Главная · Боли в желудке · Отведение avf на экг. Кардиограмма сердца (ЭКГ) расшифровка. Пациент с одышкой

Отведение avf на экг. Кардиограмма сердца (ЭКГ) расшифровка. Пациент с одышкой

Отведение aVR

Многие считают данное отведение "бесполезным". Я думаю, это заблуждение от незнания. Достаточно часто приходится отвечать на "большой" вопрос, касающийся этого отведения:

Является ли элевация ST в aVR эквивалентом ИМпST?

Электрокардиографичекое просвещение быстро проникло в современную кардиологию. Новые сведения, новые возможности диагностики открыли "широкие двери" в современную агрессивную кардиологию. Совсем недавно и я достаточно резко демонстрировал современные подходы к ЭКГ диагностике, но пришло драгоценное понимание и я смягчил свою агрессивную позицию, но до сих пор помню, как в своих лекциях цитировал "убийственные" факты:
      • Стенозы левой главной коронарной артерии связаны с 70% смертностью.
      • Если вы видите элевацию ST в aVR плюс aVL, это на 95% специфично для поражения левой главной КА.
      • Если вы обнаруживаете элевацию ST и в aVR и в V1, при этом элевация в aVR, больше чем в V1, это невероятно специфично для поражения левой главной КА.
Вооружившись своим новым, "секретным" знанием, я решил было, что пришло время спасти мир от напасти в виде окклюзии левой главной коронарных артерий, и тут же представился отличный случай:
58-летний мужчина поступил с жалобой на внезапно возникшую одышку. Он был бледен и весь покрыт холодным липким потом, ЧДД составляло 40 в мин, хрипы выслушивались вплоть до ключиц, а АД составляло 180/110 мм рт.ст. Его первая ЭКГ показана ниже.

ЭКГ при поступлении 58-летнего мужчины.

      • Синусовая тахикардия;
      • Единственная ЖЭ;
      • Нарушения левого предсердия;
      • Умеренная диффузная субендокардиальная ишемия. Вектор ишемии направлен в сторону V4-V5 и II отведения.
Оп-ля, моментальная диагностика, не так ли? Диффузная депрессия ST с элевацией ST в aVR и V1; быстро везем этого мужчину в рентгеноперационную - у него эквивалент ИМпST! У этого пациента имеется стеноз левой главной КА, а без эндоваскулярного вмешательства такие стенозы дают смертность более 70%!
По крайней мере, этакая мысль у меня проскочила. Пациент был интубирован (это было еще до того, как стали популярны нитраты в высоких дозах), а ниже его ЭКГ, когда АД несколько снизилось, улучшилась сатурация по O 2 (хотя у него все еще сохранялись выраженные хрипы и признаки сердечной недостаточности):

ЭКГ 58-летнего мужчины после улучшения состояния.

      • Синусовая тахикардия, нарушения левого предсердия, менее выраженная диффузная субэндокардиальная ишемия. Морфология QRS в виде старого переднего ИМ в грудных отведениях может имитироваться нарушенным размещением электродов; я уже и не помню нюансов.
Я был несколько озадачен, потому что мой "умирающий" пациент с элевацией в aVR явно выглядел лучше, а ишемическое повреждение на ЭКГ отчетливо уменьшилось. Тем не менее, я был твердо уверен, что у этого пациента было либо поражение левой главной КА, либо многососудистое поражение сердца. Пациент был срочно взят на ангиографию из-за роста уровня тропонинов.

Ангиография показала... [фанфары] ...

Тяжелое многососудистое поражение без возможности ЧКВ. Несколько дней пребывания в ПИНе, нитраты, прикроватное мониторирование, и вот наконец, перевод в центральную клинику для проведения АКШ, после которой через 2 недели он был переведен к нам в значительно лучшем состоянии.
ЖИЗНЬ СПАСЕНА!

Вот во что я верил в течение нескольких лет. Я считал, что знание о проявлениях ишемии спасает жизни и постоянно рассказывал молодым врачам о полезности aVR, цитируя этот случай, когда aVR "спасло" жизнь.

Но появилась проблема.

Я и далее встречал случаи диффузной депрессии ST с элевацией в aVR, которые, однако не попадали на ангиографию, но пациенты, тем не менее, все же выживали. У некоторых из них даже не определяли тропонины, так как это не имело смысла.

На этой ЭКГ имеются признаки гипертрофии ЛЖ с диффузной субэндокардиальной ишемией. Эти изменения имитируют картину повреждения миокарда, но в данном случае ST-T нормализуются после стабилизации пациента.


ЭКГ, показанная выше, принадлежит другому пациенту, который поступил из-за внезапного развития осложненного гипертонического криза с отеком легких без ИМ или патологии коронарных артерий в анамнезе. Данная ЭКГ удовлетворяет критериям "перегрузки" при ГЛЖ, однако, нарушения ST-T в данном случае, не являются типичной «перегрузкой», а скорее будут диффузной субэндокардиальной ишемией с диффузной косонисходящей депрессией ST и реципрокной элевацией в aVR и V1.
Даже при назначении субоптимальной терапии (нитраты сублингвально, фуросемид и аспирин), тропонин-I достиг в пике только 5 нг/мл. Если у этого пациента было такое опасное для жизни повреждение миокарда, то почему тропонин у него был настолько мал, особенно на фоне минимальной терапии?
Встретив еще нескольких пациентов с острым гипертоническим отеком легких и аналогичными ЭКГ, которые не "завершились" стентированием или АКШ, но все же выжили, я стал задавать себе вопрос, действительно ли тот мой "первый" пациент получил пользу от проведенной экстренно ангиографии?
Давайте посмотрим еще несколько случаев...
Этот пациент с усилившейся в последний месяц одышкой.

Пациент с одышкой.

      • Синусовый ритм;
      • Нарушения левого предсердия;
      • Вольтажные критерии гипертофии ЛЖ;
      • Выраженная диффузная субэндокардиальная ишемия.
Это не морфология вторичных нарушений реполяризации при гипертрофии ЛЖ.
Это должно быть заболевание коронарных артерий, ведь верно? Пришло время отправить пациента рентгеноперационную и готовиться к АКШ?

Хорошо, что мы быстро пулучили ответ из лаборатории, потому что гемоглобин у него составлял всего 43 г/л. ЭКГ нормализовалась с улучшением уровня Hb, а уровень тропонина-I, оставался неопределяемым (<0,01 нг/мл). Ишемия у этого пациента целиком была связана плохой оксигенацией крови, приходящей к сердцу, и была вторичной по отношению к анемии, а не вследствие острого коронарного события.
Этот пациент был поступил с тяжелой дыхательной недостаточностью:

Надеюсь, вы увидели соответствующую морфологию и не активировали рентгеноперационную, потому что у него оказался сепсис и тяжелая пневмония.


Его ЭКГ восстановилась до обычной на фоне патогенетической терапии, а тропонин-I достиг 1,0 нг/мл (должн.<= 0,04 нг/мл). Ишемия в этом случае была вторичной по отношению к увеличению метаболической потребности вследствие сепсиса и респираторно дистресса. У него почти наверняка были "старые" хронические изменения коронарных артерий, возможно даже значительный левой главной КА, но у него не было острой окклюзии одной из коронарных артерий.

Вот бессимптомный пациент, поступивший из дома-интерната для престарелых из-за «нерегулярного пульса».

Пациент из дома престарелых.

Предсердная тахикардия (предположительно сирусовая) с АВ-блокадой 2 ст. типа I (Mobitz) и проводимостью 4:3 ("блокированный" P виден на вершине зубца Т) и диффузная субэндокардиальная ишемия.

Никогда не направляйте таких пациентов на катетеризацию. ЭКГ нормализовалась при снижении ЧСЖ и, в конечном счете, на фоне контроля ритма тропонин-I достиг максимума в 0,11 нг/мл (должн. <= 0,04 нг/мл). Это еще один случай, когда у пациента, с высокой вероятностью есть хроническая ИБС. Возникшее увеличение частоты сердечных сокращений, создало ситуацию ишемии потребности, когда сердце требует доставки большего количества кислорода для поддержания высокой ЧСЖ, но хронический стеноз/стенозы коронарных артерий ограничивают кровоток. Нет никаких оснований считать, что у данного бессимптомного пациентаимеется острая окклюзия одной из коронарных артерий.

Наш следующий пациент находился на диализе и поступил вследствие появления тошноты, рвоты и резкой слабости. Атипичная клиника левой окклюзии/стеноза левой главной КА?

Еще одна субэндокардиальная ишемия.


Нет, конечно же. Сепсис и гиперкалиемия с количеством лейкоцитов 29 тыс. и K + 6,8 ммоль/л. Тропонин-I в пике оказался 0,21 нг/мл (должн. <= 0,04 нг/мл). Другой случай ишемии потребности, вторичной по отношению к сепсису, а не острая коронарная патология.
ЭКГ крайне интересна, но достаточно трудна для интерперетации - нередкая комбинация диффузной субэндокардиальной ишемии и выраженной гиперкалиемии!

85-летняя женщина поступила с жалобой на одышку в течение 3-х недель, при обычном дыхании - SpO 2 84%, а ЧДД 28 в мин. 2 недели назад был поставлен диагноз "пневмонии", но на антибиотики улучшения нет. О чем необходимо думать?

Неразрешенная пневмония у пациентки 85 лет.


Разумеется, это должно быть многососудистое поражение сердца и ХСН! Правда? Нет, это средней выраженности тромбоэмболия легочных артерий с перегрузкой ПЖ. Тропонин-I сохранялся на уровне 0,05 нг/мл (должн.<= 0,04 нг/мл). Депрессия ST, которую мы видим, снова вызвана несоответствием спроса и предложения с повышенным потреблением кислорода миокардом, вызванным тахикардией и высокой частотой дыхания, но низкими возможностями доставки из-за несоответствия вентиляции/перфузии вследствие ТЭЛА.
Примечание: на ЭКГ мы видим именно диффузную субэндокардиальную ишемию! За ТЭЛА, возможно, тахикардия, комбинированные нарушения в предсердиях, смещение переходной зоны вправо, S-тип ЭКГ.
Вот еще несколько примеров...

50-летняя женщина поступила с жалобой на интенсивную боль в эпигастрии.


