Главная · Язва · Не обладает способностью ингибировать ферменты свертывания крови. Фермент, вызывающий свертывание крови, как называется? Что такое свертывающая система крови

Не обладает способностью ингибировать ферменты свертывания крови. Фермент, вызывающий свертывание крови, как называется? Что такое свертывающая система крови

Ферменты (лат. fermentare – вызывать брожение, синоним «энзимы») – специфические вещества белковой природы, вырабатываемые клетками и тканями живых организмов. Ферменты относятся к группе биокатализаторов, общим свойством которых является способность изменять скорость химических процессов, свойственных живому организму.

Ферментативный катализ лежит в основе всех проявлений жизни. Разнообразие физиологических функций (проводимость нерва, сокращение мышцы, рост, секреция и др.) обеспечивается ферментативными процессами.

Практически все метаболические реакции, протекающие в организме, являются ферментативными. Ферментативные процессы были известны в далекой древности и использовались в хлебопечении, сыроварении, для получения спиртных напитков.

Ферменты являются белками, простыми или сложными. Молекулярный вес их колеблется в широких пределах: от нескольких тысяч до миллиона. По аминокислотному составу ферменты не отличаются от белков, не обладающих ферментативным действием. Активность ферментов обусловлена специфическим расположением аминокислот в белковой молекуле.

Факторы, влияющие на активность фермента: температура, вид субстрата (объекта воздействия фермента), рН среды, наличие активаторов и ингибиторов (ингибиторы – вещества, подавляющие активность ферментов).

Разные ферменты имеют максимальную активность при различных величинах рН. Оптимум рН обычно лежит в пределах, близких к нейтральной среде; для некоторых протеолитических ферментов (то есть ферментов, участвующих в расщеплении белков) – в сильно кислой или щелочной области.

Скорость ферментативной реакции зависит от природы фермента, который может обладать низкой или высокой активностью. При прочих равных условиях начальная скорость ферментативной реакции пропорциональна концентрации фермента. Повышение температуры, как правило, увеличивает активность фермента, но при дальнейшем повышении температуры может наступить его инактивация.

Одним из характерных и весьма важных в биологическом отношении свойств ферментов является их высокая специфичность, заключающаяся в том, что каждый фермент действует только на одно вещество или несколько сходных по своему строению веществ и не действует на другие соединения. Специфичность фермента определяется его белковым составом. Одни ферменты обладают высокой специфичностью, другие малоспецифичны.

Протеолитические ферменты, выделяющиеся в желудочно-кишечный тракт, находятся в виде так называемых проферментов (зимогенов), что исключает возможность самопереваривания тканей, вырабатывающих данные ферменты. В неактивном состоянии продуцируются и ферменты, участвующие в процессе свертывания крови.

В основе многих заболеваний лежат нарушения нормального функционирования ферментативных процессов. К настоящему времени идентифицировано около 1000 различных ферментов, из которых более 50 уже нашли применение в лабораторной диагностике.

Большинство ферментов, катализирующих химические реакции, протекающие в живом организме, находятся в клеточной среде, тем не менее на основании анализов внеклеточных жидкостей (особенно плазмы или сыворотки крови) можно сделать заключение об изменениях, происходящих внутри клеток разных органов и тканей.

Повышенное или пониженное содержание ферментов – чрезвычайно тонкий и чувствительный показатель состояния организма. Изменения активности ферментов в биологических жидкостях может быть обусловлено рядом причин.

Повышение активности может быть результатом ускорения процессов синтеза фермента (например, щелочной фосфатазы при рахите, гепатите), некроза клеток (например, креатинфосфокиназы, аспартатаминотрансферазы при инфаркте миокарда), понижения выведения (например, щелочной фосфатазы при закупорке желчевыводящих путей), повышения проницаемости клеточных мембран (например, аланин– и аспартатаминотрансфераз при вирусном гепатите).

Понижение ферментативной активности вызывается уменьшением числа клеток, секретирующих фермент, недостаточностью синтеза, увеличением выведения фермента, торможением его активности ингибитором.

Основной принцип диагностики – выбор оптимального спектра ферментов, изменение активности которых характерно для патологии определенных органов или тканей. Определение ряда сывороточных ферментов помогает в диагностике заболеваний печени, желчевыводящих путей, поджелудочной железы, скелетной мускулатуры. Использование ферментных тестов при инфаркте миокарда особенно необходимо в тех случаях, когда затруднена интерпретация электрокардиограммы. Исследование ферментов помогает диагностировать некоторые заболевания крови, злокачественные новообразования (опухоли).

Для интерпретации результатов, полученных при исследовании, важно знать нормальные величины активности изучаемого фермента. Кроме того, иногда необходимо учитывать возраст и пол, характер питания, интенсивность физической нагрузки.

Сывороточные ферменты могут значительно менять свою активность под влиянием препаратов, ряда веществ (например, алкоголя). Лаборатория, производящая исследование, обязательно должна указывать пределы колебаний нормальных величин активности фермента, поскольку его определение может осуществляться различными методами.

Аминотрансферазы (АЛТ, ACT)

Аминотрансферазы – аланинаминотрансфераза (АЛТ), аспартатаминотрансфераза (ACT). АЛТ присутствует в очень больших количествах в печени и почках, в меньших – в скелетных мышцах и сердце. ACT распределена во всех тканях тела. Наибольшая активность имеется в печени, сердце, скелетных мышцах и эритроцитах.

Норма АЛТ (АлАТ):

Норма АСТ (АсАТ):

Повышение активности – физиологическое – прием лекарственных препаратов: аскорбиновая кислота, кодеин, морфий, эритромицин, гентамицин, линкомицин, холинергические препараты;

Повышение активности – патологическое – острый вирусный гепатит (ACT до 150-1000 Ед/л, АЛТ до 300-1000 Ед/л), хронический гепатит, цирроз печени, опухоли печени и метастазы в печень, инфекционный мононуклеоз, инфаркт миокарда (при этом активность ACT выше чем активность АЛТ), легочная эмболия, опоясывающий лишай (Herpes zoster), полиомиелит, малярия, лептоспироз;

Снижение активности – снижение содержания в организме витамина В6, повторные процедуры гемодиализа, почечная недостаточность, беременность.

Гамма-глутамилтрансфераза

Гамма-глутамилтрансфераза или гамма-глутамилтранспептидаза (гамма-ГТ, ГГТ, GGT, Gamma-glutamyltransferase) – фермент, участвующий в обмене аминокислот. Анализ ГГТ применяется в диагностике заболеваний печени и других органов желудочно-кишечного тракта.

Норма:

Для мужчин до 32 Ед/л;

Для женщин до 49 Ед/л.

Причины изменения нормальных показателей:

Повышение активности ГГТ – в основном при заболеваниях печени и желчевыводящих путей, при алкогольной интоксикации и хроническом алкоголизме, при приеме эстрогенов, пероральных контрацептивов;

Снижение активности ГГТ – при циррозе печени.

Амилаза

Амилаза (α-амилаза) – фермент, ответственный за разложение крахмала до мальтозы. В организме человека а-амилаза содержится в различных органах и тканях.

Норма: 25–100 Ед/л

Причины изменения нормальных показателей:

Повышение активности – острый панкреатит, вирусный гепатит, эпидемический паротит («свинка»), лекарственные препараты – кортикостероиды, салицилаты, тетрациклин;

Снижение активности – гепатиты, токсикозы беременных, недостаточная функция поджелудочной железы.

Амилаза панкреатическая

Амилаза панкреатическая – фермент, секретирующийся клетками поджелудочной железы.

Норма:

Мужчины – до 50 Ед/л;

Женщины – до 50 Ед/л;

Беременность от 1-й до 40-йнедели – до 50 Ед/л.

Причины изменения нормальных показателей:

Повышение активности – панкреатит (обычно – острый), прием алкоголя, лекарственных препаратов – глюкокортикоидов, пероральных контрацептивов, наркотических средств, мочегонных препаратов, реже – острая хирургическая патология, протекающая с перитонитом;

Снижение активности – недостаточность поджелудочной железы, при хроническом панкреатите и тяжелых формах острого панкреатита – неблагоприятный признак.

