Главная · Язва · Виды прививок. Виды вакцин, их классификация и способы введения. Когда прививку БЦЖ делать нельзя

Виды прививок. Виды вакцин, их классификация и способы введения. Когда прививку БЦЖ делать нельзя

Страх перед прививками во многом вызван устаревшими представлениями о вакцинах. Конечно, общие принципы их действия остались неизменными со времен Эдварда Дженнера, который в 1796 году первым применил вакцинацию от оспы. Вот только медицина с тех пор шагнула очень далеко вперед.

Так называемые «живые» вакцины, в которых используется ослабленный вирус, применяются и в наши дни. Но это лишь одна из разновидностей средств, призванных предупредить опасные болезни. И с каждым годом – в частности, благодаря достижениям генной инженерии – арсенал пополняется все новыми видами и даже типами вакцин.

Живые вакцины

Требуют специальных условий хранения, зато обеспечивают стойкий иммунитет к болезни после одной, как правило, вакцинации. По большей части их вводят парентерально, то есть с помощью инъекций; исключение – вакцина от полиомиелита. При всех преимуществах живых вакцин, их использование связано с некоторым риском. Всегда остается шанс, что штамм вируса окажется достаточно вирулентным и станет причиной заболевания, от которого вакцинация должна была защитить. Поэтому живые вакцины не применяют на людях с иммунодефицитом (например, носителях ВИЧ, онкологических больных).

Инактивированные вакцины

Для их изготовления используются микроорганизмы «убитые» при нагревании или с помощью химического воздействия. Шансов на возобновление вирулентности нет, и потому подобные вакцины безопасней «живых». Но, разумеется, есть и оборотная сторона – более слабый иммунный ответ. То есть для выработки стойкого иммунитета требуются повторные вакцинации.

Анатоксины

Многие микроорганизмы в процессе жизнедеятельности выделяют опасные для человека вещества. Они-то и становятся непосредственной причиной заболевания, например, дифтерии или столбняка. Содержащие анатоксин (ослабленный токсин) вакцины, говоря языком медиков, «индуцируют специфический иммунный ответ». Иными словами, они призваны «научить» организм самостоятельно вырабатывать антитоксины, которые нейтрализуют вредные вещества.

Конъюгированные вакцины

Некоторые бактерии имеют антигены, которые плохо распознаются незрелой иммунной системой младенцев. В частности, это бактерии, вызывающие такие опасные заболевания, как менингиты или пневмонию. Конъюгированные вакцины призваны обойти эту проблему. В них используется микроорганизмы, хорошо распознаваемые иммунной системой ребенка и содержащие антигены, схожие с антигенами возбудителя, к примеру, менингита.

Субъединичные вакцины

Эффективны и безопасны – в них используются лишь фрагменты антигена патогенного микроорганизма, достаточные для того, чтобы обеспечить адекватный иммунный ответ организма. Могут содержать частицы самого микроба (вакцины против Streptococcus pneumoniae и против менингококка типа А). Другой вариант – рекомбинантные субъединичные вакцины, создаваемые с использованием генно-инженерной технологии. Например, вакцину от гепатита B получают путем введения части генетического материала вируса в клетки пекарских дрожжей.

Рекомбинантные векторные вакцины

Генетический материал микроорганизма, вызывающего заболевание, к которому необходимо создание протективного иммунитета, внедряется в ослабленный вирус или бактерию. Например, вирус безопасной для человека коровьей оспы используется для создания рекомбинантных векторных вакцин против ВИЧ-инфекции. А ослабленные бактерии сальмонеллы используются в качестве носителя частиц вируса гепатита B.

Прививка – это несовременное изобретение. Впервые она была сделана еще в 1796 году английским врачом Дженером, который вводил своим пациентам материал с возбудителем коровьей оспы, для того, чтобы защитить их от оспы натуральной. Эксперимент оказался успешным и с того времени вакцинация стала развиваться. Однако до сих пор не все знают, что такое прививки, какие они бывают и зачем нужны.

Для прививок используются самые разные вакцины. Вакцина – это препарат, который производится из живых или убитых микроорганизмов, выделяемых ими антигенов или токсинов. Применяется он для диагностики, профилактики или лечения различных инфекционных заболеваний.

