Главная · Аппендицит · Имплант титановый. по физической природе компонентов сплава. Металлы используемые в ортопедической стоматологии

Имплант титановый. по физической природе компонентов сплава. Металлы используемые в ортопедической стоматологии

Сплавы титана обладают высокими технологическими и физико-механическими свойствами, а также токсикологической инертностью. Титан марки ВТ-100 листовой используется для штампованных коронок (толщина 0,14-0,28 мм), штампованных базисов (0,35-0,4 мм) съемных протезов, каркасов титанокерамических протезов, имплантатов различных конструкций. Для имплантации применяется также титан ВТ-6.

Для создания литых коронок, мостовидных протезов, каркасов дуговых (бюгельных), шинирующих протезов, литых металлических базисов применяется литьевой титан ВТ-5Л . Температура плавления титанового сплава составляет 1640° С.

В зарубежой специальной литературе существует точка зрения, по которой титан и его сплавы выступают альтернативой золоту. При контакте с воздухом титан образует тонкий инертный слой оксида. К его другим достоинствам относятся низкая теплопроводность и способность соединяться с композиционными цементами и фарфором. Недостатком является трудность получения отливки (чистый титан плавится при 1668° С и легко реагирует с традиционными формовочными массами и кислородом). Следовательно, он должен отливаться и спаиваться в специальных приборах в бескислородной среде. Разрабатываются сплавы титана с никелем, которые можно отливать традиционным методом (такой сплав выделяет очень мало ионов никеля и хорошо соединяется с фарфором). Новые методы создания несъемных протезов (в первую очередь коронок и мостовидных протезов) по технологии CAD/CAM (компьютерное моделирование/компьютерное фрезерование) сразу устраняет все проблемы литья. Определенные успехи достигнуты и отечественными учеными.

Съемные зубные протезы с тонколистовыми титановыми базисами толщиной 0,3-0,7 мм имеют следующие основные преимущества перед протезами с базисами из других материалов:

Абсолютную инертность к тканям полости рта, что полностью исключает возможность аллергической реакции на никель и хром, входящие в состав металлических базисов из других сплавов; - полное отсутствие токсического, термоизолирующего и аллергического воздействия, свойственного пластмассовым базисам; - малую толщину и массу при достаточной жесткости базиса благодаря высокой удельной прочности титана; - высокую точность воспроизведения мельчайших деталей рельефа протезного ложа, недостижимую для пластмассовых и литых базисов из других металлов; - существенное облегчение в привыкании пациента к протезу; - сохранение хорошей дикции и восприятия вкуса пищи.

Применение в стоматологии получили пористый титан, а также никелид титана, обладающий памятью формы в качестве материалов для имплантатов. Был период, когда в стоматологии получило распространение покрытие металлических протезов нитридом титана, придающее золотистый оттенок стали и КХС и изолирующее, по мнению авторов метода, линию паяния. Однако эта методика не получила широкого применения по следующим причинам:

1) покрытие нитрид-титаном несъемных протезов базируется на старой технологии, т. е. штамповке и пайке;

2) при применении протезов с нитрид-титановым покрытием используется старая технология протезов, таким образом, квалификация стоматологов-ортопедов не повышается, а остается на уровне 50-х годов;

3) протезы с нитрид-титановым покрытием неэстетичны и рассчитаны на дурной вкус некоторой части населения. Наша задача - не подчеркивать дефект зубного ряда, а скрывать его. И с этой точки зрения данные протезы неприемлемы. Золотые сплавы тоже имеют недостатки эстетического характера. Но приверженность ортопедов-стоматологов к золотым сплавам объясняется не их цветом, а технологичностью и большой устойчивостью к воздействию ротовой жидкости;

4) клинические наблюдения показали, что нитрид-титановое покрытие слущивается, иначе говоря, это покрытие имеет ту же судьбу, что и другие биметаллы;

5) следует иметь в виду, что интеллектуальный уровень наших пациентов значительно возрос, а вместе с этим повысились требования к внешнему виду протеза. Это идет вразрез с попытками некоторых ортопедов найти суррогат золотого сплава;

6) причины появления предложения - покрытие несъемных протезов нитрид-титаном - заключаются, с одной стороны, в отсталости материально-технической базы ортопедической стоматологии, а с другой - в недостаточном уровне профессиональной культуры некоторых врачей-стоматологов.

К этому можно добавить большое количество токсико-аллергических реакций организма пациентов на нитрид-титановое покрытие несъемных протезов.

Введение

Стоматология сегодня не стоит на месте. Практически каждый месяц приходится слышать о новых методиках, оборудовании, материалах и т.д. Конечно, не все нововведения находят отклик у профессионалов. Но, есть один материал, который всерьёз и надолго занял свою нишу в стоматологии, который благодаря своим качествам блестяще зарекомендовал себя. И имя этому материалу – титан.

Номенклатура использования титана постоянно расширяется. На сегодняшний день его применяют как в съёмном, так и не в съёмном протезировании, в имплантологии, в ортодонтии и т.д.

В настоящее время уже освоено изготовление зубов из титана, причем исследования показали, что по коррозионной стойкости в полости рта титан не уступает драгоценным металлам. И это не предел. Не будет преувеличением сказать, что не осталось уже в стоматологии направления, где бы ни нашлось место титану.

Что касается применения, то внедрение сплавов из титана не ограничилось стоматологией. Титан широко используется во всех без исключения сферах медицины, не говоря уже о промышленности. Если говорить о титане, то на ум сразу приходит целый ряд преимуществ, которые в комплексе свойственны только ему. Биологическая индифферентность, отсутствие свойства намагничиваться, малый удельный вес, высокая прочность, коррозийная стойкость во многих агрессивных средах и доступность сделали титан почти универсальным и необходимым материалом. И это лишь малая часть тех плюсов, которые могут дать титановые сплавы.

В данном дипломном проекте будут раскрыты все грани этого революционного материала. В призме профессии зубного техника тщательно будут рассмотрены свойства титана и его сплавов, методы их получения, нюансы обработки титановых сплавов, ошибки, возникающие при работе с ним, и многое другое. Будет уделено внимание самым последним достижениям в науке и технологиям. Будут подробно разобраны как уже давно существующие титановые сплавы, применяющиеся широко во всём мире, так и самые последние разработки по данному направлению. И конечно, нельзя обойти стороной методы обработки, такие как фрезерование, шлифование титановых сплавов и т.д.

Актуальность исследования

Выбор материала для протеза является одним из важных этапов планирования протеза, так как от материала будут зависеть будущие свойства протеза. В настоящее время стремится объединить в себе сразу два ключевых и важных свойства стоматологических материалов – биоинертность и эстетичность. Одним из материалов, обладающих первым качеством является титан. Использование титана в комплексе с облицовкой керамическими массами позволяет решить вторую задачу. Таким образом решаются обе задачи – биоинертность и эстетичность. Но в современной литературе, и даже при обучении в учебных заведениях, слабо освещены нюансы работы с титаном. Поэтому необходимо подробно изучив литературу о титане, обобщить её, систематизировать и в сумме изложить в данном дипломном проекте для облегчения изучения в будущем данной темы зубными техниками.

Предмет исследования

Титан для изготовления стоматологических протезов

Объект исследования

Технология обработки титана

Цель исследования

Изучить технологии изготовления протезов из титана в стоматологии

Задачи исследования

  1. Изучение литературы по данной теме;
  2. Изучение свойства титана, применяемого в стоматологии;
  3. Изучение технологий его обработки;
  4. Сравнение технологий обработки титана.

Гипотеза

Изучение данного материала позволит определить положительные и отрицательные стороны различных технологий обработки титана и выявить самые лучшие из них, что в дальнейшем может послужить улучшением качества протезирования.

Методы исследования

Изучение отечественной и зарубежной литературы, сравнительный анализ, систематизация.

Глава 1. Особенности титана и сложности при работе с ним

1.1. Преимущества титана

В периодической системе Д.И. Менделеева титан имеет номер 22 (Ti). Внешне титан похож на сталь (рис.1).

Рис.1. Титановые имплантаты и абатменты.

Сплавы титана обладают высокими технологическими и физико-механическими свойствами, а также биоинертностью.

Конструкционные и высокопрочные титановые сплавы представляют собой твердые растворы, что позволяет им обеспечивать оптимальное соотношение характеристик прочности и пластичности.

Применение получили пористый титан, а также никелид титана, обладающий памятью формы в качестве материалов для имплантатов.

В зарубежной литературе существует точка зрения, по которой титан и его сплавы выступают альтернативой золоту. При контакте с воздухом происходит пассивизация, т.е. на поверхности титана образуется тонкий инертный слой оксида. К другим его достоинствам относятся низкая теплопроводность и способность соединяться с композиционными цементами и фарфором. Недостатком является трудность получения отливки (чистый титан плавится при 1668°С и вступает в реакцию с традиционными формовочными массами и кислородом). Следовательно, он должен отливаться и спаиваться в специальных приборах в бескислородной среде. Разрабатываются сплавы титана с никелем, которые можно отливать традиционным методом (такой сплав выделяет очень мало ионов никеля и хорошо соединяется с фарфором). Новые методы создания несъемных протезов (в первую очередь коронок и мостовидных протезов) по технологии CAD/CAM сразу устраняют все проблемы литья .