Лактат

Лактат (лактатдегидрогеназа, ЛДГ) – фермент, участвующий в процессе окисления глюкозы и образовании молочной кислоты. ЛДГ содержится почти во всех органах и тканях человека, особенно много его в мышцах. При полноценном снабжении тканей кислородом соль молочной кислоты (лактат) не разрушается и выводится. В условиях недостатка кислорода – накапливается, вызывает чувство мышечной усталости, нарушает процесс тканевого дыхания.

Анализ биохимии крови на ЛДГ проводят для диагностики заболеваний миокарда (сердечной мышцы), печени, опухолевых заболеваний.

Норма:

Дети до 1 месяца – 150–785 Ед/л;

Дети 1–6 месяцев – 160–435 Ед/л;

Дети 7-12 месяцев – 145–365 Ед/л;

Дети 1–2 лет – 86-305 Ед/л;

Дети 3-16 лет – 100–290 Ед/л;

Взрослые – 120–240 Ед/л;

Беременность 1-40-я неделя – до 240 Ед/л.

Причины изменения нормальных показателей:

Повышение активности – заболевания печени (вирусный и токсический гепатит, желтуха, цирроз печени), инфаркт миокарда и инфаркт легкого, заболевания кровеносной системы (анемия, острый лейкоз), травмы скелетных мышц, острый панкреатит, заболевания почек (гломерулонефрит, пиелонефрит), злокачественные опухоли различных органов, недостаточное снабжение кислородом тканей (кровотечение, сердечная недостаточность, дыхательная недостаточность, анемия);

Повышение активности происходит также при беременности, у новорожденных и при физической нагрузке, после приема алкоголя и некоторых лекарственных веществ (кофеин, инсулин, аспирин);

Снижение активности ЛДГ диагностического значения не имеет.

Креатинкиназа

Креатинкиназа (креатинфосфокиназа) – фермент, содержащийся в скелетных мышцах, реже – в гладких мышцах (матке, ЖКТ) и головном мозге. Поэтому определение креатинфосфокиназы крови широко применяется в ранней диагностике инфаркта миокарда.

Норма:

Возраст

Уровень КФК,
Ед/л

2 - 5 дней

< 652

5 дней - 6 месяцев

< 295

6 - 12 месяцев

< 203

12 мес. - 3 года

< 228

3 года- 6 лет

< 149

Женщины

6 - 12 лет

< 154

12 - 17 лет

< 123

> 17 лет

< 167

Мужчины

6 - 12 лет

< 247

12 - 17 лет

< 270

> 17 лет

< 190

Причины изменения нормальных показателей:

Повышение активности – инфаркт миокарда, миокардит, миокардиодистрофия, сердечная недостаточность, столбняк, гипотиреоз, «белая горячка» (алкогольный делирий), опухоли мочевого пузыря, молочной железы, кишечника, легкого, простаты, печени;

Снижение активности – при уменьшении мышечной массы и малоподвижном образе жизни.

Фосфатаза щелочная

Биохимический анализ крови на щелочную фосфатазу проводят для диагностики заболеваний костной системы, печени, желчевыводящих путей и почек.

Норма щелочной фосфатазы в крови:

Женщины – до 240 Ед/л;

Мужчины – до 270 Ед/л;

У детей показатели выше (до 600 Ед/л) в связи с активным процессом роста костей.

Причины изменения нормальных показателей:

Повышение активности – в случае застоя желчи при заболеваниях печени, поражения печени, вызванные лекарствами (хлорпромазин, метилтестостерон), заболевания костей, заболевания паращитовидных желез, рахит, воздействие лекарственных препаратов (сульфаниламиды, бутадион, эритромицин, тетрациклин, линкомицин, новокаинамид, пероральные контрацептивы, передозировка аскорбиновой кислоты);

Повышение активности физиологическое – в последнем триместре беременности и после менопаузы;

Снижение активности – гипотиреоз, нарушения роста костей, недостаток цинка, магния, витамина В12 или С (цинга) в пище, анемии. Во время беременности снижение активности щелочной фосфатазы происходит при недостаточности развития плаценты.

Липаза

Определение липазы составляет основу диагностики панкреатита одновременно с анализом уровня а-амилазы в крови. При остром панкреатите уровень липазы в крови увеличивается через несколько часов после острого приступа до 200 раз.

Норма липазы для взрослых – от 0 до190 Ед/мл.

Причины изменения нормальных показателей:

Повышение активности – панкреатиты любого происхождения, перитонит, ожирение, сахарный диабет, подагра, прием барбитуратов.

Снижение активности – онкологические заболевания (кроме рака поджелудочной железы), избыток жиров в питании.

Холинэстераза

Показания к назначению анализа:

Подозрение на отравление фосфорорганическими инсектицидами (например, дихлофос и другие);

Оценка функций печени при имеющейся печеночной патологии;

Оценка риска осложнений при хирургических вмешательствах, исследование чувствительности пациента к действию миорелаксантов (при общем наркозе).

Норма: 5300-12900 Ед/л.

Причины изменения нормальных показателей:

Повышение активности – алкоголизм, артериальная гипертония, маниакально-депрессивный психоз, нефроз, ожирение, рак молочной железы, сахарный диабет, столбняк;

Повышение активности может происходить на начальных сроках беременности;

Снижение активности – заболевания печени (цирроз, гепатит, метастатический рак печени), инфаркт миокарда, острое отравление инсектицидами, онкологические заболевания;

Снижение активности может происходить на поздних сроках беременности, после хирургических вмешательств и при применении некоторых лекарственных препаратов (пероральные контрацептивы, анаболические стероиды, глюкокортикоиды).

С-пептид

С-пептид (Insulin C-peptide, Connecting peptide) – это фрагмент молекулы проинсулина, в результате отщепления которого образуется инсулин.

Показания к назначению анализа: диагностика сахарного диабета.

Норма:

В сыворотке крови – 0,7–4,0 нг/л;

В моче – 15,5-28,0 нг/л.

Причины изменения нормальных показателей:

Повышение показателей – опухоль, продуцирующая инсулин, обострение хронического панкреатита, избыточный синтез инсулина;

Снижение показателей – сахарный диабет I типа, снижение содержания инсулина в крови вследствие воспалительного процесса (краснуха), стрессовая реакция, избыточное введение инсулина.

Это единая система, которая выполняет следующие функции:

    поддержание крови в сосудах в жидком состоянии;

    осуществление гемостаза (предотвращение больших кровопотерь).

Гемостаз — сложный ферментативный процесс, в результате которого образуется кровяной сгусток.

Система свертывания крови — это многокомпонентная система, в состав которой входят белки, фосфолипиды, обломки клеточных мембран и ионы кальция.

Компоненты системы свертывания крови принято называть факторами. Факторы бывают тканевыми, плазменными и тромбоцитарными. Тканевые и плазменные факторы обозначаются римскими цифрами, а тромбоцитарные — арабскими. Если фактор является активным, то за цифрой ставится буква "а". Например, переход неактивного двенадцатого фактора в активный можно обозначить так: фXII ———> фXIIa (неактивный) (активный).

Большинство белков системы свертывания крови обладает ферментативной активностью. Все факторы свертывания крови, кроме фXIII, являются сериновыми протеиназами, которые катализируют реакции ограниченного протеолиза.

В ходе реакций свертывания крови все белки-ферменты сначала выступают в роли субстрата, а затем — в роли фермента. Среди белков, участвующих в свертывании крови, есть такие, которые не обладают ферментативной активностью, но специфически ускоряют протекание ферментативной реакции. Они называются параферментами. Это фV и фVIII.

Большинство факторов свертывания крови синтезируется в неактивной форме в виде проферментов. Проферменты активируются и их действие направлено на протекание прямой реакции свертывания крови — на превращение фибриногена в фибрин, которой является основой кровяного сгустка.

