Главная · Болезни кишечника · Депрессия влияет на структуру мозга? Чем является мысль в клетках мозга. Морфология мысли Зона ориентировки, памяти и воображения

Депрессия влияет на структуру мозга? Чем является мысль в клетках мозга. Морфология мысли Зона ориентировки, памяти и воображения

Согласно результатам исследований, мыслительные процессы осуществляются в префронтальной коре, расположенной в передней части мозга. Здесь локализована наша способность анализировать прошлое и планировать будущее, контролировать свое поведение и решать задачи, ставить цели и осознавать, что мы чувствуем . Логический анализ, планирование и критическое мышление осуществляются в дорсолатеральной зоне ПК. Если же в процесс мышления вовлечены эмоции, активируется интериорно-орбитальная зона, расположенная на уровне глаз и непосредственно связанная с лимбической системой, где формируются наши эмоции и привязанности.

Мысль рождается как электрический импульс в отдельном нейроне или группе нейронов. Затем возбуждение распространяется по аксонам связанных нейронов через синапсы. Направление и локализация нейронного пути зависят от предмета мыслительного процесса и согласуются с принципом межполушарной асимметрии. Так, при вербальном мышлении, когда вы «думаете словами», составляете список дел или готовите речь для презентации, наибольшая активность наблюдается в , где статистически чаще всего располагаются центры языка и речи.

Когда вы представляете предмет размышлений в образах, будь то настоящее воспоминание или плод воображения, активируются нейронные структуры , нашей «встроенной художественной галереи». Здесь, в правом , совершается таинство творческого процесса, здесь рождаются герои наших рассказов и сюжеты для картин.

Нейромедиаторы, внимание и влюбленность

Обдумывая некую проблему, решая задачу, вы стараетесь сосредоточиться. При этом активируются базальные ядра – глубинные структуры центральной части мозга, отвечающие за внимание и концентрацию. Клетки черного вещества базальных ганглиев синтезируют нейромедиатор дофамин, который оказывает тормозящее действие на перцептивные структуры, «приглушая» отвлекающие раздражители извне или от внутренних органов. Дофамин также участвует в системе вознаграждения в мозге, благодаря ему вы чувствуете удовлетворение или радость, найдя удачное решение.

Если вы думаете об объекте привязанности, гипоталамус и гипофиз выделяют окситоцин, который способствует закреплению образа любимого человека и связанных с ним ассоциаций. При этом, согласно законам нейропластичности, соответствующие нейрокарты увеличиваются в размерах, занимая всё большую площадь в коре головного мозга, и активно дифференцируются. На сознательном уровне мы воспринимаем это как детализацию опыта , когда мы способны помнить буквально каждую минуту, проведенную вместе, и ценить мельчайшие нюансы поведения и привычек любимого человека.

Принятие решений и мысленная пробежка

Нейропластические изменения в мозге происходят не от случая к случаю. Этот процесс безостановочный и беспощадный. По словам нейрофизиолога Майкла Мерцениха, нейрокарта, созданная сегодня, завтра уже недействительна. Это означает, что в процессе мышления непрерывно укрепляются существующие нейронные связи, создаются новые, ослабевают и исчезают неиспользуемые. Например, когда вы лихорадочно ищете решение какой-либо проблемы, просчитывая возможные варианты, в вашем мозге в это время бушует настоящая электрическая буря, происходят интенсивные межклеточные и внутриклеточные биохимические изменения, образуются и исчезают сотни новых связей между нейронами. Когда решение принято, и вы выбрали один вариант из многих, «в живых» остаются только те связи, которые отвечают за этот конкретный вариант. И, чем больше вы думаете о принятом решении, тем сильнее становятся новые нейронные пути за счет образования дополнительных аксонов.

В процессе мышления помимо префронтальной коры задействованы также зрительная и двигательная кора мозга. Нейроны этих зон активируются, когда вы представляете различные объекты визуально или самого себя в движении. Для мозга нет разницы, бегаете ли вы по дорожке или только в своем воображении, сканер SPECT всё равно зафиксирует возбуждение в нейронах соответствующих участков двигательной коры.

По данным Всемирной организации здравоохранения, около 400 миллионов человек всех возрастов страдают от депрессии. Эти шокирующие цифры делают недуг основной причиной инвалидности.

В борьбе за потребителя все средства хороши

Фармацевтические компании не могли пройти мимо столь лакомого куска прибыли. Огромный целевой рынок антидепрессантов является золотой жилой для производителей. Помимо удовлетворения нужд потребителя, фармакологи идут на различные маркетинговые ухищрения, еще более обогащая собственную казну. Доказать прегрешения компаний, выпускающих антидепрессанты, несложно. Стоит лишь ознакомиться с результатами многочисленных мониторингов. Так, недавнее исследование, результаты которого опубликованы в журнале British Medical Journal, обнаружило сокрытие истинной информации касательно медицинских препаратов.

Когда слепо доверяешь лечащему врачу

Когда у человека диагностирована депрессия, он не станет интересоваться результатами клинических испытаний того или иного препарата. Он слепо доверяет врачу, идет и покупает лекарство. Ученые подняли архивы 70 различных слепых плацебо-контролируемых испытаний селективных ингибиторов обратного захвата серотонина и обнаружили, что ни в одном отчете не сообщалось о серьезном вреде препаратов. А это значит, что разработчикам есть что скрывать, и они не хотят афишировать возможные серьезные побочные эффекты.