Вследствие диффузной депрессии ST с элевацией ST aVR была запланирована ангиография + (ЧКВ), пока из лаборатории не пришел анализ, где K + у нее составил 2,2 мммоль/л. Это не ишемия, но изменения очень похожи на показанную ранее морфологию ишемии (хотя депрессия имеет более «округлую» форму - как продолжение сегмента PR).

ЭКГ бессимптомного 91-летнего пациента.


Выявляется диффузная субэндокардиальная ишемия, и у пациента, безусловно, есть стеноз коронарной артерии, но ему не нужна рентгеноперационная. ЭКГ такая же, как и записанная 2 годами ранее, и пациент жив, уже по крайней мере четвертый год.

Пациент с обострением ХОБЛ.


После троекратного употребления комбивента ингаляционно (albuterol sulfate/ipratropium bromide) у него развилась тахисистолическая фибрилляция предсердий с выраженной диффузной субэндокардиальной ишемией. ST-T нормировались только после применения дилтиазема, восстановившего нормальную частоту скорость и ритм. Тропонин-I достиг максимума в 1,85 нг/мл (rдолжн. <= 0,04 нг/мл). Еще один случай ишемии потребности из-за заметно увеличенной частоты ритма сердца у пациента с хронической ИБС.

Надеюсь, я ясно показал, что с использованием aVR в качестве «эквивалента ИМпST» имеется серьезная проблема. Я не говорю, что ни у одного из этих пациентов не было многососудистой коронарной болезни или, возможно, даже стенозирования левой главной КА - я хочу подчеркнуть, что для большинства из них, вероятно, не нужна экстренная или даже срочная катетеризация/ангиография. За исключением пациентов с анемией и гипокалиемией, у всех, вероятно, была стабильная, давняя патология коронарных артерий. Ишемия у них развивалась не из-за острой окклюзии одной из артерий, а из-за повышенного потребления кислорода миокардом. Наилучшимрешением для всех из них была начальная стабилизация и неотложная терапия с целью устранения основной проблемы, которая вызывала несоответствие спроса и предложения, а не ошибочной попытки реваскуляризации.

Эти примеры помогают четко понять, что самой частой проблемой является не острый ИМ. А что же мы увидим на ЭКГ у истинных первичных пациентов с ОКС и классической стенокардией, диффузной депрессией ST и элевацией в aVR? Вот несколько из таких случаев...

На ЭКГ отмечена диффузная субендокардиальная ишемия.


Пациент жаловался на типичную стенокардитическую боль в груди, которая появлялась и стихала всю прошедшую неделю. Последний час боль стала постоянной и пациент вызвал "неотложку". Пациент получил агрессивную медикаментозную терапию, симптомы разрешились, а ЭКГ вернулась к исходной. Тропонин-I достиг максимума 0,38 нг/мл (должн.<= 0,04 нг/мл). Через два дня пациенту была проведена ангиография. У пациента была многососудистое поражение без окклюзии какой-либо артерии, а разрешавшаяся с помощью медикаментозной терапии ишемия, не требовала поспешной катетеризации.

Следующий пациент поступил с типичную болью в груди клетке в течении 30 мин. На прошлой неделе у него произошла пара похожих эпизодов, но на этот раз боль не стихала, и он вызвал помощь.

На ЭКГ - диффузная субендокардиальная ишемия.


Пациент получил аспирин, нитраты с/л, нитраты в/в и гепарин, симптомы полностью разрешились, а ЭКГ нормализовалась. Тропонин-I достиг максимума 0,05 нг/мл (rдолжн.<= 0,04 нг/мл). На следующий день пациент был направлен на несрочную катетеризацию. Как и в последнем случае, у этого пациента были признаки поражения, как в ствола ЛКА, так и многососудистой коронарной болезни сердца, но из-за того, что ишемия разрешилась при медикаментозной терапии, срочная катетеризация не требовалась. Если бы его сразу взяли в рентгеноперационную, то стенозирование было бы выявлено раньше, но особой пользы пациенту это бы не принесло, но стоимость лечения, риск ошибок или осложнений при экстренной ангиографии заметно увеличило.

Следующий пациент поступил с нарастающей и стихающей болью в груди в течение недели, боль усиливалась при физическом напряжении. Несколько ранее у него диагностировали стенокардию, и пациент использовал 3 флакона сублингвального нитроглицерина в течение этой недели.

ЭКГ была записана при поступлении.


Он получил антикоагулянты и в/в нитраты (у пациента в течение ночи еще сохранялись симптомы и некоторая диффузная депрессия ST). На следующий день симптомы разрешились, и ЭКГ нормализовалась. Тропонин-I достиг максимума 0,22 нг/мл (<= 0,04 нг/мл). Пациент не решился на вмешательство, он был выписан домой через неделю и прожил еще один год, прежде чем его многочисленные болезни его "перебороли". У этого пациента, несомненно, была давняя хроническая патология коронарных артерий, но совершенно ясно, что элевация ST в aVR не несло ему такого мрачного прогноза, какой обычно преподносят.

Всегда есть исключение, и этот последний случай является исключительным.

68-летний мужчина поступил с главной жалобой на боль в груди, которая началась за 3 часа до прибытия. Боль началась внезапно и была постоянной, где-то 6/10. Вот его исходная ЭКГ.

На этой ЭКГ имеется фибрилляция предсердий с быстрым ответом желудочков и тяжелая диффузная субэндокардиальная ишемия. Обратите внимание на вектор ишемии - направление V3-V5 и II стандартное. Это - не задний ИМ!!!


Это поразительная ЭКГ. Хотя мы и ожидаем, что по крайней мере какие-то случаи диффузной субэндокардиальной ишемии возникают вследствие тахи- фибрилляции предсердий (ишемия потребности), в данном случае величина отклонения ST намного превышает наши ожидания. Тем не менее, это не ИМпST, и предыдущие случаи научили нас быть осторожными, поэтому первый шаг - получить контроль над частотой и посмотреть, что произойдет с ишемией.

Эта ЭКГ записана сразу после кардиоверсии и введения дилтиазема.


Выраженная диффузная субендокардиальная ишемия все еще присутствует, но это может быть ишемия спроса из-за предшествующей тахикардии. Важно отметить, что симптомы пациента ни на йоту не изменились после восстановления синусового ритма, а также сохранялась боль в груди 6/10. Это очень характерно...

Данная ЭКГ была записана через 30 мин после предыдущей.


Если симптомы и ишемия были вызваны быстрой ФП, то к этому моменту пациент должен был чувствовать себя лучше, а отклонения ST - разрешиться. В этом случае этого не произошло, и у пациента все еще сохранялась тяжелая ишемия. Должна сработать сирена тревоги!
Пациенту дали две таблетки нитроглицерина с/л и АД снизилось с 108/60 мм рт. ст. до 84/48 мм рт. Ст. Вот его ЭКГ после повторного применения нитратов после уменьшения боли до 1/10.

ЭКГ после повторного использования нитратов и уменьшения боли.


На ЭКГ ишемия меньше, но она не исчезла. Медикаментозная терапия полностью ситуации не решила. Хотя симптомы улучшились (что важно, хотя они еще не полностью разрешены), на его ЭКГ по-прежнему присутствует ишемия, и дальнейшее введение нитратов невозможно.
В то же время, на прикроватном эхо выявлен диффузный гипокинез передней, передне-перегородочной, боковой стенок и верхушки ЛЖ - в соответствии с критическим стенозом левой главной коронарной артерией или очень большим распределением ПМЖВ.

Неудачная медикаментозная терапия в условиях сохранения ишемии на ЭКГ, особенно у пациента с таким классическими для острого ИМ симптомами при поступлении, выраженные отклонения ST на ЭКГ и наличие эхокардиографических доказательств дискинезов стенок сердца является ПОКАЗАНИЕМ для немедленной катетеризации.


Как сказал бы доктор Смит, это ИМбпST, которому сейчас крайне необходима рентгеноперационная!

В данном случае это не произошло, и пациент был оставлен в БИТе на ночь.
Тропонин-I, который исходно составил 0,05 нг/мл (<= 0,04 нг/мл), достиг пика в более чем 200 нг/мл. Эхо на следующий день показало развитие дискинеза почти до глобального гипокинеза ЛЖ. Катетеризация на следующий день выявила виновника - 95% поражение левой главной КА с хроническими 75% стенозами как в ПКА, так и в огибающей. Пациенту было проведено 3-х сосудистое АКШ.

Чем этот последний случай отличается от (многих) предыдущих случаев с элевацией ST в aVR?

  1. Пациент поступил после внезапного появления симптомов, характерных для острого ИМ. Это была не нарастающая и убывающая боль при нестабильной стенокардии (она все еще существует!), И у него, безусловно, не было одного из менее специфических «стенокардитических эквивалентов», таких как одышка или слабость.
  2. Величина отклонений ST, особенно в aVR, была намного больше, чем в любом из предыдущих случаев. Мы часто подчеркиваем, что "ограничивает себя" строгими миллиметровыми критериями, но, как при ИМпST, так и при ИМбпST, чем больше отклонение ST-отклонение, тем хуже общий прогноз.
  3. Симптомы у этого пациента и ишемия не могут контролироваться нитратами. Хотя его симптомы почти разрешились с помощью нитроглицерина, его ЭКГ продолжала демонстрировать ишемию. При таких ИМбпST целью является и облегчение симптомов и разрешение депрессии ST, поэтому, если что-то из них остается после максимальной медикаментозной терапии с обязательным применением нитратов и антикоагулянтов, следующий пункт назначения пациента это рентгеноперационная.
Итак, после всего вышесказанного, я знаю, что у вас все еще есть один "горячий" вопрос о aVR. Является ли элевация ST в aVR с диффузной депрессией ST эквивалентом ИМпST?

Нет!

ИМпST почти всегда ИМ с элевацией ST. Имеется масса ситуаций, при которых могут появиться отклонения ST, внешне напоминающие ИМпST (БЛНПГ, ГЛЖ, ЭКС, WPW ...), но они не приводят к появлению истинной морфологии ИМпST и кквалифицированный специалист может легко их различить. Независимо от основной жалобы пациента (даже «боли в стопах»), если на ЭКГ имеется истинный ИМпST - не имитация или пограничные ирзменения, - то у пациента реально имеется инфаркт миокарда с элевацией ST.
Диффузная субэндокардиальная ишемия, которая приводит на ЭКГ к диффузной депрессии ST с элевацией в aVR, является совсем другим случаем.