Бывают прививки плановыми и эпидемическими. Для первых существует специальный календарь, в котором расписано, какие прививки и в каком возрасте должны быть сделаны. Вторые делаются только по показаниям, например, при возникновении эпидемии.


Независимо от того как именно была изготовлена вакцина, содержит ли она один компонент или множество механизм действия будет одинаковым.

При введении вакцины организм воспринимает содержащиеся в ней ослабленные вирусы, бактерии или их частички как инфекционный агент и реагирует, так же как и при обычном заражении. То есть вакцина принудительно запускает все звенья иммунного ответа и тем самым формирует защиту от вируса или бактерии.

Насколько длительным будет такой приобретённый иммунитет, напрямую зависит от вида вируса или бактерии, против которой делается прививка. В некоторых случаях иммунитет формируется на долгие годы, как, например, после прививки от полиомиелита. В некоторых только на короткое время, как, например, после прививки от гриппа, которую необходимо делать каждый год.

Первая прививка ставится малышу еще в роддоме, в течение 24 часов после рождения, это прививка от гепатита B. А на третий или седьмой день жизни еще одна – туберкулез БЦЖ.

Виды вакцин

Так какие и от чего бывают вакцины? На сегодняшний день существует несколько вариантов классификации. Прежде всего, их делят в зависимости от числа компонентов на моно- и поливалентные. Первые содержат какой-то один вид вируса или бактерии, а вторые являются комплексными. Например, комбинированная вакцина АКДС включает антигены столбняка, коклюша и дифтерии.

Также существует классификация по видовому составу. Согласно ей вакцины делятся на:

  • Вирусные, например, такие как вакцина против вируса гриппа, клещевого энцефалита или же вируса папилломы человека.
  • Бактериальные, такие как вакцины для профилактики туберкулеза, чумы или сибирской язвы.
  • Риккетсиозные, такие как вакцины для профилактики лихорадки Ку или сыпного тифа.

Однако основной считается классификация по методу их изготовления. Эта классификация делить все многообразие вакцин на две большие группы: живые и убитые. Первая группа в настоящее время используется мало и только в том случае, когда производство убитой вакцины невозможно по тем или иным причинам. Современные вакцины в основной своей массе относятся именно к убитым или к инактивированным.

Живые

Эти вакцины готовят из живых, но ослабленных, говоря научным языком аттенуированных, патогенных микроорганизмов. Попадая в организм, они ведут себя точно так же, как если бы вы заразились инфекцией естественным путем. Но, благодаря тому, что изначально возбудитель был ослаблен и не так активен, у иммунной системы есть достаточно времени, чтобы распознать угрозу и выработать защиту.


Живые вакцины хороши тем, что затрагивают все звенья иммунитета: клеточный, гуморальный и секреторный. То есть защита организма создаётся сразу по всем фронтам. Другие виды вакцин таким свойством не обладают. Помимо этого, эффект от их применения развивается намного быстрее, а созданный иммунитет сохраняется на долгие годы. Примером таких вакцин является прививка от кори или полиомиелита.

Однако есть у таких прививок и недостатки:

  • Живые вакцины плохо комбинируются с другими прививками.
  • Если на момент прививки в организме находится вирус, то он может повлиять на вакцину и существенно снизить её эффективность.
  • Вакцины капризны и требуют особых условий хранения.
  • Противопоказаны беременным женщинам, людям с лейкозами, лимфомами, иммунодефицитом, тем, кто принимает иммунодепрессанты, стероиды или проходит радиотерапию.

Существует минимальный риск того, что живая вакцина приобретет вирулентные свойства, то есть, попав в организм, поведет себя как полноценный возбудитель и спровоцирует заболевание. Примером такого является вакциноассоциированный полиомиелит.

Инактивированные


Такие вакцины еще называют убитыми. Производятся они из вирусов, которые благодаря специальной обработке утратили способность к размножению и инфицированию, но при этом сохранили все другие свойства. В частности, способность провоцировать реакцию иммунной защиты организма.

Для инактивации таких вакцин используются различные химические или же физические методы. Обычно это обработка УФ-лучами, воздействие высоких температур, ультразвука или же таких веществ, как формальдегид и этиленимин.