При депрессии в первую очередь страдает гиппокамп

Мы знаем, что депрессию нельзя оставлять без лечения. Если человек постоянно чувствует себя подавленным, это отражается не только на эмоциональном состоянии или вызывает те или иные физические недуги. На самом деле оставленная без внимания депрессия может вызвать реальные изменения в структуре головного мозга пациента. В первую очередь страдает гиппокамп, отдел, отвечающий за формирование и регулирование эмоций и памяти. Эта тенденция особенно катастрофична для подростков, ведь их мозг все еще находится на стадии развития. Учителя и родители сразу же поспешат списать проблемы ребенка с вниманием, памятью и всплески агрессии на переходный возраст. Только вот реальная причина кроется в другом.

На какой стадии происходит повреждение головного мозга?

Сразу несколько научных исследований выявили, что при периодических или постоянных депрессивных расстройствах уменьшается важный отдел головного мозга. А это значит, что перед нами достоверная информация. Профессор Ян Хикки из университета Сиднея заявил, что уменьшение размера гиппокампа напрямую связано с количеством депрессивных вспышек. Чем больше таких состояний за свою жизнь испытает человек, тем хуже. Именно поэтому так важно не оставлять свое состояние без внимания и заботы близких. Что же наступает раньше: уменьшение гиппокампа или психическое расстройство? Эксперты утверждают, что повреждение головного мозга происходит от рецидива болезни.

Способность к восстановлению

Некоторые другие исследования выявили уникальность этого отдела. Вы будете удивлены, но гиппокамп способен полностью восстанавливаться в размерах. Обратимость связана со способностью быстро образовывать новые связи между клетками. Ученые выяснили, что при уменьшении размеров гиппокампа теряются не сами клетки, а только лишь нарушаются клеточные соединения. Но не только депрессия может уменьшить размер гиппокампа. Например, человек, привыкший сидеть дома, не участвуя в социальных мероприятиях, также подвергает себя определенному риску. Эксперты полагают, что взаимодействие в социуме является неотъемлемой частью построения крепких связей между клетками головного мозга. Также существуют альтернативные способы повышения нейрозащиты, например употребление рыбьего жира.

Как депрессия кодирует информацию

Психические расстройства воздействуют не только на мозг, в первую очередь страдает сердце. Однако эти два органа напрямую взаимосвязаны между собой. Если человек опечален и постоянно находится в угнетенном состоянии, сердечные электромагнитные волны кодируют полученную информацию и отправляют сигналы в мозг. Таким образом, нервная система находится в условиях постоянного хаоса.

Идея химического дисбаланса в прошлом

Джозеф Койл, нейробиолог из Гарвардской медицинской школы, подводит итоги всего вышесказанного. На самом деле пресловутая идея химического дисбаланса в мозге является пережитком прошлого. Влияние психических расстройств на главные органы человека - намного более тонкое и сложное. По словам эксперта, механизм депрессии не может быть сведен к общепринятому представлению о недостатке серотонина, норадреналина и допамина. Представленная на суд общественности еще в 50-х годах прошлого столетия теория о недостатке нейромедиаторов пользовалась огромной популярностью в течение полувека. Большая часть населения земного шара восприняла эту теорию как единственно верную. Однако с большей долей вероятности депрессия связана с другими аномальными воздействиями.

Полвека наука была на ложном пути

Итак, люди часто говорят, что к психическим расстройствам ведет химический дисбаланс, но в реальности эта болезнь намного сложнее, и далеко не каждый препарат, восстанавливающий недостаток нейромедиаторов, поможет избавиться от недуга. А вот что говорит известный британский психиатр и писатель доктор Джоанна Монкриефф: «В то время как человек чувствует себя подавленным, в мозге происходят какие-то процессы. Однако до сих пор ни одно исследование не установило корреляцию между нехваткой определенных нейромедиаторов и депрессивным расстройством. Во всех случаях опыты дают довольно противоречивые результаты. Ни одна работа не смогла выявить реальную причину возникновения недуга. Тот факт, что более 50 лет столь интенсивные научные поиски не дали никаких результатов, может свидетельствовать только о двух вещах: либо учеными не разработана правильная технология, либо они идут по ложному следу».

Антидепрессанты не в состоянии полностью справиться с проблемой

В поддержку теории химического дисбаланса часто выдвигается версия о том, что антидепрессанты значительно увеличивают уровни серотонина и других нейромедиаторов в синапсах. Но, как мы говорили ранее, лекарства в состоянии лишь на время локализовать процессы. Решение основных проблем (не говоря уже о полном излечении) видится практически невозможным. Тот факт, что настроение может зависеть от медицинских препаратов, не дает основания считать, что указанная теория верна. К тому же ни одни доктор не может заглянуть в черепную коробку пациента и с точностью определить, какие именно химические нейромедиаторы участвуют в данном конкретном заболевании. Именно поэтому теория так и остается теорией, а доктора по-прежнему «вслепую» выписывают рецепты.