Во-первых , это указывает на другую форму ишемии (диффузная субэндокардиальная, по сравнению с локализованной трансмуральной ишемией, которая и приводит к морфологии ИМпST). Хотя субендокардиальная ишемия реально может привести к гибели кардиомиоцитов и часто занимает более распространенную территорию, чем типичный ИМпST, она, как правило, менее выражена, чем во время ИМпST. Во-вторых , поражения коронарных артерий, связанных с субэндокардиальной ишемией, отличаются от поражений коронарных артерий, вызывающих ИМпST. ИМпST возникает в результате полной острой или почти полной окклюзии коронарной артерии, приводящей к тяжелой трансмуральной ишемии ниже по кровотоку. Хотя субендокардиальная ишемия может также возникнуть в результате острой окклюзии, аналогичной той, которая приводит к ИМпST, в этих случаях обычно наблюдается либо лучший кровоток через пораженный участок кровяного русла, либо лучшая коллатеральная циркуляция, кровоснабжающая ишемизированный миокард.
Если бы это было не так, мы бы увидели ИМпST, а не диффузную депрессию ST (ИМбпST).

Вот почему даже тяжелая, но стабильная хроническая коронарная болезнь может вызывать диффузную субендокардиальную ишемию, но не ИМпST. Достаточный кровоток даже при выраженном стенозе или перфузия миокарда через коллатерали, приводят к тому, что хотя миокард и может иногда находиться в состоянии ишемии (особенно в периоды повышенного потребления кислорода), все же имеется какая-то перфузия эпикарда, оставляя в состоянии ишемии только субэндокард.
Именно поэтому нестабильная стенокардия при хроническом стенозе не может быть дифференцирована от острого, но неполного тромботического поражения, которое все еще сохраняет некоторый кровоток, который нельзя отличить от тяжелой гипоксии на ЭКГ - все они приводят к диффузной субэндокардиальной ишемии. Для ишемии имеются разные причины, но ЭКГ не дает представления о них - все, что видно на ЭКГ - это диффузная субэндокардиальная ишемия.

Конечная (и самая сложная) причина, по которой диффузная субэндокардиальная ишемия не эквивалентна ИМпST, заключается в том, ведение пациентов осуществляется по-разному. ИМпST (почти) всегда требует немедленной реперфузии при помощи тромболизиса или ЧКВ с основной целью - вызвать реперфузию. Первоначальное ведение ИМбпST намного сложнее и зависит от данных пациента при поступлении, его реакции на терапию, результатов исследований и доступных ресурсов.

Окончательное ведение ИМбпST также сильно отличается от ведения ИМпST. В то время как большинство ИМпST могут быть стентированы в рентгеноперационной, многие ИМбпST с диффузной депрессией ST и элевацией в aVR в конечном итоге получают АКШ из-за наличия стеноза левой главной или многососудистого поражения. Это длительные процедуры, требующие времени для подготовки и они обычно не выполняются сразу после диагностической ангиографии, если только пациент не является нестабильным, поэтому слишком быстрое направление стабильныхх пациентов на ангиографию не дает никаких видимых преимуществ.

Последнее замечание по поводу того, что элевация в aVR часто переоценивается

Реально, существует немало пациентов с диффузной депрессией ST и элевацией в aVR, которым необходима экстренная ангиография.

С другой стороны, есть пациенты с похожими ЭКГ, которым может и не требоваться немедленная ангиография, но в любом случае им, так или иначе, проводится катетеризация коронарных артерий, потому что для лечащего врача имеется высокая вероятность 3-х сосудистого поражения или стенозирования левой главной.
Причина, по которой эти последние пациенты не требуют немедленного лечения, заключается не в том, что у них нет заболевания коронарной артерии, чаще такая патология имеется, а то, что они не получат немедленной выгоды от катетеризации. Тем не менее, когда будет проведена ангиография и будет обнаружено либо заболевание левой главной, либо многососудистое поражение и пациент будет направлен на АКШ, кардиолог заключит, что результат ангиографии был положительным и, что пациент даже нуждался в шунтирующей хирургии.

Положительная математика не равна спасенной жизни.
Это отличный пример суррогатной конечной точки. По всем причинам, описанным в этом сообщении, у этих пациентов ожидается положительный результат катетеризации коронарных артерий. Что еще важнее, так это то, что их дальнейшее ведение состоит в том, что в любом случае, через два дня, две недели или два месяца им все-равно будет проведена ангиография с соответствующим хирургическим вмешательством и в этом отношении мизерные преимущества от ранней катетеризации маскируются.

Пациенты живут со стабильной коронарной болезнью сердца каждый день, поэтому, если их ишемией можно управлять медикаментозно, это совершенно безопасный вариант. Большинство пациентов с многососудистым поражением или стенозом левой главной при катетеризации не получают экстренной АКШ. Им разрешается «восстановиться», а операция выполняется гораздо более контролируемо и в приемлемых временных рамках.

Только тогда, когда мы не можем контролировать ишемию пациента, или он ухудшается, становится жизненно важным немедленно оценить их коронарную анатомию и вмешаться, если это возможно.

Возьмите на заметку

  1. ЭКГ, на которой имеется элевация ST aVR, по крайней мере, 1 мм + диффузная депрессия ST с максимальным вектором депрессии в направлении II и V5, является электрофизиологической морфологией, которую вы должны знать. Такая ЭКГ соответствует наличию глобальной субэндокардиальной ишемии.
  2. Когда вы видите такую ЭКГ, вы должны соотнести эту диффузную субэндокардиальную ишемию с двумя основными категориями: ОКС vs Не-ОКС. Не принимайте автоматически наличие ОКС. Я видел повторение такой ошибки много раз, когда ОКС становится фокусом, легко "объясняющим" основную причину. Очень важно иметь в виду, что в таком случае этиология гораздо более вероятна будет Не-ОКС, нежели ОКС!
  3. Ключом к определению этиологии является анамнез, физический осмотр, клиническая картина, лабораторные данные, эхо, постоянное мониторирование и частая переоценка ситуации. Если вы выявили и устранили потенциально обратимые причины ишемии, но такая морфология ЭКГ сохраняется, тогда вы имеете дело с ОКС, пока не будет доказано обратное.
  4. Воздержитесь от использования двойной антитромбоцитарной терапии у таких пациентов, поскольку имеется высокая вероятность того, что им потребуется КШ.
  5. Помните, что если такая морфология ЭКГ представляет собой ОКС , то элевация ST aVR не является результатом прямого повреждения (или трансмуральной ишемии), а представляет собой реципрокные изменения, обратные диффузной депрессии ST. Поэтому эти случаи ОКС не являются «ИМпST». Однако, несмотря на то, что для таких пациентов нет обобщенных данных, определяющих сроки лечения, я бы отстаивал необходимость гораздо более срочного направления такого пациента в рентгеноперационную, чем других «ИМбпST». Причиной является то, что ОКС является очень динамичным процессом и без дополнительного преимущества оптимальной медикаментозной терапии (а второй ингибитор тромбоцитов следует придержать) имеется более высокая вероятность внезапного закрытия окклюзированного сосуда и эволюцию ситуации в трансмуральную ишемию. Если это произойдет в проксимальном сегменте ПМЖВ, стволе ЛКА или при наличии многососудистого поражения, территория миокарда, находящегося под угрозой настолько велика, что возникает высокая вероятность, что у пациента разовьется остановка сердца и он погибнет до того, как можно будет провести реперфузию!
  6. При диффузной субэндокардиальной ишемии вы можете не найти никаких аномалий движения стенок. Глобальная функция ЛЖ может даже быть нормальной, хотя она также может быть и глобально снижена. Обычное прикроватное эхо не помогает в: 1) дифференцировании причины элевации ST в aVR 2) исключении ОКС.
Подробнее о диффузной субэндокариальной ишемии читайте в подборке этого блога: Диффузная депрессия ST .

Отведение aVR при ИМпST

Некоторые пациенты, у которых ЭКГ уже соответствуют обычным критериям ИМпST, могут также иметь элевацию ST aVR. Эта находка не меняет необходимости в предполагаемой реперфузии, хотя может указывать на плохой прогноз. У пациента с другой диагностической элевацией ST, дополнительная элевация ST aVR не указывает на тромботическую окклюзию левой главной КА и не помогает диагностировать связанные с инфарктом артерии или места окклюзии. Менее 3% передних ИМпST возникает вследствие тромбоза ствола ЛКА, и большинство из них диагностируется клинически из-за наличия кардиогенного шока.

Электрокардиография (ЭКГ) - это трансторакальное (производимое через грудную клетку) исследование электрической активности сердца за период времени, производимое с помощью электродов, располагаемых на поверхности кожи, и записываемое при помощи наружного устройства. Запись, полученную в процессе этой процедуры , называют электрокардиограммой (также называемой ЭКГ). Электрокардиограмма - это запись электроактивности сердца.


ЭКГ используется для оценки ритма и регулярности сердечных сокращений, измерения размера и расположения его камер, определения наличия каких-либо повреждений сердца, а также оценки эффективности препаратов и устройств, регулирующих сердечную деятельность, таких как пейсмекеры.

Чаще всего ЭКГ используется для диагностики и исследования сердца человека, но также может производиться на животных, чаще всего в целях диагностики или с исследовательской целью.

Назначение

ЭКГ - лучший метод исследования и диагностики сердечных аритмий, в особенности, аномальных ритмов, вызванных повреждением проводящей системы сердца или электролитными нарушениями. При инфаркте миокарда (ИМ), на ЭКГ можно увидеть, какая стенка сердца была поражена, хотя не все области сердца видны. С помощью ЭКГ нельзя достоверно оценить насосную функцию сердца, для этих целей используют Эхо-КГ (ультразвуковое исследование сердца) или радиологические исследования. В некоторых ситуациях человек , страдающий сердечной недостаточностью, может тем не менее иметь нормальную ЭКГ (состояние, известное как болезнь отсутствия пульса).