Существует три вида убитых вакцин:

  • Биосинтетические (рекомбинантные или векторные) – получаются с помощью генной инженерии. Гены микроорганизма, который провоцирует развитие инфекции встраиваются в какой-нибудь безвредный микроорганизм, к примеру, в дрожжевую клетку. К этому виду относится вакцина от вирусного гепатита B или против вируса простого герпеса.
  • Химические или расщепленные вакцины создаются с помощью особых реагентов из компонентов микроорганизма, которые способны повлиять на иммунитет. Пример – коклюшевая вакцина.
  • Корпускулярные цельновирионные – это цельные бактерии или вирусы, которые просто инактивировали воздействием тепла или уф-излучения. В отличие от первых двух видов отдельные антигены из них не выделяются. Пример такой вакцины – прививка АКДС.
  • Корпускулярные субъединичные вакцины – наиболее современный и безопасный вид вакцин, в которых антиген максимально очищен от посторонних примесей. Такие вакцины содержат только поверхностные антигены, а значит, реже вызывают аллергии или же другие побочные эффекты. Примером такой вакцины являются прививки от гриппа Инфлувак или Гриппол.

Инактивированные вакцины отличаются большей стабильностью и безопасностью, прививаться ими можно даже при нарушениях иммунитета. В отличие от живых они неспособны вызвать вакцинассоцированные осложнения. Также их можно комбинировать и с другими прививками.

Однако производство таких вакцин намного сложнее и затратнее, чем изготовление живых. Помимо этого, есть у них и другие недостатки:

  • Наличие различных вспомогательных веществ, которые применяются в производстве, может спровоцировать аллергическую реакцию.
  • Из-за непродолжительного действия делать прививки такими вакцинами приходится не один раз.
  • Убитые вакцины слабее активируют некоторые звенья иммунной защиты, в частности местный иммунитет.

Несмотря на то что современные нормы гигиены и санитарии помогают защитить от большинства инфекций, вакцины по-прежнему необходимы. Если прекратить вакцинирование, то, скорее всего, болезни, которые победили с помощью прививок, вернуться вновь.

Вакцины-имунобиологические препараты преднозначенные для создания активного специфического иммунитетета, применяют для профилактики инфекционных заболеваний. Ее действующим началом является специфические антигены. В качестве антигенов может использоваться: живые-убитые м\о, выделенные из м\о специфичские протективные антигены. Токсины, химически синтезированные антигены. Антигены полученные методом генной инженерии.
классификация: живые вакцины(аттенуированные. Дивергентные, векторные рекомбинантные)
неживые(молекулярные(полученные путем биосинтеза\химического синтеза\методом генной инженерии), корпускулярные(цельноклеточные\цельноверианные\субклеточные\субверионные\синтетические и полусинтетические), ассациируемые вакцины

Вакцины вводят внутримышечно, подкожно, надкожно, внутрикожно, через рот. Иммунизируют либо однократно либо двукратно и трехкратно с интервалами в 1-2 недели и больше.

Виды вакцин
1) Живые вакцины. Они содержат ослабленный живой микроорганизм. Примером могут служить вакцины против полиомиелита, кори, свинки, краснухи или туберкулеза. Могут быть получены путем селекции (БЦЖ, гриппозная). Они способны размножаться в организме и вызывать вакцинальный процесс, формируя невосприимчивость. Утрата вирулентности у таких штаммов закреплена генетически, однако у лиц с иммунодефицитами могут возникнуть серьезные проблемы.
2) Инактивированные (убитые) вакцины. Содержат убитый целый микроорганизм (например цельноклеточная вакцина против коклюша, инактивированная вакцина против бешенства, вакцина против вирусного гепатита А), их убивают физическими (температура, радиация, ультрафиолетовый свет) или химическими (спирт, формальдегид) методами. Такие вакцины реактогенны, применяются мало (коклюшная, против гепатита А)
3) Химические вакцины. Содержат компоненты клеточной стенки или других частей возбудителя, как например в ацеллюлярной вакцине против коклюша, коньюгированной вакцине против гемофильной инфекции или в вакцине против менингококковой инфекции.
4) Анатоксины. Вакцины, содержащие инактивированный токсин (яд) продуцируемый бактериями. В результате такой обработки токсические свойства утрачиваются, но остаются иммуногенные
5) Векторные (рекомбинантные) вакцины. Вакцины, полученные методами генной инженерии. Суть метода: гены вирулентного микроорганизма, отвечающий за синтез протективных антигенов, встраивают в геном какого - либо безвредного микроорганизма, который при культивировании продуцирует и накапливает соответствующий антиген. Примером может служить рекомбинантная вакцина против вирусного гепатита B, вакцина против ротавирусной инфекции.
6) Синтетические вакцины - представляют собой искусственно созданные антигенные детерминанты микроорганизмов.
7) Ассоциированные вакцины. Вакцины различных типов, содержащие несколько компонентов (АКДС).

