Главная · Болезни кишечника · Числовой ряд фибоначчи. Числа Фибоначчи: ищем секрет мироздания

Числовой ряд фибоначчи. Числа Фибоначчи: ищем секрет мироздания

Войнами и кровью. Казалось бы, ни о какой науке в это время и речи быть не может. И, тем не менее, два величайших открытия приходят к нам из этой эпохи - арабские цифры и последовательность Фибоначчи. Были, конечно, и другие научные открытия, но сейчас речь пойдёт не о них.

Оставив в стороне историю арабских цифр, более пристально присмотримся к последовательности Фибоначчи - что же она собой представляет, и чем она так знаменита. На самом деле последовательность Фибоначчи является рядом цифр, в которых старший член последовательности равняется сумме двух ближайших младших членов последовательности. В результате таких действий получится такие числа:

1; 1; 2; 3; 5; 8; 13; 21 и т.д.

Они называются а все вместе они образуют ряд Фибоначчи. Но дело даже не в самих числах, а в соотношениях между ними. Так, отношение числа в последовательности к предыдущему члену последовательности даёт в результате значение, близкое к 1,618. И чем цифры, используемые для такого отношения, больше, тем точнее соблюдается это значение.

Другим, не менее интересным фактом, которым обладает последовательность Фибоначчи, является отношение предыдущего члена к последующему. Это отношение приближается к значению 0,618 и является обратной величиной 1,618.

Если брать отношение других чисел из последовательности Фибоначчи, не ближайших, а, например, через одно или через два, то результатом будут другие значения: для членов последовательности, взятых через один, будет получаться число, стремящееся к 2,618. При вычислении отношения старшего члена к младшему через два члена последовательности, результат будет стремиться к 4,236. Если рассмотреть по такому же принципу отношения младших членов последовательности к старшим (через один или через два члена), то будут получены обратные значения уже полученным цифрам: 0,382 (обратное значение числа 2,618), следующее - 0,236 (обратное значение 4,236) и так далее.

На первый взгляд, это всё просто любопытные сведения, игра цифр, не имеющая практической реализации. Однако это совсем не так. В технике, в искусстве, в архитектуре существует понятие золотого сечения. Им является соотношение частей какого-либо предмета между собой, создающее наиболее гармоничное восприятие предмета в целом. Очень часто золотым сечением пользуются художники и архитекторы, добиваясь от своих картин и сооружений впечатления гармонии. Этим же соотношением рекомендуют пользоваться фотографы при компоновке кадра. Одно из правил гласит: для получения хорошего снимка дели кадр на три части и помещай центр композиции на пересечении вертикальной и горизонтальной линий, составляющих 2/3 горизонтали и вертикали кадра. А является одним из коэффициентов Фибоначчи - 1,618. Именно такое соотношение частей и целого обеспечит наиболее гармоничное восприятие. Так что, последовательность Фибоначчи служит не только игрой ума, но и является буквально фундаментом, на котором стоят гармония и красота восприятия окружающего мира.

Соотношения Фибоначчи справедливы и в живой природе. Касаться они могут самых разных областей. Так, раковина улитки, имеющая форму спирали, тоже подчиняется соотношениям Фибоначчи. Рост растений, число веток, листьев, их расположение зачастую также располагаются в соответствии с числами и коэффициентами Фибоначчи.

Ну и самое известное применение чисел Фибоначчи - в торговле на финансовых рынках. В практике трейдеров используются как цифры, составляющие последовательность Фибоначи, так и коэффициенты Фибоначчи. Применяются эти коэффициенты для планирования значимых уровней, на которых можно ожидать изменения поведения цены.

Кроме прямого Фибоначчи существует множество других методов торговли, созданных с их использованием. К ним можно отнести линии Фибоначчи, зоны Фибоначчи, проекции Фибоначчи и т.д. Это помогает трейдерам прогнозировать поведение рынка, заранее подготовиться к возможным изменениям поведения цен и спланировать свою торговлю.

Всё вышеописанное не охватывает всех проявлений влияния чисел и последовательности Фибоначчи в науке, технике, искусстве, но даёт представление о том, что же это такое - последовательность Фибоначчи.

Последовательность Фибоначчи , известная всем по фильму "Код Да Винчи" - ряд цифр, описанный в виде загадки Итальянским математиком Леонардо Пизанским, более известным под прозвищем Фибоначчи, в XIII веке. Вкратце суть загадки:

Кто-то поместил пару кроликов в некоем замкнутом пространстве, чтобы узнать, сколько пар кроликов родится при этом в течении года, если природа кроликов такова, что каждый месяц пара кроликов производит на свет другую пару, а способность к производству потомства у них появляется по достижению двухмесячного возраста.


В итоге получается такой ряд цифр: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 , где через запятую показано количество пар кроликов в каждом из двенадцати месяцев. Его можно продолжать бесконечно долго. Его суть в том, что каждое следующее число является суммой двух предыдущих.