ЭКГ-устройство фиксирует и усиливает слабые изменения электрического потенциала на коже, возникающие во время деполяризации сердечной мышцы при каждом сердечном сокращении. Во время расслабления каждая мышечная клетка сердца имеет отрицательный заряд на своей клеточной мембране, называемый мембранным потенциалом. Изменение этого отрицательного заряда до нуля, путем входа положительно заряженных ионов Na и Ca называется деполяризацией, этот процесс активирует механизм, заставляющий клетку сокращаться. Во время каждого сердечного сокращения, в здоровом сердце формируется волна деполяризации, которая берет начало в триггерных клетках синоатриального узла (СА), затем распространяется на предсердия, проходит через атриовентрикулярный узел (АВ-соединение) и, наконец, охватывает желудочки.

Эти процессы улавливаются в виде крошечных подъемов и падений вольтажа между двумя электродами, размещёнными на каждой исследуемой стороне сердца, и отображаются в виде волнистой линии на экране и на ленте для записи ЭКГ. На дисплее отображаются общее состояние сердечного ритма и нарушения в миокарде, в разных его участках.

Как правило, используют более двух электродов, они могут быть сгруппированы в несколько пар. Например: электроды на левой руке (ЛР), правой руке (ПР) и левой ноге (ЛН) формируют три пары - ЛР+ПР, ЛР+ЛН и ПР+ЛН. Выходной сигнал от каждой пары называется отведением . Каждое отведение показывает активность сердца под разным углом обзора. Разные виды ЭКГ отличаются количеством отведений, которые они записывают, например, ЭКГ в 3 отведениях, 5 отведениях или 12 отведениях. ЭКГ в 12 отведениях фиксирует 12 различных электрических сигналов, записываемых почти одновременно, и используется для одноразовой записи ЭКГ, как правило, распечатанной на бумаге. ЭКГ в 3 и 5 отведениях чаще записываются в режиме реального времени и выводятся только на специальный монитор, к примеру, во время операции или при транспортировке каретой скорой помощи. В зависимости от используемого оборудования, постоянная запись ЭКГ в 3 или 5 отведениях может записываться или не записываться.

История

Этимология слова восходит к греческому слову «электро», поскольку речь идет об электрической активности, «кардио » - на греческом означает сердце, «граф» - писать.

По некоторым данным, в 1872 году, в госпитале св. Бартоломью, Александр Мирхед использовал провода, установленные на грудь больного, для записи его сердцебиений в ходе своего докторского исследования (в области электричества). Сердечную активность удалось записать и визуализировать с использованием капиллярного электрометра Липпмана британскому физиологу Джону Бердону Сандерсону. Первым, кто нашел систематический подход к сердцу с точки зрения электричества, был Август Воллер, работавший в госпитале св. Марии в Паддингтоне, Лондон.

Его электрокардиограф, созданный на основе электрометра Липпмана, подключался к проектору. Запись сердцебиения проектировалась на фотографическую пластинку, которая, в свою очередь, крепилась к игрушечному поезду. Это позволило записать серию сердечных сокращений в реальном времени. Тем не менее, в 1911 году он все еще не видел широкого применения своей работы в клинической практике.

Первый действительный прорыв в области электрокардиографии был совершен Уильямом Эйтховеном из Лейдена (Нидерланды), который использовал изобретенный им в 1901 году струнный гальванометр. Это устройство обладало гораздо большей чувствительностью, чем капиллярный электрометр, используемый Воллером и альтернативная модель струнного гальванометра, изобретенная в 1897 году Клементом Адером (французский инженер). В отличие от современных самокрепящихся электродов, электроды Эйнтховена погружались в контейнеры с солевым раствором.

Эйнтховен ввел в употребление буквы P, R, Q, S и T для обозначения зубцов ЭКГ и описал ЭКГ-признаки ряда сердечно сосудистых заболеваний. В 1924 году он был удостоен Нобелевской премии по медицине за свое открытие.

Несмотря на то, что базовые принципы не претерпели изменений с тех пор, за прошедшие годы в электрокардиографии было введено множество усовершенствований. К примеру, оборудование для записи ЭКГ эволюционировало от громоздких стационарных аппаратов до компактных электронных систем, зачастую включающих возможность компьютерной интерпретации электрокардиограммы.

Лента для записи ЭКГ сердца

Запись ЭКГ производится в виде графической кривой (или иногда нескольких кривых, каждая из которых описывает одно отведение), в которой время представлено по оси x, а вольтаж по оси y. Как правило, электрокардиограф осуществляет запись на ленте, расчерченной на мелкие клетки по 1 мм каждая (красного или зеленого цвета), и более крупные и жирные - по 5 мм.

В большинстве ЭКГ-устройств можно изменять скорость записи, но по умолчанию она равняется 25мм/с, а каждый мВ равняется 1 см по оси у. Более высокая скорость используется, как правило, при необходимости более детального рассмотрения ЭКГ. При скорости записи 25мм/с один маленький квадратик на ленте равняется 40мс. Пять маленьких квадратиков составляют один большой, который соответствует 200мс. Таким образом, за секунду на ленте ЭКГ выходит 5 больших квадратов. На записи может также присутствовать калибровочный сигнал. Стандартный сигнал в 1 мВ сдвигает перо самописца на 1см вертикально, что равняется двум большим квадратам на ленте ЭКГ.

Внешний вид

По умолчанию ЭКГ на 12 отведений предоставляет небольшой фрагмент записи каждого отведения. Три линии разделяют ленту на 4 раздела, первый из которых показывает основные отведения от конечностей (I, III и II), второй - усиленные отведения от конечностей (aVR, aVF и aVL), а последние два представляют грудные отведения (V1-V6). Этот порядок может быть изменен, поэтому необходимо проверять, какое отведение подписано на ленте. Каждый раздел фиксирует одномоментно три отведения, после чего переходит к следующему. Ритм сердца может меняться в процессе записи.

Каждый из этих сегментов фиксирует примерно 1-3 сердечных сокращения, в зависимости от ЧСС, по этой причине анализ сердечного ритма может вызывать затруднения. Для того, чтобы облегчить эту задачу, зачастую печатают дополнительную "полосу ритма". Как правило, она регистрируется во втором отведении (которое отображает электрический сигнал от предсердий, P-волну) и фиксирует сердечный ритм за весь период снятия ЭКГ (как правило, 5-6 секунд). Некоторые электрокардиографы печатают дополнительный отрезок во втором отведении. Фиксация этого отведения продолжается в течение всего процесса снятия ЭКГ.

Термин «полоса ритма» может также обозначать всю запись ЭКГ, выводимую на монитор, которая может показывать только одно отведение, позволяя врачу вовремя обнаружить развитие опасной для жизни ситуации.

Отведения

Термин «отведение» в электрокардиографии иногда вызывает трудности, в связи с тем, что он может иметь два различных значения. Помимо основного значения, «отведение» также обозначает электрический кабель, который присоединяет электроды к ЭКГ-устройству. В этом качестве он используется, например, в выражении «отведение левой руки », обозначая электрод (и его провод), который должен быть установлен на левой руке. Стандартная ЭКГ в 12 отведениях, как правило, использует 10 таких электродов.

Альтернативным (или, скорее, основным, в контексте электрокардиографии) значением слова «отведение» является кривая разности потенциалов двух электродов, запись которой собственно и производит ЭКГ. Каждое отведение имеет свое специфическое название. Например, «Отведение I» (первое стандартное отведение) показывает разность потенциалов электродов на правой и левой руках, а «Отведение II» (второе стандартное) - между правыми рукой и ногой. «ЭКГ в стандартных 12 отведениях» подразумевает именно этот смысл данного термина.

Расположение электродов

В обычной ЭКГ (в 12 отведениях) используется 10 электродов. Они представляют собой покрытые проводящим гелем самоклеющиеся мягкие подкладки с присоединенными проводами. Иногда гель выполняет также функцию адгезива (крепит электрод к коже). Каждый из них промаркирован и устанавливается на тело пациента следующим образом:

Маркировка электрода

Место установки электрода

ПР (красный)

На правой руке, избегая зон с выраженным мышечным слоем.

ЛР (желтый)

То же самое, но на левой руке.

ПН (черный)

На правой ноге, латерально от икроножной мышцы.

ЛН (зеленый)

То же самое, на левой ноге.

В 4 межреберье (между 4 и 5 ребром), справа около грудины.

В 4 межреберье (между 4 и 5 ребром), слева около грудины.

Между V4 и V2

В 5 межреберье (между 5 и 6 ребром) по средне-ключичной линии.

По левой передней подмышечной линии, на том же уровне, что и V4.

По левой средней подмышечной линии, на том же уровне, что и V4.

Дополнительные электроды

Классическую ЭКГ в 12 отведениях можно расширить несколькими способами с целью обнаружения участков инфаркта в зонах, которые не отображаются в стандартных отведениях. Для этой цели служит, например отведение rV4, аналогичное V4 , но с правой стороны, а также дополнительные грудные отведения, расположенные на спине - V7, V8 и V9.

Отведение Льюиса или S5 (заключающееся в установке электродов ПР и ЛР справа от грудины во 2 и 4 межреберьях соответственно и отображающееся как I стандартное) используется для более точной оценки активности предсердий и диагностики таких патологий как трепетание предсердий или тахикардия с широкими комплексами.

Отведения от конечностей (стандартные отведения)

Отведения I, III и II называются отведениями от конечностей . Электроды, создающие эти сигналы, располагаются на конечностях - по одному на каждой руке и ноге. Отведения от конечностей формируют вершины треугольника Эйнтховена .

  • Отведение I регистрирует напряжение вежду электродами на левой руке (ЛР) и правой руке (ПР):

I=ЛР-ПР

  • Отведение II регистрирует напряжение между электродами на левой ноге (ЛН) и правой руке (ПР):

II=ЛН-ПР

  • Отведение III регистрирует напряжение между электродами на левой ноге (ЛН) и левой руке (ЛР):

III=ЛН-ЛР

Упрощенные варианты ЭКГ, используемые в образовательных целях (на уровне старшей школы), как правило, ограничиваются этими тремя отведениями.

Униполярные и биполярные отведения

Отведения бывают двух видов: униполярные и биполярные. Биполярные отведения имеют положительный и отрицательный полюс. Отведения от конечностей при снятии ЭКГ в 12 отведениях являются биполярными. Униполярные отведения также имеют два полюса, однако отрицательно заряженный полюс является составным (центр. терминаль Вильсона), состоящим из совокупности сигналов от других электродов. Все отведения, кроме отведений от конечностей, являются униполярными при записи ЭКГ в 12 отведениях: aVR, aVF, aVL, V1, V3, V2, V4, V6, V5.