Определение, цели применения и классификация.
Вакцины - препараты из микроорганизмов или продуктов их жизнедеятельности, используемые для создания активного специфического приобретенного иммунитета против определенных видов микроорганизмов или выделяемых ими токсинов.

Рис. 1. Вакцина "Акт-ХИБ" предназначена для профилактики гемофильной В инфекции.

Разрабатываемые вакцины условно разделяют на две категории: традиционные (первого и второго поколения) и новые , конструируемые на основе методов биотехнологии.

К вакцинам первого поколения относятся классические вакцины Дженнера и Пастера, представляющие собой убитые или ослабленные живые возбудители, которые больше известны под названием корпускулярных вакцин .

Под вакцинами второго поколения следует понимать препараты, основу которых составляют отдельные компоненты возбудителей, то есть индивидуальные химические соединения, такие как дифтерийный и столбнячный анатоксины или высокоочищенные полисахаридные антигены капсульных микроорганизмов, например менингококков или пневмококков. Эти препараты больше известны под названием химических вакцин (молекулярные ). По числу антигенов, входящих в вакцину, различают моно - и поливакцины (ассоциированные), по видовому составу - бактериальные, риккетсиозные, вирусные .

Общая характеристика вакцин .
Живые вакцины представляют собой препараты, содержащие наследственно измененные формы микроорганизмов (вакцинные штаммы), утратившие свои патогенные свойства. Но сохранившие способность приживляться и размножаться в организме, вызывая формирование специфического иммунитета.
Живые вакцины получены при использовании двух основных принципов, которые предложены основателями учения о вакцинации Дженнером и Пастером.
Принцип Дженнера - использование генетически близких (родственных) штаммов возбудителей инфекционных заболеваний животных. На основании этого принципа были получены - осповакцина, вакцина БЦЖ, бруцеллезная вакцина.
Принцип Пастера - получение вакцин из искусственно ослабленных (аттенуированных) штаммов возбудителей. Основная задача метода заключается в получении штаммов с наследственно измененными признаками, т.е. низкой вирулентностью и сохранением иммуногенных свойств. Применяются следующие методы получения живых вакцин:
Инактивированные (убитые) вакцины . Убитые вакцины готовят из инактивированных вирулентных штаммов бактерий и вирусов, обладающих полным набором необходимых антигенов. Для инактивации возбудителей применяют нагревание, обработку формалином, ацетоном, спиртом, которые обеспечивают надежную инактивацию и минимальное повреждение структуры антигенов.
Химические вакцины . Химические вакцины состоят из антигенов, полученных из микроорганизмов различными способами, преимущественно химическими методами.
Основной способ получения химических вакцин заключается в выделении протективных антигенов, обеспечивающих развитие надежного иммунитета, и очистки этих антигенов от балластных веществ. В настоящее время молекулярные вакцины получают методом биосинтеза или путем химического синтеза.
Анатоксины . Анатоксины готовят из экзотоксинов различных видов микробов. Токсины подвергают обезвреживанию формалином, при этом они не теряют иммуногенные свойства и способность вызывать образование антител (антитоксинов).
Анатоксины выпускают как в виде монопрепаратов (моновакцины ), так и в составе ассоциированных препаратов, предназначенных для одновременной вакцинации против нескольких заболеваний (ди- тривакцины).
Вакцины нового поколения .
Традиционные вакцины не позволили решить вопросы профилактики инфекционных заболеваний, связанных с возбудителями, которые плохо культивируются или не культивируются в системах in vivo и in vitro. Достижения иммунологии позволяют получать отдельные эпитопы (антигенные детерминанты), которые в изолированном виде иммуногенностью не обладают. Поэтому создание вакцин нового поколения требует конъюгации антигенных детерминант с молекулой-носителем, в качестве которой могут выступать как природные белки, так и синтетические молекулы (субъединичные, синтетические вакцины)
С достижениями генной инженерии связано получение рекомбинантных векторны х вакцин - живых вакцин, состоящих из непатогенных микробов, в геном которых встроены гены других (патогенных) микроорганизмов. Таким способом уже давно получена так называемая дрожжевая вакцина против гепатита В, разработаны и проходят испытания вакцины против малярии, ВИЧ-инфекции, а также показана возможность создания по этому принципу многих других вакцин.


