Главная · Боли в желудке · Генномодифицированная реальность. Генно-модифицированные люди – миф или реальность? Что именно сделано

Генномодифицированная реальность. Генно-модифицированные люди – миф или реальность? Что именно сделано

Генети́чески модифици́рованный органи́зм (ГМО ) - организм , генотип которого был искусственно изменён при помощи методов генной инженерии . Это определение может применяться для растений, животных и микроорганизмов. ВОЗ даёт более узкое определение: "Генетически модифицированные организмы (ГМО) - это организмы (т.е. растения, животные или микроорганизмы), чей генетический материал (ДНК) был изменен, причём такие изменения были бы невозможны в природе в результате размножения или естественной рекомбинации." . Генетические изменения, как правило, производятся в научных или хозяйственных целях. Генетическая модификация отличается целенаправленным изменением генотипа организма в отличие от случайного, характерного для естественного и искусственного мутационного процесса.

Основным видом генетической модификации в настоящее время является использование трансгенов для создания трансгенных организмов .

В сельском хозяйстве и пищевой промышленности под ГМО подразумеваются только организмы, модифицированные внесением в их геном одного или нескольких трансгенов .

Специалистами получены научные данные об отсутствии повышенной опасности продуктов из генетически модифицированных организмов как таковых по сравнению с традиционными продуктами .

Энциклопедичный YouTube

    1 / 5

    ✪ ГМО МУТАНТЫ БИОРОБОТЫ уже реальность. Люди ИКС не фантастика. Чудеса генетики и генной инженерии

    ✪ ШОК! ЛЮДИ ГМО! КИТАЙЦЫ НАЧАЛИ ВЫРАЩИВАТЬ ГМО ЛЮДЕЙ, ППЦ

    ✪ Генетически модифицированные организмы

    ✪ ГМО (рассказывает биолог Александр Панчин)

    ✪ Что такое ГМО?

    Субтитры

    уже ни для кого не секрет что профессиональный спорт соревнования не людей a farm технологий в 2008 году китайцы взяли на себя проведение олимпийских игр и пообещали продемонстрировать спортивное чудо и им это удалось занимавшая раньше третье четвертое место в общекомандном зачете государства в 2008 году не просто стала первым обогнала ближайшего конкурента сборную сша низкорослые и хилого ты от природы китайцы получили одну из самых высокорослых баскетбольных команд в мире и одну из самых сильных команд по поднятию тяжестей они стали неплохо плавать и бегать чего раньше за ними не очень замечалось это не просто увеличение результата это взрыв что же это за взрывчатое вещество обеспечившие такое ускорение в далеком 2006 году в мире были сделаны 200000 допинг-проб положительными оказались всего-навсего около двух процентов значит ли это что остальные девяносто восемь процентов атлетов безусловно не используют некие искусственные препараты или методы может быть дело в том что часть носке руется а часть вообще пока не научились выявлять и может быть генный допинг уже давно не конспирологических слух по всему миру ученые работают над тем чтобы буквально переписать наш генетический код посредством генетической модификации и редактирования генов чтобы проиллюстрировать возможности вмешательства в код человека в том числе в спортивных целях приведем открытые данные по системы crispr cas9 это революционный метод редактирования генома который может модифицировать любую область генома любого вида с высокой точностью и без ущерба для других генов что можно делать с помощью crispr cas9 удалять нежелательные гены добавлять новые активировать мертвые гены которые больше не функционируют контролировать активность генов и это только та информация которая есть в открытом доступе наивно предполагать что подобная работа не велась и не ведется в секретных военных а туре я еще в 2016 году башар джеффри чрезвычайный и полномочный посол сирии вон сделал шокирующее заявление о том что сша используют в сирии генетически модифицированных солдат даже our series такие организации как darpa управление перспективных исследовательских проектов министерства обороны сша уже начинают постепенно готовить мир к восприятию новой реальности в рамках этой кампании darpa несмотря на секретность пригласила в своей лаборатории писателя-фантаста саймона канвы и и показала некоторые из своих достижений разрешив об увиденном написать как оказалось до армии из генетически модифицированных людей совсем уже недалеко так darpa представила грант в размере 40 миллионов долларов калифорнийским и пенсильванский университетом для разработки имплантов контролирующих память о институт доклинических исследований техасского университета работает по программе darpa над средствами выживания при значительной потери крови институтов и университетов и биологических лабораторий в сша много и каждая работает на выделенном ей участке одни лаборатории занимаются ферментными комплексами помогающими выживать при низких температурах другие занимаются усилением скелета и набором мышечной массы далекие отголоски подобных исследований мы видим на результатах вполне открытых для публики лабораторий которые разводят необычайно мускулистых мышей или собак эти работы начаты еще в 90-х годах 20 лет назад и это абсолютно открыты и исследования о которых пишут в научных журналах каких результатов добились военные на своих закрытых объектах за столь долгое время и имея неограниченные финансирование можно только догадываться накануне массированных авианалет of россии на позиции террористов всегда приходило много сообщений о том что американские вертолеты прибывают на базы контролируемых ими боевиков и вывозят главарей террористов но откуда такая забота о паре каких-то бородатых боевиков ради которых тратятся тонный керосина и моторесурс innova вертолета это похоже не на спасение лидеров террористов а на спасение ценного экспериментального материала секретного генетически модифицированного организма совсем недавно на тему генных модификаций высказывался президент россии владимир путин объясняя что подобного рода эксперименты страшнее атомной бомбы что они должны либо строго контролироваться он либо вообще должны быть запрещены человек приобретает возможность влезать в генетический код созданный или природой или люди с религиозными взглядами говорят господом богом последствия практически какие из этого могут наступить это значит что уже можно это представить даже не очень теоретически уже может можно практически представить что человек может создавать человека с заданными характеристиками это может быть гениальный математик это может быть гениальный музыкант но может быть и военный человек который может воевать без страха и без без чувства сострадания сожаления и без боли и то есть вы понимаете человечество может вступить и скорее всего вступит ближайшее время очень сложный и очень ответственный период своего развития существования и вот тоже о чем еще сказал может быть страшнее ядерной бомбы когда мы что-то делаем и чем бы мы ни занимались хочу повторить это ещё раз мы никогда не должны забывать про нравственные и этические основы очевидно что путин своими словами делал намек на секретные генетические эксперименты сша можно предположить как скором будущем будет продвигаться новая философия синтетически измененные гены это честно генный допинг это то что устраняет несправедливость допущенную природы природа жестока одних она одаривает щедро а других обделяет у обделенных нет шансов стать первыми ни при каких условиях не при каком желание ни при каких тренировках единственное что может им помочь это разум докторов медицины и научный прогресс общества где генный допинг широко распространен состоит из миллионов мутантов не мутантам место будет оставаться в таком обществе все меньше и меньше люди старого образца будут обречены на вымирание так как окажутся не конкурентно способными супер таксисты с феноменальной реакцией супер грузчики работающие две смены в высоком темпе супер-солдаты не ведающие страха и боли дивный новый мир может быть вам кажется что все это фантазии не имеющее к реальности никакого отношения посмотрим ждать осталось недолго в конце концов будущее в той или иной мере зависит от каждого из нас да в сша допустили создание генетически модифицированных людей в этом вопросе наука этих а сталкиваются лбами баланс возможно сохранится но все зависит от того насколько далеко зайдут ученый ну давайте разберемся на что могут дать зеленый свет академии наук а медицины сша представили доклад о снятии запрета на создание в будущем людей с отредактирован им геномом но с оговорочкой позволено только исправление мутации ведущих к возникновению тяжелых наследственных заболеваний речь не идет о улучшений человеческих черт и способности боязнь отстать от конкурентов слишком высоко на главные конкуренты в этом вопросе китай и индия там взгляды на генетику иные в конце концов если на секунду забыть об этических возражениях вторжения в генетику способна дать колоссальное преимущество даже на уровне целых стран так самое незначительное увеличение уровня интеллекта с помощью редактирования генов может оказать огромное влияние на рост науки ну а спорт представьте какие здесь преимущество ученые говорят о том что с помощью генетики можно даже подавить склонность к насилию это снизит уровень преступности в целом если мы говорим о каких-то зовем их суперлюди кто может быть есть какие-то пути другие естественные чтобы улучшить человека но самый яркий пример так называемая позитивная евгеников сингапуре концепция была разработана премьер-министром сингапура это такая выбраковка неугодных местные социологи заметили что многие образованные женщины не заводят семью и не рожают детей на мужчины берут в жены бедных малайка индианок под патронажем государства создали два брачных агентство который по сути занимались сводничеством людей с высоким уровнем интеллекта и крепким здоровьем за счет государства устраивались круизы строились специальные кафе тренажерные залы образовавшимся парам выплачивались огромные пособий вот такая любовь к родине великобритании мне окончательно легализовали создание эмбрионов с использованием днк 3 человека таким образом королевство станет первой страной в мире где уже в следующем году на свет появится новорожденный с тремя родителями по словам ученых новая технология позволит предотвратить передачу генетических нарушений от матери к ребенку но вот критики считают что решение о допустить появление на свет малышей с намеренно измененными генами может привести в будущем к появлению так называемых дизайнерских детьми то есть и людей заданными свойствами в киеве ребенок появился на свет с помощью метода цитоплазматической донации проще говоря от трех родителей украинской врачи стали первыми в европе кому удалось такая процедура

Цели создания ГМО

Использование как отдельных генов различных видов, так и их комбинаций в создании новых трансгенных сортов и линий является частью стратегии FAO по характеризации, сохранению и использованию генетических ресурсов в сельском хозяйстве и пищевой промышленности .