У этого ряда есть несколько математических особенностей, которых обязательно нужно коснуться. Он асимптотически (приближаясь все медленнее и медленнее) стремится к некоторому постоянному соотношению. Однако, это соотношение иррационально, то есть представляет собой число с бесконечной, непредсказуемой последовательностью десятичных цифр в дробной части. Его невозможно выразить точно.

Так отношение какого-либо члена ряда к предшествующему ему колеблется около числа 1,618 , через pаз то превосходя, то не достигая его. Отношение к следующему аналогично приближается к числу 0,618 , что обратно пропорционально 1,618 . Если мы будем делить элементы через одно, то получим числа 2,618 и 0,382 , которые так же являются обратно пропорциональными. Это так называемые коэффициенты Фибоначчи.

К чему всё это? Так мы приближаемся к одному из самых загадочных явлений природы. Смекалистый Леонардо по сути не открыл ничего нового, он просто напомнил миру о таком явлении, как Золотое Сечение , которое не уступает по значимости теореме Пифагора.

Все окружающие нас предметы мы различаем в том числе и по форме. Какие-то нам нравятся больше, какие-то меньше, некоторые вовсе отталкивают взгляд. Иногда интерес может быть продиктован жизненной ситуацией, а порой красотой наблюдаемого объекта. Симметричная и пропорциональная форма, способствует наилучшему зрительному восприятию и вызывает ощущение красоты и гармонии. Целостный образ всегда состоит из частей разного размера, находящихся в определённом соотношении друг с другом и целым. Золотое сечение - высшее проявление совершенства целого и его частей в науке, искусстве и природе.

Если на простом примере, то Золотое Сечение - это деление отрезка на две части в таком соотношении, при котором большая часть относится к меньшей, как их сумма (весь отрезок) к большей.


Если мы примем весь отрезок c за 1 , то отрезок a будет равен 0,618 , отрезок b - 0,382 , только так будет соблюдено условие Золотого Сечения (0,618/0,382=1,618 ; 1/0,618=1,618 ) . Отношение c к a равно 1,618 , а с к b 2,618 . Это всё те же, уже знакомые нам, коэффициенты Фибоначчи.

Разумеется есть золотой прямоугольник, золотой треугольник и даже золотой кубоид. Пропорции человеческого тела во многих соотношениях близки к Золотому Сечению.

Изображение: marcus-frings.de

Но самое интересное начинается, когда мы объединим полученные знания. На рисунке наглядно показана связь между последовательностью Фибоначчи и Золотым сечением. Мы начинаем с двух квадратов первого размера. Сверху добавляем квадрат второго размера. Подрисовываем рядом квадрат со стороной, равной сумме сторон двух предыдущих, третьего размера. По аналогии появляется квадрат пятого размера. И так далее пока не надоест, главное, чтобы длина стороны каждого следующего квадрата равнялась сумме длин сторон двух предыдущих. Мы видим серию прямоугольников, длины сторон, которых являются числами Фибоначчи, и, как не странно, они называются прямоугольниками Фибоначчи.

Если мы проведём плавную линий через углы наших квадратов, то получим ни что иное, как спираль Архимеда, увеличение шага которой всегда равномерно.


Ничего не напоминает?


Фото: ethanhein on Flickr

И не только в раковине моллюска можно найти спирали Архимеда, а во многих цветах и растениях, просто они не такие явные.

Алое многолистный:


Фото: brewbooks on Flickr


Фото: beart.org.uk
Фото: esdrascalderan on Flickr
Фото: mandj98 on Flickr

И тут самое время вспомнить о Золотом Сечении! Ни одни ли из самых прекрасных и гармоничных творений природы изображены на этих фотографиях? И это далеко не все. Присмотревшись, можно найти похожие закономерности во многих формах.

Конечно заявление, что все эти явление построены на последовательности Фибоначчи звучит слишком громко, но тенденция на лицо. Да и к тому же сама она далека от совершенства, как и всё в этом мире.

Есть предположение, что ряд Фибоначчи - это попытка природы адаптироваться к более фундаментальной и совершенной золотосечённой логарифмической последовательности, которая практически такая же, только начинается из ниоткуда и уходит в никуда. Природе же обязательно нужно какое-то целое начало, от которого можно оттолкнуться, она не может создать что-то из ничего. Отношения первых членов последовательности Фибоначчи далеки от Золотого Сечения. Но чем дальше мы продвигаемся по ней, тем больше эти отклонения сглаживаются. Для определения любого ряда достаточно знать три его члена, идущие друг за другом. Но только не для золотой последовательности, ей достаточно двух, она является геометрической и арифметической прогрессией одновременно. Можно подумать, будто она основа для всех остальных последовательностей.