Протезирование коронковой части зуба занимает ведущее место в клинике ортопедической стоматологии и используется во все периоды формирования и развития жевательного аппарата, начиная с грудного возраста и до глубокой старости. Особое место в ортопедии занимают титановые коронки, которые отличаются следующими характеристиками:

  • Биологическая инертность;
  • Легкость снятия коронки;
  • Низкая теплопроводность по сравнению с другими металлами и сплавами;
  • Маленький удельный вес, благодаря которому протезы получаются лёгкими;
  • Обладают высокой упругостью;
  • Меньшая прочность на истирание, чем нержавеющая сталь при протезировании молочных зубов.

Упоминая важность применения именно титановых коронок, следует остановиться на таком стоматологическом заболевании твердых тканей зуба, как аплазия и гипоплазия эмали. Эти дефекты представляют собой пороки развития твердых тканей зуба и возникают в результате нарушения минерального и белкового обмена в организме плода или ребенка. Недоразвитие эмали — процесс необратимый и остается на весь период жизни. Поэтому наличие этих заболеваний является абсолютным показанием к применению тонкостенных титановых коронок.

Что же касается съёмного протезирования, то протезы с тонколистовыми титановыми базисами толщиной 0,3-0,7 мм имеют следующие основные преимущества перед протезами с базисами из других материалов:

  • абсолютную инертность к тканям полости рта, что полностью исключает возможность аллергической реакции на никель и хром, входящие в состав металлических базисов из других сплавов;
  • полное отсутствие токсического, термоизолирующего и аллергического воздействия, свойственного пластмассовым базисам;
  • малую толщину и массу при достаточной жесткости базиса благодаря высокой удельной прочности титана;
  • высокую точность воспроизведения мельчайших деталей рельефа протезного ложа, недостижимую для пластмассовых и литых базисов из других металлов;
  • существенное облегчение в привыкании пациента к протезу;
  • сохранение хорошей дикции и восприятия вкуса пищи.

1.2. Особенности титана и сложности работы с ним

Титан (Titanium) Ti - элемент IV группы 4-го периода периодической системы Д. И. Менделеева, порядковый номер 22, атомная масса 47,90. Получен в чистом виде лишь в 1925 г. Основное сырье - минералы рутил TiO2, ильменит FeTiO3 и др. Титан - тугоплавкий металл.

Получают титан восстановлением двуокиси титана металлическим кальцием, гидридом кальция, восстановлением четыреххлористого титана расплавленным натрием, металлическим магнием. Титан - перспективный материал для авиационной, химической и судостроительной промышленности и медицины. В большинстве случаев титан применяется в виде сплавов с алюминием, молибденом, ванадием, марганцем и другими металлами .

Табл.1.

Сравнительные свойства различных сплавов.

Свойства

Серебряно-палладиевый сплав

Нержавеющая сталь

Плотность (г/см³)

Твердость (HB) МПа

Прочность МПа (Н/мм 2), Rm

Модуль упругости, ГПа

Температура плавления (°С)

Теплопроводность Вт/(м К)

КТР
(α 10 –6 °C –1)

Известно, что некоторые химические элементы могут существовать в виде двух или более простых веществ, отличающихся по строениям и свойству. Обычно вещество переходит из одной аллотропной модификации в другую при постоянной температуре. Титан имеет две такие модификации. α-модификация титана существует при температуре до 882,5 °С. Высокотемпературная β-модификация может быть устойчивой от 882,5 °С до температуры плавления.

Легирующие элементы придают титановому сплаву различные свойства. Для этого используются алюминий, молибден, марганец, хром, медь, железо, олово, цирконий, кремний, никель, и другие.

Легирующие добавки по-разному ведут себя в различных аллотропных модификациях титана. Изменяют они и температуру, при которой происходит α/β-переход. Так, увеличение концентрации алюминия, кислорода и азота в сплаве титана повышает это температурное значение. Область существования α-модификации расширяется. А эти элементы называют α-стабилизаторами.

Олово и цирконий не изменяют температуру α/β-превращений. Поэтому их считают нейтральными упрочнителями титана.

Все остальные легирующие добавки к титановым сплавам считаются β-стабилизаторами. Растворимость их в модификациях титана зависит от температуры. А это даёт возможность повышать прочность титановых сплавов с этими добавками с помощью закалки и старения. Используя разные типы легирующих добавок, получают титановые сплавы с самыми различными свойствами.

Для создания литых коронок, мостовидных протезов, каркасов дуговых (бюгельных), шинирующих протезов, литых металлических базисов применяется литьевой титан ВТ-5Л. Температура плавления титанового сплава составляет 1640°С.

Сплав ВТ5 (ВТ5Л) легирован только алюминием. Алюминий относится к числу наиболее распространенных легирующих элементов в титановых сплавах. Это обусловлено следующими преимуществами алюминия перед остальными легирующими компонентами:

  1. алюминий широко распространен в природе, доступен и стоит сравнительно дешево;
  2. плотность алюминия значительно меньше плотности титана, и поэтому введение алюминия повышает их удельную прочность;
  3. с увеличением содержания алюминия повышается жаропрочность и сопротивление ползучести сплавов титана;
  4. алюминий повышает модули упругости;
  5. с увеличением содержания алюминия в сплавах уменьшается их склонность к водородной хрупкости. Сплав ВТ5 отличается от технического титана большей прочностью и жаропрочностью. Вместе с тем алюминий значительно уменьшает технологическую пластичность титана. Сплав ВТ5 деформируется в горячем состоянии: куется, прокатывается, штампуется. Тем не менее, его предпочитают применять не в деформированном состоянии, а в виде фасонного литья (в этом случае ему присваивают марку ВТ5Л).

Для имплантации применяется титан ВТ-6. Сплавы типа ВТ6 (Ti-6A1-4V) (α + β)-класса относятся к числу наиболее распространенных титановых сплавов и в других сферах.

Такое широкое распространение этого сплава объясняется удачным его легированием. Алюминий в сплавах системы Ti-Al-V повышает прочностные и жаропрочные свойства, а ванадий относится к числу тех немногих легирующих элементов в титане, которые повышают не только прочностные свойства, но и пластичность.

Наряду с высокой удельной прочностью сплавы этого типа обладают меньшей чувствительностью к водороду по сравнению со сплавами ОТ4 и ОТ4-1, низкой склонностью к солевой коррозии и хорошей технологичностью.

Сплавы типа ВТ6 применяют в отожженном и термически упрочненном состояниях. Двойной отжиг также позволяет повысить вязкость разрушения и сопротивление коррозионному разрушению.

Титан марки ВТ1-00 листовой используется для штампованных коронок (толщина 0,14-0,28 мм), штампованных базисов (0,35-0,4 мм) съемных протезов, каркасов титанокерамических протезов, имплантатов различных конструкций.

Металлургическая промышленность поставляет полуфабрикаты технического титана двух марок ВТ1-00 и ВТ1-0 отличающихся содержанием примесей (кислорода, азота, углерода, железа, кремния и др.). Это материалы малой прочности, причем титан ВТ1-00, содержащий меньше примесей, отличается меньшей прочностью и большей пластичностью. Основное достоинство титановых сплавов ВТ1-00 и ВТ1-0 — высокая технологическая пластичность, что позволяет получать из них даже фольгу.

Прочностные свойства титана могут быть повышены нагартовкой (наклёпом), но при этом сильно снижаются пластические свойства. Снижение характеристик пластичности выражено сильнее, чем повышение характеристик прочности, так что нагартовка не самый лучший способ улучшения комплекса свойств титана. К недостаткам титана следует отнести высокую склонность к водородной хрупкости, в связи с чем, содержание водорода не должно превышать 0,008 % в титане ВТ1-00 и 0,01 % в ВТ1-0.

1.3. Особенности обработки титана (шлифовка и полировка)

Физические свойства, фазы оксидации и изменение кристаллической решетки должны учитываться при обработке титана. Правильная обработка может успешно производиться только специальными фрезами для титана, со специальной крестообразной насечкой (рис.2). Уменьшенный угол рабочей поверхности, который дает возможность оптимально снимать достаточно мягкий металл, с одновременно хорошим охлаждением инструмента. Обработка титана должна производиться без сильного давления на инструмент.

Рис.2.

Фрезы для титана должны храниться отдельно от других инструментов. Они должны регулярно очищаться пароструйным аппаратом и щеточками из стекловолокна от остатков титановой стружки, которая достаточно прочно осаждается.

