Главная · Правильное питание · Треугольник эйнтховена с обозначением отведений. Кардиограмма сердца (ЭКГ) расшифровка. Усиленные отведения ЭКГ от конечностей

Треугольник эйнтховена с обозначением отведений. Кардиограмма сердца (ЭКГ) расшифровка. Усиленные отведения ЭКГ от конечностей

Анализ электрокардиограмм

Сердце человека – это мощная мышца. При синхронном возбуждении волокон сердечной мышцы, в среде, окружающей сердце, течет ток, который даже на поверхности тела создает разности потенциалов в несколько мВ. Эта разность потенциалов регистрируется при записи электрокардиограммы. Моделировать электрическую активность сердца можно с использованием дипольного электрического генератора.

Дипольное представление о сердце лежит в основе теории отведений Эйнтховена, согласно которой ‑ сердце ‑ это токовый диполь с дипольным моментом Р с (электрический вектор сердца), который поворачивается, изменяет свое положение и точку приложения за время сердечного цикла (рис. 34).

П

Рис. 34. Распределение

эквипотенциальных линий

на поверхности тела

о Эйнтховену сердце располагается в центре равностороннего треугольника, вершинами которого являются: правая рука – левая рука – левая нога (рис. 35 а).

Разности потенциалов, снятые между этими точками – это проекции дипольного момента сердца на стороны этого треугольника:

Эти разности потенциалов, со времени Эйнтховена в физиологии принято называть «отведениями». Три стандартных отведения приведены на рис. 35 б.Направление вектораР с определяет электрическую ось сердца.

Рис. 35 а.

Рис. 35 б. Нормальная ЭКГ в трех стандартных отведениях

Рис. 35 в. Зубец Р – деполяризация предсердия,

QRS – деполяризация желудочков, Т – реполяризация

Линия электрической оси сердца при пересечении с направлением 1-го отведения образует угол , который определяет направление электрической оси сердца (рис. 35 б). Так какэлектрический момент сердца-диполя изменяется со временем, то в отведениях будут получены зависимости разности потенциалов от времени, которые называются электрокардиограммами.

Ось О – это ось нулевого потенциала. На ЭКГ отмечают три характерных зубцаP ,QRS ,T (обозначение по Эйнтховену). Высоты зубцов в различных отведениях обусловлены направлением электрической оси сердца, т.е. углом(рис. 35 б). Наиболее высокие зубцы во втором отведении, низкие в третьем. Сопоставляя ЭКГ в трех отведениях за один цикл составляют представление о состоянии нервно-мышечного аппарата сердца (рис. 35 в).

§ 26. Факторы, влияющие на экг

Положение сердца. Направление электрической оси сердца совпадает с анатомической осью сердца. Если уголнаходится в пределах от 40°до 70°, это положение электрической оси считается нормальным. ЭКГ имеет обычные соотношения зубцов в I, II, III стандартных отведениях. Еслиблизок или равен 0°, то электрическая ось сердца параллельна линии первого отведения и ЭКГ характеризуется высокими амплитудами в I отведении. Еслиблизок к 90°, амплитуды в I отведении минимальны. Отклонение электрической оси от анатомической в ту или другую сторону клинически означает одностороннее поражение миокарда.

Изменение положения тела вызывает некоторые изменения положения сердца в грудной клетке и сопровождается изменением электропроводности окружающих сердце сред. Если ЭКГ не изменяет своей формы при перемещении тела, то этот факт тоже имеет диагностическое значение.

Дыхание . При вдохе электрическая ось сердца отклоняется примерно на 15°, при глубоком вдохе до 30°. Нарушения или изменения дыхания также могут быть диагностированы по изменению ЭКГ.

всегда вызывает существенное изменение в ЭКГ. У здоровых людей эти изменения состоят главным образом в учащении ритма. При функциональных пробах сфизической нагрузкой могут иметь место такие изменения, которые явно указывают на патологические изменения в работе сердца (тахикардия, экстрасистолия, мерцательная аритмия и т.д.).

Диагностическая значимость метода ЭКГ несомненно велика (совместно с другими методами диагностики).


При любых отведениях биопотенциалов сердца от поверхности тела человека, амплитуды зубцов ЭКГ представляют собой проекции ИЭВС на ту или иную ось координатной системы в соответствующий момент сердечной деятельности.

Зубец Р отображает распределение возбуждения по предсердиям; комплекс QRS – при возбуждении желудочков; зубец Т – при их реполяризации. Отклонение от нормы, которое врач обнаруживает в том или ином элементе ЭКГ, дают ему информацию о соответствующих процессах в той или иной части сердца.