Каждый член золотой логарифмической последовательности является степенью Золотой Пропорции (z ). Часть ряда выглядит примерно так: ... z -5 ; z -4 ; z -3 ; z -2 ; z -1 ; z 0 ; z 1 ; z 2 ; z 3 ; z 4 ; z 5 ... Если мы округлим значение Золотой пропорции до трёх знаков, то получим z=1,618 , тогда ряд выглядит так: ... 0,090 0,146; 0,236; 0,382; 0,618; 1; 1,618; 2,618; 4,236; 6,854; 11,090 ... Каждый следующий член может быть получен не только умножением предыдущего на 1,618 , но и сложением двух предыдущих. Таким образом экспоненциальный рост обеспечивается путем простого сложения двух соседних элементов. Это ряд без начала и конца, и именно на него пытается быть похожей последовательность Фибоначчи. Имея вполне определённое начало, она стремится к идеалу, никогда его не достигая. Такова жизнь.

И всё-таки, в связи со всем увиденным и прочитанным, возникают вполне закономерные вопросы:
От куда взялись эти числа? Кто этот архитектор вселенной, попытавшийся сделать её идеальной? Было ли когда-то всё так, как он хотел? И если да, то почему сбилось? Мутации? Свободный выбор? Что же будет дальше? Спираль скручивается или раскручивается?

Найдя ответ на один вопрос, получишь следующий. Разгадаешь его, получишь два новых. Разберёшься с ними, появится ещё три. Решив и их, обзаведёшься пятью нерешёнными. Потом восемью, потом тринадцатью, 21, 34, 55...

Источники: ; ; ;

1,6180339887 4989484820 4586834365 6381177203 0917980576 2862135448 6227052604 6281890244 9707207204 1893911374 8475408807 5386891752 1266338622 2353693179 3180060766 7263544333 8908659593 9582905638 3226613199 2829026788 0675208766 8925017116 9620703222 1043216269 5486262963 1361443814 9758701220 3408058879 5445474924 6185695364 8644492410 4432077134 4947049565 8467885098 7433944221 2544877066 4780915884 6074998871 2400765217 0575179788 3416625624 9407589069 7040002812 1042762177 1117778053 1531714101 1704666599 1466979873 1761356006 7087480710 1317952368 9427521948 4353056783 0022878569 9782977834 7845878228 9110976250 0302696156 1700250464 3382437764 8610283831 2683303724 2926752631 1653392473 1671112115 8818638513 3162038400 5222165791 2866752946 5490681131 7159934323 5973494985 0904094762 1322298101 7261070596 1164562990 9816290555 2085247903 5240602017 2799747175 3427775927 7862561943 2082750513 1218156285 5122248093 9471234145 1702237358 0577278616 0086883829 5230459264 7878017889 9219902707 7690389532 1968198615 1437803149 9741106926 0886742962 2675756052 3172777520 3536139362

Числа Фибоначчи и золотое сечение составляют основу разгадки окружающего мира, построения его формы и оптимального зрительного восприятия человеком, с помощью которых он может ощущать красоту и гармонию.

Принцип определения размеров золотого сечения лежит в основе совершенства целого мира и его частей в своей структуре и функциях, его проявление можно видеть в природе, искусстве и технике. Учение о золотой пропорции было заложено в результате исследований древними учеными природы чисел.

Свидетельства использования древними мыслителями золотой пропорции приведены в книге Эвклида «Начала», написанной еще в 3 в. до н.э., который применял это правило для построения правильных 5-угольников. У пифагорейцев эта фигура считается священной, поскольку является одновременно симметричной и асимметричной. Пентаграмма символизировала жизнь и здоровье.

Числа Фибоначчи

Знаменитая книга Liber abaci математика из Италии Леонардо Пизанского, который в последующем стал известен, как Фибоначчи, увидела свет в 1202 г. В ней ученый впервые приводит закономерность чисел, в ряду которых каждое число является суммой 2-х предыдущих цифр. Последовательность чисел Фибоначчи заключается в следующем:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377 и т.д.

Также ученый привел ряд закономерностей:

Любое число из ряда, разделенное на последующее, будет равно значению, которое стремится к 0,618. Причем первые числа Фибоначчи не дают такого числа, но по мере продвижения от начала последовательности это соотношение будет все более точным.

Если же поделить число из ряда на предыдущее, то результат устремится к 1,618.

Одно число, поделенное на следующее через одно, покажет значение, стремящееся к 0,382.

Применение связи и закономерностей золотого сечения, числа Фибоначчи (0,618) можно найти не только в математике, но и в природе, в истории, в архитектуре и строительстве и во многих других науках.

Для практических целей ограничиваются приблизительным значением Φ = 1,618 или Φ = 1,62. В процентном округлённом значении золотое сечение - это деление какой-либо величины в отношении 62 % и 38 %.