Есть два механизма свертывания крови — внешний и внутренний.

Внешний механизм запускается с участием внешних (тканевых) факторов, Внутренний — при участии факторов, источником которых служит сама кровь, плазма, собственно ферменты и форменные элементы крови. Различаются внешний и внутренний механизмы только начальными стадиями до активации протромбина ф.II). Пследующие стадии протекают одинаково и в том, и в другом случаях.

Начальные стадии внешнего механизма.

Для пуска внешнего механизма необходим первичный сигнал: повреждение тканей (клеток), оказавшихся в контакте с кровью, или эндотелия сосуда. При этом разрушаются клеточные мембраны и из клеток высвобождается тканевой тромбопластин (фIII). Он активирует фVII.

Активация фVII, а также все последующие реакции до активации протромбина протекают на матрице, которая состоит из липопротеиновых осколков клеточных мембран. В ходе активации фVII происходит конформационная перестройка его молекулы, в результате формируется активный центр этого белка-фермента.

Активный фVIIa образует комплекс с тканевыми фосфолипидами и ионом кальция. Этот комплекс обладает протеолитической активностью и вызывает активацию фактора X.

Активный фактор Xа тоже обладает протеолитической активностью и активирует протромбин.

Начальные стадии внутреннего механизма.

Начальные стадии внутреннего механизма называются "контактная фаза" или "контактная стадия". Происходит контакт фXII с чужеродной поверхностью (например, игла шприца, лезвие ножа, стекло). В результате происходит конформационная перестройка фXII и он активируется — переходит в фXIIa.

Активация фXII, а также последующие реакции внутреннего механизма, так же, как и при внешнем механизме, протекают на матрице — тромбопластине, который освобождается при разрушении тромбоцитов.

XIIa действует на XI, превращая его в XIa.

XIa действует на фIX (обязательно в присутствии ионов кальция!), и переводит его в фIXa.

IXa образует комплекс с тромбоцитарными фосфолипидами, ионами кальция и параферментом — фVIIIa. В составе этого комплекса фIXa обладает протеолитической активностью и переводит фX в фXa.

Следующие стадии, начиная с активации протромбина (фII), протекают одинаково для обоих механизмов свертывания крови.

Протромбин — белок, который синтезируется в печени. Для синтеза протромбина необходим витамин "К". Реакция синтеза протромбина катализируется комплексом, состоящим из активного фXa, фосфолипидов, иона кальция и парафермента Va. В ходе этой реакции резко уменьшается сродство данного комплекса к матрице и активный тромбин,или фIIa, освобождается с матрицы и гидролизует пептидные связи между аргинином и глутаминовой кислотой в молекуле своего субстрата — фибриногена, превращая его в фибрин-мономер.

На следующей стадии мономеры фибрина спонтанно агрегируют с образованием регулярной полимерной структуры "мягкого" сгустка растворимого фибрин-полимера. При этом происходит захват фибрин-полимером компонентов крови — формируется тромб (сгусток).

Сначала сгусток рыхлый и мягкий, связи между молекулами фибрин-полимера слабые (нековалентные). Но затем под действием активного фXIIIa (фибриназа) (фXIII активируется фактором IIa — тромбином) происходит прочная ковалентная "сшивка" молекул фибрин-полимера. Образуются межмолекулярные связи между карбоксильными группами глутамина и аминогруппами лизина: так растворимый фибрин-полимер переходит в нерастворимый фибрин-полимер.

После образования нитей фибрина происходит их сокращение (ретракция кровяного сгустка), которое происходит с затратой АТФ.

Процесс тромбообразования постоянно контролируется антитромбином III — ингибитором сериновых протеиназ.

Кроме того, протекание большинства реакций свертывания крови на матрице обеспечивает:

    высокую эффективность процесса;

    локальность процесса — процесс свертывания протекает только в месте повреждения (это предотвращает процесс диссеминированного внутрисосудистого свертывания (ДВС-синдром).

Скорость свертывания крови зависит не только от работы системы свертывания, но и от присутствия естественных антикоагулянтов — веществ, предотвращающих свертывание крови.

Антикоагулянты.

Естественные антикоагулянты синтезируются в тканях и поступают в кровь, где препятствуют активации факторов свертывания крови. К ним относятся гепарин, антитромбин-III и -2-макроглобулин.

Гепарин предотвращает активацию некоторых факторов, но непосредственно на них не действует. Гепарин способен активировать антитромбин-III. Обладая высоким отрицательным зарядом, гепарин связывается с катионными участками антитромбина- III. В результате изменяется конформация антитромбина- III и он приобретает способность инактивировать сериновые протеиназы.

2-макроглобулин — эндогенный ингибитор протеаз, в том числе многих ферментов, участвующих в работе системы свертывания крови и фибринолиза (тромбин, плазмин).

Работа параферментов контролируется системой протеина С. Протеин С — это гликопротеин, который содержит карбоксиглутаминовую кислоту, его синтез зависит от витамина "К". Существует в крови в виде профермента, активируется тромбином. Активный протеин С активирует фV и фVIII, переводя их в фVa и фVIIIa путем ограниченного протеолиза. В плазме крови есть эндогенный ингибитор протеина С.

Считается, что система свертывания крови работает всегда: одновременно происходит образование и растворение фибриновых сгустков благодаря тому, что работа системы свертния крови уравновешивается работой системы фибринолиза. Фибринолиз — это расщепление фибринполимера на отдельные пептиды, которое катазируется плазмином. Плазмин — сериновая протеиназа, способен гидролизовать фибрин, фибриноген и др. Сам плазмин образуется из плазминогена под действием активатора плазминогена. Тканевой активатор плазминогена неактивен до тех пор, пока не вступит в контакт с фибрином. Контактируя с фибрином, он приобретает способность активировать плазминоген. Когда фибрин будет гидролизован плазмином, активатор плазминогена теряет свою активность.

Функциональные особенности системы свертывания крови и фибринолиза.

  1. Это многокомпонентная система, в которой продукт предыдущей реакции служит ферментом для следующей.
  2. Система свертывания крови — это разветвленная мультиферментная система, работающая по принципу каскадности (усиление первично слабого сигнала).
  3. Оба механизма свертывания сливаются на уровне активации протромбина — это единая система, потому что активация одного механизма приводит к включению другого. Например: активация фXII на поверхности коллагеновых волокон приводит к активации фVII.
  4. Система сааморегулируется по принципу обратной связи. Наблюдается положительная обратная связь на начальных стадиях работы системы, что позволяет многократно усиливать первично слабый сигнал (факторы X и VII). Отрицательная обратная связь чаще встречается на конечных стадиях (цель — самоограничение процесса: тромбин и протромбин)
  5. На автономную регуляцию процесса накладывается нейрогормональная. Адреналин вызывает освобождение тромбопластина и тканевого активатора плазминогена из эндотелия сосудов, а также превращение фXII в фXIIa.
  6. Система свертывания крови представляет собой каскад реакций, а ферменты фибринолиза находятся вне этого каскада. Смысл: система фибринолиза и система свертывания крови работают у нас в организме постоянно, но с чрезвычайно низкой скоростью. В норме у человека уравновешены процессы свертывания и фибринолиза. Это обеспечивает постоянную готовность организма ответить на действие различных повреждающих факторов. В случае травмы организм может очень быстро усилить работу системы свертывания крови. При этом система фибринолиза не может обеспечить значительного прироста активности плазмина и он не успевает гидролизовать фибрин. Благодаря этому осуществляется гемостаз.

В последнее время научные исследования в этой области стали помогать в лечении больных.

В период Великой Отечественной войны группой ученых под руководством Палладина был синтезирован викасол — водорастворимый аналог витамина К.

Некоторое время назад был синтезирован антивитамин К. Он используется для лечения больных со склонностью к тромбообразованию.

Сейчас разработаны препараты фXIII и фIX для лечения больных.

Недавно из мочи выделена урокиназа. Этот фермент катализирует превращение плазминогена в плазмин, который обладает высокой протеолитической активностью.