В теле происходят миллионы химических реакций

Как внутри, так и снаружи наших нервных клеток происходят миллионы различных химических реакций. Все вместе это составляет единую динамическую систему, регулирующую наше настроение, восприятие тех или иных процессов, ощущение счастья или печали. Именно поэтому точная причина психических расстройств по-прежнему остается неизвестной. Тем не менее, идея дисбаланса нейротрансмиттеров активно поддерживается фармацевтическими компаниями совместно с врачами-психотерапевтами.

Существуют другие факторы, ведущие к депрессии

На данный момент ученые обнаружили, что к психическим расстройствам может привести целый ряд биологических факторов, среди которых хроническое воспаление, недостаток витамина D, несбалансированность кишечной флоры или избыток сахара в организме. Также существуют альтернативные способы борьбы с депрессией. Возможно, идея о нейропластичности мозга даст некоторые разгадки. Многие из нас слышали, что силой мысли можно влиять на ту или иную ситуацию. Это подтверждают различные научные исследования. Хорошим способом побороть депрессию является правильное сбалансированное питание и физические упражнения. Ну а самое удивительное разнообразие неврологических преимуществ имеет медитация.

Они учились на одном курсе. Долгое время Ира не обращала на него никакого внимания. До того самого семинара. Олег вызвался прочитать доклад про теорию происхождения речи у первобытных людей. Сама тема уже навевала скуку. Пробудил ее от грез громкий смех соучеников. Прислушавшись, она внезапно увлеклась - Олег говорил складно, интересно, много шутил и держался перед целой сотней однокурсников очень уверенно. Взгляд Иры невольно оценивающе скользнул по его фигуре - широкие плечи, развитая мускулатура. Он повернулся, чтобы что-то нарисовать на доске, и в этот момент Ира стыдливо поймала себя на том, что смотрит на его ягодицы…

К щекам прилила кровь, а руки внезапно вспотели. Ира вспомнила, что совсем недавно читала свежее исследование, где говорилось, что женщин в мужчинах привлекает прежде всего атлетическое телосложение, очевидные признаки физической силы.

Хм, но это не про меня. Мне главное, чтобы был умным, веселым, добрым, нежным и заботливым.

И тут Олег повернулся - и посмотрел именно на нее, прямо в глаза, долго, взяв солидную паузу. Вокруг его глаз собрались озорные морщинки, а лицо как будто осветилось теплым светом.

Единственный из всех

«Почему Олег не выходит у меня из головы? - именно этот вопрос мучил Иру уже неделю. - Чем бы я ни занималась, мысли постоянно возвращаются к нему снова и снова. Более того, мне кажется, что он самый лучший среди всех парней! Единственный и неповторимый!».

«Да все просто, - пришла на выручку лучшая подруга Иры отличница Люба. - Сейчас я тебе все объясню.

Ученые полагают, что в основе любви лежат три фактора: отбор предпочитаемого партнера, установление с ним близости и сексуальное влечение. Сейчас у тебя доминирует первый фактор. Наш мозг в ходе эволюции обрел способность выделять одного потенциального партнера из многих. Почему так произошло? Существует множество гипотез, которые это объясняют, - например, про «эффект бабушек».

В какой-то момент (в позднем палеолите или раннем неолите) продолжительность жизни женщин увеличилась, пожилые дамы стали помогать заботиться о потомстве своим дочерям, что позволило последним иметь больше детей. Это в свою очередь закрепило «долгожительство» в человеческой популяции и привело также к росту продолжительности жизни мужчин. Но тут возникла опасная ситуация - старики уже были неспособны эффективно охотиться, а потому не покидали поселений, зато еще вполне могли иметь детей. В итоге из-за «эффекта бабушек» количество фертильных женщин по отношению к числу способных к продолжению рода мужчин уменьшилось (моделирование показывает, что пропорция могла достигать 156 мужчин к 100 женщинам в детородном возрасте). Все это привело к резкому обострению конкуренции за женщин, усугубленной долговременным отсутствием молодых мужчин в селениях.

Чем больше пара занимается любовью, тем больше у них вырабатывается гормонов привязанности и сильнее взаимная любовь. Кстати, тут вот два петербургских исследователя и параллельно практика йоги - физиолог Ринад Минвалеев и математик Анатолий Иванов - поставили эксперимент, в котором установили, что у женщин есть два типа профиля тонуса вегетативной нервной системы и кровообращения во время секса. При этом один из них приводит к истощению сил женщины (условно - симпатический профиль), а второй, парасимпатический, наоборот, дает энергию и жизненные силы. При этом если женщина достигает такой реакции в процессе полового акта, то и мужчина вслед за ней также «перестраивает» свой профиль реакции на парасимпатический.

Смотри, американские ученые показали, что , тем сильнее будет привязанность друг к другу в отношениях, а значит, и продлятся они дольше. Однако такая страстная любовь не может длиться больше двух-трех лет по одной простой причине - организм не может поддерживать столь высокий уровень выработки дофамина, норадреналина и фенилэтиламина на протяжении длительного времени. Вы волей-неволей взгляните друг на друга трезвыми глазами, поймете взаимные недостатки. И вот тут на первый план выйдет не страсть, а привязанность.

Здесь также важны будут гормоны окситоцин и вазопрессин, но одновременно и совсем нематериальные вещи. Так, психологи показали, что чем больше мы идеализируем того, кого любим, тем прочнее связи на этапе, когда привязанности важнее страсти. В этом случае мы легче прощаем обнаруженные недостатки, так как образ в нашей голове сильнее.