Исследование 2012 года (основанное в том числе на отчётах компаний-производителей семян) использования трансгенных сои, кукурузы, хлопка и канолы в 1996-2011 годах показало, что устойчивые к гербицидам культуры оказываются более дешёвыми в выращивании и в ряде случаев более урожайными. Культуры содержащие инсектицид давали больший урожай, особенно в развивающихся странах, где использовавшиеся до этого пестициды были малоэффективными. Также устойчивые к насекомым культуры оказывались более дешёвыми в выращивании в развитых странах . По данным метаанализа , проведённого в 2014 году, урожайность ГМО-сельхозкультур за счёт снижения потерь от вредителей на 21,6 % выше, чем у немодифицированных, при этом расход пестицидов ниже на 36,9 %, затраты на пестициды снижаются на 39,2 %, а доходы сельхозпроизводителей повышаются на 68,2 % .

Методы создания ГМО

Основные этапы создания ГМО:

  1. Получение изолированного гена.
  2. Введение гена в вектор для переноса в организм.
  3. Перенос вектора с геном в модифицируемый организм.
  4. Преобразование клеток организма.
  5. Отбор генетически модифицированных организмов и устранение тех, которые не были успешно модифицированы.

Методы осуществления каждого из этих этапов составляют в совокупности методы генетической инженерии (англ. Genetic engineering techniques ).

Процесс синтеза генов в настоящее время разработан очень хорошо и даже в значительной степени автоматизирован. Существуют специальные аппараты, снабжённые ЭВМ, в памяти которых закладывают программы синтеза различных нуклеотидных последовательностей. Такой аппарат синтезирует отрезки ДНК длиной до 100-120 азотистых оснований (олигонуклеотиды).

Если модификации подвергаются одноклеточные организмы или культуры клеток многоклеточных, то на этом этапе начинается клонирование , то есть отбор тех организмов и их потомков (клонов), которые подверглись модификации. Когда же поставлена задача получить многоклеточные организмы, то клетки с изменённым генотипом используют для вегетативного размножения растений или вводят в бластоцисты суррогатной матери, когда речь идёт о животных. В результате рождаются детёныши с изменённым или неизменным генотипом , среди которых отбирают и скрещивают между собой только те, которые проявляют ожидаемые изменения.

Применение

В исследованиях

В настоящее время генетически модифицированные организмы широко используются в фундаментальных и прикладных научных исследованиях. С помощью генно-модифицированных организмов исследуются закономерности развития некоторых заболеваний (болезнь Альцгеймера , рак) , процессы старения и регенерации , изучается функционирование нервной системы , решается ряд других актуальных проблем биологии и современной медицины .

В медицине и фармацевтической промышленности

Генетически модифицированные организмы используются в прикладной медицине с 1982 года . В этом году зарегистрирован в качестве лекарства генно-инженерный человеческий инсулин , получаемый с помощью генетически модифицированных бактерий . В настоящее время фармацевтическая промышленность выпускает большое количество лекарственных средств на основе рекомбинантных белков человека: такие белки производят генетически модифицированные микроорганизмы, либо генетически модифицированные клеточные линии животных. Генетическая модификация в данном случае заключается в том, что в клетку интродуцируется ген белка человека (например, ген инсулина, ген интерферона, ген бета-фоллитропина). Эта технология позволяет выделять белки не из донорской крови, а из ГМ-организмов, что снижает риск инфицирования препаратов и повышает чистоту выделенных белков. Ведутся работы по созданию генетически модифицированных растений, продуцирующих компоненты вакцин и лекарств против опасных инфекций (чумы , ВИЧ ). На стадии клинических испытаний находится проинсулин, полученный из генетически модифицированного сафлора . Успешно прошло испытания и одобрено к использованию лекарство против тромбозов на основе белка из молока трансгенных коз .

В сельском хозяйстве

Генная инженерия используется для создания новых сортов растений, устойчивых к неблагоприятным условиям среды и вредителям , обладающих лучшими ростовыми и вкусовыми качествами.

Проходят испытания генетически модифицированные сорта лесных пород со значительным содержанием целлюлозы в древесине и быстрым ростом .

Однако, некоторые компании устанавливают ограничения на использование продаваемых ими генетически модифицированных семян, запрещая высеивание самостоятельно полученных семян. Для этого используются юридические ограничения типа контрактов, патентов или лицензирования семян . Также для подобных ограничений одно время прорабатывались технологии ограничительные технологии (англ.) русск. (GURT), которые так и не использовались в коммерчески доступных ГМ-линиях. . Технологии GURT либо делают стерильным выращенные семена (V-GURT), либо требуют особых химических веществ для проявления внесённого с помощью модификации свойства (T-GURT). При этом стоит отметить, что в сельском хозяйстве широко применяются гибриды F1 , которые, как и ГМО-сорта, требуют ежегодной закупки семенного материала. Некоторые продукты содержат ген, приводящий к стерильности пыльцы, например, ген барназы , полученный из бактерии Bacillus amyloliquefaciens .

С 1996 года, когда началось выращивание ГМ-растений, площади, занятые ГМ-культурами, выросли до 175 млн гектаров в 2013 году (более 11 % от всех мировых посевных площадей). Такие растения выращиваются в 27 странах, особенно широко - в США, Бразилии, Аргентине, Канаде, Индии, Китае , при этом, начиная с 2012 года, производство ГМ-сортов развивающимися странами превысило производство в промышленно развитых государствах . Из 18 миллионов фермерских хозяйств, выращивающих ГМ-культуры, более 90 % приходится на малые хозяйства в развивающихся странах .

На 2013 год, в 36 странах, регулирующих использование ГМ-культур, было выдано 2833 разрешения на использование таких культур, из них 1321 - для употребления в пищу, и 918 - на корм скоту. Всего на рынок допущено 27 ГМ-культур (336 сортов), основными культурами являются: соя, кукуруза, хлопок, канола , картофель . Из применяемых ГМ-культур подавляющее большинство площадей занимают культуры, устойчивые к гербицидам, насекомым-вредителям или культуры с комбинацией этих свойств .

В животноводстве

Методом генного редактирования удалось создать свиней, которые потенциально устойчивы к африканской свиной чуме . Изменение пяти «букв» в коде ДНК гена RELA у выращиваемых на фермах животных, позволило получить вариант гена, который, предположительно защищает их диких сородичей: бородавочников и кустарниковых свиней от этого заболевания .

Другие направления

Разрабатываются генетически модифицированные бактерии, способные производить экологически чистое топливо .

В 2003 году на рынке появилась GloFish - первый генетически модифицированный организм, созданный с эстетическими целями, и первое домашнее животное такого рода. Благодаря генной инженерии популярная аквариумная рыбка Данио рерио получила несколько ярких флуоресцентных цветов.

В 2009 году выходит в продажу ГМ-сорт розы «Applause» с цветами синего цвета . Таким образом, сбылась многовековая мечта селекционеров, безуспешно пытавшихся вывести «синие розы ».

Безопасность

Появившаяся в начале 1970-х годов технология рекомбинантных ДНК (en:Recombinant DNA) открыла возможность получения организмов, содержащих инородные гены (генетически модифицированных организмов). Это вызвало обеспокоенность общественности и положило начало дискуссии о безопасности подобных манипуляций .

На вопрос о безопасности продуктов из генетически модифицированных организмов Всемирная организация здравоохранения отвечает о невозможности общих утверждений об опасности или безопасности таких продуктов, но о необходимости отдельной оценки в каждом случае, так как разные генетически модифицированные организмы содержат разные гены. Также ВОЗ считает, что доступные на международном рынке гм-продукты проходят проверки безопасности и употреблялись в пищу популяциями целых стран без отмеченных эффектов, и соответственно вряд ли могут представлять опасность для здоровья .

В настоящее время специалистами получены научные данные об отсутствии повышенной опасности продуктов из генетически модифицированных организмов в сравнении с продуктами, полученными из организмов, выведенных традиционными методами [ ] . Как отмечается в докладе 2010 года Генерального Директората Европейской комиссии по науке и информации :

Главный вывод, вытекающий из усилий более чем 130 научно-исследовательских проектов, охватывающих 25 лет исследований и проведённых с участием более чем 500 независимых исследовательских групп, состоит в том, что биотехнологии и, в частности, ГМО как таковые не более опасны, чем, например, традиционные технологии селекции растений

Тем не менее ряд учёных высказывает опасения в связи с недостатком долгосрочных исследований (2 года и более), наблюдавшимися эффектами в некоторых случаях и возможным несовершенством существующих проверок .