Основные ингибиторы факторов свертывания представлены в табл. 1.3.

Таблица 1.3. Наиболее важные ингибиторы факторов свертывания

Ингибиторы Специфичность (преобладающее ингибирование) Стимуляция гепарином Молекуляр-ная масса (кДа) Концентра-ция в плазме (мг/л) Период полураспада (час)
Антитромбин III (АТ III) ф.IIa, ф.Xa, ф.IXa + 0,2 18-30
а 2 -макроглобулин неспецифичный - 24-36
Ингибитор тканевого фактора ф.Xa, комплекс ф.VIIa/ТФ + 1 нг/л ?
Кофактор гепарина II ф.IIа, химотрипсин-подобные ферменты + 0,02
a 2 - ингибитор протеазы эластаза, ф.XIa - 24-48
Протеин С ф.VIIIa, Va - 0,004 мкг/л 8-10
Протеин S протеин С (его кофактор) - 0,02 мкг/л
С 1 -ингибитор ф.XIIa, калликреин, ф.XIa, система комплемента - 0,2 50-70

Антитромбин III (АТ III). Антитромбин III - самый важный плазматический ингибитор активированных факторов свертывания. Это гликопротеид, состоящий из 432 аминокислот. Его основная мишень - тромбин, а также ф.Xa и ф.IXa. Эффективность ингибирования потенцируется гепарином и присутствием отрицательно заряженного гликозамингликана на поверхности эндотелиоцитов.

Продукт взаимодействия тромбина и АТ III – неактивный комплекс тромбин/антитромбин III (ТАТ), который в течение нескольких минут выводится печенью из циркуляции.

Дефицит АТ III - фактор риска развития тромбоэмболической болезни. Наследственный дефицит (качественный или количественный) встречается редко (1:10000). Приобретенный дефицит наблюдается часто - это прямой эффект терапии низкомолекулярными или нефракционированным гепарином. Для коррекции дефицита АТ III возможна заместительная терапия препаратом очищенного рекомбинантного антитромбина или с помощью свежезамороженной плазмы.

Кофактор II гепарина. В присутствии высоких доз гепарина (>1 ед/мл) кофактор II гепаринаингибирует тромбин, а также химотрипсин и катепсин H (физиологическая значимость этой реакции не изучена). Не ингибирует ф.Xa и ф.IXa. Около 1% пациентов с тромбозом имеют дефицит кофактора II гепарина. Его активность увеличивается при лечении оральными антикоагулянтами.

Ингибитор тканевого фактора (ИТФ). ИТФ - основной ингибитор активации свертывания по внешнему пути. Ингибирует ф.Xa и комплекс ТФ/ф.VIIa (не способен ингибировать свободный ф.VIIa). Выпуск ИТФ - побочный эффект гепаринотерапии, который вносит вклад в ее клиническую эффективность. Образование тромбина также вызывает выделение в кровоток ИТФ - по принципу отрицательной обратной связи тромбин останавливает свое собственное производство.

Система протеина С. В состав системы протеина С входят: протеин С, протеин S, тромбомодулин, рецептор протеина С на эндотелиальных клетках, С4-связывающий протеин.

Протеин С - витамин-K-зависимый плазменный белок, который синтезируется в печени. Активируется тромбином, соединенным с тромбомодулином. Активированный протеин C инактивирует ф.Va и ф.VIIIa в присутствии кальция на поверхности тромбоцита. Протеин S и ф.V (в неактивированной форме) - кофакторы в этой реакции.

Рецептор протеина С на эндотелиальных клетках - трансмембранный протеин, связанный с эндотелиоцитами. Взаимодействует с интактным протеином C в присутствии Ca 2+ , тромбина и тромбомодулина. Блокирует инактивацию ф.Va, не влияя на инактивацию активированного протеина C. Обнаружена также растворимая форма рецептора в плазме – она взаимодействует с нейтрофилами и играет роль в адгезии лейкоцитов и модуляции воспаления.

Протеин S - витамин-K-зависимый протеин, который синтезируется в печени. Циркулирует в плазме в свободной форме и частично связан с C4b –связывающим протеином. Только свободная форма протеина S эффективна как кофактор для активированного протеина C. Последний в сочетании со свободным протеином S инактивирует ф.VIIIa и ф.Va, реакция зависит от кальция и тромбоцитов.

C4b-связывающий протеин - мультимерный плазменный белок, содержащий семь субъединиц, отходящих от центрального ядра. При его присоединении к протеину S ингибируется кофакторная активность последнего. C4b-связывающий протеин – белок острой фазы (повышается при воспалении, при стероидной терапии), поэтому увеличение уровня C4b-связывающего протеина ведет к дефициту протеина S (снижается концентрация его свободной формы).

Тромбомодулин – специфический трансмембранный белок, который содержится в значительном количестве на поверхности интактного эндотелия. Он в 1000 раз ускоряет активацию протеина C по сравнению с одним тромбином, формируя с ним комплекс (1:1). Помимо этого, при присоединении к тромбину активируется свертывающая функция тромбомодулина (включая активацию ф.V, ф.VIII и ф.XIII). Комплекс тромбин-тромбомодулин активирует также тромбин-активированный ингибитор фибринолиза. В норме тромбомодулин связан с мембраной эндотелиоцитов и практически отсутствует в кровотоке. Появление тромбомодулина в крови, даже в незначительной концентрации, свидетельствует о повреждении эндотелиальных клеток.

Иногда наблюдается резистентность к активированному протеину С. Она может быть наследственной или приобретенной. Наследственная встречается при мутации ф.V Лейдена, мутации протромбина 20210 G-A; приобретенная – при воспалении или беременности (частично вызвано увеличением уровня C4b-связывающего протеина, что ведет к функциональному дефициту протеина S), антифосфолипидном синдроме.

Также различают качественный (тип I) или количественный (тип II) дефицит протеина C и протеина S. Гетерозиготный дефицит протеина C связан с семикратным, а дефицит протеина S – с пятикратным увеличением риска венозного тромбоза.

ФИБРИНОЛИЗ

Сформированный тромб - естественная герметизация повреждения, предотвращающая кровотечение. Но при длительном сроке существования тромба возникает риск снижения кровотока в поврежденных областях и некроза окружающих тканей. Для избежания этого в процессе ферментативных реакций происходит активизация фибринолитической системы, в результате чего образуется мощный фермент плазмин, который растворяет сгусток. Образовавшиеся в результате деградации фибрина продукты, являясь ингибиторами полимеризации фибрина и агрегации тромбоцитов, предотвращают дальнейшее свертывание крови. Помимо своей основной функции - лизиса сгустка – фибринолиз принимает участие в деградации коллагена, ангиогенезе, метастазировании опухолей, апоптозе и т.д.

Система фибринолиза включает факторы, ингибиторы и проферменты (табл. 1.4). Центральный фермент – плазминоген – является предшественником сериновой протеазы плазмина. Важнейшие активаторы плазминогена: тканевой активатор плазминогена (t-РА) и урокиназа.

Активация фибринолиза тканевым активатором плазминогена (t-PA). Эндотелиоциты синтезируют и выпускают в кровоток t-РА; остановка кровотока или формирование фибрина повышают секрецию и синтез t-РА. Активатор имеет высокое сродство к фибрину, он же, особенно частично деградированный, служит кофактором для активации плазминогена посредством t-РА. Таким образом, плазминоген, связанный с фибрином, становится чувствительным к аутопротеолитическому воздействию плазмина (реакция положительной обратной связи).

Плазмин раскалывает фибрин, при этом, образуются продукты деградации фибрина (ПДФ) различных молекулярных размеров. Диагностическую значимость имеет наименьший из ПДФ - D-димер, повышенная концентрация которого указывает на формирование фибрина и последующий его лизис. Плазмин может также расщеплять фибриноген. Продукты деградации нарушают агрегацию тромбоцитов, полимеризацию фибрина и действуют как антикоагулянты. При гиперфибринолизе кровотечение, скорее всего, обусловлено присутствием ПДФ, а не пониженным уровнем фибриногена.