Центральная терминаль Вильсона Vw образуется при соединении электродов ПР, ЛН и ЛР через сопротивление , суммарный потенциал этого электрода приближается к нулю.

Vw =1/3(ПР+ЛР+ЛН)

Усиленные отведения от конечностей

Отведения aVR, aVF и aVL называются усиленными отведениями от конечностей (также известны как отведения Голдбергера , по фамилии их изобретателя доктора Э. Голдбергера). Они являются производными тех же электродов, что и отведения I, II, III. Тем не менее, они отображают сердце под другими углами (векторами), так как отрицательный электрод для этих отведений представлен нулевым электродом (центр. терминаль Вильсона). Заряд отрицательного электрода сбрасывается до нуля, что делает положительно заряженный электрод «рабочим электродом». Это объясняется правилом Эйнтховена, гласящим, что I + (−II) + III = 0. Это равенство также может быть записано как I + III = II. Вторая запись является предпочтительной, так как Эйнтховен реверсировал полярность II отведения в своем треугольнике, возможно из-за того что предпочел рассматривать комплексы QRS в вертикальном положении. Центральная терминаль Вильсона сделала возможным создание усиленных отведений от конечностей aVR, aVF и aVL и грудных отведений V1, V3, V2, V4, V6 и V5.

  • Отведение aVR регистрируется с помощью положительного электрода на левой руке; отрицательное представлено комбинацией электродов левой ноги и левой руки, которые «усиливают» сигнал от положительно заряженного электрода правой руки.

aVR= ПР-1/2(ЛР+ЛН)

  • Отведение aVL регистрируется с помощью положительного электрода на левой руке; отрицательное представлено комбинацией электродов левой ноги и правой руки, которые «усиливают» сигнал от положительно заряженного электрода левой руки.

aVL= ЛР-1/2(ПР+ЛН)

  • Отведение aVF регистрируется с помощью положительного электрода на левой ноге; отрицательное представлено комбинацией электродов правой/левой рук, которые «усиливают» сигнал от положительно заряженного электрода левой ноги.

aVF =ЛН-1/2(ПР+ЛР)

Усиленные отведения от конечностей aVR, aVF и aVL распространяются таким образом, поскольку их сигналы слишком малы, чтобы быть полезными, при условии когда отрицательный электрод представлен центральной терминалью Вильсона. Вместе с отведениями I, II и III, усиленные отведения aVR, aVF и aVL формируют основу шестиосевой системы отведений по Бейли, которая используется для расчета электрооси сердца в фронтальной плоскости.

Отведения aVR, aVF и aVL можно также представить через I и II отведения:

aVR=-(I+II)/2

aVL=I-II/2

aVF=II-I/2

Грудные отведения

Электроды для снятия грудных отведений - V1, V3, V2, V5, V4 и V6 - устанавливаются непосредственно на грудную клетку. Благодаря их близкому соседству с сердцем, эти электроды не требуют усиления. Для отрицательно заряженного электрода используется центральная терминаль Вильсона, и эти отведения являются униполярными. Грудные отведения отображают электроактивность сердца в так называемой горизонтальной плоскости. Электроось сердца в горизонтальной плоскости известна как Z-ось.

Зубцы и интервалы

Типичная кривая сердечного сокращения, записанная на ЭКГ, состоит из QRS, зубца P, зубца T и зубца U (последний наблюдается в 50-75% случаев). Базовый вольтаж кардиограммы называют изоэлектрической линией (изолинией). Как правило изолиния определяется на участке записи ЭКГ между концом зубца Т и началом следующего зубца Р.

Элемент

Описание

Длительность

Интервал R-R

Интервал между последовательными зубцами R. Нормальная ЧСС, определяемая с помощью этого интервала, составляет 60-100 уд/мин.

В ходе нормальной деполяризации предсердий, главный электрический вектор направляется от СА к АВ-соединению, и распространяется от правого предсердия к левому. Этот процесс представлен на ЭКГ в виде зубца P.

Интервал P-R

Измеряют от начала зубца P до начала QRS. Этот интервал отображает время, за которое электрический импульс доходит от синусового узла через АВ-соединение до желудочков. Таким образом PR интервал оценивает функцию АВ-соединения.

Сегмент PR

Сегмент PR соединяет зубец P с комплексом QRS. Импульс направляется из АВ-соединения в пучок Гиса, а затем распространяется по волокнам Пуркинье. Этот участок показывает исключительно проведение импульса, сокращения при этом не происходит, поэтому этот сегмент лежит на изолинии. Интервал PR клинически более информативен.

Комплекс QRS

Комплекс QRS отображает быструю деполяризацию правого и левого желудочков. Мышечный слой желудочков гораздо массивнее, чем в предсердиях, поэтому амплитуда комплекса QRS обычно гораздо больше, чем зубца P.

Точка, в которой заканчивается комплекс QRS и начинается сегмент ST. Используется для оценки подъема/депрессии сегмента ST.

Сегмент ST

Сегмент ST соединяет комплекс QRS с зубцом T. Он показывает период деполяризации желудочков. Сегмент ST в норме лежит на изолинии.

Отображает реполяризацию желудочков. Интервал между окончанием QRS и вершиной зубца T называется абсолютным рефрактерным периодом . Вторая половина зубца Т обозначается как относительный рефрактерный период .

Интервал S-T

Интервал S-T длится от точки J до конца зубца Т.

Интервал Q-T

Длится от начала QRS до конца зубца Т. Удлинение этого интервала является фактором вероятности развития желудочковой тахиаритмии и последующей внезапной смерти. Его продолжительность варьирует в зависимости от ЧСС.

До 420 мс при ЧСС 60уд/мин.

Предполагается, что зубец U отображает процесс реполяризации межжелудочковой перегородки. Как правило этот зубец имеет небольшую амплитуду, а зачастую вовсе отсутствует. Этот зубец всегда следует за зубцом Т и имеет одинаковое с ним направление и амплитуду. Чрезмерная выраженность этого зубца может свидетельствовать о гипокалиемии, гиперкалиемии или гипертиреозе.


Зубец J, подъем точки J или зубец Осборна представляет собой запоздалую дельта-волну, возникающую после комплекса QRS или в виде маленького дополнительного зубца R. Считается патогномоничным признаком гипотермии и гипокальциемии.


Изначально на кардиограмме выделяли 4 зубца, однако позднее благодаря математической коррекции искажений, продуцируемых ранними приборами, было открыто 5 основных зубцов. Эйнтховен обозначил их буквами O, P, S, R и T, которые соответствуют отображаемым им явлениям, взамен безликим и некорректным A, C, B и D.

На внутрисердечной электрокардиаграмме, которая может быть записана с помощью специальных внутрисердечных сенсоров, можно увидеть добавочную волну H , которая отображает деполяризацию пучка Гиса. Интервал H-V представляет собой отрезок от начала зубца Н до самой первой волны желудочковой деполяризации, записанной в любом отведении.

Векторы и позиции

Интерпретация ЭКГ основана на идее о том, что различные отведения «показывают» сердце под разными углами. У этого есть два преимущества. Во-первых, то, в каком отведении регистрируется патология (например, подъем сегмента ST) помогает определить, какая именно часть сердца поражена. Во-вторых, может быть определено общее направление волны деполяризации, что помогает диагностировать другие сердечные нарушения. Это направление также именуют электрической осью сердца . Понятие электрооси сердца базируется на представлении о векторе волны деполяризации. Этот вектор может быть описан с помощью своих компонентов, в зависимости от направления отведения, в котором он рассматривается. Суммарное увеличение высоты комплекса QRS (высота зубца R минус глубина зубца S) говорит о том, что волна деполяризации распространяется в направлении, совпадающем с отведением, в котором снимается этот участок ЭКГ.

Электрическая ось сердца

Электроось сердца показывает направление, в котором распространяется волна деполяризации (средний электрический вектор ) во фронтальной плоскости. При условии здоровой проводящей системы сердца, электроось направлена туда, где мышечный слой сердца (миокард) мощнее всего. В норме это стенка левого желудочка с небольшим захватом стенки правого желудочка. Обычно эта ось направлена от правого плеча к левой ноге, что соответствует левому нижнему квадранту в шестиосевой системе отведений, хотя нормой считается угол наклона в диапазоне от -30° до +90°. В случае увеличения мышечного слоя левого желудочка (гипертрофии миокарда) ось смещается влево («отклонение ЭОС в левую сторону»), и становится под углом меньше -30°, и наоборот - при гипертрофии правого желудочка ось поворачивается в правую сторону (>90°), происходит «отклонение ЭОС вправо». Нарушения проводящей системы сердца могут спровоцировать отклонение ЭОС, не связанное с изменениями в миокарде.

Норма

от -30° до +90°

Норма

Норма

Отклонение ЭОС влево

Может указывать на внутрижелудочковую (фасцикулярную) блокаду слева спереди или инфаркт миокарда нижней стенки с подъемом зубца Q.

Считается нормой для беременных женщин и больных с эмфиземой легких.

Отклонение ЭОС вправо

от +90° до +180°

Может указывать на внутрижелудочковую (фасцикулярную) блокаду слева сзади, инфаркт миокарда боковой стенки с подъемом зубца Q, или гипертрофии правого желудочка со смещением сегмента ST.

Считается нормой у детей и у людей с декстрапозицией сердца (сердце, повернутое вправо)

Резкое отклонение ЭОС вправо

от +180° до -90°

Встречается редко, недостаточно изучена.


В случае блокады правой ножки пучка Гиса, отклонение ЭОС вправо или влево может говорить о бифасцикулярной блокаде (присоединении блокады какой-либо ветви левой ножки пучка Гиса).

Группы отведений в клинике

Всего существует 12 стандартных отведений, фиксирующих электрополе сердца под разными углами, что соответствует также разным областям сердца, в которых могут быть отслежены патологические изменения (острая коронарная ишемия или инфаркт). Два отведения, фиксирующие изменения в соседних анатомических областях называются смежными отведениями . Клиническое значение смежных отведений состоит в подтверждении либо опровержении наличия действительной патологии на ЭКГ.

Отведения

Значение

Нижние отведения

I, aVF и II

Определяют электрическую активность на нижней стенке сердца (диафрагмальная поверхность).

Боковые отведения (латеральные)

Определяют электрическую активность на боковой стенке левого желудочка.