Обзор 1783 публикаций на тему ГМО с выводом: никаких особенных рисков они не несут .

Использование устойчивых к гербицидам культур в сочетании с гербицидами широкого спектра негативно влияет на биоразнообразие диких растений, фауну сельскохозяйственных земель, а также снижает ротацию сельскохозяйственных культур, необходимую для повышения плодородия земель и уменьшения патогенной нагрузки .

Регулирование

В некоторых странах создание, производство, применение продукции с использованием ГМО подлежит государственному регулированию. В том числе и в России, где исследовано и одобрено к применению несколько видов трансгенных продуктов.

До 2014 года в России ГМО можно было выращивать только на опытных участках, был разрешён ввоз некоторых сортов (не семян) кукурузы, картофеля, сои, риса и сахарной свёклы (всего 22 линии растений). С 1 июля 2014 г. должно было вступить в силу Постановление Правительства Российской Федерации от 23 сентября 2013 г. № 839 «О государственной регистрации генно-инженерно-модифицированных организмов, предназначенных для выпуска в окружающую среду, а также продукции, полученной с применением таких организмов или содержащей такие организмы» , . 16 июня 2014 года Правительством РФ принято постановление № 548 о переносе срока вступления в силу постановления № 839 на 3 года, то есть на 1 июля 2017 года .

В феврале 2015 года в Госдуму внесен законопроект о запрете на выращивание ГМО в России , который был принят в первом чтении в апреле 2015 . Запрет не касается использования генномодифицированных организмов (ГМО) для проведения экспертиз и научно-исследовательских работ. Согласно законопроекту, правительство сможет запрещать ввоз в Россию генно-модифицированных организмов и продукции по результатам мониторинга их воздействия на человека и окружающую среду . Импортёры генно-модифицированных организмов и продукции будут обязаны пройти регистрационные процедуры. За использование ГМО с нарушением разрешённого вида и условий использования предусматривается административная ответственность: штраф на должностных лиц предлагается установить в размере от 10 тысяч до 50 тысяч рублей; на юридических лиц - от 100 до 500 тысяч рублей.

Список ГМО, одобренных в России для использования , в том числе в качестве пищи населением :

Общественное мнение

Как показывают опросы общественного мнения, общество в целом не слишком осведомлено об основах биотехнологии. Большинство верит утверждениям типа: Обычные томаты не содержат генов, в отличие от трансгенных томатов .

По мнению молекулярного биолога Анны Гловер , противники ГМО страдают «формой умственного помешательства». Выражения А. Гловер привели к её отставке с поста главного научного консультанта Европейской Комиссии .

В 2016 году более 120 нобелевских лауреатов (в том числе медиков и биологов) подписали письмо с призывом к Greenpeace , Организации Объединённых Наций и правительствам всего мира прекратить борьбу с генетически модифицированными организмами .

ГМО и религия

В соответствии с заключением иудаистского Ортодоксального Союза, генетические модификации не влияют на кошерность продукта .

См. также

Примечания

  1. ВОЗ | Часто задаваемые вопросы по генетически модифицированным продуктам питания (неопр.) . www.who.int. Дата обращения 24 марта 2017.
  2. genetically modified organism // Glossary of biotechnology for food and agriculture: a revised and augmented edition of the glossary of biotechnology and genetic engineering. Rome, 2001, FAO, ISSN 1020-0541
  3. European Commission Directorate-General for Research and Innovation; Directorate E - Biotechnologies, Agriculture, Food; Unit E2 - Biotechnologies (2010) p.16
  4. What is agricultural biotechnology? // The state of food and agriculture 2003-2004: The state of food and agriculture 2003-2004. Agricultural Biotechnology. FAO Agriculture Series № 35. (2004)
  5. Лещинская И. Б. Генетическая инженерия (рус.) (1996). Дата обращения 4 сентября 2009. Архивировано 21 января 2012 года.
  6. Brookes G, Barfoot P. The global income and production effects of genetically modified (GM) crops 1996-2011.GM Crops Food. 2012 Oct-Dec;3(4):265-72.
  7. Klümper, Wilhelm; Qaim, Matin (2014). “A Meta-Analysis of the Impacts of Genetically Modified Crops” . PLoS ONE . 9 (11): –111629. DOI :10.1371/journal.pone.0111629 . Дата обращения 2015-12-24 .
  8. Trait Introduction Method: Agrobacterium tumefaciens-mediated plant transformation
  9. Microparticle bombardment of plant cells or tissue
  10. Safety of Genetically Engineered Foods: Approaches to Assessing Unintended Health Effects (2004)
  11. Jeffrey Green,Thomas Ried. Genetically Engineered Mice for Cancer Research: Design, Analysis, Pathways, Validation and Pre-clinical Testing. Springer, 2011
  12. Patrick R. Hof,Charles V. Mobbs. Handbook of the neuroscience of aging. p537-542
  13. Cisd2 deficiency drives premature aging and causes mitochondria-mediated defects in mice//Genes & Dev. 2009. 23: 1183-1194
  14. Инсулин растворимый [человеческий генно-инженерный (Insulin soluble ): инструкция, применение и формула]
  15. История развития биотехнологии (рус.) (недоступная ссылка) . Дата обращения 4 сентября 2009. Архивировано 12 июля 2007 года.
  16. Zenaida Gonzalez Kotala. UCF professor develops vaccine to protect against black plague bioterror attack (англ.) (30 July 2008). Дата обращения 3 октября 2009. Архивировано 21 января 2012 года.
  17. Получение препарата против ВИЧ из растений (рус.) (1 апреля 2009, 12:35). Дата обращения 4 сентября 2009. Архивировано 21 января 2012 года.
  18. Инсулин из растений проходит испытания на людях (рус.) (недоступная ссылка - история ) . Membrana (12 января 2009). Дата обращения 4 сентября 2009.
  19. Ирина Власова. Американским пациентам сделают козу (рус.) (недоступная ссылка) (11 февраля 2009, 16:22). Дата обращения 4 сентября 2009. Архивировано 6 апреля 2009 года.
  20. Matt Ridley. Genome: The Autobiography of a Species In 23 Chapters.HarperCollins, 2000, 352 pages
  21. The Mission Impossible of Genetic Redesign For Longevity
  22. Элементы - новости науки: Трансгенный хлопок помог китайским крестьянам победить опасного вредителя
  23. И поросла Россия трансгенными берёзками… | Наука и техника | Наука и технологии России
  24. Monsanto Seed Saving and Legal Activities
  25. Caleb Garling (San Francisco Chronicle), Monsanto seed suit and software patents // SFGate, February 23, 2013: «company’s genetically modified and pesticide-resistant seeds, which are patent-protected. .. Monsanto uses a similar strategy with its seeds. Farmers license their use; technically, they don’t buy them.»
  26. Are GM plants fertile, or do farmers have to buy new seeds every year? // EuropaBio: "All GM plants commercialized are as fertile as their conventional counterparts."

Мы намеренно не стали расшифровывать название, которое можно было бы написать следующим образом: «Человек – тоже генетически модифицированный организм». Но так не страшно, а ГМО – страшно. Генетически модифицированные продукты сделали страшилкой, также как спред , пальмовое масло, гибридные продукты и другое. Видимо, людям больше нечего бояться. Пока весь мир обсуждает проблемы ГМО, нас поят водой, которую и водой-то назвать нельзя, и кормят овощами, многократно обработанными пестицидами и отравой против тех же колорадских жуков. Картошка со встроенным геном, которую не едят жуки, - первая широко обсуждаемая тема в России, связанная с ГМО. Все россияне помнят голодные 90-тые, когда пол страны перешла на натуральное хозяйство. Сколько жуков было собрано вручную! Но все-таки больше потравлено «Анкарой» и прочей гадостью. В тот момент многие задумывались, чем же все-таки плоха генетически модифицированная картошка? Но голодные времена закончились и… мы стали покупать продукты, на которых значится « Не содержит ГМО». Мы думаем над тем, как быть здоровыми ! А что мы знаем про эти самые трансгенные организмы? Знаем, что в ДНК картошки встраивают ген скорпиона, потому ее не едят насекомые. Некоторые слышали, что есть помидоры со встроенным геном жабы, они не боятся повышенной влажности, а потому фитофтороз им не страшен. Какое счастье для нашего дачника и бабушек в деревне! Но нет, в Россию «не пущать»! А много ли людей слышало, что инсулин – это тоже продукт генной модификации? Обычную кишечную палочку изменили так, что она превратилась в бактерию, производящую инсулин. В результате спасены были и продолжают спасаться миллионы человек.

Попробуем разобраться, что есть ГМО и на чем построены страшилки, которыми пугают людей. Ну а потом сделаем предположения, зачем это надо (и кому).