Важнейшим параметром ЭКГ служат временные интервалы, по ним оценивают скорость распределения возбуждения в каждом из отделов проводящей системы сердца. Изменения скорости проведения связывают с повреждениями миокардных волокон. Так, даже малый очаг поражения ТМВ диаметром 5-10 мкм, вызывает задержку в распределении возбуждения на 0,1 мс.

В стандартных отведениях зубец Р обычно имеет амплитуду не более 0,25 мВ, а его длительность равна 0,07-0,10 с. Интервал PQ отображает атрио-вентикулярную задержку, и он составляет примерно 0,12-0,21 с при частоте сердечных сокращений от 130 до 70 в минуту. Комплекс QRS наблюдается в течение всего времени, пока возбуждение распределяется по желудочкам. Его длительность изменяется в пределах от 0,06 до 0,09 с. Зубец Q в трети наблюдений отсутствует в нормальной ЭКГ, а когда он обнаруживается, то его амплитуда не превышает 0,25 мВ. Зубец R обладает максимальной амплитудой среди всех других элементов ЭКГ, и его амплитуда меняется в пределах 0,6-1,6 мВ. Зубец S также зачастую отсутствует, но когда его обнаруживают, может иметь амплитуду до 0,6 мВ. Его появление на ЭКГ характеризует тот процесс, когда возбуждение по миокарду желудочков завершается вблизи основания (у предсердий). Интервал TS при пульсе 65-70 сокращений в минуту, составляет примерно 0,12 с. Длительность зубца Т обычно меняется в пределах от 0,12 до 0,16 с, а его амплитуда изменяется в пределах 0,25-0,6 мВ.

Необходимо отметить, что зубец Р возникает на ЭКГ примерно за 0,02 с до начала сокращения предсердий, а комплекс QRS - за 0,04 с до начала сокращения желудочков. Следовательно, электрические проявления возбуждения предшествуют механическим (сократительные деятельности миокарда). В этой связи нельзя говорить, будто ЭКГ является результатом сердечной деятельности (сердечные сокращения). Имея ряд отведений ЭКГ (не менее двух), снятых в разных отведениях, можно синтезировать ИЭВС. В медицинской литературе его называют электрической осью сердца. По определению, электрическая ось сердца – это отрезок прямой (вектор), соединяющий два сечения миокарда, обладающих в данный момент наибольшей разностью потенциалов. Этот вектор направлен от отрицательного полюса (возбужденного участка) к положительному (покоящемуся участку). Направление электрической оси сердца в ходе распределения возбуждения по миокарду, постоянно меняется, в этой связи принято определять среднюю ось сердца. Так называют вектор, который можно построить в промежутках между началом и окончанием деполяризации миокарда желудочков. По расположению средней оси оценивают геометрическую ось сердца, которые, как правило, параллельны друг другу. Таким образом, построенная средняя электрическая ось сердца дает представление о положении сердца в грудной полости, и ее изменение служит признаком в изменениях соответствующего желудочка.



11749 0

ЭКГ — незаменимый метод диагностики нарушений сердечного ритма и проводящей системы сердца, гипертрофии миокарда желудочков и предсердий, ИБС, ИМ и других заболеваний сердца. Подробное описание теоретических основ ЭКГ, механизмов формирования ЭКГ-изменений при вышеперечисленных заболеваниях и синдромах приведено в многочисленных современных руководствах и монографиях по ЭКГ (В. Н. Орлов, В. В. Мурашко; А. В. Струтынский, М. И. Кечкер; А. З. Чернов, М. И. Кечкер; А. Б. де Луна, Ф. Циммерман, М. Габриэль Хан и др.). В настоящем руководстве мы ограничимся краткими сведениями о методике и технике традиционной ЭКГ в 12 отведениях, о принципах анализа ЭКГ и критериях диагностики ЭКГ-синдромов и заболеваний сердца.

Электрокардиографические отведения

ЭКГ - запись колебаний разности потенциалов, возникающих на поверхности миокарда или в окружающей его проводящей среде при распространении волны возбуждения по сердцу. ЭКГ регистрируют с помощью электрокардиографа - прибора, предназначенного для записи изменения разности потенциалов между двумя точками в электрическом поле сердца (например, на поверхности тела) во время его возбуждения. Современные электрокардиографы отличает техническое совершенство и способность к одноканальной и многоканальной записи ЭКГ. Изменения разности потенциалов на поверхности тела, возникающие во время работы сердца, фиксируют с помощью различных систем отведений ЭКГ. Каждое отведение регистрирует разность потенциалов между двумя точками (электродами) электрического поля сердца. Электроды подключают к гальванометру электрокардиографа. Один из электродов присоединяют к положительному полюсу гальванометра (это положительный, или активный электрод отведения), второй - к его отрицательному полюсу (отрицательный, или индифферентный электрод отведения). В клинической практике широко используют 12 отведений ЭКГ. Регистрация их показателей обязательна для каждого ЭКГ. Регистрируют:

  • 3 стандартных отведения;
  • 3 усиленных однополюсных отведения от конечностей;
  • 6 грудных отведений.