Исторически изначально золотым сечением именовалось деление отрезка АВ точкой С на две части (меньший отрезок АС и больший отрезок ВС), чтобы для длин отрезков было верно AC/BC = BC/AВ. Говоря простыми словами, золотым сечением отрезок рассечён на две неравные части так, что меньшая часть относится к большей, как большая ко всему отрезку. Позже это понятие было распространено на произвольные величины.

Число Φ называется также золотым числом.

Золотое сечение имеет множество замечательных свойств, но, кроме того, ему приписывают и многие вымышленные свойства.

Теперь подробности:

Определение ЗС - это деление отрезка на две части в таком соотношении, при котором большая часть относится к меньшей, как их сумма (весь отрезок) к большей.


То есть, если мы примем весь отрезок c за 1, то отрезок a будет равен 0,618, отрезок b - 0,382. Таким образом, если взять строение, например, храм, построенный по принципу ЗС, то при его высоте скажем 10 метров, высота барабана с куполом будут равны 3,82 см, а высота основания строения будет 6, 18 см. (понятно, что цифры взяты ровными для наглядности)

А какова связь между ЗС и числами Фибоначчи?

Числа последовательности Фибоначчи это:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597…

Закономерность чисел в том, что каждое последующее число равно сумме двух предыдущих чисел.
0 + 1 = 1;
1 + 1 = 2;
2 + 3 = 5;
3 + 5 = 8;
5 + 8 = 13;
8 + 13 = 21 и т.д.,

а отношение смежных чисел приближается к отношению ЗС.
Так, 21: 34 = 0,617, а 34: 55 = 0,618.

То есть в основе ЗС лежат числа последовательности Фибоначчи.

Считается, что термин «Золотое сечение» ввел Леонардо Да Винчи, который говорил, «пусть никто, не будучи математиком, не дерзнет читать мои труды” и показывал пропорции человеческого тела на своём знаменитом рисунке «Витрувианский человек». “Если мы человеческую фигуру – самое совершенное творение Вселенной – перевяжем поясом и отмерим потом расстояние от пояса до ступней, то эта величина будет относиться к расстоянию от того же пояса до макушки, как весь рост человека к длине от пояса до ступней”.

Ряд чисел Фибоначчи наглядно моделируется (материализуется) в форме спирали.


А в природе спираль ЗС выглядит вот так:


При этом, спираль наблюдается повсеместно (в природе и не только):

Семена в большинстве растений расположены по спирали
- Паук плетет паутину по спирали
- Спиралью закручивается ураган
- Испуганное стадо северных оленей разбегается по спирали.
- Молекула ДНK закручена двойной спиралью. Молекулу ДНК составляют две вертикально переплетенные спирали длиной 34 ангстрема и шириной 21 ангстрема. Числа 21 и 34 следуют друг за другом в последовательности Фибоначчи.
- Эмбрион развивается в форме спирали
- Спираль «улитки во внутреннем ухе»
- Вода уходит в слив по спирали
- Спиральная динамика показывает развитие личности человека и его ценностей по спирали.
- Ну и конечно, сама Галактика имеет форму спирали


Таким образом можно утверждать, что сама природа построена по принципу Золотого Сечения, оттого эта пропорция гармоничнее воспринимается человеческим глазом. Она не требует «исправления» или дополнения получаемой картинки мира.

Фильм. Число Бога. Неопровержимое доказательство Бога; The number of God. The incontrovertible proof of God.

Золотые пропорции в строении молекулы ДНК


Все сведения о физиологических особенностях живых существ хранятся в микроскопической молекуле ДНК, строение которой также содержит в себе закон золотой пропорции. Молекула ДНК состоит из двух вертикально переплетенных между собой спиралей. Длина каждой из этих спиралей составляет 34 ангстрема, ширина 21 ангстрема. (1 ангстрем - одна стомиллионная доля сантиметра).

21 и 34 - это цифры, следующие друг за другом в последовательности чисел Фибоначчи, то есть соотношение длины и ширины логарифмической спирали молекулы ДНК несет в себе формулу золотого сечения 1:1,618

Золотое сечение в строении микромиров

Геометрические фигуры не ограничиваются только лишь треугольником, квадратом, пяти- или шестиугольником. Если соединить эти фигуры различным образом между собой, то мы получим новые трехмерные геометрические фигуры. Примерами этому служат такие фигуры как куб или пирамида. Однако кроме них существуют также другие трехмерные фигуры, с которыми нам не приходилось встречаться в повседневной жизни, и названия которых мы слышим, возможно, впервые. Среди таких трехмерных фигур можно назвать тетраэдр (правильная четырехсторонняя фигура), октаэдр, додекаэдр, икосаэдр и т.п. Додекаэдр состоит из 13-ти пятиугольников, икосаэдр из 20-и треугольников. Математики отмечают, что эти фигуры математически очень легко трансформируются, и трансформация их происходит в соответствии с формулой логарифмической спирали золотого сечения.