Организм человека (и всего живого тоже) состоит из молекул дезоксирибонуклеиновой кислоты, участок ДНК – ген, он и отвечает за ту или иную функцию организма. Заменив один ген, получим новое качество. Заменяя ген в растениях мы получаем продукцию с необходимыми нам свойствами (запомните, что заменяем направленно и искусственным путем). Ген встроен и принадлежит продукту. Мы его съедаем. Чем может быть опасен такой продукт? С какой такой стати его ген станет встраиваться в наш? А почему не встраивается ген помидора, который мы съели в обед? И почему не вырастают капустные листья вместо ушей у людей, питающихся исключительно натуральной капустой? В нашем желудке и кишечнике ДНК продуктов, которые мы съели, разделяются на отдельные части (нуклеотиды), а уже потом из этих кусочков собираются наши ДНК по шаблону нашего организма. Изменить этот процесс не так легко.

Будем объективны, чужеродная ДНК может встроиться в нашу. Но далеко не все и совсем не куда угодно. Вирусы постоянно пытаются это сделать. Но человеческий организм их уничтожает.

Как происходит процесс модификации генов ? Никто не в состоянии включить ген сразу в продукт . В научных лабораториях берут отдельную клетку и выращивают из нее организм . Этот ген теперь принадлежит данному организму , он не способен взять и включить свой ген в другой организм . Повторюсь , никакой организм (кроме вирусов ) не в состоянии встроить свой ген в цепочку дезоксирибонуклеиновой кислоты иного тела . Гены есть у любого картофеля и риса . Почему мы не опасаемся их использовать для еды ?

Теперь, когда разобрались в механизме генной модификации , вернемся к человеку . В молекуле ДНК человека присутствует примерно 8 % вирусных «кусочков », генов , которые были встроены в
человеческую ДНК много тысячелетий назад , заразив клетку , отвечающую за репродукцию пращуров . Между прочим , некоторые из них продолжают выполнять подобную функцию , но вот "заразить " нас непосредственно как вирусы не способны . Получается , что человек тоже ГМО , и произошло это уже очень давно .

Нет гена сердца или гена ноги . Не вырастет у человека нога скорпиона , потому что полный геном имеет каждая отдельная клетка . Информация записана в любой клетке нашего тела .. Или ты человек , или скорпион . Наши гены почти полностью идентичны генам обезьян , но мы не обезьяны . А как Вам покажется сходство с генами рептилий ? Но мы не крокодилы . Самое интересное , что геном каждого человека имеет отличие . Нет отдельных генов какого-либо животного , гены несут информацию , например , о том , как построить белок этого животного . Механизм этот универсален для всего живого на Земле .

Мы не можем создавать организмы из ничего. И из «чего-нибудь» пока тоже не можем. Но мы вполне можем взять готовый организм, выделить из него ген, который отвечает за что-то необходимое нам, встроить в другой организм, который им и останется, но будет обладать нужным нам свойством. Давайте на примере, который уже испробован. Если мы выделим ген камбалы, отвечающий за морозоустойчивость, и встроим его в геном клубники, она не поплывет, если мы ее будем мыть, просто наша клубника будет морозостойкой и ее плоды не померзнут при похолодании. Что в этом страшного?

Вред ГМО полностью надуман. Просто раньше мы пользовались продуктами генной модификации, произошедшей естественным путем и закрепленной селекционерами. Причем зачастую закрепляются признаки, далеко не удачные с точки зрения природы. Пшеница, которую выращивают сегодня, настоящий монстр по сравнению с тем, из чего ее вывели. А при селекции пользуются и обработкой ультрафиолетом, а то и того хуже радиацией (!). Так почему же мы не боимся такой радиации, ведь все прекрасно знают о ее вреде. Чернобыль – ведь катастрофа там была в наше время, мы знакомы с ее последствиями. Да потому что изменения произошли в гене, отвечающем за урожайность, вот и повысится урожайность пшеницы, радиоактивной она не станет! Но получить необходимый нам признак очень трудно, он и совсем может не получиться. Большинство продуктов с возможностью генной модификации находятся в основании пищевой пирамиды, человек нуждается в этих продуктах особенно. Видимо, получение достаточного количества таких продуктов тоже не выгодно пищевым магнатам.

В настоящее время появилась возможность получить желаемый признак не в результате длительных экспериментов, а сразу. Так почему противятся этому?

В интернете множество материалов о вреде трансгенных продуктов. Но если копать глубже, то Вы найдете, что все так называемые доказательства о вреде не имеют под собой никакой базы. Авторы исследований не признаны в научном мире. Ученые же говорят о полной безопасности генной модификации, она никак не влияет на состояние здоровья.

Так почему же продажа продуктов с генной модификацией запрещена в некоторых странах, в том числе и в России? А все дело в том, что создатели любой технологии должны доказать ее безвредность. Ну а если это сделать невозможно, то она считается вредной. А если против новой технологии ополчится бизнес, то ее можно похоронить. И правда, зачем допускать в Россию генетически модифицированный картофель, если запасов отравы для колорадского жука хватит на много лет? А какой простор в деятельности! Одну отраву колорадский жук стал кушать (а это происходит через 2 – 3 года), придумаем другую!

Каждый новый генетически модифицированный продукт тщательно проверяется. Такую проверку не проходит ни один продукт, полученный обычным путем. ГОСТы здесь отдыхают. Если бы такую проверку проходила каждая новая технология, мы бы жили в каменном веке. Ведь и новая технология по разжиганию огня приводила к пожарам. А действие электромагнитных волн на мозг тоже плохо изучено. Но согласимся ли мы отказаться от сотовой связи и интернета?

Что называют плюсами ГМ продукции:

  • Растения приспособлены для различных погодных условий;
  • Устойчивы к заболеваниям;
  • Сопротивляются вредителям;
  • Высокая урожайность;
  • Сроки созревания уменьшены;
  • Селекция происходит в короткое время;
  • Понижена себестоимость производства продукции;
  • А еще получено множество более дешевых, но так необходимых лекарств.

Что является минусом и комментарии:

  • Аллергические реакции, которые трудно предсказать (например, в рис внедрили ген моркови, а у человека аллергия на морковь). Сразу возникает вопрос, на что конкретно аллергия? Уже было написано выше, что нет гена моркови или риса. Не лучше ли в таких случаях предупреждать на этикетках (подобно «Не содержит ГМО»), что рис содержит ген бета – каротина, потому его не следует применять людям с аллергией на бета-каротин (не на морковь!);
  • Снижение иммунитета организма из-за изменения микрофлоры желудка или кишечника. А с какой такой стати микрофлора изменится? Мы уже про это наслушались: дисбактериоз и прочее. Все это надумано и никак не связано с генной модификацией;
  • Возможен синтез белков, которых в организме нет. Почему должны синтезироваться новые белки? Синтез белков определяется ДНК, а мы писали, что на ДНК продукт влиять не может. Изменения возможны только при воздействиях на ДНК организма, а не на саму пищу, которую человек потребляет;
  • Появление новых бактерий, которые устойчивы к антибиотикам. А они и так появляются, без генной модификации;
  • Попадание в организм новых токсинов. Аргумент, связанный с накапливанием в генетически модифицированных продуктах пестицидов, которыми растения пичкают. Но здесь понятно даже неискушенному, что пестицидами больше травят именно так называемые натуральные продукты, потому что у них слабее устойчивость к заболеваниям и вредителям;
  • Не известны отдаленные последствия и как это скажется на потомстве. Единственный аргумент, заслуживающий внимания. Но мы писали о вредных последствиях электромагнитных колебаний. При желании можно найти еще с десяток технологий с неизученным влиянием на потомство.

Даже когда сравниваешь плюсы и минусы, становится очевидным надуманность аргументов против ГМО. Никто не может заявить, что генетически модифицированные продукты несомненно вредны. Нет тому подтверждений. То, что мы едим может оказаться во много раз вреднее продуктов генной инженерии. Но знать или не знать о присутствии ГМО в продуктах мы получили, а вот добывать сведения о вреде того или иного консерванта (благодаря которому молоко может храниться три месяца) приходится самому.

На сегодняшний день зарегистрировано примерно 140 генетически модифицированных растений, но среди них много растений одного вида (например, 24 линии картофеля).

Конечно, рост населения планеты и не уменьшающийся голод в некоторых странах рано или поздно заставит решать проблему с обеспечением продуктов. Возможно ли возникновение мутаций, связанных с ГМО? А вот здесь скорее нет, чем да. Проблема мутаций возникнет скорее из-за плохой экологии, радиации, облучения. Вымрет ли человек в результате всего этого? И здесь скорее нет. Приспособится, как приспосабливался и раньше. Человечеству не меньше 4 миллионов лет (оговоримся, что сколько лет человечеству, цифра не установленная и отличается не только в разы, но и в тысячи раз, например, по Библии 6000 лет), а его геном изменился незначительно. Лично мы картофель, который не едят колорадские жуки, и помидоры, не болеющие фитофторозом, посадили бы на своем огороде. Но вот семена купить пока негде…

В медицинском журнале «Human Reproduction» недавно была опубликована сенсационная статья «Митохондрия в человеческом детеныше произведена путем трансплантации цитоплазмы».
Средства массовой информации пустили эту статью в интенсивную ротацию...на один день, после чего все благополучно об этом «забыли». Однако факт остается фактом. В настоящее время в мире есть дети, которые «сконструированы» генетическим путем. Это звучит как научная фантастика, но это правда.... ..

