом, что приводит к регрессии опухоли Sa-1.

    Со способностью M-CSF влиять на выживаемость и дифференцировку мононуклеарных фагоцитов связывают высокий процент элиминации опухолевых клеток (меланома и тимома). В этих опытах впервые были получены доказательства того, что под влиянием M-CSF макрофаги способны элиминировать опухолевые клетки, используя механизм антителозависимой цитотоксичности с участием антител, специфичных к антигенам опухолевых клеток.

    Трансфекция гена M-CSF в клетки неиммуногенной гепатоцеллюлярной карциномы (Нера 1-6) вызывала генерацию противоопухолевого ответа макрофагов и ЦТЛ против указанных клеток; такие результаты свидетельствуют, по мнению авторов, о целесообразности трансфекции гена M-CSF в указанные клетки при их использовании для вакцинации.

    Макрофаги и цитотоксические лимфоциты являются важными компонентами механизма противоопухолевого действия различных противоопухолевых вакцин. Так, противоопухолевый эффект при вакцинации пептидами антигенов опухоли EG.70VA мышей обеспечивался макрофагами вместе с ЦТЛ. Однако удаление макрофагов перед вакцинацией нивелировало эффект цитотоксических лимфоцитов.

    Лидирующая роль макрофагов показана и при вакцинации рекомбинантной вакциной с трансфекцией белка вируса папилломы на модели карциномы VX2. Приоритетность макрофагов в регрессии опухоли доказывалась тем, что лимфоциты, выделенные от вакцинированных мышей, не проявляли цитотоксичности, однако у таких мышей развивался гуморальный иммунологический ответ, и активация образовавшимися антителами индуцировала антителозависимую цитотоксичность макрофагов, которую авторы и рассматривают как ответственную за элиминацию опухоли.

    Существенное место занимает противоопухолевая активность макрофагов и в эффекте иммуномодулирующих препаратов различного происхождения. Так, иммуномодулятор ОК-432 усиливает цитотоксичность макрофагов, что проявляется усилением активности лактатдегидрогеназы, кислой фосфатазы, усилением секреции NO, а также фагоцитарной активности.

    Возобновление интереса к использованию иммуномодификаторов растительного происхождения, в частности полученных из мицелия, позволило выявить тот факт, что макрофаги и в этих случаях играют роль в регрессии опухоли; различные фракции экстракта мицелий неодинаково эффективны в их действии на клетки метастазирующих и неметастазирующих опухолей.

    Грибковые полисахариды, в частности полученные из Phellinus linteus, наряду с противоопухолевым обладают и иммуномодулирующим действием. Механизм этого действия не в полной мере ясен, однако показано, что обработка макрофагов in vitro указанным полисахаридом индуцирует продукцию NO, а также усиливает лизис клеток меланомы В16 in vivo.

    Функции макрофагов (секреторный и клеточный ответы) могут изменяться и под влиянием мукополисахаридов грибов. Перитонеальные макрофаги после обработки этими мукополисахаридами усиливали цитотоксичность против клеток меланомы В16, что сопровождалось повышением активности миелопероксидазы, усилением продукции Н2O2, O2, NO, TNFa.

    Участие макрофагов в противоопухолевой защите подтверждают и результаты иммунотерапии с использованием комбинированного иммуномодулятора иринотексана для лечения рака поджелудочной железы. Эти результаты показали, что терапевтическая эффективность (снижение роста и количества метастазов в печень) прямо коррелирует с инфильтрацией макрофагами в участках поражения и увеличения ими экспрессии iNOS.

    Особого внимания заслуживают данные о том, что и в терапевтической эффективности ряда препаратов, известных как химиопрепараты, существенная роль принадлежит макрофагам.

    В этом аспекте несомненно интересны новые данные о действии известного химиопрепарата таксола, который ингибирует рост опухоли, но не убивает опухолевые клетки. Оказалось, что преинкубация макрофагов с таксолом значительно снижает способность к выживаемости клеток линии рака мочевого пузыря мышей (МВТ2).

    Использование различных модельных систем привело к заключению, что после инкубации с таксолом макрофаги убивают опухолевые клетки, реализуя NO-зависмый механизм апоптоза. Кроме того, под влиянием таксола опухолевые клетки выделяют фактор, стимулирующий активность макрофагов и выделение NO. Из этих данных следует, что при определенных условиях опухоль может выделять фактор, усиливающий противоопухолевую активность макрофагов.

    Терапия линомидом, используемым для лечения плоскоклеточной карциномы языка, увеличивала секрецию TNFa макрофагами перитонеальной полости и способствовала снижению уровня васкуляризации опухоли.

    Химический препарат с эстрогенной активностью бисфенол А способен влиять на продукцию цитокинов клетками системы иммунитета и усиливать продукцию TNFa, iNOS макрофагами мышей. Наряду с этим было показано, что этот препарат ингибирует липополисахарид-индуцированную продукцию TNFa и NO. Полученные факты дали основание авторам сделать заключение о способности этого препарата регулировать функции клеток системы иммунитета снижением уровня NO и TNFa ингибицией NF-kappaB через рецептор эстрадиола.

    Приведенные работы, а также ряд других фактов показывают, что химические препараты разнонаправленно влияют на макрофаги. Этот факт, во-первых, является важным для изучения механизма действия различных химиопрепаратов на систему иммунитета, а во-вторых, свидетельствует о необходимости учета этих способностей химиопрепаратов при назначении химиотерапии.