Более того, та же Хелена Фишер и Артур Арон обнаружили пары, прожившие вместе в среднем около 21 года и утверждавшие, что все еще сохраняют романтичный настрой. Исследование их мозга показало, что, как и у влюбленных юных пар, у них сохраняется высокая активность в «системе вознаграждения» при мыслях о супруге и даже активизируется задняя часть поясной извилины!

Иными словами, они сохранили, как это не удивительно, новизну и концентрацию внимания на партнере сквозь десятилетия.

Даниил Кузнецов

Для того чтобы достичь полного понимания биологических основ сознания, понадобится, возможно, еще несколько столетий. Но если всего лишь пару десятков лет назад к решению этой задачи приступать даже не решались, сегодня появились научные методы исследований в данной области.

Если отвечать вкратце, то ответ будет таков: наука пока не имеет удовлетворительного объяснения этого процесса. Удовлетворительного в том смысле, который имел в виду Ричард Фейнман, когда говорил: «То, что я не могу построить, я не могу понять». Мы не можем пока создать устройство, которое мыслит, и это в значительной степени связано не с техническими сложностями, а с тем, что мы не способны пока понять, как устроен мозг.

Что известно сейчас? Мы не можем сказать, как рождается мысль, но мы уже очень много знаем о том, что происходит в мозге при ее рождении, какие уникальные условия работы мозга создаются, когда возникает мысль. Исследуется это в специальных экспериментах, когда сравнивают предъявление мозгу каких-то осознаваемых ситуаций (рождающих мысль) и тех же ситуаций, которые он осознать не может. Например, если событие слишком коротко: зрительные и слуховые компоненты происходящего поступают в мозг, но до уровня сознания не доходят. Когда ученые сравнивают, что происходит в мозге при сознательной и неосознаваемой переработке информации, оказывается, что осознание связано с несколькими вещами.
Что происходит при осознании:

📎 во-первых, когда мы осознаем что-то, в коре головного мозга работает значительно больше нейронов в тех зонах, которые уже участвовали в обработке неосознанной информации.

📎 во-вторых, в момент осознания активируются те зоны, которые раньше не участвовали в неосознаваемой обработке сенсорных данных. Это зоны, связанные с передними областями мозга.

📎 в-третьих, между зонами, которые активируются в момент появления сознания (мысли), и зонами, которые связаны с нашим восприятием окружающего мира, начинают устанавливаться быстрые циклические взаимодействия - реверберации.

📎 в-четвертых, только после того как начинается циркуляция возбуждений по этой сети, появляется момент осознания. Мы не всегда понимаем это, но наше сознание очень сильно отстает от момента реакции мозга на какие-то события. Если точно известно, в какую миллисекунду предъявлена на экране фотография или слово, можно убедиться, что осознание появляется примерно через полсекунды (200–400 миллисекунд) после показа. А реакция областей мозга, которые воспринимают информацию неосознанно (ранняя реакция), возникает заметно раньше, то есть через 60–100 миллисекунд. Все эти четыре компонента складываются в общую картину. Когда у нас появляется вспышка сознания, это происходит из-за того, что разные области мозга - и те, которые связаны с умственным напряжением, вниманием (передние), и те, которые связаны с восприятием внешнего мира - синхронизуются вместе в специальных циклах циркуляции информации. Синхронизация устанавливается на поздних фазах действия внешнего сигнала (через полсекунды), и в этот момент появляется сознание.

Тайны нервного кода
Мы также знаем, что воздействие на разные этапы этих четырех компонентов (иногда они наблюдаются в медицине, при травмах, кроме того, их можно вызывать искусственно при магнитной симуляции) способно разрушить сознание, и человек окажется в области подсознательного либо попросту в коме.

Мозг часто сравнивают с компьютером, но это очень грубая и неточная аналогия. Нервный код устроен совсем по-другому, нежели коды Тьюринговской машины. Мозг не работает на бинарной логике, он не работает как тактовый процессор, он функционирует как массивная параллельная сеть, где основным элементом кода является момент синхронизации разных клеток с их опытом, в результате чего и возникает то субъективное ощущение, мысль или действие, которые занимают в этот миг театр сознания, поле нашего внимания. Это код синхронизации многих элементов, а не ход пошаговых вычислений.

Нейроны и образы
В момент образования связей между клетками не передается что-то похожее на психическую информацию. Между ними передаются химические вещества, которые позволяют нейронам объединиться в ту или иную систему. Каждая из этих систем уникальна, потому что клетки специализированы. Например, это клетки, воспринимающие образ синего неба, белой оконной рамы, лица и т. д. Все вместе они дают на какое-то короткое время тот осознаваемый образ, который и занимает наше внимание. Такие «кадры» могут очень быстро меняться, и следующие несколько десятков миллисекунд в мозгу появится другая конфигурация клеток, которая связана с другим набором нейронов. И это постоянный поток, лишь небольшая часть которого осознается посредством возникающих синхронизаций. Есть масса вещей, которые работают при этом параллельно центральному звену. Они не осознаются и построены на автоматизированных процессах. Я сижу, балансирую, поддерживаю температуру тела, давление, дыхание. Это всё управляется массой функциональных систем, которые не должны идти в широковещание на весь мозг.