Первый известный случай зародышевой генной терапии, при которой генами родителей манипулируют таким образом, чтобы это отразилось в их детях, произошел в отделении репродуктивной терапии в Нью-Джерси в марте 2001 года, когда 30 здоровых детей было рождено с ДНК от трех человек – отца, матери и посторонней женщины. Пятнадцать из них были пациентами этой клиники, остальные пятнадцать - из других медицинских учреждений.

Ученые обнаружили, что одна из причин женского бесплодия в том, что яйцеклетки могут содержать «старые» митохондрии (напомню, что митохондрии – это часть клетки, снабжающая ее энергией). Эти «ленивые» яйцеклетки не в состоянии укрепиться на стенке матки после оплодотворения. Для их активизации ученые вводят в клутку митохондрии молодых женщин. Митохондрия клетки содержит ДНК постороннего человека, а родившиеся дети имеют генетический материал из трех источников. ДНК посторонней женщины таким образом может отразиться в потомстве по женской линии.

Большая проблема состоит в том, что нет информации, как влияет подобная операция на детей и их потомков. Фактически, подобные манипуляции не были исследованы должным образом на животных, а тем более на людях. Доктора утверждают, что дети здоровы, но они «забывают» об одном важном моменте. В результате операции были рождены не 15, а 17 детей. Одна беременность окончилась абортом, а вторая окончилась выкидышем. Почему? Два зародыша имели редкий генетический синдром Турнера, который поражает только женщин. В обычных условиях он встречается у одной женщины из 2500 рожденных, и заключается в отсутствии или повреждении одной из X-хромосом. Почувствуйте разницу - 1 из 2500 или 2 из 17!

Более того, если предположить, что 9 из 17 зародышей были женскими (около 50 процентов), тогда 2 из 9 младенцев заболели этим редким заболеванием. Во внутренних медицинских документах именно генетическая операция названа основной его причиной. Даже если не учитывать синдром Турнера, многие эксперты были шокированы фактом такой операции. Ответная статья в том же журнале гласит: «Ни безопасность, ни эффективность этого метода не были клинически обоснованы». Рут Дич (Ruth Deech), председатель Британского комитета эмбриологии, сказал в интервью корреспонденту BBC: «Есть большой риск. Не только для этих детей, но и для будущих поколений»

Количество детей, рожденных с использованием такого метода, неизвестно. Статья утверждает, что их «около тридцати» в 2001 году. На сегодняшний момент, как минимум 2 из этих детей достигли возраста в 1 год. Доктор Джозеф Кумин (Joseph Cummin), почетный профессор биологии университета Западного Онтарио, высказался, что больше никакой информации об этих 30-ти детях в масс-медиа не появлялось, как и о дополнительных случаях подобного генетического вмешательства. Доктор утверждает, что в Норвегии в 2003 году подобные операции были проведены с целью «коррекции заболевания клеток». Он подытожил, что «Похоже, подобные генетически модифицированные дети рождаются и сейчас, в обстановке строгой секретности и информационного вакуума»

Луи Пастер скрыл результаты экспериментов, противоречащие его теории.

Одно из наиболее известных научных противостояний в истории произошло между теми, кто верит, что микроорганизмы образуются в результате гниения органического вещества, и тех, кто считает, что они только переносятся с одной поверхности на другую потоком воздуха. С 1850 до 1870 года известный французский химик и микробиолог Луи Пастер столкнулся в противостоянии со сторонниками образования микробов из ничего, особенно с Феликс Пуче (Felix Pouchet).

Два лагеря непрерывно проводили эксперименты для подтверждения своей теории и опровержения противников. Как известно, Пастер выиграл. Современная наука приняла теорию, согласно которой микрорганизмы переносятся воздухом, а наука о появлении их из продуктов гниения была отправлена на свалку идей и объявлена устаревшей. Мало кто знает, что Пастер покривил душой и выиграл нечестно.

Похоже, некоторые эксперименты Пастера доказывали, что органические продукты ПРОИЗВОДЯТ жизнь. Естественно, через несколько лет эти эксперименты были объявлены некорректными, но в то время они только доказывали правоту оппонентов. Поэтому Пастер хранил такие результаты в секрете. Историк Джон Уоллер (John Waller) пишет: «Фактически, из-за своей вражды с Пуче, Пастер объявил в своих дневниках как «успешные» все эксперименты, которые проводились в доказательство своей теории, а все остальные как «неудавшиеся».

Когда идейные противники Пастера проводили эксперименты, подтверждающие их теорию, Пастер публично не повторял их. Один раз он просто отказался проводить эксперимент и как-либо его комментировать. В другой раз он так долго задержался с комментариями, что оппоненты пришли в ярость. Уоллер пишет «Примечательно, что Пастер объявлял некоторые эксперименты проведенными небрежно, в то же время со своей командой он проводил эти же эксперименты, пытаясь получить отличный результат». Как показали недавние исследования записей Пастера Геральдом Гейсоном (Gerald Geyson), команда Пастера проводила недели, проверяя выводы Бастиана и пытаясь подтвердить свои убеждения про распространение микробов по воздуху»

Пастер отделился от своих помощников и от своего наставника, объяснив это тем, что они недостаточно скрупулезно проводят эксперименты, в то же время проводя опыты так же небрежно, ослепленный своими убеждениями. Ему просто повезло, что он оказался более убедительным. Причем доказательства были не столько научные, сколько религиозные. В своих заметках он постоянно утверждает, что таинство создания живого из неживого знает только Бог-Создатель. Возможность создания человеком или природой живой материи без участия Бога была им безоговорочно отброшена без научного обоснования.

Большинство ученых не читают все материалы, на которые они ссылаются

Любая научная работа основана на результатах предыдущих исследований. Вследствие этого, научные работы изобилуют ссылками на предыдущие документы, создавая ложное впечатление, что они были всесторонне исследованы и на этом основании сделана новая работа.

После того, как были обнаружены сходные ошибки в множестве научных материалов, два исследователя из Университета Калифорния, Лос Анжелес, решили исследовать эту проблему. Они исследовали несколько хорошо известных научных работ. Например, относительно одной известной работы, связанной с кристаллами, журнал «New Scientist» написал:

Они обнаружили, что на эту работу ссылаются 4300 раз, при чем все 196 ошибок, найденных в оригинале, перекочевали во все ссылки и цитаты. 40 ошибок были впоследствии исправлены, а остальные 156 остались незамеченными во всех последующих документах.

Скорее всего, эти исследователи просто копировали ссылки из других источников, не утруждаясь их просматривать, чему успешно научились в школе. Это показывает, насколько принцип «Копипастера» применим не только к современному миру интернета и коммуникации, но и к более древнему докомпьютерному времени бумажного издательства и общения.

Зарождение новой человеческой жизни — настоящее чудо даже с точки зрения науки. В одной-единственной клетке сначала сливаются половинки генома отца и матери, а затем этот набор из 46 хромосом создает все разновидности клеток будущего организма: от вспомогательных клеток плаценты и пуповины до остеобластов, из которых строятся кости, и светочувствительных клеток сетчатки глаза. При этом каждая разновидность клеток «знает» время и место своего появления, иначе вместо нового человека получился бы клеточный суп. Удивительная точность, с которой клетки определяют «расписание» развития, достигается благодаря тому, что ДНК и ее помощники — РНК и белки — работают как хорошо сыгранный оркестр, слаженно и четко регулируя активность генов.

Неудивительно, что с тех пор, как ученые в 1970-х научились расшифровывать последовательности ДНК и РНК, Святым Граалем молекулярной генетики стала возможность узнать, что же именно происходит с ДНК при эмбриональном развитии, какие гены отвечают за то, чтобы из одинокой маленькой клеточки получился целый человек. Но до 2012 года подходящего инструмента для таких исследований не существовало.

«Некоторые моменты изучены, но в основном это темный лес», — рассказывает член-корреспондент РАН, доктор биологических наук, заведующий лабораторией молекулярной биологии стволовых клеток Института цитологии РАН Алексей Томилин.

Есть два главных способа узнать, какую функцию выполняет ген — выключить его (это называется генный нокаут или нокдаун, по аналогии с боксерским ударом, после которого противник не может продолжать бой) или заменить его другим (трансгенез) и посмотреть, что после этого изменится в жизни клетки и целого организма.

Подобные манипуляции с геномом традиционно проводятся на эмбриональных стволовых клетках (ЭСК) мышей, которые затем вводят обратно в эмбрионы, а те, в свою очередь, подсаживают в матки мышей для имплантации. В результате на свет появляются химеры, животные, одни клетки которых несут измененную «донорскую» ДНК, а другие — ДНК суррогатной матери. Эффект введенной в геном модификации изучают на их потомках, часть которых будет носителями только модифицированного генома. «Применение подобного подхода для изучения раннего развития человека, очевидно, невозможно, — объясняет Томилин. — Единственная возможность провести генные манипуляции с зародышем человека и оценить их влияние на его развитие — это короткий промежуток в шесть дней между оплодотворением и имплантацией».