В микромире трехмерные логарифмические формы, построенные по золотым пропорциям, распространены повсеместно. К примеру, многие вирусы имеют трехмерную геометрическую форму икосаэдра. Пожалуй, самый известный из таких вирусов - вирус Adeno. Белковая оболочка вируса Адено формируется из 252 единиц белковых клеток, расположенных в определенной последовательности. В каждом углу икосаэдра расположены по 12 единиц белковых клеток в форме пятиугольной призмы и из этих углов простираются шипообразные структуры.

Впервые золотое сечение в строении вирусов обнаружили в 1950-хх гг. ученые из Лондонского Биркбекского Колледжа А.Клуг и Д.Каспар. 13 Первым логарифмическую форму явил в себе вирус Polyo. Форма этого вируса оказалась аналогичной с формой вируса Rhino 14.

Возникает вопрос, каким образом вирусы образуют столь сложные трехмерные формы, устройство которых содержит в себе золотое сечение, которые даже нашим человеческим умом сконструировать довольно сложно? Первооткрыватель этих форм вирусов, вирусолог А.Клуг дает такой комментарий:

«Доктор Каспар и я показали, что для сферической оболочки вируса самой оптимальной формой является симметрия типа формы икосаэдра. Такой порядок сводит к минимуму число связующих элементов… Большая часть геодезических полусферических кубов Букминстера Фуллера построены по аналогичному геометрическому принципу. 14 Монтаж таких кубов требует чрезвычайно точной и подробной схемы-разъяснения. Тогда как бессознательные вирусы сами сооружают себе столь сложную оболочку из эластичных, гибких белковых клеточных единиц.»

Расскажет о понятии ряд Фибоначчи и как оно связанно с теорией волн, а также приведет опровержение применимости ряда к природным процессам.
, которую мастер разработал в 30-х годах прошлого века – это один из самых захватывающих разделов . Сама по себе она была выделена в новую главу науки, которая изучает графики. В её основе лежат разработки других специалистов в области теории (советую прочитать — книгу под авторством ).
Так, например, великого итальянского математика Леонардо Фибоначчи причисляют к ученым (о котором я уже говорил в статьях — , ), создавшим основу для теории Элиота.

Цифровой ряд чисел Фибоначчи — золотое сечение и коэффициенты или уровни коррекции + видео. Числа Фибоначчи в природе.

Специалист жил ещё в XIII веке. Ученый опубликовал труд, который называется «Книга вычислений». Эта книга представила Европе важное для тех времен и не только открытие – десятичную систему счисления. Эта система ввела привычные для нас числа от нуля до девяти в обращение.

Появление этой системы было первым важным достижений Европы со времён падения Рима. Фибоначчи сохранил числовую науку для средневековья. А также заложил глубокие основы для развития других наук, таких как высшая математика, физика, астрономия, машиностроение.

Смотреть видео


Как появились числа и их производные

Решая прикладную задачу, Леонардо наткнулся на любопытный ряд чисел Фибоначчи, вначале которого находятся две единицы.

Каждый последующий член – это сумма двух предыдущих. Самое любопытное, что числовой ряд Фибоначчи — примечательная последовательность тем, что если любой член поделить на предыдущий, то получится число, которое близко к 0,618. Этому числу дали имя «Золотое сечение ».

Оказалось, что это число было известно человечеству очень давно. Например, в древнем Египте строили пирамиды с его использованием, а древние греки возводили по нему свои храмы. Леонардо да Винчи показал, как строение тела человека подчиняется этом числу.

Природа применяет числа из ряда Фибоначчи в своих наиболее сокровенных и продвинутых областях. От атомных структур и других мелких форм, как молекулы ДНК и микрокапилляры мозга до огромных, как планетарные орбиты и структуры галактик. Ряд примеров настолько велик, что следует утверждать, что в природе действительно присутствует некий основной закон пропорций.

Поэтому не удивительно, что ряд Фибоначчи и золотое сечение пробралось и на биржевые графики. И не одно число 0,618, но и его производные.

Если число золотого сечения возвести в первую, вторую, третью и четвертую степень и вычесть результат из единицы, то получиться новый ряд, который носит название «коэффициенты коррекции Фибоначчи ». Осталось только добавить отметку пять десятых – это пятидесятипроцентная .

Однако, это не все, что можно сделать с золотым сечением. Если единицу разделить на 0,618 то получается 1,618, если возведем в квадрат, то у нас получится 2,618, если возведем в куб, то получим число 4,236. Это коэффициенты расширения Фибоначчи. Тут не хватает только числа 3,236, которое было предложено Джоном Мёрфи.