Мозг под управлением ОС
Однако при всей несхожести нервного и бинарного кодов некие параллели между мозгом и компьютером все же можно провести.

Мозг обладает подобием операционной системы, и на этот счет существует несколько гипотез. В одной из них - теории функциональных систем - существует понятие операционной архитектоники системы. Это некий синтез сенсорных и мотивационных сигналов, извлечений из памяти, который вовлекает все эти компоненты в единое рабочее пространство - то, где ставится цель и принимается решение. Есть также теория сознания как глобального рабочего пространства. Согласно ей существует определенная операциональная архитектура, которая как операционная система способна вовлекать разные клетки в процессы осознания. Она вовлекает нейроны передних областей коры, которые имеют длинные проекции во все остальные области коры, и когда происходит «зажигание» этих нейронов, они начинают «крутить» информацию по всем остальным областям. Это некий центральный процессор, и он включается, только когда есть сознание. Во всем остальном мозг может работать автоматически. Вы можете вести машину, а ваше сознание будет занято некими внутренними вопросами, и «процессор» будет работать для них. И лишь в тот момент, когда происходит что-то неожиданное (кто-то перебегает дорогу, например), операционная система начинает работать на режим внешнего мира.

Константин Владимирович Анохин, российский ученый, нейробиолог, профессор, член-корреспондент РАН и РАМН. Лауреат премий Ленинского комсомола, имени Де Вида Нидерландской академии наук, Президиума Российской академии медицинских наук и Национальной премии «Человек года» в номинации «Потенциал и перспектива в науке»

Экология сознания: Жизнь. Совершенно точно доказано, что наш мозг - дико пластичная штука, и индивидуальное обучение серьезно на него влияет - в значительно большей степени, чем врожденные предрасположенности.

Если сравнивать с детенышами других животных, можно сказать, что человек рождается с недоразвитым мозгом: его масса у новорожденного составляет всего 30% массы мозга взрослого. Эволюционные биологи предполагают, что мы должны рождаться недоношенными, чтобы наш мозг развивался, взаимодействуя с внешней средой. Научный журналист Ася Казанцева в лекции «Зачем мозгу учиться?» в рамках программы «Арт-образование 17/18» рассказала

О процессе обучения с точки зрения нейробиологии

и объяснила, как мозг меняется под влиянием опыта, а также чем во время учебы полезны сон и лень.

Кто изучает феномен обучения

Вопросом, зачем мозгу учиться, занимаются как минимум две важные науки - нейробиология и экспериментальная психология. Нейробиология, изучающая нервную систему и происходящее в мозге на уровне нейронов в момент обучения, работает чаще всего не с людьми, а с крысами, улиточками и червячками. Специалисты по экспериментальной психологии пытаются понять, какие вещи влияют на обучаемость человека: например, дают ему важное задание, проверяющее его память или обучаемость, и смотрят, как он с ним справляется. Эти науки интенсивно развивались в последние годы.

Если смотреть на обучение с точки зрения экспериментальной психологии, то полезно вспомнить, что эта наука - наследница бихевиоризма, а бихевиористы считали, что мозг - черный ящик, и их принципиально не интересовало, что в нем происходит. Они воспринимали мозг как систему, на которую можно воздействовать стимулами, после чего в ней случается какая-то магия, и она определенным образом на эти стимулы реагирует. Бихевиористов интересовало, как может выглядеть эта реакция и что на нее способно влиять. Они считали, что обучение - это изменение поведения в результате освоения новой информации

Это определение до сих пор широко применяется в когнитивных науках. Скажем, если студенту дали почитать Канта и он запомнил, что есть «звездное небо над головой и моральный закон во мне», озвучил это на экзамене и ему поставили пятерку, значит, произошло обучение.

С другой стороны, такое же определение применимо и к поведению морского зайца (аплизии). Нейробиологи часто ставят опыты с этим моллюском. Если бить аплизию током в хвостик, она начинает бояться окружающей реальности и втягивать жабры в ответ на слабые стимулы, которых она раньше не боялась. Таким образом, у нее тоже происходит изменение поведения, обучение. Это определение можно применять и к еще более простым биологическим системам. Представим себе систему из двух нейронов, соединенных одним контактом. Если мы подадим на нее два слабых импульса тока, то в ней временно изменится проводимость и одному нейрону станет легче подавать сигналы другому. Это тоже обучение на уровне этой маленькой биологической системы. Таким образом, от обучения, которое мы наблюдаем во внешней реальности, можно построить мостик к тому, что происходит в мозге. В нем есть нейроны, изменения в которых влияют на нашу реакцию на среду, т. е. на произошедшее обучение.

Как работает мозг

Но чтобы говорить о мозге, нужно иметь базовое представление о его работе. В конце концов, у каждого из нас в голове есть эти полтора килограмма нервной ткани. Мозг состоит из 86 миллиардов нервных клеток, или нейронов. У типичного нейрона есть тело клетки со множеством отростков. Часть отростков - дендриты, которые собирают информацию и передают ее на нейрон. А один длинный отросток, аксон, передает ее следующим клеткам. Под передачей информации в рамках одной нервной клетки подразумевается электрический импульс, который идет по отростку, как по проводу. Один нейрон взаимодействует с другим через место контакта, которое называется «синапс», сигнал идет с помощью химических веществ. Электрический импульс приводит к высвобождению молекул - нейромедиаторов: серотонина, дофамина, эндорфинов. Они просачиваются через синаптическую щель, воздействуют на рецепторы следующего нейрона, и он изменяет свое функциональное состояние - например, у него на мембране открываются каналы, через которые начинают проходить ионы натрия, хлора, кальция, калия и т. д. Это приводит к тому, что на нем, в свою очередь, тоже формируется разность потенциалов, и электрический сигнал идет дальше, на следующую клетку.