  • Положительно заряженный электрод для отведений I и aVL располагается более отдаленно, на левой руке пациента, по этой причине вышеуказанные отведения иногда называют отведениями высоких отделений боковой стенки .
  • Положительно заряженные электроды отведений V5 и V6 расположены на грудной клетке, их называют отведениями нижних отделений боковой стенки .

Отведения перегородки (септальные)

Определяют электрическую активность в области межжелудочковой перегородки.

Передние отведения

Определяют электрическую активность в области передней поверхности сердца.

В добавление к вышесказанному, смежными считают также отведения, следующие друг за другом. Например, хотя отведение V4 является передним, а V5 - боковым, они являются смежными, поскольку следуют друг за другом.

Отведение aVR не имеет специфической точки обзора левого желудочка. Вместо этого оно показывает внутреннюю поверхность правого предсердия со стороны правого плеча.

Фильтры

В современные ЭКГ-мониторах применяются фильтры, позволяющие обрабатывать поступающий сигнал. Чаще всего используются режимы мониторинга и диагностики. В режиме мониторинга применяется низкочастотный фильтр (ФВЧ или фильтр верхних частот), не пропускающий диапазон ниже 0,5-1 Гц и высокочастотный фильтр (ФНЧ - фильтр нижних частот), задерживающий сигнал сильнее 40 Гц. Эти фильтры уменьшают искажение при снятии сердечного ритма. В диагностическом режиме ФВЧ устанавливают на 0,05 Гц, что позволяет точно записать сегменты ST. ФНЧ устанавливают на 40, 100 или 150 Гц. Вследствие этого, режим мониторинга фильтруется сильнее, чем диагностический, так как его полоса пропускания уже.

Показания

Медицинское сообщество не рекомендует ЭКГ в качестве рутинного исследования для пациентов, у которых не выявлено кардиальных симптомов и которые не находятся в группе риска по развитию коронарных заболеваний. Причина в том, что злоупотребление этой процедурой с большей вероятностью приведет к ложной диагностике, нежели покажет реальную проблему. Ложная диагностика несуществующего заболевания приведет к неверно поставленному диагнозу, назначению ненужного лечения с массой побочных эффектов, поэтому риск , связанный с ней намного превышает риск отказа от рутинного ЭКГ исследования у лиц, не имеющих к нему показаний.

Симптомы , указывающие на необходимость ЭКГ-диагностики:

  • Сердечные шумы
  • Синкопальные состояния или коллапсы (потери сознания)
  • Судорожные приступы
  • Нарушение сердечного ритма
  • Симптомы инфаркта или острой ишемии

Также ЭКГ используется в диагностике пациентов с системными заболеваниями, а также в качестве мониторинга для тяжелых больных и больных под наркозом.

Некоторые патологии, которые можно обнаружить на ЭКГ

Укорачивание интервала QT

Гиперкальциемия, прием некоторых препаратов, ряд генетических аномалий, гиперкалиемия.

Удлинение интервала QT

Гипокальциемия, прием некоторых препаратов, ряд генетических аномалий.

Инверсия или уплощение зубца Т

Коронарная ишемия, гипокалиемия, гипертрофия ЛЖ, прием дигоксина, некоторых других препаратов.

Заострение зубца T

Возможный ранний признак острого инфаркта миокарда, зубцы Т становятся более выраженными, симметричными и заостренными.

Остроконечный зубец Т, удлинение интервала PR , расширение комплекса QRS , укорочение интервала QT

Гиперкалиемия, прием хлорида кальция, глюкозы, инсулина, гемодиализ.

Выраженный зубец U

Гипокалиемия.

Гетерогенность на электрокардиограмме

На электрокардиограмме может определяться гетерогенность (неодинаковость) участков. Современные исследования показывают, что гетерогенность часто свидетельствует о возможном развитии опасных нарушений сердечных ритмов.

В будущем для оценки одинаковости интервалов ЭКГ можно будет использовать вживляемые устройства, которые смогут не только контролировать ритм, но и осуществлять в случае необходимости неотложную помощь в виде стимуляции блуждающего нерва, инъекции бета-блокаторов или, при необходимости, дефибрилляции сердца.

ЭКГ плода

ЭКГ плода (фетальная ЭКГ) - это регистрация электроактивности сердца плода в утробе матери, осуществляемая во время родов путем установки электрода на головку плода через канал шейки матки. Согласно Кохрановскому обзору, использование ЭКГ-мониторинга плода в дополнение к кардиотокографии (КТГ) способствует снижению показаний к анализу крови плода и дополнительных хирургических вмешательств при родах, по сравнению с применением только КТГ. При этом не было обнаружено изменения количества кесаревых сечений и отличий в состоянии здоровья новорожденных.

Электрокардиография является основным способом диагностики заболеваний сердца. Для ее регистрации используются отведения, позволяющие со всех сторон зарегистрировать сердечную электрическую активность. В зависимости от того, куда на теле человека накладываются электроды, на ЭКГ пленке будут записываться электрические импульсы от различных отделов сердца. В стандартной ЭКГ диагностике применяется 12 отведений. При наличии особых показаний могут использоваться дополнительные.

    Показать всё

    Электрофизиологические основы и принципы электрокардиографии

    В норме источником сердечной электрической активности является синусовый узел, в котором регулярно (с частотой 60-90 ударов в минуту) генерируется возбуждение, проходящее по проводящей системе сердца последовательно в предсердия и желудочки. При этом возбуждение толщи миокарда (мышечного слоя) имеет направленность от эндокарда (внутреннего слоя) к эпикарду (наружному слою), что создает так называемый вектор возбуждения. Вектор имеет направление от начала возбуждения (отрицательный полюс) к области миокарда, в которой возбуждение произошло позже всего (положительный полюс). По правилам векторного сложения несколько векторов могут суммироваться, и результатом этой суммы будет являться один результирующий вектор.

    Электрическое поле, которое образуется вокруг электрических импульсов сердца, распространяется по телу человека концентрическими окружностями. Значение потенциала в любой точке одной из таких окружностей, названной эквипотенциальной, одинаково. Это свойство и используется в работе электрокардиографа. Кисти рук и стопы, поверхность грудной клетки являются двумя эквипотенциальными окружностями, что позволяет накладывать на них электроды и регистрировать разности потенциалов отдельных участков сердца.

    Электрические потенциалы, образующиеся при работе сердца, снимают при помощи двух электродов: один из них соединяется с положительным, другой - с отрицательным полюсом гальванометра, составной частью электрокардиографа. Аппарат регистрирует и графически отображает динамику разности потенциалов активного и пассивного электродов.

    Отведением называется соединение двух отдаленных точек тела человека, обладающих разными потенциалами.

    В момент времени, когда ток направляется в сторону к активному электроду, стрелка гальванометра отклонятся вверх; когда ток удаляется от активного электрода, стрелка смещается вниз. Таким образом генерируются положительные и отрицательные зубцы на электрокардиограмме.

    Виды ЭКГ отведений

    В зависимости от количества полюсов выделяют одно- и двухполюсные ЭКГ-отведения. Разность потенциалов между двумя точками на теле фиксируется двухполюсными электродами между определенным участком тела и потенциалом, который постоянен по величине и условно принят за ноль. Объединенный индифферентный электрод Вильсона, образованный соединением через провода левой ноги и обеих рук, используется в качестве нулевого потенциала.

    В настоящее время общеприняты 12 отведений: три двухполюсных стандартных, три усиленных от конечностей и шесть грудных однополюсных.

    Отведения от конечностей

    Отведения от конечностей состоят из двух подгрупп - стандартных (I, II, III) и усиленных (aVR, aVL, aVF). Для их регистрации электроды накладывают по правилу «светофора»: на правую руку - помеченный красным цветом (R), на левую руку - желтым (L), на левую ногу - зеленым (F). На правую ногу накладывается черный электрод («заземление»), который используется для устранения электрических помех.

    Стандартные отведения

    Стандартные отведения, предложенные Эйнтховеном в 1903 г., обозначаются цифрами I, II, III. Первое стандартное отведение используется для записи разности потенциалов правой («отрицательной») и левой («положительной») руки, второе - правой руки («отрицательной») и левой ноги («положительной») и третье - левой руки («отрицательной») и левой ноги («положительной»). Предложенный Эйнтховеном равносторонний треугольник, вершины которого находятся на уровне обоих плечевых и левого тезобедренного суставов, используется для изображения осей стандартных отведений (рис. 1). В центре этого треугольника расположен так называемый электрический центр сердца, или диполь, равноудаленный от всех трех стандартных отведений.

    Усиленные отведения

    Активный (дифферентный) электрод усиленного отведения регистрирует потенциал той конечности, на которой он расположен. Электроды двух конечностей соединяются в один пассивный (индифферентный) электрод, потенциал которого приближается к нулю. Вследствие этого разность потенциалов между дифферентным и индифферентным электродами будет большей, соответственно, увеличится и амплитуда зубцов ЭКГ. Усиленные отведения обозначаются латинскими буквами aVR, aVL и aVF (от англ.augmented - усиленный, Voltage - потенциал, Right - правый, Left - левый, Foot - нога). Заглавные буквы указывают на положение активного электрода.

    6-осевая система координат по Бейли

    6-осевая система координат, предложенная Бейли, образуется при наложении 3-осевой системы стандартных отведений на оси усиленных от конечностей отведений (см.схема 1). Она характеризует положение шести отведений от конечностей в пространстве и, следовательно, отражает изменения направления электродвижущей силы сердца, происходящие во фронтальной плоскости.

    Из центра сердца проводятся линии, параллельные трем стандартным отведениям. Далее на центр сердца наносятся оси усиленных от конечностей отведений. Образовавшийся между каждыми из двух стандартных отведений угол будет равен 60°. Угол между любым стандартным отведением и усиленным от конечностей, расположенным рядом с ним, равен 30°.

    Данную систему координат используют для определения так называемой электрической оси сердца - направления суммарного вектора электродвижущей силы сердца, расположенного во фронтальной плоскости. Нормальным считается угол отклонения электрической оси в 30-70°. Для практической деятельности врача важны изменения в положении электрической оси сердца, его так называемые повороты вокруг продольной и/или поперечной оси, свидетельствующие о патологии (см.табл. 1).