Что думают о последовательности специалисты

Кто-то скажет, что эти числа уже знакомы, потому что они используются в программах технического анализа, для определения величины коррекции и расширения. Кроме того эти же ряды играют важную роль в волновой теории Элиота. Они являются его числовой основой.

Наш эксперт Николай Проверенный портфельный менеджер инвестиционной компании Восток.

  • — Николай, как вы думаете, случайно ли появление чисел Фибоначчи и его производных на графиках различных инструментов? И можно ли сказать: «Ряд Фибоначчи практическое применение» имеет место?
  • — К мистике отношусь плохо. А на графиках биржи тем более. У всего есть свои причины. в книге «Уровни Фибоначчи» красиво рассказывал, где появляется золотое сечение, что не стал удивляться тому, что оно появилось на графиках котировок биржи. А зря! Во многих примерах, которые он привел, часто появляется число Пи. Но его почему-то нет в ценовых соотношениях.
  • — То есть вы не верите в действенность волнового принципа Элиота?
  • — Да нет же, не в этом дело. Волновой принцип – это одно. Численное соотношение – это другое. А причины их появления на ценовых графиках – третье
  • — Каковы на ваш взгляд причины появления золотого сечения на биржевых графиках?
  • — Правильный ответ на этот вопрос может быть в силах заслужить Нобелевскую премию по экономике. Пока мы можем догадываться об истинных причинах. Они явно не в гармонии природы. Моделей биржевого ценообразования много. Они не объясняют обозначенный феномен. Но не понимание природы явления не должно отрицать явление как таковое.
  • — А если когда – либо этот закон будет открыт, то сможет ли это разрушить биржевой процесс?
  • — Как показывает та же теория волн закон изменения биржевых цен – это чистая психология. Мне кажется, знание данного закона ничего не изменит и не сможет разрушить биржу.

Материал предоставлен блогом веб-мастера Максима.

Совпадения основ принципов математики в самых разных теориях кажется невероятным. Может быть это фантастика или подгонка под конечный результат. Поживем — увидим. Многое из того, что раньше считалось необычным или было не возможно: освоение космоса, например, стало привычным и никого не удивляет. Также и волновая теория, может быть непонятная, со временем станет доступней и понятней. То, что раньше было не нужным, в руках аналитика с опытом станет мощным инструментом прогнозирования дальнейшего поведения .

Числа Фибоначчи в природе.

Смотреть

А теперь, давайте поговорим о том, как можно опровергнуть то, что цифровой ряд Фибоначчи причастен к каким-либо закономерностям в природе.

Возьмем любые другие два числа и выстроим последовательность с той же логикой, что и числа Фибоначчи. То есть, следующий член последовательности равен сумме двух предыдущих. Для примера возьмем два числа: 6 и 51. Теперь выстроим последовательность, которую завершим двумя числами 1860 и 3009. Заметим, что при делении этих чисел, мы получаем число близкое золотому сечению.

При этом числа, которые получались при делении других пар уменьшались от первых к последним, что позволяет утверждать, что если этот ряд продолжать бесконечно, то мы получим число равное золотому сечению.

Таким образом, числа Фибоначчи ни чем сами по себе не выделяются. Существует другие последовательности чисел, которых бесконечное множество, что дают в результате тех же операций золотое число фи.

Фибоначчи не был эзотериком. Он не хотел вложить никой мистики в числа, он просто решал обыкновенную задачу о кроликах. И написал последовательность чисел, которые вытекали из его задачи, в первый, второй и другие месяца, сколько будет кроликов после размножения. В течение года он получил ту самую последовательность. И не делал отношений. Никакой золотой пропорции, Божественном отношении речи не шло. Все это было придумано после него в эпоху Возрождения.

Перед математикой достоинства Фибоначчи огромны. Он от арабов перенял систему чисел и доказал её справедливость. Была тяжелая и долгая борьба. От римской системы счисления: тяжелой и неудобной для счета. Она исчезла после французской революции. Никакого отношения именно к золотому сечению Фибоначчи не имеет.

Спиралей бесконечно много, наиболее популярны: спираль натурального логарифма, спираль Архимеда, гиперболическая спираль.

А теперь давайте взглянем на спираль Фибоначчи. Данный кусочно-составной агрегат складывается из нескольких четвертей окружностей. И не является спиралью, как таковой.

Вывод

Как бы долго мы не искали подтверждение или опровержение применимости ряда Фибоначчи на бирже, такая практика существует.

Огромные массы людей действуют согласно линейке Фибоначчи, которая находится во многих пользовательских терминалах. Поэтому хотим мы или нет: числа Фибоначчи оказывают влияние на , а мы можем воспользоваться этим влиянием.

Итальянский математик Леонардо Фибоначчи жил в 13 столетии и одним из первых в Европе стал использовать арабские (индийские) цифры. Он придумал несколько искусственную задачу о кроликах, которых выращивают на ферме, причем все они считаются самками, самцы игнорируются. Кролики начинают размножаться после того, как им исполняется два месяца, а потом каждый месяц рожают по кролику. Кролики никогда не умирают.