До недавнего времени перед учеными стояла еще и чисто техническая проблема. Чтобы отредактировать геном, нужно заставить ферменты-нуклеазы, расщепляющие цепочку ДНК, связаться с ней строго в нужном месте. Методы «наведения», которые применялись ранее, справлялись со своей задачей примерно в 20% случаев.

Этого вполне достаточно, чтобы создавать генномодифицированные растения, проводить опыты на мышиных эмбрионах или клетках «взрослых» человеческих тканей. Во всех этих случаях можно взять сразу много подопытных клеток, а потом отобрать для дальнейшего использования только те, в которых редактирование прошло успешно. Но человеческие эмбрионы — слишком ценный объект для исследований. В лабораторию ученого они могут попасть лишь как подарок от пар, прошедших процедуру ЭКО (при этом оплодотворяются сразу несколько яйцеклеток, но матери имплантируются одна-две, остальные остаются на хранении в заморозке или уничтожаются). Учитывая неточность технологий по изменению генома, такого числа яйцеклеток категорически недостаточно.

«Ситуация в корне изменилась после открытия технологии генного редактирования CRISPR/Cas9», — рассказывает Томилин. Система CRISPR/Cas9, впервые испытанная в 2012 году, к 2015-му показала эффективность в 90% на эмбрионах мышей и 94% на незрелых Т-лимфоцитах и гемопоэтических стволовых клетках человека (подробно о ней из выпуска «Наука за минуту»). Казалось бы, пора отправляться в поход за Граалем.

Этика остановила

В апреле 2015 года впервые в мире опыты по редактированию эмбрионального генома провели китайские ученые из Университета Сунь Ятсена под руководством Цзюньцзю Хуана (Junjiu Huang). Они взяли 86 оплодотворенных человеческих яйцеклеток и с помощью CRISPR/Cas9 попытались исправить в них мутантный ген, вызывающий бета-талассемию, тяжелое наследственное заболевание крови. Результат оказался неожиданным. CRISPR/Cas9 правильно изменила геном лишь в 28 эмбрионах, а при дальнейшем делении новый ген сохранили только четыре из них. Впрочем, это не остановило китайских исследователей. Цзюньцзю Хуан собирается и дальше экспериментировать с человеческими эмбрионами, в первую очередь, чтобы найти способы повысить эффективность действия CRISPR/Cas9.

Работа системы CRISPR-Cas9. Изображение: mit.edu

«Исследования Хуана показали, что еще рано говорить о редактировании генома человека на предимлантационной стадии, — поясняет Алексей Томилин. — Слишком низкая эффективность и слишком высокий риск побочных изменений в геноме (так называемый off-target effect). Когда обе проблемы будут решены, тогда можно будет говорить о генетической коррекции зародышевой линии человека. Почему CRISPR/Cas9 часто бьет мимо цели в эмбриональном геноме, сказать сложно. Работы над повышением точности и эффективности редактирования с помощью CRISPR/Cas9 ведутся. Нет сомнений, что прогресс будет».

Статья китайских исследователей неожиданно вызвала громкий отклик у их европейских и американских коллег, причем ученых беспокоила вовсе не низкая точность редактирования, а этическая сторона вопроса. Уже в апреле 2015 года в журнале Science появилась ответная статья за подписью 18 специалистов по геномике и стволовым клеткам, среди которых были и исследователи, которые непосредственно участвовали в разработке и улучшении метода CRISPR/Cas9, — Дженнифер Дудна и Мартин Жинек. Они призывали коллег с осторожностью отнестись к перспективе редактирования эмбрионального генома, настаивая, что людям нужно время, чтобы осмыслить возможные последствия такого вмешательства, иначе недалеко и до евгеники — выведения «породы» людей с заданными характеристиками. Беспокойство авторов статьи в октябре 2015-го поддержал Международный комитет по биоэтике при ЮНЕСКО, призвав наложить временный мораторий на подобные работы с человеческими клетками.

Чего так боятся ученые? Этические вопросы вызывают вовсе не страдания или уничтожение эмбрионов в ходе генетических экспериментов. На стадии одного—шести дней после оплодотворения эмбрион представляет собой комочек всего из нескольких десятков клеток. Беспокойство вызывает как раз не-уничтожение модифицированных эмбрионов. Изменения, внесенные в гены половых клеток, оплодотворенной яйцеклетки и клеток эмбриона на ранних стадиях развития, передаются по наследству всем потомкам модифицированного организма. Это называется изменением зародышевой линии.

Первый шаг

Несмотря на неоднозначные результаты группы Цзюньцзю Хуана и этическую дилемму генетического редактирования эмбрионов как такового, 1 февраля 2016 года стало известно, что британское Управление по оплодотворению человека и эмбриологии (HFEA — Human Fertilisation and Embryology Authority) выдало разрешение на редактирование эмбрионального генома доктору Кэти Ниакан из института Френсиса Крика.

Ниакан почти 10 лет занимается изучением того, как стволовые клетки определяются со своей будущей специализацией в человеческих и мышиных эмбрионах. В последнее время ее исследовательская группа пыталась узнать ответ на этот вопрос, расшифровывая последовательности РНК — молекул-посредников, передающих информацию из ДНК рибосомам, клеточным машинам, которые синтезируют белки. Ученым удалось определить несколько генов, которые работают только в человеческих клетках и определяют отличия в раннем развитии человека от тех же мышей, например ген KLF17. Чтобы понять, какие функции выполняют эти гены, и нужны эксперименты, требующие редактирования ДНК. В этом смысле цели, которые ставят перед собой Ниакан и ее коллеги, гораздо ближе к поиску генетического Грааля, то есть к ответам на фундаментальные научные вопросы, чем цели китайских ученых.

Другая задача британских биологов — понять, какие гены ответственны за успешное развитие эмбриона в целом, и особенно за правильное формирование плаценты. Это знание может многое изменить в диагностике и лечении бесплодия. Статистика говорит, что 15—20% всех беременностей заканчивается выкидышем на самых ранних сроках, при этом женщины даже не знают, что были беременны. С другой стороны, при процедуре ЭКО в матку будущей мамы успешно имплантируются только 25% эмбрионов. Чаще всего это связано именно с генетическими неполадками самого эмбриона, который в нужный момент не может прикрепиться к стенке матки или позже сформировать полноценную плаценту для своего развития. У Ниакан и тут есть свой «подозреваемый» — ген Oct4, недостаточная активность которого у мышей связана с замедлением производства стволовых клеток.

Человеческий эмбрион на разных стадиях развития. Клетки, в которых активны отмеченные слева гены, выделены соответствующим цветом. Фото: Kathy Niakan group, Francis Crick Institute

Третья цель Ниакан — разобраться, чем развитие эмбриональных стволовых клеток (ЭСК) в естественных условиях отличается от их роста и специализации в пробирке. Заместительная терапия эмбриональными стволовыми клетками — одновременно очень многообещающий и очень опасный метод. Многообещающий — потому что ЭСК не вызывают иммунного ответа, который приводит к отторжению донорских тканей при обычной пересадке. Кроме того, из ЭСК можно вырастить клетки любого органа. В перспективе с их помощью можно будет лечить болезнь Альцгеймера, ишемическую болезнь сердца, недостаточность функции щитовидной железы, ДЦП и много чего еще.

Опасен же этот метод потому, что вне эмбриона стволовые клетки часто ведут себя непредсказуемо. Например, у подопытных животных они вызывают образование опухолей. Чтобы превратить такие последствия, нужно выяснить, какие гены у ЭСК в пробирке работают иначе, чем в эмбрионе, и какие условия на это влияют. У опять же у Ниакан и ее команды уже есть гены-кандидаты, например ARGFX.

Разобраться со всеми этими вопросами британским биологам предстоит в сжатые сроки — разрешение HFEA действительно только три года. И это не единственное ограничение, наложенное на проект Ниакан. В ходе экспериментов эмбрионы могут развиваться лишь 14 дней, после чего должны быть уничтожены.

Последовательная активация и прекращение работы тех или иных генов в процессе эмбрионального развития не просто прописана в ДНК, на нее влияют факторы среды — гормоны матери, вещества, попадающие в ее тело извне. При этом известно, что у млекопитающих условия, в которых развивался эмбрион, могут определять дальнейшую судьбу родившегося существа — программировать некоторые заболевания или склонность к ним, например гипертонию или метаболический синдром .