При использовании неправильного инструмента, или сильном нажиме возможны локальные перегревы металла, сопровождаемые сильным образованием оксида и изменением кристаллической решетки. Визуально на обрабатываемом объекте происходит изменение цвета и слегка грубеет поверхность. В этих местах не будет необходимого сцепления с керамикой (возможность появления трещин и сколов), если это не облицовываемые участки, то дальнейшая обработка и полировка будет также не соответствовать предъявляемым требованиям.

Использование при обработке титана различных карборундовых дисков и камней, или алмазных головок сильно загрязняет поверхность титана, что приводит в дальнейшем также к трещинам и сколам в керамике. Поэтому использование вышеперечисленных инструментов пригодно только для обработки, например, каркасов бюгельных протезов, а использование алмазных головок следует полностью исключить. Шлифовка и дальнейшая полировка открытых участков титана возможна только при помощи адаптированных для титана шлифовальных резиновых головок и полировочных паст. Многие фирмы, занимающиеся производством вращающихся инструментов, выпускают на данный момент большой ассортимент фрез и шлифовальных резиновых головок для титана.

Подходящие для титана параметры обработки:

  • Низкая скорость вращении наконечника – макс. 15 000 об/мин;
  • Низкое давление на инструмент;
  • Периодическая обработка;
  • Обработка каркаса только в одном направлении;
  • Избегать острых углов и напусков металла;
  • При шлифовке и полировке использовать только подходящие шлифовальные резиновые головки и полировочные пасты;
  • Периодическая чистка фрез пароструйным аппаратом и кисточкой из стекловолокна.

Пескоструйная обработка, перед нанесением бондингового слоя при керамическом покрытии так же, как и при облицовке композитными материалами, должна соответствовать следующим требованиям:

  • Чистый, только одноразовый оксид алюминия;
  • Максимальная величина зерна песка 150 µm, оптимально 110–125 µm;
  • Максимальное давление из карандаша 2 бара;
  • Направление потока песка под прямым углом к поверхности.

После обработки необходимо оставить обработанный объект на 5–10 мин пассивироваться, после чего произвести чистку поверхности паром.

Оксидный обжиг или похожие процедуры при работе с титаном полностью исключаются. Использование кислот или травление также полностью исключено.

1.4.Выводы по первой главе

Исходя из материала, представленного выше, можно сделать вывод, что сплавы титана обладают существенным количеством очень важных свойств, которые незаменимы в зубном протезировании. Основные из них это биоинертность, коррозионная стойкость, прочность и твёрдость при малом удельном весе. Однако, получение титана считается дорогостоящим процессом, но так как его количество, применяемое при изготовлении протеза, является небольшим, то это не сильно влияет на стоимость. Но из-за того, что технология производства протезов из титана более дорогостоящая протезы из титана стоят дороже, чем КХС или нержавеющей стали.

Также до недавнего времени проблемы вызывала обработка титана, но появление и распространение специальных инструментов, сделало возможным применения титановых сплавов в стоматологии. Положительные свойства титана были известны и раньше, но именно длительная и дорогостоящая обработка была тем самым препятствием для его внедрения в стоматологическую практику.

Несмотря на специфические требования, которые отсутствуют при обработке других металлов, и особенности инструментов, целый список положительных качеств титана всё же привело к усовершенствованию процессов работы с ним. Химические свойства титана с одно стороны открывают новые возможности для зубных техников, но с другой требуют более тщательного соблюдения технологии обработки и учёта всех особенностей.

Глава 2. Технологии изготовления протезов из титана

2.1.Штамповка титана

Штамповка (штампование) — процесс пластической деформации материала с изменением формы и размеров тела. В стоматологии штамповке подвергаются металлы.

Стоит отметить, что штампованные коронки из титана довольно редкое явления на сегодняшний день. Технология изготовления коронок методом штамповки из титана не нашла распространения, так как в холодном состоянии титан сложно штамповать. Тем не менее, в рамках общего изучения будет рассмотрена технология изготовления титановых коронок методом штамповки.

У титановых штампованных коронок те же минусы, что и у обычных штампованных коронок, а именно:

  • Отсутствие износоустойчивости;
  • Наличие плоской жевательной поверхности зуба;
  • Недостаточно плотное прилегание к шейке зуба;
  • Отсутствие эстетичности.

Свойства коронок из титана схожи со сплавами более дорогих, золотых коронок.

Процесс штамповки из титановых сплавов не значительно отличаются от процесса изготовления обычных штампованных коронок из нержавейки.

При изготовлении штампованных коронок оттиски обычно снимают стандартными ложками альгинатной массой.

Технология изготовления титановой штампованной коронки:

Лабораторный этап изготовления коронки начинается с получения модели. Далее производят моделировку зуба моделировочным воском. Наслаивая расплавленный воск на поверхность гипсового зуба, добиваются увеличения объема, необходимого для восстановления анатомической формы. После моделировки необходимо вырезать из модели гипсовый штампик. Затем необходимо изготовить его копию из легкоплавкого металла. Для этого необходимо сделать гипсовую форму. Блок из гипса делают в два этапа. Гипсовый штампик удаляют, а расколотые части блока складывают вместе и расплавляют легкоплавкий металл. При плавке важно не перегревать металл, при перегреве испаряются некоторые компоненты сплава, и он получается более хрупким. И после заполняют им форму. Форма должна быть хорошо просушена, так как влага, испаряясь, сделает металл пористым.

Всего необходимо изготовить два металлических штампика. Первый — самый точный для окончательной штамповки. Второй — для предварительной штамповки. После изготовления металлического штампика необходимо подобрать титановую гильзу.

Гильза должна доходить до экватора зуба и несколько с усилием на него заходить. Отожженной гильзе на пуансонах специальной зуботехнической наковальни ударами молотка придается приблизительная форма будущей коронки. И затем снова следует отжиг. Во время ударов молотка происходят изменения в структуре металла, он становится более упругим и неподатливым дальнейшей обработке, то есть образуется наклеп, посредством отжига кристаллическая решетка металла восстанавливается и металл становится более пластичным. После этого берут тот штампик, что был отлит вторым, одевают на него гильзу и несколькими сильными и точными ударами молотка вколачивают его в свинцовую «подушку». Свинцовая подушка — слиток мягкого свинца различных размеров.

Вколотить штампик с гильзой необходимо до уровня экватора коронки. Свинец плотно обжимает металлическую гильзу по штампику. Штампик с гильзой извлекают из свинца и оценивают качество предварительной штамповки. На гильзе не должно быть складок и трещин. Окончательная штамповка производится в прессе либо ручном, либо механизированном гидравлическом. Смысл один — в основании пресса стоит кювета, наполненная невулканизированным каучуком. Штампик вставляется в кювету в каучук и шток пресса под действием силы раскрученного маховика или гидравлики давит на каучук, последний передает давление на гильзу, которая в свою очередь под давлением плотно обжимается по металлическому штампику.

Стоит отметить, что в холодном виде титан крайне плохо поддаётся штамповке. При горячем деформировании и, особенно, при температурах 900°С и выше, когда развиваются разупрочняющие процессы, титан и титановые сплавы имеют достаточно высокую пластичность. Из титановых сплавов ковкой и горячей штамповкой изготовляются сложные по геометрической форме изделия, к которым можно отнести и зубы.

Пластичность титана и титановых сплавов резко понижается при наличии на поверхности альфированого слоя. Альфинированный слой — это твердый раствор кислорода в титане. Металл, имеющий альфированный слой, крайне чувствителен при ковке и горячей штамповке к изменению напряженно-деформированного состояния с увеличением напряжений и деформаций растяжения. Поскольку, практически, при всех методах ковки и штамповки действуют растягивающие напряжения и деформации, при нагреве под горячую механическую обработку титана и титановых сплавов следует избегать образование альфированного слоя. Это достигается нагревом под ковку и штамповку в нагревательных печах с нейтральной или безокислительной атмосферой. Наиболее подходящей средой для нагрева титана и титановых сплавов является аргон.

2.2.Литьевой метод

Высокая реакционная способность титана, высокая точка плавления требуют специальную литейную установку и паковочную массу. В данное время на рынке известны несколько систем, которые позволяют производить литьё титана.

В качестве примера можно привести литейные установки Аутокаст, которые основаны на принципе плавки титана в защитной среде аргона на медном тигле посредством вольтовой дуги, точно также в промышленности сплавляют титановую губку для получения чистого титана. Заливка металла в кювету происходит при помощи вакуума в литейной камере и повышенного давления аргона в плавильной — во время опрокидывания тигля.

Внешний вид и принцип, как функционирует установка, показан на рисунке 3.

Рис.3.

В начале процесса обе камеры плавильная (вверху) и литейная (внизу) продуваются аргоном, затем из обеих камер эвакуируется смесь воздуха и аргона, после чего плавильная камера заполняется аргоном, а в литейной образуется вакуум. Включается вольтовая дуга и начинается процесс плавления титана. После прохождения определенного времени резко опрокидывается плавильный тигель и металл всасывается в находящуюся в вакууме форму, собственный вес, а также повышающееся давление аргона на этот момент также способствуют заполнение им литьевой формы. Этот принцип даёт возможность получать хорошие, плотные отливки из чистого титана.