Стандартные двуполюсные отведения, предложенные в 1913 г. Эйнтховеном, фиксируют разность потенциалов между двумя точками электрического поля, удалёнными от сердца и расположенными во фронтальной плоскости (электроды на конечностях). Для записи отведений электроды накладывают на правую руку (красная маркировка), левую руку (жёлтая маркировка) и левую ногу (зелёная маркировка) (рис. 1).

Рис. 1. Схема формирования трех стандартных электрокардиографических отведений от конечностей. Внизу - треугольник Эйнтховена, каждая сторона которого является осью того или иного стандартного отведения

Электроды попарно подключают к электрокардиографу для регистрации каждого из трёх стандартных отведений. Четвёртый электрод устанавливают на правую ногу для подключения заземляющего провода (чёрная маркировка). Стандартные отведения от конечностей регистрируют, попарно подключая электроды следующим образом:

  • I отведение - левая рука (+) и правая рука (-);
  • II отведение - левая нога (+) и правая рука (-);
  • III отведение - левая нога (+) и левая рука (-).

Знаками (+) и (-) обозначены соответствующие подключения электродов к положительному или отрицательному полюсам гальванометра, то есть указаны положительный и отрицательный полюс каждого отведения. Три стандартных отведения образуют равносторонний треугольник (треугольник Эйнтховена). Его вершины - электроды, установленные на правой руке, левой руке и левой ноге. В центре равностороннего треугольника Эйнтховена расположен электрический центр сердца, или точечный единый сердечный диполь, одинаково удаленный от всех трех стандартных отведений. Гипотетическая линия, соединяющая два электрода одного электрокардиографического отведения, называется осью отведения. Оси стандартных отведений - стороны треугольника Эйнтховена. Перпендикуляры, опущенные из электрического центра сердца к оси каждого стандартного отведения, делят каждую ось на две равные части: положительную, обращенную в сторону положительного (активного) электрода (+) отведения, и отрицательную, обращенную к отрицательному электроду (-).

Усиленные отведения от конечностей предложены Гольдбергером в 1942 г. Они регистрируют разность потенциалов между активным положительным электродом данного отведения, установленным на правой руке, левой руке или левой ноге, и средним потенциалом двух других конечностей (рис. 2).

Рис. 2. Схема формирования трех усиленных однополюсных отведений от конечностей. Внизу - треугольник Эйнтховена и расположение осей трех усиленных однополюсных отведений от конечностей

Таким образом, роль отрицательного электрода в этих отведениях играет так называемый объединённый электрод Гольдбергера, образованный соединением двух конечностей через дополнительное сопротивление. Три усиленных однополюсных отведения от конечностей обозначают следующим образом:

  • aVR - усиленное отведение от правой руки;
  • aVL - усиленное отведение от левой руки;
  • aVF - усиленное отведение от левой ноги.

Обозначение усиленных отведений от конечностей - это сокращение английских слов, означающих: (а) - augemented (усиленный); (V) - voltage (потенциал); (К) - right (правый); (L) - left (левый); (F) - foot (нога). Как видно на рис. 2, оси усиленных однополюсных отведений от конечностей получают, соединяя метрический центр сердца с местом наложения активного электрода данного отведения, то есть с одной из вершин треугольника Эйнтховена. Электрический центр сердца делит оси этих отведений на две равные части: положительную, обращенную к активному электроду, и отрицательную, обращенную к объединённому электроду Гольдбергера.

Стандартные и усиленные однополюсные отведения от конечностей регистрируют изменения электродвижущей силы сердца во фронтальной плоскости, то есть в плоскости треугольника Эйнтховена. Для точного и наглядного определения различных отклонений электродвижущей силы сердца во фронтальной плоскости предложена шестиосевая система координат (Бэйли, 1943). Оси трёх стандартных и трёх усиленных отведений от конечностей, проведённые через электрический метр сердца, образуют шестиосевую систему координат. Электрический центр сердца делит ось каждого отведения на положительную и отрицательную часть, обращённую соответственно к активному (положительному) или к отрицательному электроду (рис. 3).