Активация плазминогена урокиназой. Урокиназа активируется при запуске внутреннего пути коагуляции (ф.Xlla, калликреин), а также плазмином (положительная обратная связь). Значимость зависимого от урокиназы пути фибринолиза полностью не понятна, однако при дефиците прекалликреина, ф.XII или высокомолекулярного кининогена наблюдаются тромбозы.

Таблица 1.4. Наиболее важные компоненты фибринолитической системы

Протеин Основная функция в гемостазе Концентрация в плазме (мг/л) Масса (кДа) Дефицит (ß), повышение (Ý) связаны с:
Плазминоген Лизис сгустков фибрина ß - тромбоз (?) Ý - кровотечение
Тканевой активатор плазминогена Активатор плазминогена 0,005 ß - тромбоз Ý -кровотечение
Урокиназа 0,008 ß - тромбоз? Ý - кровотечение?
а 2 -антиплазмин Ингибитор плазмина, t-PA, PAI-1 ß - кровотечение Ý - тромбоз (?)
Ингибитор активатора плазминогена 1 типа (PAI-1) Ингибирование t-PA и урокиназы 0,05 ß - кровотечение Ý - тромбоз
Ингибитор активатора плазминогена 2 типа < 0,005 (Ý при бере-менности) ß - ? Ý - ?
Тромбин-активируемый ингибитор фибринолиза Ингибирование присоединения плазминогена к фибрину ß - ? Ý - тромбоз (?)

Ингибиторы фибринолиза. Основными ингибиторами фибринолиза являются: α 2 -антиплазмин, ингибитор активатора плазминогена 1 типа и тромбин-активируемый ингибитор фибринолиза.

α 2 -антиплазмин в физиологических условиях является быстрым инактиватором плазмина. α 2 -антиплазмин имеет сродство к фибрину и поперечно связан с ним и ф.XIIIa в формирующемся сгустке. На поверхности фибрина плазмин гораздо менее доступен для взаимодействия с α 2 -антиплазмином - ингибирование происходит в 50 раз медленнее, чем в плазме. Дефицит α 2 -антиплазмина связан с геморрагическими осложнениями. Приобретенный дефицит встречается намного чаще, чем наследственный.

Ингибитор активатора плазминогена 1 типа (PAI-1) является ингибитором t-РА и урокиназы. Синтезируется эндотелиоцитами; обнаружен в плазме и тромбоцитах. В плазме стабилизируется, связываясь с витронектином. Синтез PAI-1 стимулируется липополисахаридами эндотоксинов, провоспалительными цитокинами (интерлейкин -1 или фактор некроза опухоли) и тромбином. PAI-1является острофазным белком и может значительно повышаться при воспалении и тромбозах. Наследственный дефицит PAI-1 встречается редко и проявляется кровотечениями.

Тромбин-активируемый ингибитор фибринолиза (TAFI) - один из наиболее мощных ингибиторов. Активируется высокой концентрацией тромбина (большей, чем требуется для формирования фибрина). Активация TAFI тромбином значительно ускоряется в присутствии тромбомодулина. Протеин S, наоборот, ингибирует эту активацию. Активированный TAFI защищает фибриновый сгусток от лизиса, что значительно удлиняет время этого процесса. TAFI играет важную роль в контроле воспалительного ответа, поэтому повышение его уровня при воспалении может усиливать протромботическое состояние, способствуя развитию ДВС.

Гиперфибринолиз. Чрезмерное образование плазмина - гиперфибринолиз - опасная клиническая ситуация, которая связана с высоким риском развития кровотечения (табл. 1.5). Типичные скрининговые исследования не чувствительны в распознавании гиперфибринолиза. Немедленно обнаружить продолжающийся гиперфибринолиз возможно лишь с помощью тромбоэластографии (или электрокоагулографии).

Таблица 1.5. Гиперфибринолиз и его последствия


Причинами гиперфибринолиза могут быть политравма, сепсис, ДВС-синдром и другие состояния. Врожденный или приобретенный дефицит одного из ингибиторов фибринолиза также может индуцировать гиперфибринолиз. Препараты выбора для коррекции данного состояния – апротинин, транексаминовая и e-аминокапроновая кислоты.

Суммируя все вышесказанное, на рис. 1.1 представлена интегральная схема свертывания крови.

Список литературы

1. Андреенко Г.В. Фибринолиз (биохимия, физиология, патология). М: Изд. МГУ; 1979.

2. Балуда В. П., Балуда М. В., Деянов И. И., Тлепшуков И. К. Физиология системы гемостаза. М: Медицина; 1995.

3. Баркаган З.С. Геморрагические заболевания и синдромы. М: Медицина; 1988.

4. Гаврилов О.К. Теория системной регуляции агрегатного состояния крови. Терапевтический архив 1982; 8:133-136.

5. Заболотских И.Б., Синьков С.В. Основы гемостазиологии (справочник). Краснодар: изд-во КГМА; 2002.

6. Зубаиров Д.М. Биохимия свертывания крови. М: Медицина; 1978.

7. Кудряшов Б.А. Биологические проблемы регуляции жидкого состояния крови и ее свертывания. М: Медицина; 1975.

8. Кузник Б.И., Скипетров В.П. Форменные элементы крови, сосудистая стенка, гемостаз и тромбоз. М: Медицина; 1974.

9. Ляпина Л.А. Физиологические функции гепарина. Успехи современной биологии 1987; 1:66-80.

10. Маркосян А.А. Физиология свертывания крови. М: Медицина; 1966.

11. Раби К. Локализованная и рассеянная внутрисосудистая коагуляция. Пер. с франц. М: Медицина; 1974.

12. Скипетров В.П. Тканевое звено физиологической системы регуляции агрегатного состояния крови и клеточных структур. Успехи физиологических наук 1986; 3:65-79.

13. Фермилен Ш., Ферстрате М. Гемостаз. Пер. с франц. М: Медицина; 1984.

14. Чиркова Л.Д. Клиническое значение структурно-функциональной взаимосвязи гемостаза и кининогенеза. Анестезиология и реаниматология 1986; 3:64-69.

15. Шитикова А.С. Тромбоцитарный гемостаз. СПб: ГМУ; 2000.

16. Bertina R. Molecular risk factors for thrombosis. Thromb Haemost 1999; 82:601-609.

17. Born G.V.R. Ideas on the mechanism of platelet aggregation. Ann. N. Y. Acad. Sci. 1972; 201:4-8.

18. Collen D. The plasminogen (fibrinolysis system). Thromb Haemost 1999; 82:259-270.

19. Colman R. Biological functions of high molecular kininogen. Thromb Haemost 1999; 82:1568-1577.

20. Coppola F. Comparison of two immunoassays for the complement protein C4b-binding protein in health and disease. Int J Clin Lab Res 1995; 25:88-92.

21. De Visser M.C.H., Rosendahl F.R., Bertina R.M. A re­duced sensitivity for activated protein С in the absence of factor V Leiden increases the risk of venous thrombosis. Blood 1999; 93:1271-1276.

22. Engelmann B., Luther T., Muller I. Intravascular tissue factor pathway - a model for rapid initiation of coagulation within the blood vessel. Thromb Haemost 2003; 89(l):3-8.

23. Ginsburg D. Molecular Genetics of von Willebrand factor. Thromb Haemost 1999; 82:585-591.

24. Goerge J.N., Shattil S. The clinical importance of ac­quired abnormalities of platelet function. N Engl J Med 1991; 324:27-39.