Следующим компонентом литейной системы является паковочная масса. Так как в расплавленном состоянии реакционная способность титана очень высока, то он требует специальных паковочных масс, которые изготавливаются на основе оксидов алюминия и магнезии, которые в свою очередь позволяют снизить реакционный слой титана до минимума.

Правильное создание литниковой системы, так же, как и правильное расположение в кювете играет огромную роль и производится строго по правилам, предложенным фирмой производителем литейных установок. Для коронок и мостов допустимо использование только специального литьевого конуса, который позволяет оптимально направлять металл к отливаемому объекту. Высота входного литникового канала от конуса до питающей балки 10 мм при его диаметре 4–5 мм. Диаметр питающей балки 4 мм .

Подводные литниковые каналы к отливаемому объекту имеют размер диаметром 3 мм и высотой также не более 3 мм. Очень важно: подводные каналы не должны располагаться напротив входного литникового канала (рис.4), в противном случае очень высока возможность возникновения газовых пор.

Рис.4.

Все соединения должны быть очень гладкими, без острых углов и т.д. чтобы максимально снизить возникающую во время заливки металла турбулентность, которая приводит к образованию газовых пор. Литниковая система для бюгельных протезов, а особенно для цельнолитых базисов полных съёмных протезов также отлична, от литниковых систем, которые мы применяем для отливки бюгельных протезов из хром-кобальтовых сплавов.

Для зуботехнического применения переход титана при температуре 882,5 °С из одного кристаллического состояния в другое имеет очень большое значение. Титан переходит при этой температуре из α-титана с гексагональной кристаллической решеткой в β-титан с кубической. Что влечет за собой, не только изменение его физических параметров, но и увеличение на 17% его объёма.

По этой причине также необходимо использование специальных керамик, температура обжига которых должна находиться ниже 880 °С.

У титана очень сильное стремление при комнатной температуре с кислородом воздуха образовывать мгновенно тонкий защитный оксидный слой, который защищает его в дальнейшем от коррозии и обуславливает хорошую переносимость титана организмом. Это так называемый пассивный слой.

Пассивный слой имеет способность самостоятельно регенерироваться. Этот слой, на различных этапах работы с титаном, должен гарантироваться. После пескоструйной обработки, перед чисткой каркаса паром, необходимо оставить каркас минимум 5 минут пассивироваться. Только что отполированный протез должен пассивироваться не менее 10-15 минут, в противном случае нет гарантии хорошего блеска готовой работы.

2.3.Сверхпластичная формовка

В течение 15 лет литье зубных протезов из титана пропагандируется в Японии, США и Германии, а в последнее время и в России. Разработаны различные виды оборудования для центробежного или вакуумного литья, рентгеновского контроля качества отливок, специальные огнеупорные материалы.

Перечисленные выше методы очень сложны технологически и дорогостоящи. Выходом из этой ситуации может быть сверхпластическая формовка. Суть сверхпластичности заключается в том, что при определенной температуре металл, имеющий ультрамелкое зерно, ведёт себя подобно разогретой смоле, то есть может удлиняться на сотни и тысячи процентов под действием очень малых нагрузок, что позволяет изготавливать из листа титанового сплава тонкостенные детали сложной формы. Это явление, а процесс состоит в том, что сверхпластичную листовую заготовку прижимают к матрице и под действием небольшого газового давления (максимально 7–8 атм.) она сверхпластически деформируется, за одну операцию принимая очень точную форму полости матрицы.

Рассмотрим применение метода сферхпластичной формовки на примере изготовления съёмного пластиночного протеза. Зубной протез, изготовленный методом сверхпластической формовки, имеет существенные преимущества. В качестве основных можно назвать легкость (малый вес) по сравнению с протезами, изготовленными из кобальтохромового или никельхромового сплавов, а также высокая коррозионная стойкость и прочность. Достаточная простота изготовления протеза делает его незаменимым для массового производства в ортопедической стоматологии.

Начальные клинические этапы изготовления полного съемного протеза с титановым базисом не отличаются от традиционных при изготовлении пластмассовых протезов. Это – клиническое обследование больных, получение анатомических слепков, изготовление индивидуальной ложки, получение функционального слепка, изготовление рабочей высокопрочной модели из супергипса.

Модель из супергипса с предварительно изолированным бюгельным воском альвеолярным гребнем дублируют в огнеупорную массу. Огнеупорные модели размещают в металлической обойме из жаропрочного сплава, которая имеет специальные вырезы, размеры и форма которых позволяет разместить в ней модель верхней челюсти любого пациента.

На керамические модели сверху накладывают лист титанового сплава толщиной 1 мм. Листовая заготовка зажимается между двух половинок формы. Полуформы образуют герметичную камеру, разделенную листом на две части, каждая из которых имеет канал сообщения с газовой системой и может быть независимо друг от друга либо вакуумирована, либо заполнена инертным газом под некоторым давлением (рис.5).

Рис.5.

Загерметизированные полуформы нагревают и создают перепад давления. Под листом создают разряжение (вакуум) 0,7-7,0 Па. Лист титанового сплава прогибается в сторону вакуумированной полуформы и «вдувается» в расположенную в ней керамическую модель, облегая ее рельеф. В этот период давление выдерживают по определенной программе. По завершении этой программы полуформы охлаждают .

После этого давление в обеих полуформах выравнивают до нормы и извлекают заготовку из формы. Базисы требуемого профиля вырезают по контуру, например, лучом лазера, обтачивают кромку на абразивном круге, снимают окалину, нарезают ретенционные полосы абразивным диском в седловидной части базиса до середины альвеолярного отростка и электрополируют по разработанной методике.

Ограничитель пластмассы формируется на разных уровнях титанового базиса с небной и оральной поверхности ниже вершины альвеолярного гребня на 3-4 мм, методом химического фрезерования. Вдоль линии «А» также проводится химическое фрезерование для создания ретенционного участка при фиксации базисной пластмассы. Наличие пластмассы вдоль линии «А» необходимо для возможности дальнейшей коррекции клапанной зоны.

В клинике врач определяет центральное соотношение челюстей традиционными методами. Постановка зубов и примерка в полости рта не отличаются от аналогичных операций при изготовлении простых съёмных протезов. Далее в лаборатории воск заменяют на пластмассу и полируют. На этом изготовление съемного зубного протеза с титановым базисом закончено (рис.6).

Рис.6.

Для сверхпластического формования в России часто используется отечественная технология, отечественная установка (оригинальная Российская запатентованная установка и методика) и отечественные листовые заготовки отечественного сплава ВТ 14 .

Можно с уверенностью утверждать, что сверхпластическая формовка титановых сплавов имеет прекрасные перспективы для дальнейшего развития, т.к. сочетает высокую долговечность, биоинертность и эстетичность.

2.4.Компьютерное фрезерование (CAD/CAM)

CAD/CAM — это аббревиатура, которая расшифровывается как computer-aided design/drafting и computer-aided manufacturing, что дословно переводится как «компьютерная помощь в дизайне и производстве». По смыслу — это автоматизация производства и системы автоматизированного проектирования и разработки.

С развитием технологий, ортопедическая стоматология также прошла эволюция от времён бронзового человека, когда привязывались искусственные зубы золотой проволокой к соседним зубам, до современного человека, который использует технологию CAD/CAM. В момент появления CAD/CAM технология лишена всех недостатков, присущих технологиям литья, например, усадки, деформации, в том числе и при извлечении отлитых коронок, мостовидных протезов или их каркасов. Отсутствует опасность нарушения технологии, например, перегрева металла при литье или повторное использование литников, что приводит к изменению состава сплава. Отсутствует усадка каркаса после нанесения керамической облицовки, возможная деформация при снятии восковых колпачков с гипсовой модели, поры и раковины при литье, непролитые участки и т.д. Основным недостатком технологии CAD/CAM является высокая себестоимость, что не позволяет широко внедриться этой технологии в ортопедическую стоматологию. Хотя, справедливости ради стоит отметить, что практически с каждым годом появляются всё более и более дешёвые установки. Первоначальная технология CAD/CAM представляла собой компьютер с необходимым программным обеспечением, на котором производилось трёхмерное моделирование несъёмного протеза с последующим компьютерным фрезерованием с точностью до 0.8 микрон из цельного металлического или керамического блока. На рисунке 7 изображена современная CAD/CAM установка.

Рис.7.

С помощью CAD/CAM можно изготавливать:

  • одиночные коронки и мостовидные протезы малой и большой протяженности;
  • телескопические коронки;
  • индивидуальные абатменты для имплантатов;
  • воссоздать полную анатомическую форму для моделей пресс-керамики, наносимой на каркас (overpress);
  • создать временные коронки в полный профиль и различные литьевые модели .