Показания для прививок.
Различают прививки плановые и выполняемые по эпидемическим показаниям.
Каждая страна пользуется своим национальным календарем профилактических прививок, который предусматривает проведение плановой массовой вакцинации населения. Обязательность таких прививок, как правило, устанавливается законодательством страны.

Условия хранения и транспортирования иммунобиологических препаратов.
Соблюдение правил хранения и транспортирования иммунобиологических препаратов является непременным условием. Нарушение температурного режима хранения ряда препаратов не только сопровождается снижением их эффективности, но может привести и к повышению реактогенности, а это у лиц с высоким уровнем антител ведет к развитию аллергических реакций немедленного типа, к коллаптоидным реакциям.
Транспортирование и хранение должно проводиться при соблюдении специальной системы «холодовой цепи» - бесперебойно функционирующей системы, обеспечивающей оптимальный температурный режим хранения и транспортирования вакцин и других иммунобиологических препаратов на всех этапах их следования от предприятия-изготовителя до вакцинируемого. Оптимальной для хранения и транспортирования большинства вакцин и других иммунобиологических препаратов является температура в пределах 2-8°С .

Уничтожение неиспользованных медицинских иммунобиологических препаратов.
Ампулы и другие емкости, содержащие неиспользованные остатки инактивированных бактериальных и вирусных вакцин, а также живой коревой, паротитной и краснушной вакцин, анатоксинов, иммуноглобулинов человека, гетерологичных сывороток, а также инструментарий, который был использован для их введения, не подлежат какой-либо специальной обработке.
Ампулы и другие емкости, содержащие неиспользованные остатки других живых бактериальных и вирусных вакцин, а также инструментарий, использованный для их введения, подлежат кипячению в течение 60 мин (сибиреязвенная вакцина 2 ч), или обработке 3-5% раствором хлорамина в течение 1 ч, или 6% раствором перекиси водорода (срок хранения не более 7 сут) в течение 1 ч, или автоклавируются.
Все неиспользованные серии препаратов с истекшим сроком годности, а также не подлежащие применению по другим причинам следует направлять на уничтожение в районный (городской) центр госсанэпиднадзора.

Проверка физических свойств иммунобиологических препаратов перед проведением прививок.
Проверить этикетку или маркировку препарата на коробке, ампуле (флаконе), прочесть данные о препарате, сроке годности, проверить целость ампул, соответствие требованиям внешнего вида. При отсутствии этикетки, истечения срока годности, нарушения герметичности ампул, изменения внешнего вида (цвета, наличия хлопьев, посторонних включений и т.п.) пременять препараты нельзя.

Рис. 2. Иммунобиологические препараты перед проведением прививок необходимо проверить на соответствие физических свойств.

Проведение прививок.
Прививки должны проводиться в специально выделенном для этой цели помещении (прививочные кабинеты детских поликлиник, медицинские кабинеты ДДУ и школ и т.п.). При невозможности выделить отдельное помещение для проведения плановых прививок должно быть определено строго фиксированное время, в течение которого в нем не должны проводиться другие медицинские процедуры. Категорически запрещается проведение прививок в перевязочных. Прививки должны проводиться в асептических условиях.
Перед проведением прививок необходимо проверить состояние здоровья прививаемого: опрос, осмотр, термометрия (не допускают при ангине, инфекциях дыхательных путей, гнойничковых поражениях кожи и слизистых оболочек независимо от локализации).

Рис. 3. Прививки проводят в специальных помещениях в асептических условиях.