25. Kolde H.J. Haemostasis. Physiology, pathology, diagnostics. Basel: Pentapharm Ltd; 2004.

26. Mallelt S.V., Cox D.J.A. Thrombelastography. Br J An­esthesia 1992; 69:307-313.

27. Muzbeck L., Yee V.C., Hevessy Z. Blood coagulation factor XIII: Structure and function. Thromb Res 1999; 94:271-305.

28. Ruggeri Z.V. Structure and function of von Willebrand factor. Thromb Haemost 1999; 82:576-584.

29. Seegers W.H. Heparin: structure, function and clinical implications. New York–London: Plenum Press.; 1975. 195-215.

30. Tollefsen D.M. Insight into the mechanism of action of hcparin cofactor II. Thromb Haemost 1995; 74:1209-1214.

31. Tripodi A., Manucci M. Markers of activated coagu­lation and their usefulness in the clinical labora­tory. Clin Chem 1996; 42:684-689.

32. Vorweg M., Hartmann B., Knuttgen D. et al. Management of fulminant fibrinolysis during abdominal aortic surgery. J Cardiothorac Vase Anesth 2001; 15(6):764-767.

Наиболее распространенный метод лечения хронических тонзиллитов - тонзиллэктомия, на долю которой приходится от 23 до 73% всех хирургических вмешательств на ЛОР-органах. При этой операции нередко тяжелым осложнением являются глоточные кровотечения, частота которых варьирует от 1 до 24% в зависимости от клинической формы заболевания и других. В генезе послеоперационных кровотечений большую роль играют сдвиги в ферментативных механизмах, посредством которых осуществляются процессы свертывания крови и фибринолиза.

Для понимания роли различных факторов в нарушении процессов гемостаза при хроническом тонзиллите приведем краткое описание процессов свертывания крови и фибринолиза.

Процесс свертывания крови сложен и многокомпонентен. Условно выделяют внутреннюю и внешнюю систему свертывания крови. Основным критерием для такого разделения является происхождение фосфолипидов, которые участвуют в образовании активатора протромбина. Во внутренней системе таким источником служат тромбоциты, во внешней - клетки тканей. Свертывание крови по внешнему пути происходит в результате повреждения клеток - эндотелиальных или других, которые при травме оказываются в контакте с вытекающей из сосудов кровью. Освобождение осколков клеточных мембран запускает свертывание крови путем активации VII фактора. Последний активирует фактор X в присутствии фосфолипидов, содержащихся в осколках клеток, и Va фактора. Образующийся фактор Ха катализирует превращение протромбина в тромбин.

Внутренний путь свертывания крови более сложен, чем внешний. В его основе лежит 5 ферментативных реакций. Процесс свертывания начинается с активации фактора Хагемана (XII фактора свертывания), который при контакте с чужеродной поверхностью превращается в активный фермент ХIIа. Последний запускает всю цепь энзиматических реакций, что приводит к образованию тромбина, который катализирует превращение фибриногена в фибрин.

Фибрин из фибриногена образуется в результате трех реакций, две из них ферментативные. Тромбин отщепляет от молекулы фибриногена два отрицательно заряженных пептида А и В, при этом образуются молекулы фибрин-мономера. Во второй реакции фибрин-мономер спонтанно полимеризуется, его молекулы соединяются между собой водородными связями. Гель фибрин-полимера закрепляется ковалентными поперечными связями под действием специфического фермента XIII фактора свертывания, что приводит к образованию прочного сгустка фибрина (третья реакция).

В организме человека и животных функционирует и противосвертывающая система, которая включает антитромбины, гепарин, гепариноподобные вещества и компоненты фибринолиза. Фибринолитическая система крови состоит из плазминогена, его проактиваторов и активаторов, ингибиторов активация плазминогена, плазмина и его ингибиторов.

Активация плазминогена осуществляется прямым и непрямым путем. Прямая активация носит местный (локальный) характер и происходит под действием тканевых активаторов (освобождающихся из поврежденных тканей и сосудов) и активаторов - урокиназы, трипсина, плазмина. К активаторам непрямого действия относятся водорастворимые лизокиназы тканей, лейкоцитов, эритроцитов и ферменты бактериального происхождения - стрептокиназа, стафилокиназа. Активированный лизокиназами проактиватор превращается в активатор, который током крови разносится по организму и способствует образованию плазмина из. плазминогена. Процесс становится общим, генерализованным, при этом активируется вся фибрино-литическая система, что наблюдается при шоке после тканевых травм, стрессовых состояниях, стрептококковой инфекции.

Свертывающая и фибринолитическая системы крови тесно связаны друг с другом, а также с калликреин-кининовой системой. Эта связь проявляется в том, что основные ферменты свертывания крови этих систем (тромбин, плазмин, калликреин), находящиеся в плазме крови в виде неактивных предшественников, активируются при помощи одного и того же механизма XII фактора свертывания крови. Фактор XII катализирует также превращение плазминогена в плазмин прямым путем или через активацию проактиватора. Плазмин, калликреин по принципу обратной связи активирует ФХ. В физиологических условиях наиболее важное значение имеет активация ФХ калликреином, так как при недостатке предшественника калликреина - прекалликреина (фактора Флетчера) - наблюдается не только нарушение кининообразования, но и дефекты в свертывании крови и фибринолизе. В организме процессы взаимного активирования ФХ и калликреина осуществляются непрерывно. Калликреин может непосредственно превращать плазминоген в плазмин.

Активность ферментов свертывания крови, фибринолиза, кининообразования регулируется быстротой действия калликреина на ФХ, фрагментацией молекулы ФХа плазмином и влиянием ингибиторов этих ферментов. К ним относятся CI-инактиватор (ингибитор I компонента комплемента), альфа-1-антитрипсин, альфа-2-МГ, антитромбин III и альфа-2-антиплазмин. альфа-2-МГ - ингибитор калликреина, плазмина - не инактивирует ферменты полностью, а лишь ограничивает их каталитические функции. В комплексе с этим белком ферменты не расщепляют кининогена, фибриногена, но обладают эстеразной активностью. Основным ингибитором плазмина является альфа-2-антиплазмин.

В норме существует динамическое равновесие между свертывающей, фибринолитической и калликреин-кининовой системами, которое может сдвигаться в сторону угнетения или активации одной из этих систем при патологических состояниях организма.

Проведены многочисленные работы по изучению свертывающей и фибринолитической систем крови, по выяснению роли нёбных миндалин и их функционально активных клеточных структур лимфоцитов в процессах гемостаза у больных хроническим тонзиллитом. Повышенный интерес ученых к этому вопросу связан с тем, что в возникновении кровотечений после тонзиллэктомии большую роль играет нарушение механизмов свертывающей и противосвертывающей систем крови.

В крови больных при данной патологии отмечена гипокоагуляция (нарушается тромбопластинообразование, наблюдается тромбоцитопения), повышена антикоагулянтная и фибринолитическая активность. При повышении фибринолитической активности белки крови (фибриноген, фибрин) могут подвергаться ферментативному расщеплению с образованием продуктов их распада (ПРФ), что может способствовать возникновению в поспеоперационном периоде геморрагии. ПРФ тормозят процесс свертывания крови, удлиняют тромбиновое время, замедляют агрегацию тромбоцитов, тормозят превращение фибриногена в прочные сгустки фибрина. В плазме крови больных хроническим тонзиллитом содержатся ПРФ, причем их уровень выше при декомпенсированной форме заболевания по сравнению с субкомпенсированной. Выявлена корреляция между усилением фибринолиза и концентрацией ПРФ.

В генезе ранних послеоперационных кровотечений может играть роль и фермент фибриназа, стабилизирующий сгусток фибрина. Британские ученые отметили параллели между повышением фибринолиза и снижением активности фибриназы в плазме крови больных хроническим тонзиллитом. При данной патологии изменяется и уровень ингибиторов фибринолиза в сыворотке крови, при этом возрастает суммарное количество альфа-1- и альфа-2-антиплазминов. Повышение их содержания, по-видимому, имеет защитный характер и происходит в ответ на ускоренный фибринолиз. Увеличение уровня альфа-2-МГ может указывать также на усиленный синтез этого белка, что способствует образованию его комплексов с протеиназами, которые гидролизуют низкомолекулярные токсические пептиды, играющие определенную роль в развитии патологического процесса.