Но когда клетка передает сигнал другой клетке, этого чаще всего недостаточно для каких-то заметных изменений в поведении, ведь один сигнал может получиться и случайно из-за каких-то возмущений в системе. Для обмена информацией клетки передают друг другу много сигналов. Главный кодирующий параметр в мозге - это частота импульсов: когда одна клетка хочет что-то передать другой клетке, она начинает посылать сотни сигналов в секунду. Кстати, ранние исследовательские механизмы 1960–70-х годов формировали звуковой сигнал. В мозг экспериментальному животному вживляли электрод, и по скорости треска пулемета, который слышался в лаборатории, можно было понять, насколько активен нейрон.

Система кодирования с помощью частоты импульсов работает на разных уровнях передачи информации - даже на уровне простых зрительных сигналов. У нас на сетчатке есть колбочки, которые реагируют на разные длины волн: короткие (в школьном учебнике они называются синие), средние (зеленые) и длинные (красные). Когда на сетчатку поступает волна света определенной длины, разные колбочки возбуждаются в разной степени. И если волна длинная, то красная колбочка начинает интенсивно подавать сигнал в мозг, чтобы вы поняли, что цвет красный. Впрочем, тут все не так просто: у колбочек перекрывается спектр чувствительности, и зеленая тоже делает вид, что она что-то такое увидела. Дальше мозг самостоятельно это анализирует.

Как мозг принимает решения

Принципы, аналогичные тем, что используются в современных механических исследованиях и опытах на животных с вживленными электродами, можно применять и к гораздо более сложным поведенческим актам. Например, в мозге есть так называемый центр удовольствия - прилежащее ядро. Чем более активна эта область, тем сильнее испытуемому нравится то, что он видит, и выше вероятность, что он захочет это купить или, например, съесть. Эксперименты с томографом показывают, что по определенной активности прилежащего ядра можно еще до того, как человек озвучит свое решение, допустим, относительно покупки кофточки, сказать, будет он ее покупать или нет. Как говорит прекрасный нейробиолог Василий Ключарев, мы делаем все, чтобы понравиться нашим нейронам в прилежащем ядре.

Сложность в том, что у нас в мозге нет единства суждений, каждый отдел может иметь свое мнение о происходящем. История, похожая на спор колбочек в сетчатке, повторяется и с более сложными вещами. Допустим, вы увидели кофточку, она вам понравилась, и ваше прилежащее ядро издает сигналы. С другой стороны, эта кофточка стоит 9 тысяч рублей, а зарплата еще через неделю - и тогда ваша амигдала, или миндалевидное тело (центр, связанный в первую очередь с негативными эмоциями), начинает издавать свои электрические импульсы: «Слушай, остается мало денег. Если мы сейчас купим эту кофточку, у нас будут проблемы». Лобная кора принимает решение в зависимости от того, кто громче орет - прилежащее ядро или амигдала. И тут еще важно, что каждый раз впоследствии мы способны проанализировать последствия, к которым это решение привело. Дело в том, что лобная кора общается и с амигдалой, и с прилежащим ядром, и с отделами мозга, связанными с памятью: они ей рассказывают, что произошло после того, как в прошлый раз мы принимали такое решение. В зависимости от этого лобная кора может более внимательно отнестись к тому, что говорят ей амигдала и прилежащее ядро. Так мозг способен меняться под влиянием опыта.

Почему мы рождаемся с маленьким мозгом

Все человеческие дети рождаются недоразвитыми, буквально недоношенными в сравнении с детенышами любого другого вида. Ни у одного животного нет настолько длинного детства, как у человека, и у них не бывает потомства, которое рождалось бы с настолько маленьким мозгом относительно массы мозга взрослого: у человеческого новорожденного она составляет лишь 30%.

Все исследователи сходятся во мнении, что мы вынуждены рождать человека незрелым из-за внушительного размера его мозга. Классическое объяснение - это акушерская дилемма, то есть история конфликта между прямохождением и большой головой. Чтобы родить детеныша с такой головой и крупным мозгом, нужно иметь широкие бедра, но невозможно их бесконечно расширять, потому что это будет мешать ходить. По подсчетам антрополога Холли Дансуорт, чтобы рожать более зрелых детей, достаточно было бы увеличить ширину родового канала всего на три сантиметра, но эволюция все равно в какой-то момент остановила расширение бедер. Эволюционные биологи предположили: вероятно, мы и должны рождаться недоношенными, чтобы наш мозг развивался во взаимодействии с внешней средой, ведь в матке в целом довольно мало стимулов.