Рис. 3. Шестиосевая система координат по Бэйли

Электрокардиографические отклонения в отведениях от конечностей рассматривают как различные проекции одной и той же электродвижущей силы сердца на оси данных отведений. Таким образом, сопоставляя амплитуду и полярность электрокардиографических комплексов в отведениях, входящих в состав шестиосевой системы координат, можно точно определять величину и направление вектора электродвижущей силы сердца во фронтальной плоскости. Направление осей отведений определяют в градусах. За начало отсчёта принимают радиус, проведённый строго горизонтально из электрического центра сердца влево по направлению к положительному полюсу I стандартного отведения. Положительный полюс II стандартного отведения расположен под углом +60°, отведения aVF - под углом +90°, III стандартного отведения- под углом +120°, aVL - под углом -30°, а aVR - под углом -150° к горизонтали. Ось отведения aVL перпендикулярна оси II стандартного отведения, ось I стандартного отведения перпендикулярна оси aVF, а ось aVR перпендикулярна оси III стандартного отведения.

Грудные однополюсные отведения, предложенные Вильсоном в 1934 г., регистрируют разность потенциалов между активным положительным электродом, установленным в определённых точках на поверхности грудной клетки, и отрицательным объединённым электродом Вильсона (рис. 4).

Рис. 4. Места наложения 6 грудных электродов

Его образуют соединение дополнительных сопротивлений трёх конечностей (правой руки, левой руки и левой ноги) с объединённым потенциалом, близким к нулю (около 0,2 мВ). Для записи ЭКГ активные электроды устанавливают в 6 общепринятых позиций на грудной клетке:

  • отведение V1 - в четвёртом межреберье по правому краю грудины;
  • отведение V2 - в четвёртом межреберье по левому краю грудины;
  • отведение V3 - между второй и четвёртой полицией, примерно на уровне V ребра по левой окологрудинной линии;
  • отведение V4 - в пятом межреберье по левой срединно-ключичной линии;
  • отведение V5 - на том же горизонтальном уровне, что и V4 , по левой передней подмышечной линии;
  • отведение V6 - по левой средней подмышечной линии на том же горизонтальном уровне, что и электроды отведений V4 и V5 .

В отличие от стандартных и усиленных отведений от конечностей грудные отведения регистрируют изменения электродвижущей силы сердца в горизонтальной плоскости. Линия, соединяющая электрический центр сердца с местом расположения активного электрода на грудной клетке, образует ось каждого грудного отведения (рис. 5). Оси отведений V1 и V5 , а также V2 и V6 приблизительно перпендикулярны друг другу.

Рис. 5. Расположение осей 6 грудных электрокардиографических отведений в горизонтальной плоскости

Диагностичсекие возможности ЭКГ могут быть расширены с помощью дополнительных отведений. Их использование особенно целесообразно в тех случаях, когда обычная программа регистрации 12 общепринятых отведений ЭКГ не позволяет диагностировать ту или иную патологию или требуется уточнение количественных параметров обнаруженных изменений. Методика регистрации дополнительных грудных отведений отличается от методики записи 6 общепринятых грудных отведений локализацией активного электрода на поверхности грудной клетки. Роль электрода, соединённого с отрицательным полюсом кардиографа, играет объединённый электрод Вильсона. Для более точной диагностики очаговых изменений миокарда в заднебазальных отделах ЛЖ используют однополюсные отведения V7 -V9 . Активные электроды устанавливают по задней подмышечной (V7 ), лопаточной (V8 ) и околопозвоночной (V9 ) линии на уровне горизонтали электродов V4 -V6 (рис. 6).

Рис. 6. Расположение электродов дополнительных грудных отведений V7 - V9 (а) и осей этих отведений в горизонтальной плоскости (б)

Для диагностики очаговых изменений миокарда задней, переднебоковой и верхних отделов передней стенки применяют двухполюсные отведения по Небу. Для записи этих отведений применяют электроды для регистрации трёх стандартных отведений от конечностей. Электрод с красной маркировкой, обычно устанавливаемый на правой руке, помещают во второе межреберье по правому краю грудины; электрод с левой ноги (зелёная маркировка) переставляют в позицию грудного отведения V4 , (у верхушки сердца); электрод с жёлтой маркировкой, устанавливаемый на левую руку, помещают на том же горизонтальном уровне, что и зелёный электрод, но по задней подмышечной линии (рис. 7). Если переключатель отведений электрокардиографа находится в положении I стандартного отведения, регистрируют отведение. Перемещая переключатель на II и III стандартные отведения, записывают соответственно отведения (Inferior, I) и (Anterior, А). Для диагностики гипертрофии правых отделов сердца и очаговых изменений ПЖ применяют отведения V38 - V68 . Их активные электроды помещают на правой половине грудной клетки (рис. 8).