В настоящее время, если рассматривать CAD/CAM как установку для обработки титановых сплавов, то очень большое распространение (учитывая относительно небольшую себестоимость) получило изготовление индивидуальных абатментов. Внешний вид таких абатментов представлен на рисунке 8.

Рис.8.

Ниже приведен пример алгоритм работы зубного техника с применением CAD/CAM установки. Она достаточно универсальна. И если вести речь непосредственно о титане, то этот алгоритм будет примерно таким же.

Описание работы с применением современных CAD/CAM технологий:

Шаг 1: Слепок. Гипсовая модель. Получение слепка полости рта выполняется точно так же, как и при традиционных методиках зубопротезирования. С полученного слепка изготавливается гипсовая модель челюсти пациента.

Шаг 2: Сканирование. Главной целью этого шага является получение цифровых данных, на основе которых будут построены электронные трехмерные модели требуемых изделий (коронки, протезы, мосты и т.д.). Оцифрованные данные сохраняют в формате STL. Результатом сканирования и основой работы является трехмерная компьютерная геометрическая модель (в виде STL-файла) участка полости рта, на котором планируется установить зубной протез. Сканер компании Nobel показан на рисунке 9.

Рис.9.

Шаг 3: Трехмерное моделирование (3D). Полученный на шаге 2 STL-файл импортируют в CAD систему. Она предназначена для создания компьютерных моделей коронок, протезов, мостов и т.д. с последующей их передачей в CAM систему для программирования обработки на станке с ЧПУ. Система была разработана специально для техников, в ней используется соответствующая терминология и удобный интуитивный интерфейс. Программа ориентирована на неопытного в использовании CAD систем пользователя.

На этом шаге зубной техник должен выбрать из базы данных наиболее подходящий по форме зуб и доработать его средствами до нужной формы. Поставляемая база данных содержит модель коронок под каждый зуб. Для редактирования геометрии используется интуитивно понятные функции скульптурного моделирования. В процессе моделирования можно масштабировать компьютерную модель, чтобы в процессе спекания компенсировать усадку и получить коронку максимально точных размеров. Как пример на рисунке 10 показан интерфейс программы, на котором моделировали идивидуальный абатмент.

Рис.10.

Шаг 4: Программирование обработки. После проработки геометрии изделий в системе полученные данные передаются в CAМ систему. Она предназначена для программирования обработки изделий на станках с ЧПУ. В CAM-системе генерируются траектории обработки, которые посредством постпроцессора переводятся на понятный станку «язык» – в управляющую программу. Эта программа ориентирована на неопытных пользователей, не имеющих опыта работы с CAМ системами и программирования станков с ЧПУ.

Шаг 5: Обработка протезов на станке с ЧПУ. Полученные управляющие программы отправляют на станок с ЧПУ. Ниже на рисунке 11 показан пример процесса фрезеровки трёх абатментов под нанесение и двух балок для протезов .

Рис.11.

2.5.3D печать (CAD/CAM)

Благодаря дальнейшей эволюции CAD/CAM технологии, на смену компьютерному фрезерованию пришла технология 3D печати, которая позволила уменьшить себестоимость и дала возможность изготавливать объекты любой формы и сложности, которые невозможно было произвести до этого ни одной из существующих технологий. Например, благодаря 3D печати можно изготовить цельный полый объект с любой формой внутренней поверхности. Применительно к ортопедической стоматологии, можно изготовить полое тело протеза, что позволит, не уменьшая прочности конструкции, уменьшить его вес.

Кроме того, 3D принтеры в стоматологии гарантируют ускорение объемов производства и точность готовых изделий. 3D принтеры, как и компьютерные фрезеры (ЧПУ) избавляют зубных техников от очень затратного по времени процесса в работе - ручного моделирования протезов, коронок и других изделий. На рисунке 12 изображён 3D принтер X350pro немецкой компании RepRap .

Рис.12.

Технологии CAD в 3D печати ничем не отличается от технологии CAD при компьютерном фрезеровании, и подробно она описана в предыдущей главе.

Принцип процесса состоит в том, что производится нанесении слоя металлического порошка, имеющего микроскопическую толщину, на подложку. Затем происходит спекание, или точнее микросварка, лазером в вакууме микроскопических зёрен металла в необходимых участках слоя. Сварка – это процесс превращения порошка в цельный материал с использованием высокой температуры, но без расплавления самого материала. После этого наносится сверху ещё один слой порошка металла, и производится микросварка лазером микро зерен металла уже не только между собой, но и с нижним слоем.

Уникальную форму каждого зуба в точности сложно передать с помощью ручного изготовления. Однако стоматологические 3D принтеры делают ненужными сложные и устаревшие методы производства. Благодаря новейшим технологиям и самым современным материалам готовая продукция получается в несколько раз быстрее, чем раньше.

Преимущества 3D печати в зуботехнической сфере:

  • возможность изготовления изделий с полыми внутренними участками, что невозможно сделать методом фрезерования;
  • значительное ускорение производства нужных изделий;
  • увеличение объемов производства без дополнительного персонала;
  • возможность повторного использования материала после очистки, что сводит отходы производства практически к нулю.

2.6.Выводы по второй главе.

Из всего изложенного выше можно сделать определённые выводы. Титан был известен ещё с давних времён, но не находил применения в стоматологии по причине того, что долгое время не было технологий, для его обработки. С течением времени ситуация начала меняться и на сегодняшний день титан обрабатывают несколькими способами без ущерба эстетики конечных реставраций.

С момента прихода титана в стоматологию и по настоящее время появилось множество методов его обработки. Все они имеют как свои недостатки, так и свои достоинства. Такое разнообразие естественно является неоспоримым плюсом титана, так как каждая лаборатория, и каждый зубной техник в частности может выбрать для себя именно тот метод работы с титаном, который больше подходит в зависимости от поставленных задач.

Проведя анализ литературы, мы установили, что из всех существующих или известных методов обработки титана в стоматологии самым перспективным и лучшим методом является метод 3Д печати титаном, так как именно он обладает наибольшим количеством преимуществ и практически не имеет недостатков.

Заключение

Из всего разобранного выше материала можно сделать лишь один вывод: титан дал новые идеи и значительно ускорил многие операции. Несмотря на свою более чем скромную историю, титан стал лидирующим материалом в стоматологии. Титановые сплавы обладают практически всем необходимыми в ортопедической стоматологии качествами, а именно: биоэнертность, прочность, твёрдость, жёсткость, долговечность, коррозионную стойкость, малый удельный вес. Несмотря на множество незаменимых для стоматологии качеств, титан, тем не менее, можно обрабатывать множеством способов без потери качества готовых изделий. На сегодняшний день уже имеются все необходимые инструменты и оборудование для качественной обработки титановых сплавов.

Проанализировав все методы изготовления изделий из титана можно сделать вывод, что наиболее прогрессивным методом является 3D печать. По сравнению с другими методами он обладает рядом преимуществ, например, простота самого процесса. В отличие от штамповки титана, 3D печать имеет практически идеальную точность. Технология компьютерного фрезерования также обеспечивает высокую точность, но в отличии от 3D печати, не может воспроизводить полые внутренние части изделия. И к тому же 3D печать очень экономичной, так как практически лишена отходов производства, а оставшийся материал, использованный при печати, может быть повторно использован после очистки. Литьевой метод и метод пластической деформации требуют наличия сложного технологического оборудования. А точность изготовление изделий всё равно не может сравниться с 3D печатью.

В завершении можно сделать вывод, что именно метод 3D печати на сегодняшний день является наиболее перспективным, прогрессивным и экономически выгодным методом работы с изделиями из титановых сплавов в стоматологии.

Библиографический список

  1. Журнал «Зубной техник». Титан – материал для современной стоматологии / Александр Модестов © ООО «Медицинская пресса» (№ 3 (38) 2003) 1997-2015 гг.
  2. Ервандян, А.Г. CAD/CAM технологии в ортопедической стоматологии [Электронный ресурс] / Арутюн Гегамович Ервандян, 4.10.2015. – Режим доступа: https://www.. – Загл. с экрана.
  3. Трезубов, В.Н. Ортопедическая стоматология. Прикладное материаловедение / В.Н. Трезубов, Л.М. Мишнев, Е.Н. Жулев. – М. : 2008. – 473 с.
  4. sgma [Электронный ресурс] «CAD/CAM-технологии: хорошие новости для зуботехнических лабораторий» Режим доступа: свободный, 26.04.2008. http://sgma.ucoz.ru/publ/3-1-0-21 – Загл. с экрана
  5. Миронова М.Л. «Съемные протезы: учебное пособие» – М.: «ГЭОТАР-Медиа» 2009.
  6. Андрющенко И.А., Иванов Е.А., Красносельский И.А. «Новые сплавы для зубных протезов» // Актуальные вопросы ортопедической стоматологии. М., 1968.
  7. Копейкин В.Н., Ефремова Л.А., Ильяшенко В.М. «Применение новых сплавов в клинике ортопедической стоматологии» // Актуальные вопросы ортопедической стоматологии,- М.,1968.
  8. Болтон У. «Конструкционные материалы: металлы, сплавы, полимеры, керамика, композиты.» М.: издательский дом «Додэка-XXI»,2004.
  9. Нурт Р.В. пер.с анг. под ред. Пахомова Г.Н. «Основы стоматологического материаловедения». «КМК-Инвест» 2004.
  10. Титан [Электронный ресурс]. Режим доступа: свободный. http://chem100.ru/text.php?t=1926 — Загл. с экрана.