Нужно определить, сколько кроликов будет на ферме через n месяцев, если в начальный момент времени был только один новорожденный кролик.

Очевидно, что фермер имеет одного кролика в первый месяц и одного кролика – во второй месяц. На третий месяц будет уже два кролика, на четвертый – три и т.д. Обозначим количество кроликов в n месяце как . Таким образом,
,
,
,
,
, …

Можно построить алгоритм, позволяющий найти при любомn .

Согласно условию задачи общее количество кроликов
вn +1 месяце раскладывается на три составляющие:

    одномесячные кролики, не способные к размножению, в количестве

;


Таким образом, получим

. (8.1)

Формула (8.1) позволяет вычислить ряд чисел: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, …

Числа в данной последовательности называются числами Фибоначчи .

Если принять
и
, то с помощью формулы (8.1) можно определить все остальные числа Фибоначчи. Формула (8.1) называется рекуррентной формулой (recurrence – «возвращение» на латыни).

Пример 8.1. Предположим, что имеется лестница в n ступенек. Мы можем подниматься по ней с шагом в одну ступеньку, либо – с шагом в две ступеньки. Сколько существует комбинаций различных способов подъема?

Если n = 1, имеется только один вариант решения задачи. Для n = 2 существует 2 варианта: два единичных шага либо один двойной. Для n = 3 существует 3 варианта: три единичных шага, либо один единичный и один двойной, либо один двойной и один единичный.

В следующем случае n = 4, имеем 5 возможностей (1+1+1+1, 2+1+1, 1+2+1, 1+1+2, 2+2).

Для того чтобы ответить на заданный вопрос при произвольном n , обозначим количество вариантов как , и попробуем определить
по известными
. Если мы стартуем с единичного шага, то имеем комбинаций для оставшихсяn ступенек. Если стартуем с двойного шага, то имеем
комбинаций для оставшихсяn –1 ступенек. Общее количество вариантов для n +1 ступенек равно

. (8.2)

Полученная формула как близнец напоминает формулу (8.1). Тем не менее, это не позволяет отождествлять количество комбинаций с числами Фибоначчи. Мы видим, например, что
, но
. Однако имеет место следующая зависимость:

.

Это справедливо для n = 1, 2, и также справедливо для каждого n . Числа Фибоначчи и количество комбинаций вычисляются по одной и той же формуле, однако начальные значения
,
и
,
у них различаются.

Пример 8.2. Этотпример имеет практическое значение для задач помехоустойчивого кодирования. Найдем число всех двоичных слов длины n , не содержащих несколько нулей подряд. Обозначим это число через . Очевидно,
, а слова длины 2, удовлетворяющие нашему ограничению, таковы: 10, 01, 11, т.е.
. Пусть
– такое слово изn символов. Если символ
, то
может быть произвольным (
)-буквенным словом, не содержащим несколько нулей подряд. Значит, число слов с единицей на конце равно
.

Если же символ
, то обязательно
, а первые
символа
могут быть произвольными с учетом рассматриваемых ограничений. Следовательно, имеется
слов длины n с нулем на конце. Таким образом, общее число интересующих нас слов равно

.

С учетом того, что
и
, полученная последовательность чисел – это числа Фибоначчи.

Пример 8.3. В примере 7.6 мы нашли, что число двоичных слов постоянного веса t (и длиной k ) равно . Теперь найдем число двоичных слов постоянного весаt , не содержащих несколько нулей подряд.

Рассуждать можно так. Пусть
число нулей в рассматриваемых словах. В любом слове имеется
промежутков между ближайшими нулями, в каждом из которых находится одна или несколько единиц. Предполагается, что
. В противном случае нет ни одного слова без рядом стоящих нулей.

Если из каждого промежутка удалить ровно по одной единице, то получим слово длины
, содержащеенулей. Любое такое слово может быть получено указанным образом из некоторого (и притом только одного)k -буквенного слова, содержащего нулей, никакие два из которых не стоят рядом. Значит, искомое число совпадает с числом всех слов длины
, содержащих ровнонулей, т.е. равно
.

Пример 8.4. Докажем,что сумма
равна числам Фибоначчи для любого целого. Символ
обозначаетнаименьшее целое число, большее или равное . Например, если
, то
; а если
, то
ceil («потолок»). Также встречается символ
, который обозначаетнаибольшее целое число, меньшее или равное . По-английски эту операцию называютfloor («пол»).

Если
, то
. Если
, то
. Если
, то
.

Таким образом, для рассмотренных случаев сумма действительно равна числам Фибоначчи. Теперь приведем доказательство для общего случая. Поскольку числа Фибоначчи можно получить с помощью рекуррентного уравнения (8.1), то должно выполняться равенство:

.