Для человека многие из этих факторов даже не описаны, ведь никто не станет проводить эксперименты на беременных женщинах. Технологии редактирования ДНК еще слишком несовершенны, чтобы выводить генномодифицированных людей, но с их помощью уже можно выяснить, откуда берутся врожденные заболевания и как их предотвратить. Как считает Алексей Томилин, «зеленый свет» проекту Кэти Ниакан — первое, но не последнее «послабление». В тех странах, где эксперименты с предимплантационными человеческими эмбрионами не запрещены напрямую (так обстоят дела, например, в Германии), наверняка вскоре появятся новые исследовательские проекты, стремящиеся заглянуть в святая святых.

Наталья Нифантова

Китайский ученый Цзянькуй Хэ в понедельник объявил, что первые в истории генно-модифицированные люди уже живут среди нас: речь идет рождении девочек-близнецов, у которых с помощью технологии CRISPR был искусственно изменен ген, отвечающий за восприимчивость к ВИЧ. В этой сенсационной истории пока много неясного.

В первую очередь, о самом эксперименте автор объявил не общепринятым способом - с помощью публикации в научном журнале, а в видеоролике(https://www.youtube.com/watch?v=th0vnOmFltc ) на YouTube. Университет, где работал Цзянькуй Хэ, открестился от этого проекта, коллеги осудили экспериментатора, а китайские власти начали расследование. N + 1 попросил ученых рассказать, насколько реалистичной выглядит история, рассказанная китайским ученым, насколько доступен метод генной модификации человеческих эмбрионов, какие риски и опасности могут возникать в таких экспериментах, почему в большинстве западных стран такие эксперименты запрещены и можем ли мы в скором будущем ждать генно-модифицированных спортсменов, интеллектуалов или «служебных людей».

Что произошло?

Если очень коротко: Цзянькуй Хэ из Южного университета науки и технологий в Шэньчжэне отредактировал методом CRISPR/Cas9 зиготу, полученную в результате оплодотворения яйцеклетки матери сперматозоидом ВИЧ-инфицированного отца (с неопределяемым уровнем вирусной нагрузки), модифицировав в ней ген CCR5. Эта мутация делает человека маловосприимчивым к риску заражения ВИЧ. Затем эмбрион была подсажен матери с помощью стандартных методов, используемых при экстракорпоральном оплодотворении (ЭКО), и в результате родились девочки-близнецы - Лулу и Нана.

Хэ заявляет, что еще одна женщина сейчас беременна генно-модифицированным ребенком, а семь других пар участвуют в эксперименте, в настоящее время, впрочем, приостановленном «в связи с текущей ситуацией».

Что такое CRISPR-Cas

История систем CRISPR-Cas далека от человека - в природе они найдены у организмов, очень сильно отличающихся от нас: бактерий и архей. В этих сравнительно простых клетках CRISPR-Cas представляет собой аналог адаптивного иммунитета. Непосредственно CRISPR - это аббревиатура, описывающая участок бактериального генома, где записана информация о тех вирусах, с которыми встречались предки этой клетки. Эти данные хранятся в виде библиотеки коротких кусочков вирусной ДНК, которую бактерия получает по наследству и может пополнять самостоятельно.

Если бактерия сталкивается с вирусом, информация о котором записана в CRISPR-библиотеке, Cas-белки могут распознать и уничтожить «непрошенного гостя». Для этого необходимо представить данные из библиотеки в виде молекулы РНК. Комплекс Cas-РНК сканирует ДНК и ищет соответствия, а при совпадении - режет.

Причем же здесь генетические болезни человека? Ключевое здесь - умение Cas-белков резать ДНК в четко заданном участке. Идея заключается в следующем: вместо того, чтобы считывать РНК с CRISPR-библиотеки, ученые просто берут нужную короткую молекулу РНК (она называется гидовой, или направляющей), соответствующую определенному месту в геноме. В комплексе с белком Cas (из всего природного разнообразия CRISPR-Cas-систем для работы с животными клетками чаще всего используется белок Cas9 из стрептококка) направляющую РНК вводят в клетки. Там Cas9 находит нужный участок, например, содержащий мутацию, и вносит разрез.

Однако это еще не все. Чтобы исправить вредную мутацию, кроме комплекса белка Cas9 с РНК, в клетку нужно добавить еще «заплатку», содержащую нужную последовательность ДНК. Используя ее, системы репарации клетки «починят» порезанную ДНК и вместо мутации на этом месте появится другая, «нормальная» последовательность.

Нужно это не только и не столько для лечения.

Технология редактирования генома открывает новые горизонты для его исследователей. Возможность варьировать последовательность ДНК живых организмов существовала и раньше, но по сравнению с генно-инженерными методами, существовавшими до «эпохи CRISPR-Cas» (которая, к слову, началась всего шесть лет назад), предлагаемый механизм достаточно прост и эффективен. Он помогает быстро создавать модельные системы для самого разного класса задач, как из области фундаментальной генетики, так и в прикладной медицине, и уже стал своеобразным must have во многих биологических лабораториях.

Подробнее об этом методе можно прочесть в нашем материале «Запомните эти буквы»(https://nplus1.ru/material/2016/02/02/crisprfaq ).

Почему в результатах Хэ сомневаются?

Сомнения возникли из-за того, в какой форме было объявлено о новом результате. Во-первых, Хэ не опубликовал свою работу в научном журнале, нарушив обычную процедуру для объявления о результатах экспериментов. Статью в журнале перед публикацией обычно читают и оценивают несколько рецензентов и редактор.

Вместо этого Хэ записал ролик на YouTube, в котором объявил не только об успехе, но и о том, что родившихся девочек увидеть нельзя, а данные об их семье засекречены. Масла в огонь добавил Южный университет, где формально числится ученый, - там заявили, что он уже полгода находится в неоплачиваемом отпуске и об этой работе им ничего неизвестно.

Во-вторых, есть и сомнения более общего рода: почему, задается вопросом известный научный журналист Леонид Шнайдер, для столь эпохального эксперимента был выбран именно ВИЧ, а не какая-нибудь врожденная смертельная генетическая болезнь?

Со Шнайдером солидарен и Пауль Калиниченко - профессор Московского государственного юридического университета имени Кутафина (МГЮА), исследующий мировые практики законодательного регулирования генетических экспериментов. «Это очень странный пример. ВИЧ - это не генетическое заболевание, то есть при редактировании генома происходит не лечение, а лишь снижение риска заражения. Зато ВИЧ - заболевание очень известное. Потому что пороки сердца или гемофилия - редкие, они не так будоражат людей, многие о них вообще не слышали. С ними сенсации не создать, а с ВИЧ - можно, это пандемия, некая трибуна. Я из-за этого и усомнился в достоверности [заявлений Хэ]», - говорит Калиниченко.

А рождение генно-модифицированных людей вообще возможно?

Да, вполне - и с практической возможностью подобной работы согласны большинство экспертов. Более того, Хэ находится в одном из лучших мест для проведения таких исследований.

«Проверить сказанное сложно, но, оценивая гипотетическую возможность, мы можем опираться на историю предыдущих лет. И мы знаем, что первыми геном эмбриона человека отредактировали именно китайские ученые - этот эксперимент был проведен еще в 2015 году (правда не слишком успешно). Там речь шла о нежизнеспособных зиготах, то есть эмбрион не подсаживали матери. Годом позднее наш знаменитый соотечественник Шухрат Миталипов, работающий сейчас в Университете здоровья и наук Орегона, развил и закрепил этот опыт», - рассказывает Павел Волчков, заведующий лабораторией геномной инженерии Московского физико-технического института (МФТИ).

Миталипов по всем канонам опубликовал свою статью в Nature. В ней доказывается возможность редактирования генома человека на стадии эмбриона с целью избежать проявления генетического заболевания - гипертрофической кардиомиопатии, для которой сегодня существует только симптоматическое лечение. Препарат, редактирующий ген, вводили в зиготу - эмбрион на стадии его одноклеточного развития. Затем зиготе давали развиться до бластоцисты - первой многоклеточной стадии. Путем анализа генома клеток было показано, что редактирование состоялось. На этом эксперимент прервался.

«Как видно, все основополагающие работы были сделаны, оставалось только подсадить эту бластоцисту обратно матери - то есть проделать совершенно рутинную операцию, обычную при ЭКО, которым пользуются женщины, допустим, с непроходимостью маточных труб. Почему ранее эксперимент всегда прерывали? Чтобы не проводить незаконный эксперимент на человеке. Дело в том, что эксперименты на эмбрионах законны, так как в разных странах его до определенного возраста человеком не считают. Вот до этого оговоренного в законе возраста и доращивали многоклеточную стадию», - поясняет Волчков..

Насколько это сложно?

Судя по всему, вывести генно-модифицированных людей не очень сложно - конечно, в условиях современной лаборатории, занимающейся редактированием генома и, желательно, работающей при большой репродуктивной клинике.

«Технология микроинъекции в оплодотворенную зиготу, с помощью которой проводится редактирование генома, - это несложно, - говорит Павел Волчков. - А Хэ работал в лаборатории, где делают ЭКО. В такой лаборатории всегда под руками имеется большое количество оплодотворенных яйцеклеток от родителей, которые пытаются родить, - обычно для ЭКО забирают больше яйцеклеток, чем необходимо, на случай неудач, и они остаются в клинике. Значит, там постоянно есть возможность закалывать инструменты генетического редактирования в зиготы, давать им развиваться до определенной стадии и оценивать эффективность это процедуры».