    Взаимосвязь сердечно-легочных заболеваний и отклонение положения электрической оси сердца по электрокардиограмме:

    Однополюсные грудные отведения

    Однополюсные грудные отведения, предложенные Вильсоном в 1933 г, предназначены для записи разности потенциалов между первым электродом (активным), расположенным на грудной клетке и вторым электродом (индифферентным). В своем обозначении они имеют букву V и цифру порядкового номера. В данном случае электроды располагаются:

    • V1 - по правому краю грудины в 4-м межреберье;
    • V2 - симметрично V1 слева;
    • V3 - посередине между первой и второй точками;
    • V4 - в 5-м межреберье по сосковой линии;
    • V5 - в 5 -м межреберье по передней подмышечной линии;
    • V6 - в 5 -м межреберье по средней подмышечной линии.

    По некоторым особым показаниям необходимо регистрировать крайне левые дополнительные грудные отведения V7 -V9. В этом случае активный электрод расположен в пятом межреберье по задней подмышечной, лопаточной и околопозвоночной линиям соответственно.

    "Высокие" грудные отведения регистрируются по тем же линиям, что и обычные грудные, но на 2-3 межреберья выше (или иногда ниже), в тех случаях, когда есть подозрение на очаговые изменения передней и боковой стенках левого желудочка в их верхних отделах.

    Правые грудные отведения, обозначаемые аналогично усиленным с конечностей V3R-V6R, фиксируются на симметричных участках грудной клетки справа.

    Дополнительные отведения

    Отведения по Небу (двухполюсные грудные) удобны при проведении различных функциональны проб с физической нагрузкой. Они используются в качестве дополнительных методов подтверждения гипертрофии желудочков и выявления специфических локализаций нарушения кровообращения сердца. Электроды располагаются на грудной клетке, образуя так называемый «малый сердечный треугольник». В этом случае расположение электродов следующее:

    • красный электрод - по II ребру справа по окологрудинной линии (обозначение А по Небу – передняя стенка);
    • желтый электрод – по задней подмышечной линии на уровне пятого межреберья (обозначение D по Небу – задняя стенка);
    • зеленый электрод – над верхушкой (обозначение I по Небу – нижняя стенка).

    Для регистрации очаговых изменений в нижнем отделе задней стенки левого желудочка применяют отведения по Слопаку. Желтый (индифферентный) электрод накладывается на левую руку, красный (активный) электрод - во II межреберье у левого края грудины, далее последовательно перемещается в подключичной области от края грудины к левому плечу по среднеключичной, передней и средней подмышечной линиям.

    Отведения по Лиану применяются для более четкой регистрации предсердий. Электроды помещают на рукоятке грудины и в пятом межреберье у правого или левого края грудины.

    Отведение по Клетэну идентично отведению aVF, но превышает его по амплитуде в 2 раза и менее зависит от расположения сердца. На рукоятке грудины располагают электрод с правой руки, на левой ноге остается другой электрод. В клинической практике методика наложения электродов по Клетэну применяется для диагностики очаговых поражений, расположенных по задней стенке левого желудочка.

    Пищеводные отведения дают возможность регистрировать потенциалы в непосредственной близости от сердца и применяются для записи потенциалов участков, недоступных для записи грудными электродами, - задняя стенка левого желудочка и левое предсердие.

    За что отвечают ЭКГ отведения?

    Известно, что каждое из отведений регистрирует прохождение импульса от синусового узла по проводящей системе в определенных отделах сердца: стандартные (I, II, III) отвечают за переднюю и заднюю стенки; усиленные от конечностей (aVR, aVL, aVF) – за правую боковую, левую передне-боковую и задне-нижнюю стенку соответственно; грудные V1 и V2 - за межжелудочковую перегородку; V3 – за переднюю стенку левого желудочка, V4 – за верхушку, V5 и V6 – за боковую стенку левого желудочка; дополнительные грудные (V7 -V 9) - за заднюю стенку; правые грудные (V3 R-V6 R) - за правую стенку.

    Также подразумевается условное разделение отведений на правые (III, aVF, V1 -V2), регистрирующие изменения разности потенциалов в правом предсердии и желудочке, и левые (I, aVL, V5 -V6) - аналогично в левой.

Несмотря на прогрессивное развитие медицинских методов диагностики, электрокардиография является наиболее востребованным. Данная процедура позволяет быстро и точно установить нарушения работы сердца и их причину. Обследование является доступным, безболезненным и неинвазивным. Декодирование результатов производится незамедлительно, кардиолог может достоверно определить заболевание, и своевременно назначить правильную терапию.

Метод ЭКГ и обозначения на графике

Вследствие сокращения и расслабления сердечной мышцы возникают электрические импульсы. Так, создается электрополе, охватывающее все тело (включая ноги и руки). В ходе своей работы, сердечная мышца образует электрические потенциалы с положительным и отрицательным полюсом. Разность потенциалов между двумя электродами сердечного электрического поля регистрируется в отведениях.

Таким образом, отведения ЭКГ – это схема расположения сопряженных точек тела, которые имеют различные потенциалы. Электрокардиограф регистрирует сигналы, полученные за определенный временной период, и преобразует их в наглядный график на бумаге. На горизонтальной линии графика производится регистрация временного диапазона, на вертикальной – глубина и частота трансформации (изменения) импульсов.

Направление тока к активному электроду фиксирует положительный зубец, удаление тока – зубец отрицательный. На графическом изображении зубцы представлены острыми углами, расположенными сверху (зубец «плюс») и снизу (зубец «минус»). Слишком высокие зубцы свидетельствуют о патологии в том, или ином сердечном отделе.

Обозначения и показатели зубцов:

  • Т-зубец – это показатель восстановительного этапа мышечной ткани желудочков сердца между сокращениями среднего мышечного слоя сердца (миокарда);
  • зубец Р отображает уровень деполяризации (возбуждения) предсердий;
  • Q, R, S – эти зубцы показывают ажитацию сердечных желудочков (возбужденное состояние);
  • зубец U отражает восстановительный цикл отдаленных участков желудочков сердца.

Диапазонный промежуток между зубцами, расположенными по соседству, составляет сегмент (сегменты обозначаются, как ST,QRST, TP). Соединение сегмента и зубца является интервалом прохождения импульса.

Подробнее об отведениях

Для точной диагностики фиксируется разность показателей электродов (электрический потенциал отведения), закрепленных на теле пациента. В современной кардиологической практике принято 12 отведений:

  • стандартные – три отведения;
  • усиленные – три;
  • грудные – шесть.

Диагностику проводят только те специалисты, которые получили соответствующую квалификацию

Стандартные или двухполюсные отведения фиксируются разностью потенциалов, исходящих от электродов, закрепленных в следующих областях тела пациента:

  • левая рука – электрод «+», правая – минус (первое отведение - I);
  • левая нога – датчик «+», правая рука – минус (второе отведение - II);
  • левая нога – плюс, левая рука – минус (третье отведение - III).

Электроды для стандартных отведений закрепляются клипсами в нижней части конечностей. Проводником между кожей и датчиками служат обработанные физраствором салфетки или медицинский гель. Отдельный вспомогательный электрод, установленный на правой ноге, выполняет функцию заземления. Усиленные или однополюсные отведения, по способу фиксации на теле, идентичны стандартным.

Электрод, который регистрирует изменения разности потенциалов между конечностями и электрическим нулем, на схеме имеет «V»-обозначение. Левая и правая рука, обозначаются «L» и «R» (от английского «левые», «правые»), нога соответствует букве «F» (нога). Таким образом, место прикрепления электрода к телу на графическом изображении определяется, как аVL, аVR, аVF. Они фиксируют потенциал конечностей, на которых закреплены.

Усиленные электроды необходимы для удобного декодирования кардиограммы, поскольку без них зубцы на графике будут выражены слабо.

Двухполюсные стандартные и однополюсные усиленные отведения обуславливают формирование системы координат из 6 осей. Угол между стандартными отведениями составляет 60 градусов, между стандартным и близлежащим к нему усиленным отведением – 30 градусов. Сердечный электроцентр разбивает оси пополам. Минусовая ось направлена к отрицательному электроду, плюсовая ось, соответственно, обращена к положительному.

Грудные отведения ЭКГ регистрируются однополюсными датчиками, прикрепленными к кожному покрову грудной клетки посредством шести присосок, соединенных лентой. Они фиксируют импульсы с окружности сердечного поля, которая является равно потенциальной к электродам на конечностях. На бумажном графике грудным отведениям соответствует обозначение «V» с порядковым номером.

Кардиологическое исследование выполняется по определенному алгоритму, поэтому стандартная система установки электродов в области груди, не может быть изменена:

  • в районе четвертого анатомического пространства между ребрами с правой стороны грудины – V1. В том же сегменте, только с левой стороны – V2;
  • соединение линии, идущей от середины ключицы и пятого межреберья – V4;
  • на одинаковом расстоянии от V2 и V4 располагается отведение V3;
  • соединение передней подмышечной линии слева и пятого межреберного пространства – V5;
  • пересечение левой средней части подмышечной линии и шестого пространства между ребрами – V6.


Дополнительные электроды используются в случае затруднения постановки диагноза, когда декодирование шести основных показателей не дает объективной картины заболевания

Каждое отведение на груди осью соединено с электроцентром сердца. При этом угол расположения V1–V5 и угол V2–V6 равняется 90 градусам. Клиническая картина работы сердца может фиксироваться кардиографом при помощи 9-ти ответвлений. К шести обычным добавляются три однополюсных отведения:

  • V7 – в месте соединения 5-го межреберного пространства и задней линии подмышки;
  • V8 – та же межреберная область, но по средней линии подмышки;
  • V9 – околопозвоночная зона, параллельно V7 и V8 по горизонтали.

Отделы сердца и отвечающие за них отведения

Каждое из шести основных отведений отображает тот, или иной отдел сердечной мышцы:

  • I и II стандартные отведения – передняя и задняя сердечные стенки, соответственно. Их совокупность отражает III стандартное отведение.
  • aVR – боковая сердечная стенка справа;
  • aVL – боковая сердечная стенка впереди слева;
  • aVF – нижняя стенка сердца сзади;
  • V1 и V2 – правый желудочек;
  • VЗ – перегородка между двумя желудочками;
  • V4 – верхний сердечный отдел;
  • V5 – боковая стенка левого желудочка спереди;
  • V6 – левый желудочек.

Таким образом, упрощается расшифровка электрокардиограммы . Сбои в каждом отдельном ответвлении характеризуют патологию определенной области сердца.