Есть знаменитое исследование Блэкмора и Купера. Они в 70-е годы проводили опыты с котятами: большую часть времени держали их в темноте и на пять часов в день сажали в освещенный цилиндр, где они получали не совсем обычную картину мира. Одна группа котят в течение нескольких месяцев видела только горизонтальные полосы, а другая - только вертикальные. В итоге у котят возникли большие проблемы с восприятием реальности. Одни врезались в ножки стульев, потому что не видели вертикальных линий, другие таким же образом игнорировали горизонтальные - например, не понимали, что у стола есть край. С ними проводили тесты, играли с помощью палочки. Если котенок рос среди горизонтальных линий, то горизонтальную палочку он видит и ловит, а вертикальную просто не замечает. Затем вживляли электроды в кору головного мозга котят и смотрели, каким должен быть наклон палочки, чтобы нейроны начали издавать сигналы. Важно, что со взрослым котом во время такого эксперимента ничего бы не случилось, а вот мир маленького котенка, чей мозг только учится воспринимать информацию, вследствие подобного опыта может быть навсегда искажен. Нейроны, которые никогда не подвергались воздействию, перестают функционировать.

Мы привыкли считать, что чем больше связей между разными нейронами, отделами человеческого мозга, тем лучше. Это так, но с определенными оговорками. Нужно не просто чтобы связей было много, а чтобы они имели какое-то отношение к реальной жизни. У полуторагодовалого ребенка синапсов, то есть контактов между нейронами в мозге, гораздо больше, чем у профессора Гарварда или Оксфорда. Проблема в том, что эти нейроны связаны хаотично. В раннем возрасте мозг быстро созревает, и его клетки формируют десятки тысяч синапсов между всем и всем. Каждый нейрон раскидывает отростки во все стороны, и они цепляются за все, до чего смогли дотянуться. Но дальше начинает работать принцип «Используй, или потеряешь». Мозг живет в окружающей среде и пытается справляться с разными задачами: ребенка учат координировать движения, хватать погремушку и т. д. Когда ему показывают, как есть ложкой, у него в коре остаются связи, полезные, чтобы есть ложкой, так как именно через них он гонял нервные импульсы. А связи, которые отвечают за то, чтобы расшвыривать кашу по всей комнате, становятся менее выраженными, потому что родители такие действия не поощряют.

Процессы роста синапсов довольно хорошо изучены на молекулярном уровне. Эрику Канделу дали Нобелевскую премию за то, что он догадался изучать память не на людях. У человека 86 миллиардов нейронов, и, пока ученый разобрался бы в этих нейронах, ему пришлось бы извести сотни испытуемых. А поскольку никто не позволяет вскрывать мозги стольким людям ради того, чтобы посмотреть, как они научились держать ложку, Кандел придумал работать с улиточками. Аплизия - суперудобная система: с ней можно работать, изучив всего четыре нейрона. На самом деле у этого моллюска больше нейронов, но на его примере гораздо проще выявить системы, связанные с обучением и памятью. В ходе экспериментов Кандел понял, что кратковременная память - это временное усиление проводимости уже существующих синапсов, а долговременная заключается в росте новых синаптических связей.

Это оказалось применимо и к человеку - похоже на то, как мы ходим по траве . Сначала нам все равно, куда идти на поле, но постепенно мы протаптываем тропинку, которая потом превращается в грунтовую дорогу, а затем в асфальтированную улицу и трехполосное шоссе с фонарями. Похожим образом нервные импульсы протаптывают себе дорожки в мозге.

Как формируются ассоциации

Наш мозг так устроен: он формирует связи между событиями, происходящими одновременно. Обычно при передаче нервного импульса выделяются нейромедиаторы, которые воздействуют на рецептор, и электрический импульс идет на следующий нейрон. Но есть один рецептор, который работает не так, он называется NMDA. Это один из ключевых рецепторов для формирования памяти на молекулярном уровне. Его особенность в том, что он работает в том случае, если сигнал пришел с обеих сторон одновременно.

Все нейроны куда-то ведут. Один может привести в большую нейронную сеть, которая связана со звучанием модной песенки в кафе. А другие - в другую сеть, связанную с тем, что вы пошли на свидание. Мозг заточен на то, чтобы связывать причину и следствие, он на анатомическом уровне способен запомнить, что между песней и свиданием есть связь. Рецептор активируется и пропускает через себя кальций. Он начинает вступать в огромное количество молекулярных каскадов, которые приводят к работе некоторых до этого не работавших генов. Эти гены проводят синтез новых белков, и вырастает еще один синапс. Так связь между нейронной сетью, отвечающей за песенку, и сетью, отвечающей за свидание, становится более прочной. Теперь даже слабого сигнала достаточно, чтобы пошел нервный импульс и у вас сформировалась ассоциация.

Как обучение влияет на мозг

Есть знаменитая история о лондонских таксистах. Не знаю, как сейчас, но буквально несколько лет назад для того, чтобы стать настоящим таксистом в Лондоне, нужно было сдать экзамен по ориентации в городе без навигатора - то есть знать как минимум две с половиной тысячи улиц, одностороннее движение, дорожные знаки, запреты на остановку, а также уметь выстроить оптимальный маршрут. Поэтому, чтобы стать лондонским таксистом, люди несколько месяцев ходили на курсы. Исследователи набрали три группы людей. Одна группа - поступившие на курсы, чтобы стать таксистами. Вторая группа - те, кто тоже ходил на курсы, но бросил обучение. А люди из третьей группы вообще не думали становиться таксистами. Всем трем группам ученые сделали томограмму, чтобы посмотреть плотность серого вещества в гиппокампе. Это важная зона мозга, связанная с формированием памяти и пространственным мышлением. Обнаружилось, что если человек не хотел становиться таксистом или хотел, но не стал, то плотность серого вещества в его гиппокампе оставалась прежней. А вот если он хотел стать таксистом, прошел тренинг и действительно овладел новой профессией, то плотность серого вещества увеличилась на треть - это очень много.