И оно действительно выполняется:

Здесь мы использовали полученную ранее формулу (4.4):
.

      Сумма чисел Фибоначчи

Определим сумму первых n чисел Фибоначчи.

0+1+1+2+3+5 = 12,

0+1+1+2+3+5+8 = 20,

0+1+1+2+3+5+8+13 = 33.

Легко заметить, что прибавлением к правой части каждого уравнения единицы мы снова получаем число Фибоначчи. Общая формула для определения суммы первых n чисел Фибоначчи имеет вид:

Докажем это, используя метод математической индукции. Для этого запишем:

Эта сумма должна быть равна
.

Сократив левую и правую часть уравнения на –1, получим уравнение (6.1).

      Формула для чисел Фибоначчи

Теорема 8.1. Числа Фибоначчи можно рассчитать по формуле

.

Доказательство . Убедимся в справедливости этой формулы для n = 0, 1, а затем докажем справедливость данной формулы для произвольного n по индукции. Вычислим отношение двух ближайших чисел Фибоначчи:

Мы видим, что отношение этих чисел колеблется около значения 1.618 (если игнорировать несколько первых значений). Этим свойством числа Фибоначчи напоминают члены геометрической прогрессии. Примем
, (
). Тогда выражение

преобразуется в

которое после упрощений выглядит так

.

Мы получили квадратное уравнение, корни которого равны:

Теперь можем записать:

(где c является константой). Оба члена и не дают чисел Фибоначчи, например
, в то время как
. Однако разность
удовлетворяет рекуррентному уравнению:

Для n =0 эта разность дает, то есть:
. Однако при n =1 мы имеем
. Чтобы получить
, необходимо принять:
.

Теперь мы имеем две последовательности: и
, которые начинаются с одинаковых двух чисел и удовлетворяют одной и той же рекуррентной формуле. Они должны быть равны:
. Теорема доказана.

При возрастании n член становится очень большим, в то время как
, и роль членав разности сокращается. Поэтому при больших n приближенно можем записать

.

Мы игнорируем 1/2 (поскольку числа Фибоначчи возрастают до бесконечности при росте n до бесконечности).

Отношение
называется золотым сечением , его используют за пределами математики (например, в скульптуре и архитектуре). Золотым сечением является отношение между диагональю и стороной правильного пятиугольника (рис. 8.1).

Рис. 8.1. Правильный пятиугольник и его диагонали

Для обозначения золотого сечения принято использовать букву
в честь известного афинского скульптора Фидия.

      Простые числа

Все натуральные числа, большие единицы, распадаются на два класса. К первому относятся числа, имеющие ровно два натуральных делителя, единицу и самого себя, ко второму – все остальные. Числа первого класса называют простыми , а второго – составными . Простые числа в пределах первых трех десятков: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, …

Свойства простых чисел и их связь со всеми натуральными числами изучалась Евклидом (3 век до нашей эры). Если выписывать простые числа подряд, то можно заметить, что относительная плотность их убывает. На первый десяток их приходится 4, т. е. 40%, на сотню – 25, т.е. 25%, на тысячу – 168, т.е. меньше 17%, на миллион – 78498, т.е. меньше 8%, и т.д.. Тем не менее, их общее число бесконечно.

Среди простых чисел попадаются пары таких, разность между которыми равна двум (так называемые простые близнецы ), однако конечность или бесконечность таких пар не доказана.

Евклид считал очевидным, что с помощью умножения только простых чисел можно получить все натуральные числа, причем каждое натуральное число представимо в виде произведения простых чисел единственным образом (с точностью до порядка множителей). Таким образом, простые числа образуют мультипликативный базис натурального ряда.

Изучение распределения простых чисел привело к созданию алгоритма, позволяющего получать таблицы простых чисел. Таким алгоритмом является решето Эратосфена (3 век до нашей эры). Этот метод заключается в отсеивании (например, путем зачеркивания) тех целых чисел заданной последовательности
, которые делятся хотя бы на одно из простых чисел, меньших
.

Теорема 8 . 2 . (теорема Евклида). Число простых чисел бесконечно .

Доказательство . Теорему Евклида о бесконечности числа простых чисел докажем способом, предложенным Леонардом Эйлером (1707–1783). Эйлер рассмотрел произведение по всем простым числам p :

при
. Это произведение сходится, и если его раскрыть, то в силу однозначности разложения натуральных чисел на простые сомножители получается, что оно равняется сумме ряда, откуда следует тождество Эйлера:

.

Так как при
ряд справа расходится (гармонический ряд), то из тождества Эйлера следует теорема Евклида.

Русский математик П.Л. Чебышев (1821–1894) вывел формулу, определяющую пределы, в которых заключено число простых чисел
, не превосходящихX :

,

где
,
.