ЭКГ по Небу

В методике ЭКГ по Небу принято использование только трех электродов. Датчики красного и желтого цвета фиксируются на пятом межреберном пространстве. Красный справа на груди, желтый – на задней поверхности подмышечной линии. Зеленый электрод располагается на линии середины ключицы. Чаще всего, электрокардиограмма по Небу применяется для диагностики некроза задней сердечной стенки (заднебазальный инфаркт миокарда), и для контроля состояния сердечных мышц у профессиональных спортсменов.


Схематичное расположение желудочков и предсердий, на основании локализации которых и располагают электроды

Нормативные показатели основных ЭКГ-параметров

Нормальными ЭКГ показателями принято считать следующее расположение зубцов в отведениях:

  • равноценное расстояние между R-зубцами;
  • зубец Р всегда положительный (возможно его отсутствие в отведениях III, V1, aVL);
  • горизонтальный интервал между Р-зубцом и Q-зубцом – не более 0,2 сек.;
  • зубцы S и R присутствуют во всех отведениях;
  • Q-зубец – исключительно отрицательный;
  • зубец Т – положительный, всегда изображен после QRS.

Снятие ЭКГ производится амбулаторно, в условиях стационара, и на дому. Декодированием результатов занимается врач-кардиолог или терапевт. В случае несоответствия полученных показателей установленной норме, пациента госпитализируют или назначают лечение медикаментами.

Позволит Вас следить за состоянием своего сердца и контролировать ЭКГ.Следить за признаками нормальной ЭКГ. Вы делаете исследование и через 30 секунд получаете автоматическое заключение о состоянии своего сердца. При необходимости можно отправить исследование на контроль врача.

Устройство можно приобрести прямо сейчас за 20 400 рублей с доставкой по всей России нажав кнопку Купить.

ЭКГ является основным методом диагностики нарушений ритма сердца. В данной публикации кратко представлены признаки нормальной ЭКГ. Запись ЭКГ проводят в удобном для пациента положении, дыхание должно быть спокойным. Для регистрации ЭКГ чаще всего используют 12 основных отведений: 6 от конечностей и 6 грудных. Проект предлагает анализ микроальтернаций по шести отведениям (применяются только электроды, накладываемые на конечности), которые позволяют выявить самостоятельно вероятные отклонения в работе сердца. Используя проект возможен анализ и по 12 отведениям. Но в домашних условиях неподготовленному человеку трудно правильно расположить грудные электроды, что может привести к некорректной записи электрокардиограммы. Поэтому прибор КАРДИОВИЗОР , регистрирующий 12 отведений, приобретают врачи-кардиологи.

Для получения 6 стандартных отведений электроды накладываются следующим образом:
. I отведение: левая рука (+) и правая рука (-)
. II отведение: левая нога (+) и правая рука (-)
. III отведение: левая нога (+) и левая рука (-)
. aVR - усиленное отведение от правой руки (сокращение от augmented voltage right — усиленный потенциал справа).
. aVL - усиленное отведение от левой руки
. aVF - усиленное отведение от левой ноги

На рисунке приведена электрокардиограмма, полученная клиентом в проекте сайт

Каждое отведение характеризует работу определенного участка миокарда. I и aVL отведения отражают потенциалы передней и боковой стенки левого желудочка. III и aVF отведения отражают потенциалы нижнедиафрагмальной (задней) стенки левого желудочка. II отведение является промежуточным, подтверждает изменения в переднебоковой или в задней стенке левого желудочка.

Сердце состоит из двух предсердий и двух желудочков. Масса предсердий намного меньше массы желудочков, поэтому электрические изменения, связанные с сокращением предсердий невелики. Они связаны с зубцом P. В свою очередь при деполяризации желудочков на ЭКГ регистрируются высокоамплитудные колебания - это комплекс QRS. Зубец T связан с возвращением желудочков в состояние покоя.

При анализе ЭКГ придерживаются строгой последовательности:
. Ритм сердца
. Интервалы, отражающие проводимость
. Электрическая ось сердца
. Описание комплексов QRS
. Описание сегментов ST и зубцов T

Ритм сердца и частота сердечных сокращений

Ритм сердца является важным показателем работы сердца. В норме ритм синусовый (название связано с синусовым узлом - водителем ритма, благодаря работе которого происходит передача импульса и сокращение сердца). Если деполяризация начинается не в синусовом узле, то в таком случае говорят об аритмии и ритм называют в честь отдела, откуда начинается деполяризация. Частоту сердечных сокращений (ЧСС) определяют на ЭКГ по расстоянию между зубцами R. Ритм сердца считается нормальным, если продолжительность интервалов R-R одинакова или имеет незначительный разброс (до 10%). В норме частота сердечных сокращений составляет 60-80 ударов в минуту. Аппарат ЭКГ протягивает бумагу со скоростью 25мм/с, следовательно, большой квадрат (5мм) соответствует 0,2 секунды (с) или 200 миллисекундам (мс). Частоту сердечных сокращений измеряют по формуле
ЧСС = 60/R-R,
где R-R расстояние между самыми высокими зубцами, связанными с сокращением желудочков.

Ускорение ритма называется тахикардией, а замедление - брадикардией.
Анализ ЭКГ должен проводить врач-кардиолог. Используя КАРДИОВИЗОР , клиент проекта может снимать ЭКГ самостоятельно, так как все расчеты проводит компьютерная программа, и пациент видит уже конечный результат, проанализированный системой.

Интервалы, отражающие проводимость

По интервалам между зубцами P-QRS-T можно судить о проводимости электрического импульса между отделами сердца. В норме интервал PQ составляет 120-200 мс (3-5 маленьких квадрата). По интервалу PQ можно судить о проведении импульса от предсердий через атриовентрикулярный (предсердно-желудочковый) узел к желудочкам. Комплекс QRS характеризует возбуждение желудочков. Ширину комплекса QRS измеряют от начала зубца Q до конца зубца S. В норме эта ширина равна 60-100 мс. Также смотрят на характер зубцов этого комплекса. В норме зубец Q по продолжительности должен быть не более 0,04 с и не превышать 3 мм по глубине. Аномальный зубец Q может указывать на инфаркт миокарда.

Интервал QT характеризует общую продолжительность систолы (сокращения) желудочков. QT включает интервал от начала комплекса QRS до конца зубца T. Для расчета интервала QT часто используют формулу Базетта. Эта формула учитывает зависимость QT-интервала от частоты ритма (QTc). В норме интервал QTc составляет 390-450 мс. Удлинение интервала QT указывает на развитие ишемической болезни сердца, атеросклероза, ревматизма или миокардита. Укорочение интервала QT может свидетельствовать о гиперкальциемии.
Все интервалы, отражающие проводимость электрического импульса, расчитываются специальной программой, что позволяет получить достаточно точные результаты обследования, которые видны в режиме кабинета диагностики системы .

Электрическая ось сердца (ЭОС)

Определение положения электрической оси сердца позволяет выявить участки нарушения проводимости электрического импульса. Оценку положения ЭОС проводят врачи-кардиологи. При использовании , данные о положении электрической оси сердца рассчитываются автоматически и пациент, может посмотреть результат в своем кабинете диагностики. Для определения ЭОС смотрят на высоту зубцов. В норме зубец R должен быть больше зубца S (отсчет ведут от изолинии) в I, II и III отведениях. Отклонение оси вправо (зубец S больше зубца R в I отведении) свидетельствует о проблемах в работе правого желудочка, а отклонения влево (зубец S больше зубца R в II и III отведении) может указывать на гипертрофию левого желудочка.

Описание комплекса QRS

Комплекс QRS возникает благодаря проведению импульса по перегородке и миокарду желудочков и характеризует их работу. В норме отсутствует патологический зубец Q (не шире 20-40 мс и не глубже 1/3 зубца R). В отведении aVR зубец Р отрицательный, а комплекс QRS ориентирован вниз от изоэлектрической линии. Ширина комплекаса QRS в норме не превышает 120 мс. Увеличение этого интервала может говорить о блокаде ножки пучка Гиса (нарушении проводимости).

Рисунок. Отрицательный зубец P в aVR отведении (красным указана изоэлектрическая линия).

Морфология зубца P

Зубец P отражает распространение электрического импульса по обоим предсердиям. Начальная часть зубца P характеризует активность правого предсердия, а конечная часть - левого предсердия. В норме зубец P должен быть положительным в I и II отведениях, aVR - отрицательный, обычно положительный в aVF и непостоянный в III и aVL отведении (может быть положительным, инвертированным или двухфазным). Ширина зубца P в норме не менее 0,12с (120мс). При увеличении ширины зубца P, а также его удвоении, можно говорить о нарушении проведения импульса - происходит атриовентрикулярная блокада (рисунок).

Рисунок. Удвоение и увеличение ширины P-зубца

Описание сегментов ST и зубцов T

Сегмент ST соответствует периоду, когда оба желудочка полностью охвачены возбуждением, измеряется от конца S до начала Т-зубца. Продолжительность ST зависит от частоты пульса. В норме сегмент ST расположен на изолинии, депрессия ST допускается до 0,5 мм, его подъем в стандартных отведениях не должен превышать 1 мм. Подъем сегмента ST наблюдается при остром инфаркте и перикардите, а депрессия свидетельствует об ишемии миокарда или о влиянии сердечных гликозидов.

Зубец T характеризует процесс реполяризации (возвращение желудочков к исходному состоянию). При нормальной работе сердца T-зубец направлен вверх в отведении I и II, но в aVR отведении - всегда будет отрицательный. Высокий и заостренный T-зубец наблюдается при гиперкалиемии, а плоский и удлиненный зубец указывает на обратный процесс - гипокалиемию. Отрицательный зубец T в I и II отведениях может свидетельствовать об ишемии, инфаркте, гипертрофии правого и левого желудочка или же о тромбоэмболии легочной артерии.

Выше описаны основные параметры, которые используются для анализа ЭКГ стандартным методом. Проект , предлагает анализ ЭКГ, который базируется на методе дисперсионного картирования. Он основан на формировании информационно-топологической модели малых колебаний ЭКГ - микроальтераций ЭКГ-сигнала. Анализ этих отклонений позволяет выявить патологию в работе сердца на более ранних этапах, в отличие от стандартного метода анализа ЭКГ.

Ростислав Жадейко , специально для проекта .