Одной из причин нарушения гемостаза у больных хроническим тонзиллитом может быть стрептококковая и стафилококковая инфекция - бета-гемолитический стрептококк и стафилококк, продуцирующие ферменты (стрептокиназу и стафилокиназу) - непрямые активаторы фибринолиза. Кроме того, повышение фибринолитической активности крови после удаления миндалин может быть вызвано поступлением из них в кровоток тканевых активаторов плазминогена. Подтверждением этого служат данные о том, что экстракты нёбных миндалин, гомогенаты и субклеточные структуры лимфоцитов ускоряют лизис сгустков фибрина, что указывает на присутствие в них проактиватора, активатора плазминогена, а в отдельных случаях и активного фермента - плазмина. Доказано наличие в миндалинах ингибиторов плазмина.

Кроме того, в тканях миндалин обнаружены тромбопластин, факторы V, X, XIII. В норме и при простой форме хронического тонзиллита в тканях миндалин существует динамическое равновесие между концентрацией активаторов и ингибиторов плазмина, благодаря чему они равномерно поступают в кровоток, вследствие чего в сосудах операционного поля происходит нормальное образование тромбов и обеспечивается надежный гемостаз. У больных при токсико-аллергической форме заболевания, а также при хроническом тонзиллите, сопряженном с ревматизмом, значительно снижается активность фибриназы, повышается содержание активаторов плазминогена. При данных условиях, вероятно, ускоряется лизис фибриновых сгустков в сосудах операционного поля, а это в свою очередь может сопровождаться ранним послеоперационным кровотечением.

Компоненты свертывающей и фибринолитической системы изучены в слюне. В смешанной слюне обнаружены предшественники ферментов свертывания крови (протромбин, факторы V, VIII, фибриназа) и факторы фибринолиза - проактиватор, активатор плазминогена и плазминоген, ингибиторы плазмина.

Проведены исследования по выявлению ряда компонентов фибринолитической системы в слюне и секрете околоушной железы в условиях нормы и у больных хроническим тонзиллитом. С помощью фибриновых чашек в смешанной слюне ряда больных обнаруживали плазмин, а также плазминоген. Содержание его было выше в смешанной слюне по сравнению с паротидной.

Смешанная слюна и секрет околоушной железы содержат проактиватор плазминогена, активированный стрептокиназой. Комплекс проактиватор - стрептокиназа катализировал превращение плазминогена в активную форму плазмина. Последний определяли по потере способности бычьего фибриногена свертываться под действием тромбина.

Для более полной характеристики факторов фибринолиза, содержащихся в слюне, изучено наличие в ней ингибиторов, тормозящих активность плазмина. Источником плазмина служила эуглобулиновая фракция, полученная при обработке плазмы каолином в кислой среде. Слюна и секрет околоушной железы здоровых людей и больных хроническим тонзиллитом содержали ингибиторы плазмина, о чем свидетельствовало удлинение времени лизиса фибринового сгустка по сравнению с контролем.

Перспективным представляется изучение у больных до и после лечения компонентов фибринолиза, так как от их активности зависит скорость заживления послеоперационных ран, удаление нежизнеспособных клеток, тканей и продуктов их распада.

← + Ctrl + →
Сосудисто‑тромбоцитарный гемостаз Фибринолитическая (плазминовая) система

Система свертывания крови

Механизм гемокоагуляции

Основы ферментной теории свертывания крови были заложены еще в XIX в. профессором Юрьевского университета А. А. Шмидтом (1861 г.; 1895 г.) и уточнены П. Моравитцем в 1905 г. Согласно данной теории образование волокон фибрина, составляющих каркас любого свертка крови, связано с ферментным отщеплением от молекул фибриногена небольших фрагментов (фибринопептидов), после чего остающиеся основные части этих молекул (фибрин‑мономеры) соединяются друг с другом в длинные цепи «фибринполимера».

Фермент крови, обеспечивающий отщепление фибрино‑пептидов и превращение фибриногена в фибрин, получил название тромбина. Готового тромбина в плазме нет, но в ней имеется его неактивный предшественник - протромбин (фактор II), который в присутствии ионов кальция и под влиянием «тромбокиназы» превращается в тромбин.

Имеется 2 различных механизма активации свертывания крови. Один из них обозначается как «внешний механизм», поскольку запускается поступлением из тканей или из лейкоцитов в плазму тканевого тромбопластического фактора (фактора III), относящегося к липопротеидам. Этот фактор вступает во взаимодействие с фактором VII и при участии ионов кальция быстро образует активатор фактора X, который и является главной составной частью протромбиназы, поскольку трансформирует протромбин (фактор II) в тромбин (IIа). В лабораторных условиях этот путь имитируется протромбиновым тестом Квика: к исследуемой рекальцифицированной плазме добавляется стандартная доза тканевого (мозгового) тромбо‑пластина, получается, что процесс искусственно запускается по внешнему механизму.

Второй путь активации свертывания назван внутренним, поскольку осуществляется без добавления извне тканевого тромбопластина, за счет внутренних ресурсов плазмы. В искусственных условиях свертывание по внутреннему механизму наблюдается тогда, когда кровь, извлеченная из сосудистого русла, самопроизвольно свертывается в пробирке. Запуск этого внутреннего механизма начинается с активации фактора XII (фактора Хагемана). Эта активация возникает в разных условиях: вследствие контакта крови с поврежденной сосудистой стенкой (коллагеном и другими структурами), с измененными клеточными мембранами, под влиянием некоторых протеаз и адреналина, а вне организма - вследствие контакта крови или плазмы с чужеродной поверхностью - стеклом, иглами, кюветами и др. Этой контактной активации не препятствует удаление из крови ионов кальция, в связи с чем она происходит и в цитратной (или оксалатной) плазме. Однако в этом случае процесс обрывается на активации фактора IX, для которой уже необходим ионизированный кальций. Вслед за фактором XII последовательно активируются факторы XI, IX и VIII. Последние два фактора образуют продукт, который активирует фактор X, что приводит к формированию протромбиназной активности. Вместе с тем сам по себе активированный фактор X обладает слабой протромбиназной активностью, но она усиливается в 1000 раз акселерирующим фактором - фактором V.

Точно так же действие фактора IX на фактор X усиливается в несколько тысяч раз фактором VIII - антигемофильным глобулином. Этим обосновывается деление плазменных факторов свертывания на 2 группы: ферментную - факторы XII, XI, IX, VII, X и II и неферментную - факторы I, V и VIII. Фактор X последовательно отщепляет от протромбина два фрагмента, в результате чего образуется тромбин‑эстераза, отщепляющая от α- и β‑цепей фибриногена вначале 2 пептида А, затем - 2 пептида В (всего 4 фибринопептида). Незавершенный фибрин‑мономер, от которого отделились лишь пептиды А, обозначается как «дес‑А‑фибрин», а лишенный пептидов А и В - как «дес‑АВ‑фибрин». Фибрин‑мономеры имеют трехмодулярную структуру, их сборка в полимер проходит этапы формирования димеров, из которых путем дальнейшего продольного и поперечного связывания образуются протофибрилы фибрина. Соединяясь друг с другом, протофибрилы формируют волокна фибрина. Фибринстабилизирующий фактор XIII (плазменная трансглутаминаза) «прошивает» фибрин‑полимеры дополнительными перекрестными связями между γ‑цепями и тем самым укрепляет фибрин, делает его нерастворимым в мочевине, монохлоруксусной кислоте и других растворителях. Основным активатором фактора XIII является тромбин.