«Методика состоит из нескольких процедур. Эмбриологические процедуры - работа с эмбрионом, с зиготой, с микроманипулятором, инъекция - могут варьироваться от лаборатории к лаборатории. Хэ, по крайней мере, по его словам в ролике, осуществлял их тем же способом, что и мы в нашей работе», - говорит генетик, проректор Российского национального исследовательского медицинского университета (РНИМУ) имени Пирогова, заведующий лабораторией редактирования генома научного центра имени Кулакова Денис Ребриков. Ранее научная группа под его руководством провела практически такой же эксперимент с человеческими эмбрионами, с той только разницей, что отредактированные яйцеклетки не были подсажены матери.

По словам Ребрикова, речь идет о стандартной процедуре лечения мужского бесплодия по протоколу ИКСИ (ICSI, Intracellular Sperm Injection Protocol), применяемой в том случае, когда сперматозоиды слишком неподвижны для зачатия: «Одновременно со сперматозоидом мы микроманипулятором вносим в яйцеклетку смесь для генного редактирования, получая тем самым зиготу», - говорит ученый.

«Для редактирования обычно используют стандартные покупные ферменты типа Cas9. Вариантов ферментов на сегодня довольно много, поэтому нельзя сказать, какой именно фермент использовал Хэ. А вот остальные компоненты реакционной смеси: направляющую фермент гидовую РНК, олигонуклеотиды и специальную "ДНК-заплатку" (фрагмент ДНК, выступающий в качестве шаблона в процессе зашивания) - как правило в каждой лаборатории делают самостоятельно», - продолжает объяснять Ребриков.

Мутация, которую вносили в эмбрионы, также не является совершенно новой. Более того, она не является и искусственной - около одного процента жителей Европе врожденным образом устойчивы к ВИЧ, то есть несут два аллеля этого мутантного гена, а 10 процентов несут один аллель.

«Эта модификация соответствует присутствующему в популяции варианту гена, который представляет собой возникший в процессе эволюции аллель, вариант гена без 32 букв. И в этом есть некое этическое облегчение ситуации, потому что мы не говорим, что мы создали новый аллель, новый вариант гена, который не встречается у людей. Тысячи людей совершенно естественным путем родились и живут именно с таким вариантом гена», - подчеркивает Ребриков.

Насколько это опасно?

Методика уже опробована, но переход из лаборатории к клинической практике - совсем другое дело, и у фармацевтических компаний на это уходят годы, если не десятки лет. С чисто технической стороны дела, для обеспечения безопасности нужно быть уверенным в двух вещах: метод эффективно редактирует целевой участок ДНК, причем это происходит на статистически значимой выборке с малым процентом отказов (редактирование таргетного локуса), и при этом редактированию не подвергаются другие участки генома (нередактирование неспецифичного локуса).

«Учитывая масштабы центра, с которым работал Хэ, эту методику, скорее всего, отрабатывали три-четыре года. Набрали информацию на эмбрионах и, исходя из своих статистических данных, разрешили себе поставить подобного рода эксперимент», - предполагает Волчков.

Сама по себе генетическая терапия ВИЧ - тоже не абсолютная новость. Компания Songamo тестирует этот метод для лечения вируса, но только на соматических, «обычных» клетках, а не стволовых клетках эмбрионов. Дело дошло до клинических испытаний, а это значит, что по проблеме накоплено очень много данных. Это и данные компании, и открытые данные в научных публикациях.

«Этот ген и система таргетирования - они хорошо изучены, китайцы не вслепую это делали, они лишь перенесли эту технологию на редактирование эмбриона, а не соматических клеток», - замечает Волчков.

Однако и он не уверен в стопроцентной правильности проделанной процедуры.

«Что бы я хотел увидеть, чтобы убедиться в корректности работы? Прежде всего, это предварительные эксперименты на клеточных линиях (эмбриональных столовых клеток). Статистически значимое количество экспериментов на эмбрионах с прерванным развитием - допустим, 25-50 случаев, где четко показывается, что редактируется таргетный ген и отсутствует или почти отсутствует неспецифическое таргетирование других аллелей, которые могли бы дать негативный вклад в состояние будущего человека. Лишь после этого можно было бы переходить к следующей фазе», - говорит Волчков.

Но, по его словам, тут возникает вопрос о правовом регулировании подобных экспериментов. «Только регулятор, в данном случае китайский аналог FDA, может установить критерий этого „почти отсутствует". Пока нет критерия, сложно рассуждать, что допустимо, а что недопустимо», - рассуждает ученый.

«Но представим, что этот этап пройден. Дальше я бы хотел видеть испытания на животной модели. Самая близкородственная человеку модель - это человекообразная обезьяна. Если бы генетическое редактирование продемонстрировали сначала на них, а не на человеческих близнецах, это было бы более правильно, - продолжает Волчков. - Тем более, что работы в этой области уже ведутся: в этом году у китайских же ученых вышла статья в Nautre о том, что они клонировали макаку (нечеловекообразную обезьяну), и еще одна - о том, что они отредактировали ее геном».

А вот Хэ и его группа, по-видимому, не хотят тратить время на опыты над обезьянами. «То, что они пропустили эту важную стадию и перешли к экспериментам на людях, говорит не в их пользу», - заключает Волчков.

Вместе с тем, эмбриогенез человека - это высоко саморегулирующаяся система, и если в ней что-то идет не так, то эмбриональное развитие терминируется (происходит выкидыш на той или иной стадии беременности). Впрочем, этот механизм, к сожалению, работает не всегда, замечает ученый. Но если положиться на высокую вероятность его работы, это значит, что сам факт появления девочек на свет подтверждает неповрежденность их генома.

Профессор Сколтеха и университета Ратгерса Константин Северинов отмечает, что выводы о безопасности, строго говоря, можно будет делать, только доведя эксперимент до логического конца: после генетической манипуляции с яйцеклеткой должен родиться ребенок, повзрослеть, произвести на свет собственных детей, прожить более или менее нормальную жизнь. «Так было с овечкой Долли. Успех эксперимента с ней, в частности, заключался в том, что она произвела на свет еще одну овечку. Но у людей срок жизни сравним со сроком жизни исследователей. В этом смысле очень сложно поставить эксперимент, чтобы он соответствовал тому уровню доказательности, который хочется иметь перед тем, как использовать процедуру», - сказал ученый.

Что именно сделано

28 ноября Цзянькуй Хэ выступил с докладом на GeneEdit Summit в Гонконге, где извинился за досрочную «утечку информации» и рассказал про технические детали своей работы (транскрипт доклада и слайды презентации посетители конференции выложили в Твиттере).

Итак, целью работы было внесение в жизнеспособные человеческие эмбрионы природной мутации CCR5-delta32, то есть делеции в 32 нуклеотида, которая нарушает работу гена и защищает ее носителей от заражения ВИЧ.

По словам Хэ, прежде чем редактировать человеческие эмбрионы для трансплантации, они тщательно подобрали направляющую РНК и проверили ее на нежизнеспособных эмбрионах и эмбриональных клеточных линиях. Кроме того, используя подобранную «затравку», сотрудники Хэ вырастили макаку с нужной мутацией в геноме.

Самой важной частью доклада Хэ стал анализ ДНК отредактированных близняшек. После рождения из пуповинной крови девочек выделили ДНК и полностью отсеквенировали их геномы. Кроме того, ДНК была выделена из нескольких других тканей. В результате секвенирования нецелевой активности Cas9 обнаружено не было.

Была ли достигнута заявленная цель? Последовательности белка CCR5 у обеих девочек действительно не совпадают с белком «дикого типа». Однако, судя по всему, нужной мутации (дельта-32) у них тоже нет. На представленном слайде видно, что у одной из девочек в одной копии гена появилась делеция в 15 нуклеотидов, то есть в пять аминокислот, а другая копия осталась нетронутой. Таким образом, белок CCR5 лишился небольшого кусочка, но все еще может быть функциональным.

У ее сестры оказались затронуты обе копии гена - в одной из них небольшая делеция в четыре нуклеотида, а в другой однонуклеотидная вставка. Белок в обоих случаях будет укороченным, но как это повлияет на устойчивость к вирусу, непонятно.

Последовательности CCR5 девочек указывают на то, что редактирование достигло цели лишь частично - направляющая РНК сработала, белок Cas9 внес разрез, но клеточные системы репарации, вместо того чтобы воспользоваться нужной «заплаткой», залечили разрез без всякого разбора. Кроме того, обе девочки, судя по всему, получились «мозаиками», то есть некоторая часть клеток у них осталась неотредактированной.

С этими проблемами ученые сталкивались во всех опубликованных статьях, посвященных редактированию человеческих эмбрионов, и результат первого эксперимента на людях подтверждает: как бы ни было интересно проверить прорывную технологию «в бою», для свершения революции она все же еще недостаточно отработана.