Сплавы образуются при смешивании химических элементов. Один из компонентов сплава обязательно должен быть металлом или химическим соединением, имеющим металлические свойства. Основным компонентом титанового сплава является сам титан, в который добавлены легирующие элементы.

Легирующие элементы придают сплавам различные свойства. В качестве легирующих элементов при получении титановых сплавов используют алюминий, молибден, марганец, хром, медь, железо, олово, цирконий, кремний, никель, и другие.

Аллотропные модификации титана

В периодической системе Д.И.Менделеева титан имеет номер 22. Внешне титан похож на сталь.

Известно, что некоторые химические элементы могут существовать в виде двух или более простых веществ, отличающихся по строениям и свойству. Обычно вещество переходит из одной аллотропной модификации в другую при постоянной температуре. Титан имеет две такие модификации. Альфа-модификация титана существует при температуре до 882,5 ° С. Высокотемпературная бета-модификация может быть устойчивой от 882,5 °С до температуры плавления.

Легирующие добавки по-разному ведут себя в различных аллотропных модификациях титана. Изменяют они и температуру, при которой происходит α/β-переход. Так, увеличение концентрации алюминия, кислорода и азота в сплаве титана повышает это температурное значение. Область существования α-модификации расширяется. А эти элементы называют α-стабилизаторами .

Олово и цирконий не изменяют температуру α/β-превращений. Поэтому их считают нейтральными упрочнителями титана.

Все остальные легирующие добавки к титановым сплавам считаются β-стабилизаторами. Растворимость их в модификациях титана зависит от температуры. А это даёт возможность повышать прочность титановых сплавов с этими добавками с помощью закалки и старения. Используя разные типы легирующих добавок, получают титановые сплавы с самыми различными свойствами.

Титановые сплавы в медицине

Организм человека хорошо переносит конструкции из титанового сплава. Уже много лет такие сплавы применяются в медицине. Они устойчивы к коррозии в агрессивных средах человеческого тела. На их поверхности образуется оксидная плёнка, которая препятствует выходу ионов имплантата в организм. Ткани вокруг таких имплантатов не изменяются. Титановые сплавы очень прочные, способны выдерживать большую нагрузку. Они прочнее, чем хром, никель, нержавеющие стали. При стерилизации медицинских инструментов из таких сплавов спиртом, обжиганием, парами формалина и т.д. поверхности титановых сплавов не разрушаются. И самое важное – титановые сплавы не вызывают аллергии.

Хирургические имплантаты

Сетчатый эндопротез из титанового сплава

Часто говорят, что титан – металл хирургов. Действительно, в хирургической практике титановые сплавы применяются для изготовления различных костных имплантатов. Протез тазобедренного сустава из титанового сплава способен выдерживать усилие до трёх тысяч кг. В организме титановый сплав стоек. Поэтому ткани, прилегающие к нему, не воспаляются. Кроме того, изготавливаются титановые имплантаты быстро. И стоимость их значительно ниже стоимости имплантатов из других сплавов.

Высокая пластичность титановых сплавов позволяет получать из них проволочную сетку и фольгу. Проволочная сетка применяется для пластики мягких тканей. Подшивается такая сетка атравматической иглой с титановой нитью. Титановая мононить иногда используется в офтальмологии.

Титановые сплавы в стоматологии

Зубные имплантаты

В стоматологии применение титановых сплавов также оказалось очень успешным. Титановые сплавы легко соединяются с фарфором и композиционными цементами. Из них делают литые каркасы зубных протезов, стоматологические мосты и коронки. Титановые каркасы легко облицовываются керамикой. Такие протезы долговечны и служат 10-15 лет.

Титановые сплавы и медицинские инструменты

Хирургические инструменты

Применяются титановые сплавы и при изготовлении медицинских инструментов – скальпелей, крючков, пластинчатых пинцетов, зажимов. Эти инструменты гораздо легче инструментов из нержавеющей стали.

Нашли применение титановые сплавы в производстве инвалидных колясок, наружных ортопедических протезов.

Титановые сплавы прочные и пластичные, как сталь, лёгкие, как алюминий, и стойкие к коррозии, как углепластик. Они незаменимы в хирургии, стоматологии, офтальмологии, ортопедии.

Установка титанового имплантата

Александр Модестов зубной техник – мастер, демонстратор фирм Дентаурум и Еспридент, Германия

В настоящее время титан занял свое достойное место в ряду современных материалов.

У этого материала интересная история, принесшая за собой много открытий, которым он обязан своему сегодняшнему успеху, достигнутому в очень короткое время. Сегодня титан успешно применяется в автомобиле- и авиастроении, в космических кораблях и судостроении, везде, где необходима эффективная защита от коррозии и конечно в медицине.

При росте аллергических реакций на различные металлы и сплавы металлов применяемых в медицине и стоматологии титан рассматривается как решающая альтернатива.

Благодаря замечательной биосовместимости и невероятной стабильности титана, этот металл обратил на себя внимание ортопедии. Сегодня из титана изготавливаются тазобедренные и коленные протезы, различные иглы и винты. Также корпуса для сердечных стимуляторов и слуховых аппаратов тоже из титана.

Высокая биосовместимость обусловлена способностью титана в доли секунды образовывать на своей поверхнрсти защитный оксидный слой. Благодаря которому он не корродирует и не отдаёт свободные ионы металла, которые способны вокруг имплантата или протеза вызывать патологические процессы. На сегодняшний день титан даёт нам возможность использования только одного металла в полости рта. Мы можем изготовить практически любые конструкции. Не происходит ни каких электрохимических реакций между различными частями протезов, а окружающие протез ткани остаются свободными от ионов металла.

Вкладки и накладки, цельнолитые и облицованные коронки и мосты, бюгельные протезы и цельнолитые базисы полных съёмных протезов, комбинированные протезы и протезирование на имплантатах (включая сами имплантаты) – вот спектр применения титана, о котором не мечтали и самые большие оптимисты.

Влияние титана на современную стоматологию так всеобъемлюще, что даже скептически настроенные коллеги справедливо отдают должное его особенностям, внимательно следя за его развитием, особенно в современной имплантологии. Поэтому мы сегодня посвящаем эту статью вопросам литья титана и его обработки в условиях зуботехнической лаборатории.

Рис. 1
Рис. 2
Рис. 3
Рис. 4
Рис. 5
Рис. 6
Рис. 7
Рис. 8
Рис. 9
Рис. 10
Рис. 11

В медицине первые опыты по применению титана начались в 40-х годах со вживления в мягкие ткани животных цилиндриков из титана, которое протекало без реакции со стороны организма.

В стоматологии применение титана началось с использования этого металла в своих исследовательских работах профессором Бренемарком в 1956 году.

Пока титан утверждал себя в зубной импланталогии, росло параллельно желание использовать этот металл так же и в индивидуальном протезировании.

Первые эксперименты литья титана в зуботехнической области были произведены доктором Ватерстраатом в 1977 году.

Тепловое преобразование формы титана в зуботехнических целях стало возможным с применением литейной установки для литья титана японской фирмы Охара с 1981 года.

Методы холодной обработки титана – например фрезерная обработка - изготовление имплантатов или фрезерование каркасов коронок или мостовидных протезов путем так называемых САD/CAM технологий, не влечет за собой особых сложностей. Проблемы присутствуют в так называемом горячем изменении формы металла, т.е. в литье. Нам интересен этот процесс в первую очередь не очень высокой себестоимостью, по отношению к ещё развивающимся CAD/CAM технологиям, а во – вторых, как единственный на сегодняшний день способ изготовления каркасов бюгельных протезов.

Литьё титана

Как мы уже отметили высокая реакционная способность титана, высокая точка плавления требуют, низкая плотность требуют специальную литейную установку и паковочную массу. В данное время на рынке известны три системы, которые считаются лучшими, для литья титана. Это система Рематитан фирмы Дентаурум (Германия), система Биотан фирмы Шутц-дентал (Германия) и система японской фирмы Морита. Сегодня мы подробно познакомимся с Рематитан – литейной системой. Во-первых потому, что на наш взгляд это лучшая система, которая позволяет добиться литья очень высокого и стабильного качества, во вторых мы имеем уже 4,5 летний опыт работы.

Что подразумевается под системой для литья титана?

В первую очередь это литейная установка Рематитан- Аутокаст или Аутокаст – Универсал.