Учет прививок.
Для детей - история развития и карта профилактических прививок. Для взрослых - журнал учета прививок. Каждому человеку с момента первой вакцинации выдается «Сертификат о профилактических прививках», который является важным документом и хранится его владельцем пожизненно.
Информация о выполнении прививок, а также сильных реакциях и осложнениях отправляется в центр госсанэпиднадзора и в отдел поствакцинальных осложнений ГИСК (Государственный институт стандартизации и контроля медицинских биологических препаратов).

Реакции на прививочные препараты.
Вводимые в организм вакцины, как правило, вызывают общие и местные реакции, сопровождающие вакцинальный процесс и формирование поствакцинального иммунитета. Выраженность реакции зависит от свойств препарата и индивидуальных особенностей организма.

Таблица 1.
Характеристика местных реакций

В настоящее время для профилактики инфекционных заболеваний применяют следующие вакцинные препараты:

1) Вакцины живые составляют примерно половину из всех применяемых в практике вакцин. Живые вакцины при введении в организм (обычно в дозе 1 тыс.-1 млн. клеток) приживаются, раз­множаются, вызывают вакцинальный процесс и формирование активного иммунитета против со­ответствующего возбудителя. Вакцины получают из аттенуированных вакцинных штаммов или из непатогенных для человека природных (дивергентных) штаммов, имеющих общие антигенные свойства с болезнетворными патогенными штаммами представляют собой взвеси выращенных на различных питательных субстратах вакцинных штаммов. Основным свойством живого аттенуированного штамма, используемого в производстве вакцин, является стойкая утрата вирулентности при сохранении способности вызывать иммунную реакцию, схожую с естественной. Вакцинный штамм размножается в организме хозяина и индуцирует клеточный, гуморальный, секреторный иммунитет, создавая защиту всех входных ворот инфекции. Главными преимуществами живых вакцин являются:

    высокая напряженность, прочность и длительность создаваемого ими иммунитета;

    возможность применения не только путем подкожного введения, но и другими, более про­стыми путями (накожно, перорально, интраназально).

Живые вакцины имеют ряд недостатков:

    сложно комбинируются и плохо дозируются;

    вызывают вакцинно-ассоциированные заболевания

    относительно нестабильны;

    естественно циркулирующий дикий вирус может тормозить репликацию вакцинного виру­са и снизить эффективность вакцины; это отмечалось в отношении вакцинных штаммов полиовируса, размножение которого может подавляться при инфицировании другими энтеровирусами.

В процессе производства, транспортировки, хранения и применения живых вакцин, на­ходимо строго соблюдать меры, предохраняющие микроорганизмы от гибели и гарантирующие сохранение активности препаратов (холодовая цепь).

В Российской Федерации живые вакцины широко применяют с целью специфической профи­лактики полиомиелита, кори, эпидемического паротита, гриппа, туберкулеза, чумы, туляремии, бруцеллеза, сибирской язвы.

2) Убитые вакцины (инактивированные) получают путем получаемые путем инактивации выращенных штаммов различными методами таким способом, который приводит лишь к минимальному повреждению структурных белков. Чаще всего с этой целью прибегают к мягкой обра­ботке формалином, фенолом, спиртом. Инактивируют нагреванием при температуре 56 С в тече­ние 2-х часов, УФ-лучами. Иммуногенность инактивированных вакцин ниже в сравнении с живыми, иммунитет менее напряженный и непродолжительный.

Убитые вакцины имеют следующие преимущества:

    хорошо комбинируются, дозируются;

    не вызывают вакцинно-ассоциированных заболеваний

    применяются у людей, страдающих иммунодефицитами

В Российской Федерации применяют убитые вакцины (против брюшного тифа, холеры, бешенства, гриппа, клещевого энцефалита, лентосиироза, коклюша.

Лечебные убитые вакцины против бруцеллеза, дизентерии, гонореи, стафилококковых инфекций. Лечебный эффект достигается за счет активации работы иммунной системы и факторов естественной резистентности организма. Лечебные убитые вакцины применяют при хронических, вялотекущих инфекциях; вводят в/мышечно, дозировано под контролем состояния больного.

К недостаткам корпускулярных вакцин (живых и убитых) следует отнести наличие в их составе большого количества «балластных» АГ и других компонентов, не участвующих в формиро­вании специфической защиты; они способны оказывать токсическое и/или аллергизируюшее влияние на организм.