В условиях патологии процесс полимеризации фибрина легко нарушается либо вследствие плохой трансформации дес‑А‑фибрина в дес‑АВ‑фибрин, либо из‑за нарушения сборки димеров и протофибрил. В этих случаях фибрин‑мономеры (дес‑А‑фибрин и дес‑АВ‑фибрин) соединяются с фибриногеном, образуя средне- и крупномолекулярные (от 450 000 до 2 000 000 и более) растворимые фибрин‑мономерные комплексы. Фибриноген в этих комплексах блокируется и утрачивает способность свертывания под влиянием тромбина. Этот феномен, имеющий большое диагностическое значение, в литературе обозначается по‑разному - «растворимые фибрин‑мономерные комплексы» (РФМК), «фибринемия», «несвертывающийся фибрин», «заблокированный, или тромбинрезистентный, фибриноген», «феномен паракоагуляции». Последнее название связано с тем, что не свертывающиеся тромбином РФМК коагулируют или преципитируют под влиянием ряда неферментных воздействий - при добавлении к плазме спирта (этаноловый тест), сульфата протамина (протамин‑сульфатный тест) или при охлаждении (криофибриноген).

Биологический смысл и санационное значение образования РФМК заключаются в том, что они способствуют поддержанию жидкого состояния крови при тромбинемии, препятствуют отложению больших масс фибрина в сосудах и уменьшают блокаду зоны микроциркуляции.

Вместе с тем доказано, что РФМК значительно легче и быстрее растворяются плазмином, чем коагулировавший фибрин.

Таким образом, свертывание крови - многоэтапный каскадный ферментный процесс, в котором последовательно активируются проферменты и действуют силы аутокатализа, функционирующие как сверху вниз, так и по механизму обратной связи. Так, первые малые дозы тромбина, чаще всего образующиеся благодаря включению внешнего механизма свертывания под влиянием тканевого тромбопластина, активируют акселераторы - факторы VIII и V, в результате чего интенсифицируется основный внутренний механизм формирования протромбиназной активности и тромбина.

Эти механизмы аутокатализа действуют интенсивно, но кратковременно. Вскоре их сменяют инактивация факторов свертывания и самоторможение системы. Этому способствуют как физиологические антикоагулянты, так и конечные и побочные продукты свертывания, многие с высокой противосвертывающей активностью. Ингибирующим влиянием на свертывание крови и тромбоцитарный гемостаз обладают и продукты фибринолиза.

По всем этим причинам свертывание крови затормаживается и не переходит в обычных условиях из локального процесса во всеобщую коагуляцию циркулирующего фибриногена.

Также в активации начальных этапов свертывания участвуют компоненты калликреин‑кининовой системы. Стимуляторами являются фактор ХIIа и его фрагменты, образующиеся в результате расщепления фактора XII калликреином. Комплекс фактор ХIIа - калликреин - высокомолекулярный кининоген (ВМК) ускоряет активацию не только фактора XI, но и фактора VII, реализуя взаимосвязь между внутренним и внешним механизмами свертывания. Еще более важно активирующее влияние тромбопластина и фактора VII на фактор IX, в результате чего даже малые дозы тканевого тромбопластина запускают процесс свертывания крови не только по внешнему, но и по внутреннему пути, через фактор IX. Установлено также, что фактор ХIIа и его фрагменты через калликреин‑кининовую систему, а отчасти и непосредственно активируют ряд других плазменных ферментных систем, в том числе фибринолитическую и систему комплемента.

Фактор VIII - многокомпонентная система, состоящая из нескольких субъединиц, участвующих в формировании его коагуляционной активности (VIII: С) и в тромбоцитарно‑сосудистом взаимодействии (фактор Виллебранда VIII: FW). Эти субъединицы отличаются разной стабильностью, гетерогенны по генетическому контролю и антигенным свойствам.

Противосвертывающие механизмы

Противосвертывающие механизмы играют ведущую роль в поддержании жидкого состояния крови и в ограничении процесса тромбообразования. Однако они изучены значительно меньше, чем процесс свертывания крови, в связи с чем вопросы функции и физиологической регуляции антикоагулянтного звена системы гемостаза во многом остаются дискуссионными.

Все образующиеся в организме антикоагулянты можно разделить на 2 группы:

1) существующие или синтезируемые самостоятельно, возникающие независимо от свертывания крови, фибринолиза или активации других ферментных систем;

2) образующиеся в процессе протеолиза - свертывания крови, фибринолиза. Химически антикоагулянты относятся к разным группам веществ - белкам, пептидам, липидам, мукополисахаридам.

Физиологические антикоагулянты, образующиеся независимо от протеолиза . К ним относятся белковые и фосфолипидные ингибиторы начальной фазы свертывания крови, из которых наиболее активен и физиологически важен относящийся к α 2 ‑глобулинам ингибитор фактора XIа. Слабее действует на начальные фазы свертывания липидный антикоагулянт.

Из всех предшествующих антикоагулянтов наиболее активен, универсален по действию и важен для поддержания жидкого состояния крови антитромбин III (AT III). Этот белок, содержащийся в плазме в количестве около 0,3-0,42 г/л, или 3,0-4,7 ммоль/л, инактивирует не только тромбин, но и все другие активированные ферментные факторы свертывания: ХIIа, XIa, IXa, Ха. Он же является плазменным кофактором гепарина - без AT III гепарин почти совершенно не оказывает антикоагулянтного действия. Дефицит AT III, наследственный или вторичный (симптоматический), закономерно приводит к развитию тяжелейшего, часто несовместимого с жизнью тромбоэмболического синдрома. Дефицит всех других предшествующих физиологических антикоагулянтов по раздельности либо в совокупности не создает подобных критических ситуаций. Все вышеперечисленные данные закрепили за AT III репутацию главного ингибитора и модулятора системы свертывания крови. Местом синтеза AT III долгое время считали печень, однако исследования последних лет, в том числе выполненные на клеточных культурах иммунологическими методами, показали, что этот антикоагулянт продуцируется сосудистым эндотелием. Все факторы свертывания AT III инактивирует, образуя с ними эквимолярные комплексные соединения. Гепарин, соединяясь с AT III, резко ускоряет это взаимодействие и фиксирует антикоагулянт на поверхности эндотелиальных клеток, чем повышается тромбоустойчивость внутренней стенки сосудов.

Альфа 2 ‑макроглобулин является слабым ингибитором тромбина, действие которого становится ощутимым лишь при депрессии AT III. На долю этого антикоагулянта приходится, по разным авторам, от 4 до 21% антитромбиновой активности дефибринированной плазмы. Несколько больше роль α 2 ‑макроглобулина в связывании плазмина, но и в этом случае его действие становится ощутимым после удаления быстродействующего антиплазмина. В отличие от AT III он из всех активированных факторов свертывания взаимодействует только с тромбином. Наследственный дефицит α 2 ‑макроглобулина не сопровождается ни сколько‑нибудь заметной тромбогенностью, ни существенными сдвигами в свертывающей системе крови, что говорит о его весьма ограниченном значении в регуляции гемостатического потенциала крови.

Более выражено ингибирующее действие на тромбин и другие активированные факторы свертывания (IXa, XIa и ХПа) α 1 ‑антитрипсина и ингибитора 1 компонента комплемента. Однако и при их дефиците не наблюдается значительных нарушений гемостаза, что, очевидно, связано с одинаково выраженным ослаблением инактивации как свертывания крови, так и фибринолиза, вследствие чего сохраняется динамическое равновесие между этими системами.

Антикоагулянты, образующиеся в процессе свертывания крови и фибринолиза . Многие прокоагулянты и их метаболиты в процессе свертывания крови и фибринолиза приобретают антикоагулянтные свойства. Так, фибрин адсорбирует и инактивирует образующийся при свертывании тромбин, вследствие чего фибрин обозначается как антитромбин I. Эта инактивация настолько велика, что в сыворотке, как известно, остаются ничтожно малые количества тромбина. Имеются указания, что фибринопептиды, отщепляемые от фибриногена тромбином, также обладают антикоагулянтным действием.

Самоторможение наблюдается и на других этапах свертывания. Так, тромбин действует ферментативно на протромбин, отщепляя от него ингибитор фактора Ха; фактор Va после участия в свертывании начинает тормозить превращение протромбина в тромбин, а фактор ХIа после взаимодействия с фактором XII начинает тормозить его дальнейшую активацию. Мощные антикоагулянты, обладающие антитромбиновым и антиполимеразным действием, образуются в процессе фибринолиза.