    Противоопухолевое действие макрофагов является важным компонентом эффективности фототерапии, которая применялась в комплексе с витамин-Д3-связывающим фактором, активирующим макрофаги.

    В опытах, проведенных на плоскоклеточной карциноме, показано, что роль макрофагов в регрессии опухоли связана с их привлечением к участку воспаления, которое вызывает фототерапия. Указанный связывающий фактор был использован и для экспериментальной терапии карциномы Эрлиха у мышей, когда было показано, что предварительная инкубация макрофагов с этим фактором сопровождалась выраженной их активацией; последующее введение макрофагов приводило к радикальной регрессии этой опухоли (использовали различные варианты терапии) уже после одной или двух инъекций.

    Положительный результат от фототерапии в сочетании с активированными макрофагами был отмечен и в опытах с карциномой крыс. Такая комбинированная (интра- или перитуморальная) фототерапия с использованием активированных макрофагов стимулировала клеточноопосредованный иммунитет, увеличивала показатель выживаемости животных и снижала частоту развития карцином.

    В связи с увеличивающимся интересом к использованию иммунотерапии для лечения химиорезистентных опухолей заслуживают внимания результаты проведения иммунотерапии мышей, которым вводились клетки мелкоклеточной карциномы легкого человека, характеризующейся множественной лекарственной резистентностью (клетки экспрессировали белок p-gp).

    Иммунотерапия проводилась химерными антителами против p-gp, которые in vitro индуцировали антителозависимую цитотоксичность перитонеальных макрофагов; комбинация этих антител с трансфекцией M-CSF останавливала развитие метастазов. Такие результаты послужили основанием для вывода о целесообразности проведения клинических испытаний указанного выше метода иммунотерапии.

    Значимость мононуклеарных фагоцитов в системе иммунитета против опухоли

    Мононуклеарные фагоциты представляют собой гетерогенную субпопуляцию клеток. Сложный и длительный эволюционный путь обеспечил им широкий спектр регуляторных влияний и возможность реализации различных эффекторных функций. Значение мононуклеарных моноцитов не ограничивается презентацией антигена, фагоцитозом и цитотоксичностью.

    Способность мононуклеарных фагоцитов продуцировать не только различные цитокины и другие медиаторы, но и ряд гормонов, экспрессировать рецепторы для нейромедиаторов не оставляет сомнений в том, что в сложных взаимодействиях между нервной, эндокринной и иммунной системами макрофаги занимают весьма значимое место. Раскрытие многих сложностей взаимодействия между отдельными клетками системы иммунитета привело к трансформации взглядов на роль макрофагов.

    Так, если в течение длительного периода времени макрофаги рассматривались как один из основных факторов врожденного иммунитета, то в настоящее время не вызывает сомнений и их активное участие в приобретенном иммунитете, реакциях трансплантационного иммунитета, различных воспалительных процессах, таких патологических процессах, как атеросклероз и др.

    Очень велика роль макрофагов и в противоопухолевой защите благодаря тому, что они обладают разнообразными механизмами, способными лизировать опухолевые клетки. Более того, взаимодействие специфических противоопухолевых антител с Fc-рецепторами обеспечивает мононуклеарным фагоцитам участие в формировании специфической противоопухолевой защиты.

    Общая информация позволяет сделать следующие заключения:

    Первое

    Мононуклеарные фагоциты - гетерогенная субпопуляция клеток, различающихся фенотипически и функционально, обладающая способностью к осуществлению различных эффекторных, а также регуляторных функций.

    Второе

    Основные функции мононуклеарных фагоцитов - презентация антигена, фагоцитоз, цитотоксичность, взаимодействие с другими клетками системы иммунитета, участие во врожденном и приобретенном иммунитете, трансплантационных реакциях, а также взаимодействие с клетками эндокринной и нервной систем.

    Третье

    Мононуклеарные фагоциты способны к дифференцированному распознаванию апоптотических и некротических телец, что раскрывает новый аспект их биологической роли в регуляции иммунологического и тканевого гомеостаза.

    Четвертое

    Мононуклеарные фагоциты обладают большим противоопухолевым потенциалом, который может реализовываться на различных этапах опухолевого процесса и проявляться в отношении метастазирующих и неметастазируюших опухолей различных гистогенеза и локализации.

    Пятое

    Цитотоксическое действие мононуклеарных фагоцитов в отношении опухолевых клеток обеспечивается разнообразными механизмами лизиса и такое разнообразие позволяет характеризовать мононуклеарные фагоциты как клетки, которые обладают очень высоким цитотоксическим потенциалом.

    Шестое

    Цитотоксичность макрофагов , имеющих различное происхождение, различается.

    Седьмое

    Способность мононуклеарных фагоцитов к активному и быстрому лизису опухолевых клеток после стимуляции обосновывает перспективу их использования для адоптивной иммунотерапии рака, а также ее сочетанного использования с другими видами иммунотерапии.

    Восьмое

    Участие макрофагов не только обеспечивает противоопухолевую эффективность различных видов иммунотерапии, но и способствует реализации терапевтического эффекта химио- и фототерапии.

    Бережная Н.М., Чехун В.Ф.