3) Химические вакцины содержат отдельные компоненты (обладающие иммуногенностью) извлекаемые из микроорганизмов различными химическими методами Химические вакцины имеют следующие преимущества:

- менее реактогенны, пригодны для детей дошкольного возраста

Химические вакцины имеют ряд недостатков:

Иммуногенность химические вакцин ниже в сравнении с живыми, поэтому часто в такие препараты добавляют адъювант (гидрат окиси алюминия).

В Российской Федерации применяют вакцины для профилактики брюшного и сыпного тифов, менингококковую, гриппозную и др.

4) Анатоксины, анатоксины, получают путем обезвреживания формалином токсинов, являющихся продуктом метаболизма некоторых патогенных микроорганизмов. Они предназначены для иммунизации людей, используются в виде очищенных, концентрированных препаратов, адсорбированных на гидрате окиси алюминия. Для очистки их от балластных веществ нативные анатоксины подвергают специальной обработке различными химическими методами, в результате чего препараты не только освобождаются от балластных веществ, но и концентрируются по объему, что позволяет вводить необходимую дозу препарата в значительно меньшем объеме. Иммун­ная система человека не способна эффективно отвечать на одновременное введение нескольких антигенов. Адсорбция антигенов резко повышает эффективность вакцинации. Это объясняется тем, что в месте инъекции адсорбированного препарата создается «депо» антигенов, характеризу­ется замедленным их всасыванием; дробное поступление антигена из места инъекции обеспечива­ет эффект суммации антигенного раздражения и резко повышает иммунный эффект.

Анатоксины имеют следующие преимущества:

- препараты относительно термостабильны, однако Анатоксины имеют ряд недостатков:

    индуцируют только антитоксический иммунитет, что не позволяет предотвратить бактерионосительство и локализованные формы заболеваний

    не допускается замораживание адсорбированных препаратов (АДС, АС, АД, АДС-м, и т.д.).

    требуются повторные ревакцинации

Синтетические и полусинтетические вакцины, разрабатываемые в рамках проблемы повышения эффективности и снижения побочного действия вакцин, состоят из антигена или его де­терминанта в молекулярном виде, полимерного носителя (для придания макромолекулярности) и адъюванта, неспецифически повышающего иммуногенность АГ. В качестве носителя используют полиэлектролиты (винилпирролидон, декстран), с которыми соединяют АГ. Разрабатываются син­тетические вакцины против гриппа, гепатита В и др.

    векторные вакцины получают генно-инженерным способом. Получены сотни рекомбинантных штаммов бактерий, вирусов, дрожжей, несущих определенный антиген (например, сальмонеллезная вакцина против гепатита В)

    молекулярные вакцины получают путем биосинтеза (анатоксины) или химического синтеза (антигенные компоненты ВИЧ, гепатитов); молекулярные генноинженерные вакцины получают из протективных антигенов, которые нарабатывают рекомбинантные штаммы микроорганизмов (вакцина дрожжевая против гепатита В, против малярии и др.).

    Ассоциированные вакцины (поливакцины) включают антигены нескольких микробов и нередко в различных видах (убитые клетки, анатоксины и др.), что позволяет одновременно иммуни­зировать против нескольких инфекций.

В РФ используют одну ассоциированную вакцину АКДС (вакцина АКДС содержит убитые кок­люшные бактерии и 2 анатоксина - дифтерийный и столбнячный); за рубежом широко используют ас­социированные вакцины - тетракокк (коклюш, дифтерия, столбняк, полиомиелит); вакцина MMR (корь, эпидемический паротит, краснуха) и др.

Дифтерийный анатоксин (АД): содержит антиген в виде обезвреженного (0,4% р-ром формалина, при 37 0 С, в течение 1 месяца) дифтерийного экзотоксина, соединенного с адъювантом; дозируется в мл, в 1 мл содержится 10 ЛФ (флоккулирующих единиц) дифтерийного анатоксина; используется для плановой специфической профилактики дифтерии путем парентерального (внутримышечно или глубоко подкожно) введения: действие основано на формировании искус­ ственного активного антитоксического иммунитета к дифтерийному токсину.