И хотя до конца не ясно, где причина, а где следствие (то ли люди действительно овладели новым навыком, то ли у них изначально была хорошо развита эта область мозга и поэтому им было легко научиться), совершенно точно наш мозг - дико пластичная штука, и индивидуальное обучение серьезно на него влияет - в значительно большей степени, чем врожденные предрасположенности. Важно, что и в 60 лет обучение оказывает воздействие на мозг. Конечно, не так эффективно и быстро, как в 20, но целом мозг в течение всей жизни сохраняет некоторую способность к пластичности.

Зачем мозгу лениться и спать

Когда мозг чему-то учится, он выращивает новые связи между нейронами. А это процесс медленный и дорогостоящий, на него нужно тратить много калорий, сахара, кислорода, энергии. Вообще, человеческий мозг, притом что его вес составляет всего 2% от веса всего тела, потребляет около 20% всей энергии, которую мы получаем. Поэтому при любой возможности он старается ничему не учиться, не тратить энергию. На самом деле это очень мило с его стороны, ведь если бы мы запоминали все, что видим каждый день, то мы довольно быстро сошли бы с ума.

В обучении, с точки зрения мозга, есть два принципиально важных момента. Первый заключается в том, что, когда мы осваиваем любой навык, нам становится легче действовать правильно, чем неправильно. Например, вы учитесь водить машину с механической коробкой передач, и вам сначала все равно, переключать передачу с первой на вторую или с первой на четвертую. Для вашей руки и мозга все эти движения равновероятны; вам неважно, в какую сторону гнать нервные импульсы. А когда вы уже более опытный водитель, то вам физически проще переключать передачи правильно. Если вы попадете в машину с принципиально другой конструкцией, вам снова придется задумываться и контролировать усилием воли, чтобы импульс не пошел по проторенной дорожке.

Второй важный момент:

главное в обучении - это сон

У него много функций: поддержание здоровья, иммунитета, обмена веществ и разных сторон работы мозга. Но все нейробиологи сходятся в том, что самая главная функция сна - это работа с информацией и обучением. Когда мы освоили какой-то навык, то хотим сформировать долговременную память. Новые синапсы растут несколько часов, это долгий процесс, и мозгу удобнее всего это делать именно тогда, когда вы ничем не заняты. Во время сна мозг обрабатывает информацию, полученную за день, и стирает то, что из этого надо забыть.

Есть эксперимент с крысами, где их учили ходить по лабиринту с вживленными в мозг электродами и обнаружили, что во сне они повторяли свой путь по лабиринту, а на следующий день ходили по нему лучше. Во многих тестах на людях показано, что то, что мы выучили перед сном, вспомнится лучше, чем выученное с утра. Выходит, что студенты, которые принимаются за подготовку к экзамену где-то ближе к полуночи, все делают правильно. По той же причине важно думать о проблемах перед сном. Конечно, заснуть будет сложнее, но мы загрузим вопрос в мозг, и, может быть, наутро придет какое-то решение. Кстати, сновидения - это, скорее всего, просто побочный эффект обработки информации.

Как обучение зависит от эмоций

Обучение в большой степени зависит от внимания , потому что оно направлено на то, чтобы снова и снова прогонять импульсы по конкретным путям нейронной сети. Из огромного количества информации мы на чем-то фокусируемся, берем это в рабочую память. Дальше то, на чем мы удерживаем внимание, попадает уже в память долговременную. Вы могли понять всю мою лекцию, но это не означает, что вам будет легко ее пересказать. А если вы прямо сейчас на листке бумаги нарисуете велосипед, то это не значит, что он будет хорошо ездить. Люди склонны забывать важные детали, особенно если они не специалисты по велосипедам.

У детей всегда были проблемы с вниманием. Но сейчас в этом смысле все становится проще. В современном обществе уже не так нужны конкретные фактические знания - просто их стало невероятно много. Гораздо важнее оказывается способность быстро ориентироваться в информации, отличать достоверные источники от недостоверных. Нам уже почти и не нужно долго концентрироваться на одном и том же и запоминать большие объемы информации - важнее быстро переключаться. Кроме того, сейчас появляется все больше профессий как раз для людей, которым сложнее концентрироваться.

Есть еще один важный фактор, влияющий на обучение, - эмоции. На самом деле это вообще главное, что у нас было на протяжении многих миллионов лет эволюции, еще до того, как мы нарастили всю эту огромную лобную кору. Ценность овладения тем или иным навыком мы оцениваем с точки зрения того, радует он нас или нет. Поэтому здорово, если удается наши базовые биологические эмоциональные механизмы вовлекать в обучение. Например, выстраивать такую систему мотивации, в которой лобная кора не думает о том, что мы должны выучить что-то с помощью усидчивости и целенаправленности, а в которой прилежащее ядро говорит, что ему просто чертовски нравится это занятие.