Литейные установки Аутокаст основаны на принципе плавки титана в защитной среде аргона на медном тигле посредством вольтовой дуги, точно также в ромышленности сплавляют титановую губку для получения чистого титана. Заливка металла в кювету происходит при помощи вакуума в литейной камере и повышенного давления аргона в плавильной- во время опрокидывания тигля.

Внешний вид и принцип, как функционирует установка, показан на рис. 1 и 2.

В начале процесса обе камеры плавильная (в верху) и литейная (в низу) промываются аргоном, затем из обеих камер эвакуируется смесь воздуха и аргона, после чего плавильная камера заполняется аргоном а в литейной образуется вакуум. Включается вольтовая дуга и начинается процесс плавления титана. После прохождения определенного времени резко опрокидывается плавильный тигель и металл всасывается в находящуюся в вакууме форму, собственный вес а также повышающееся давление аргона на этот момент также способствуют его загонке. Этот принцип даёт возможность получать хорошие, плотные отливки из чистого титана.

Следующим компонентом литейной системы является паковочная масса.

Так как в расплавленном состоянии реакционная способность титана очень высока, то он требует специальных паковочных масс, которые изготавливаются на основе оксидов алюминия и магнезии, которые в свою очередь позволяют снизить реакционный слой титана до минимума. Дентаурум предлагает несколько таких масс, например Рематитан Плюс – паковочная масса для отливки бюгельных протезов, паковочные массы Рематитан Ультра и Тринелл для отливки коронок и мостов (Рис. 3, 4). Тринелл к примеру это новое покаление паковочных масс для титана. Первая в мире скоростная паковочная масса для титана, которая позволяет значительно экономить время и дает очень чистую поверхность металла, практически без реакционного слоя.

Титан – литейный металл

Тритан 1 и Рематитан М. Химическая чистота минимум 99,5%. Тритан 1 – это титан град 1, пригоден для всех видов работ, очень низкое содержание кислорода в металле. Рематитан М – по прочности относится к титану град 4, значительно повышеный предел прочности и эластичность, делают возможным применение в кламмерных бюгельных протезах и для мостовидных работ большой протяженности.

Что нужно знать при работе с титаном?

Особенности моделирования

Изготавливаемый для облицовки керамикой каркас должен иметь уменьшенную анатомическую форму зуба. Внутренняя поддержка керамики каркасом очень важна, кроме того для благоприятного теплообмена между керамикой и металлом во время обжига обязательно наличие или охладительных ребрышек (Рис. 5) или гирлянды. На мостовидных протезах большой протяженности наличие гирлянды обязательно также в целях упрочнения каркаса. Толщина колпачков должна быть не ниже 0,4–0,5 мм. Каркасы бюгельных протезов моделируются также несколько толше, по отношению к каркасам из хром-кобальтовых сплавов.

Штифтование

Правильное штифтование (установка литников и создание литниковой системы), также как и правильное расположение в кювете играет огромную роль и производится строго по правилам предложенным фирмой производителем литейных установок. Фирма Дентаурум предлагает следующие требования к литейной системе Рематитан. Для коронок и мостов использование только специального литьевого конуса, который позволяет оптимально направлять металл к отливаемому объекту. Высота входного литникового канала от конуса до питающей балки 10 мм при его диаметре 4–5 мм. Диаметр питающей балки 4 мм.

Подводные литниковае каналы к отливаемому объекту диаметром 3 мм и высотой также не более 3 мм. Очень важно: подводные каналы не должны располагаться напротив входного литникового канала (Рис. 6 и 7), в противном случае очень высока возможность возникновения газовых пор. Все соединения должны быть очень гладкими, без острых углов и т.д. чтобы максимально снизить возникающую во время заливки металла турбулентность которая приводит к образованию газовых пор. Литниковая система для бюгельных протезов, а особенно для цельнолитых базисов полных съёмных протезов также отлична, от литниковых систем которые мы применяем для отливки бюгельных протезов из хром-кобальтовых сплавов.

Во всех трёх упомянутых выше литейных установках двух камерный принцип, титан плавится в плавильной камере в среде аргона, на медном тигле при помощи вольтовой дуги, и посредством вакуума или давления аргона загоняется в форму. Отличительными являются способ загонки металла и система штифтования, которые и влияют на количество ошибок во время литья.

Альфа-слой

Посредством реакции и диффузии газообразных и твёрдых элементов (кислород, углерод, силициум и др.) из атмосферы плавильной камеры и паковочной массы, происходит образование реакционной зоны и более твердой поверхности титана. Это изменение твердости зависит от веществ, из которых изготовленна паковочная масса и обусловленных реакций с жидким титаном.

Поверхностный слой или альфированный слой настолько хрупкий и загрязнённый, что во время предварительной обработки титана, особенно под облицовку керамикой, должен быть полностью удален.

Изменение кристаллической структуры

Для зуботехнического применения переход титана при температуре 882,5 °С из одного кристолического состояния в другое имеет очень большое значение. Титан переходит при этой температуре из альфа-титана с гексагональной кристалической решеткой в ветта-титан с кубической. Что влечет за собой, не только изменение его физических параметров, но и увеличение на 17% его оъёма.

Поэтой причине также необходимо использование специальных керамик, температура обжига которых должна находиться ниже 880 °С.

Пассивный слой

У титана очень сильное стремление при комнатной температуре с кислородом воздуха образовывать мгновенно тонкий защитный оксидный слой, коорый защищает его в дальнейшем от коррозии и обуславливает хорошую переносимость титана организмом.

Пассивный слой имеет способность самостоятельно регенерироваться.

Этот слой, на различных этапах работы с титаном, должен гарантироваться.

После пескоструйной обработки, перед чисткой каркаса паром, необходимо оставить каркас минимум 5 мин. пассивироваться. Только что отполированный протез должен пассивироваться не менее 10–15 минут, в противном случае нет гарантии хорошего блеска готовой работы.

Требования к обработке, соответствующие материаллу

Физические свойства, фазы оксидации и изменение кристаллической решетки должны учитываться при обработке титана.

Правильная обработка может успешно производиться только специальными фрезами для титана, со специальной крестообразной насечкой (Рис. 10). Уменьшенный угол рабочей поверхности которых дает возможность оптимально снимать достаточно мягкий металл, с одновременно хорошим охлаждением имнструмента. Обработка титана должна производится без сильного давления на инструмент.

При неправильном инструменте, или сильном нажиме возможны локальные перегревы металла, сопровождаемые сильным образованием оксида и изменением кристаллической решетки. Визуально на обрабатываемом объекте происходит изменение цвета и слегка грубеет поверхность. В этих местах не бутет необходимого сцепления с керамикой (возможность появления трещин и сколов), если это не облицовываемые участки, то дальнейшая обработка и полировка будет также не соответствовать предъявляемым требованиям.

Фрезы для титана должны храниться отдельно от других инструментов. Они должны регулярно очищаться пароструйным аппаратом и щеточками из стекловолокна от остатков титана.

Использование при обработке титана различных карборундовых дисков и камней, или алмазных головок сильно загрязняет поверхность титана, что приводит в дальнейшем также к трещинам и сколам в керамике. Поэтому использование вышеперечисленных инструментов пригодно только для обработки например каркасов бюгельных протезов, а использование алмазных головок следует полностью исключить. Шлифовка и дальнейшая полировка открытых участков титана возможна только при помощи адаптированных для титана шлифовальных резинок и полировочных паст. Многие фирмы, занимающиеся производством вращающихся инструментов, выпускают на данный момент достаточный ассортимент фрез и шлифовальных резинок для титана.

Я, например, в своей повседневной работе использую обрабатывающие инструменты фирмы Дентаурум (Рис.11).

Подходящие для титана параметры обработки:

– Низкая скорость вращении наконечника – макс. 15 000 об/мин.

– Низкое давление на инструмент

– Периодическая обработка.

– Обработка каркаса только в одном направлении.

– Избегать острых углов и напусков металла.

– При шлифовке и полировке использовать только подходящие шлифовальные резинки и полировочные пасты.

– Периодическая чистка фрез пароструйным аппаратом и кисточкой из стекловолокна.

Пескоструйная обработка титана

Пескоструйная обработка перед нанесением бондингового слоя при керамическом покрытии также как и при облицовке композитными материалами должна соответствовать следующим требованиям:

– Чистый, только одноразовый оксидалюминия.

– Максимальная величина зерна песка 150 µm, оптимально 110–125 µm.

– Максимальное давление из карандаша 2 бара.

– Направление потока песка под прямым углом к поверхности.

После обработки необходимо оставить обработанный объект на 5–10 мин. пассивироваться, после чего произвести чистку поверхности паром.

Оксидный обжиг или похожие процедуры при работе с титаном полностью исключаются. Использование кислот или травление также полностью исключено.

Во второй части нашей статьи, котрая выйдет в одном из ближайших номеров, мы рассмотрим аспекты титан - керамических облицовок, облицовок композитными материалами, возможности изготовления кламмерных и комбинированных бюгельных протезов из титана.

Важная информация:

· Титан это не сплав – это чистый химический элемент, металл;

· Порядковый номер в переодической системе 22;

· Титан обладает способностью, находясь в организме, долгое время оставаться инертным;

· В зубопротезной технике используется чистый титан в четырёх градациях (от Т1 до Т4);

· Твёрдость, в зависимости от градации, от 140 до 250 ед.,

· КТР 9,6 х 10 (–6) К (–1) ;

Для керамических облицовок требуется специальная керамика;

· Точка плавления 1 668 °С, высокая реакционная способность;

Использование специальных литейных установок и паковочных масс;

· Плотность 4,51 г/см 3 ;

Примерно в четыре раза меньшая плотность, а значит и вес, по отношению к золоту, дает пациентам повышенный комфорт во время пользования зубными протезами;

Люди, вследствие определенных обстоятельств утратившие один или несколько зубов, всерьез задумываются о том, как вернуть себе красивую улыбку и вновь радовать окружающих ровными, белоснежными зубами. По словам стоматологов, самой передовой технологией восстановления зубов на сегодняшний день является имплантация.

Преимущества имплантации зубов

Современная медицина уже довольно давно применяет метод имплантации, где имплант выполняет роль корня зуба. По сути, это штифт, который ввинчивают в костную ткань, а после его вживления устанавливают сверху коронку либо зубной мост.

Вживление имплантов имеет немало преимуществ перед прочими вариантами установки зубных протезов. Во-первых, имплантация не требует обточки здоровых зубов и создания зубных мостов. Во-вторых, импланты являются отличной альтернативой съемным протезам, полностью избавляя от дискомфорта, которыми «славятся» последние. А ведь некоторые пациенты совсем не могут носить вставную челюсть из-за повышенной чувствительности слизистой полости рта. У таких людей попросту нет другой альтернативы, кроме установки импланта.

Нельзя не отметить и тот факт, что имплантация является единственным методом, который позволяет получить почти абсолютное сходство с утраченным естественным зубом, что особенно важно при протезировании передних (фронтальных) зубов.

Выбор материала при имплантации зуба

Имплантация является сложной хирургической процедурой, которая сопряжена с определенными рисками. Чтобы минимизировать их важно со всей ответственностью подойти к выбору имплантируемого материала, ведь организм может попросту отторгнуть внедряемый материал.

Не секрет, что устанавливаемому протезу придется постоянно подвергаться нагрузкам, а потому материал, из которого он выполнен, должен иметь подходящие механические характеристики и хорошую совместимость с костными тканями. В настоящее время этим требованиям в большей степени удовлетворяют титан и цирконий. Каждый из названных материалов обладает как преимуществами, так и недостатками, а потому рассмотрим причины выбора каждого из них.

Титановые зубные импланты

Титан используется в качестве материала для изготовления зубных имплантов уже не один десяток лет, и до последнего времени являлся безальтернативно лучшим материалом для данных изделий. Чтобы убедиться в этом, достаточно взглянуть на преимущества этого металла:

  • высокая прочность и пластичность, вязкость и ударная устойчивость;
  • наличие оксидной пленки на поверхности титана, которая защищает металл от разрушения;
  • хорошая приживаемость титана к костным тканям, а значит, низкая вероятность отторжения материала в силу его биологической инертности;
  • нетоксичность металла и его оксида для организма;
  • отсутствие вкуса;
  • низкая способность провоцировать аллергические реакции;
  • малый вес, благодаря которому пациент практически не ощущает утяжеления челюсти с установленным на ней титановым имплантом;
  • возможность проводить КТ и МРТ, так как титан не относится к ферромагнетикам и не нагревается в процессе процедуры;
  • быстрое срастание с костной тканью;
  • срок службы более 30 лет.

Стоит сказать, что для удешевления продукта некоторые производители выпускают сплав титана с алюминием. Такие импланты стоят гораздо дешевле, однако наличие той или иной примеси заметно снижает срок службы протеза, уменьшает вероятность приживления и может сопровождаться рядом других побочных эффектов. Именно поэтому если вы желаете установить именно титановый имплант, выбирайте продукцию с маркой титана не ниже «Град 5».

Даже учитывая перечисленные преимущества титана, при некоторых заболеваниях данный металл противопоказан к установке. В этот список входят:

  • сахарный диабет (возникают проблемы с регенерацией костей);
  • гемофилия и прочие патологии крови;
  • болезни щитовидной железы;
  • заболевания сердечно-сосудистой системы (ИБС, гипертония и другие);
  • болезни соединительной ткани (в т.ч. ревматизм);
  • патологии иммунной системы;
  • наличие злокачественных опухолей;
  • нарушение функции ЦНС;
  • туберкулез.

Кроме того, титановые импланты не устанавливаются при тяжелых формах пародонтоза. В случае стоматита, гингивита и воспалительных процессов в корнях зубов, имплант устанавливается, но только после излечения заболеваний.

Стоит учитывать, что организм некоторых пациентов просто не переносит внедрения металла в ткани. Таким лицам для протезирования необходимо использовать другой материал, не относящийся к металлам. Альтернативой в этом случае может выступать диоксид циркония.

Читайте также:

Циркониевые зубные импланты

Импланты из диоксида циркония появились в стоматологии не так давно, однако уже сегодня они заслужили немало лестных оценок профессиональных стоматологов и повсеместно начали вытеснять металлокерамические импланты за счет своих технических и эстетических характеристик.

Первое, что бросается в глаза – белоснежный цвет диоксида циркония. Недаром стоматологи называют его «белое золото». Казалось бы, разве важен цвет импланта, если сверху он скрывается под коронкой? На самом деле, цвет очень важен, так как керамические коронки обладают определенной прозрачностью, а значит, в некоторых случаях через них может просвечиваться металлический каркас. Цирконий в этом случае будет совершенно незаметен, а потому только такой материал может устанавливаться на передние (фронтальные) зубы. А вот титан для этого не годится.

Благодаря этой особенности из диоксида циркония изготавливают абатмент, т.е. связующее звено между имплантом и коронкой. Более того, в современной стоматологии из этого материала нередко изготавливают сами коронки, ведь кроме белоснежного цвета такие протезы способны выдерживать любые перепады температур и максимальные жевательные нагрузки. Цирконий не подвержен повреждениям, сломам и сколам.

Кроме лучшей эстетики, у диоксида циркония есть ряд технических преимуществ, о которых также следует упомянуть. К ним относятся:

  • отсутствие необходимости маскировки штифта;
  • отсутствие видимой границы на стыке коронки и десны;
  • возможность установки импланта при наличии различных заболеваний, в том числе при тяжелом течении пародонтоза;
  • лучшая сохранность костной ткани (за счет отсутствия металла);
  • возможность проходить процедуры КТ и МРТ;
  • противомикробные свойства;
  • низкая теплопроводность.

Отдельно следует сказать о приживаемости костной ткани и аллергических реакциях на имплант из диоксида циркония. Данный материал не относится к металлам, благодаря чему его рекомендуют устанавливать даже аллергикам. К тому же, цирконий лучше приживается и реже отторгается тканями организма. Некоторые эксперты заявляют о практически 100% приживаемости зубных имплантов из циркония.

Справедливости ради скажем, что протезы из титана тоже великолепно приживаются и редко отторгаются организмом. Негативные отзывы, связанные с этим материалом, относятся, скорее, к дешевым сплавам титана с ванадием и алюминием, которые действительно, нередко вызывают отторжение.

Если говорить о сроках службы, то имплант из диоксида циркония гарантированно будет стоять в течение 20–25 лет, что несколько меньше, чем титановый протез (30 лет). Однако данное преимущество титановых имплантов довольно условное, ведь применять цирконий в качестве основы для зуба стали не так давно, а значит прошло еще мало времени, чтобы окончательно установить срок действия таких имплантов. С другой стороны, малая изученность материала все же его минус, т.к. с годами могут выявиться и новые побочные эффекты.

Очевидным минусом импланта из диоксида циркония является его высокая цена, которая в несколько раз превосходит по стоимости изделия из титана.

Есть и еще один важный момент. Мы уже упоминали о том, что цирконий великолепен в качестве импланта на передние зубы. Однако если мы говорим о жевательных (молярных) зубах, то здесь оптимальным материалом для импланта является именно титан. Такие зубы, в силу своего расположения, подвергаются наибольшей нагрузке при жевании, а значит, к материалу для вживляемого зуба предъявляются повышенные требования. Титан соответствует им всем. А если учесть еще и гораздо меньшую стоимость в сравнении с цирконием, становится понятно, что лучшего материала для жевательных зубов, чем титан, просто не найти.

Резюмируя все вышеописанное, можно сказать, что титан и цирконий являются лучшими биоинертными материалами для изготовления имплантов зуба. По некоторым характеристикам цирконий более универсальный и надежный в сравнении с титаном. Однако высокая цена таких изделий нередко уравновешивает данные материалы в глазах потребителя. В любом случае, при отсутствии противопоказаний выбор всегда остается за покупателем.
Здоровья вам и красоты!