Рис. 7. Расположение электродов и осей дополнительных грудных отведений по Небу

Рис. 8. Расположение электродов дополнительных грудных отведений V38 - V68

Струтынский А.В.

Электрокардиография

Транскрипт

1 Автор: Дидигова Румина Саид-Магометовна студентка Научный руководитель: Щербакова Ирина Викторовна старший преподаватель ФГБОУ ВО «Саратовский государственный медицинский университет им. В.И. Разумовского» Минздрава России г. Саратов, Саратовская область ОСНОВЫ ЭЛЕКТРОКАРДИОГРАФИИ. ТРЕУГОЛЬНИК ЭЙНТХОВЕНА Аннотация: авторы исследуемой статьи представляют собственный взгляд на понимание основ электрокардиографии, трактуют треугольник Эйнтховена как основу концепции ЭКГ. Ключевые слова: ЭКГ, электрокардиография, треугольник Эйнтховена. Несмотря на огромные шаги по пути развития медицинской науки и практики, до настоящего времени одним из основных методов обследования пациентов остается электрокардиография (ЭКГ). В связи с постоянно возрастающим количеством летальных случаев, обусловленных сердечно-сосудистыми заболеваниями во всем мире, применение ЭКГ и грамотная расшифровка ее результатов имеют высокую актуальность. Цель данной работы состоит в изучении сущности метода ЭКГ и его значения в медицинской практике. Известно, что электрокардиография является основным методом исследования сердечной деятельности. Метод достаточно прост и безопасен в применении и, вместе с тем, информативен, что к нему прибегают повсеместно. Противопоказаний к проведению ЭКГ практически не существует, поэтому данный метод используют как непосредственно для диагностики сердечно-сосудистых заболеваний, так и в процессе плановых медицинских осмотров в целях ранней диагно- 1

2 Центр научного сотрудничества «Интерактив плюс» стики, перед спортивными соревнованиями и после них для отслеживания процессов, происходящих в организме спортсменов. Помимо этого, ЭКГ проводят для определения пригодности к некоторым профессиям, связанным с тяжелыми физическими нагрузками. Электрокардиограмма представляет собой запись суммарного электрического потенциала, возникающего при возбуждении множества миокардиальных клеток. Результат ЭКГ записывают с помощью прибора, называемого электрокардиографом. Его основными частями являются гальванометр, система усиления, переключатель отведений и регистрирующее устройство. Электрические потенциалы, возникающие в сердце, воспринимаются электродами, усиливаются и приводят в действие гальванометр. Изменения магнитного поля передаются на регистрирующее устройство и фиксируются на электрокардиографическую ленту, которая движется со скоростью мм/с. Во избежание технических ошибок и помех при записи электрокардиограммы необходимо обратить внимание на правильность наложения электродов и обеспечение их контакта с кожей, на заземление аппарата, амплитуду контрольного милливольта и другие факторы, способные вызвать искажения кривой, имеющей важное диагностическое значение. Электроды для записи ЭКГ накладывают на различные участки тела. Система расположения электродов называется электрокардиографическими отведениями. Рассматривая их, мы сталкиваемся с понятием «треугольник Эйнтховена». Согласно теории нидерландского физиолога Виллема Эйнтховена (), сердце человека, расположенное в грудной клетке со смещением влево, находится в центре своеобразного треугольника. Вершины этого треугольника, который называют треугольником Эйнтховена, образованы тремя конечностями: правой рукой, левой рукой и левой ногой. В. Эйнтховен предложил регистрировать разницу потенциалов между электродами, накладываемыми на конечности. Разница потенциалов определяется в трех отведениях, которые именуют стандартными, и обозначают римскими цифрами. Эти отведения являются сторонами треугольника Эйнтховена (рисунок 1). 2 Содержимое доступно по лицензии Creative Commons Attribution 4.0 license (CC-BY 4.0)

3 При этом в зависимости от отведения, в котором происходит запись ЭКГ, один и тот же электрод может быть активным, положительным (+), или же отрицательным (). Общая схема отведений выглядит следующим образом: Левая рука (+) Правая рука (); Правая рука () Левая нога (+); Левая рука () Левая нога (+). Рис. 1. Треугольник Эйнтховена В развитие теории Эйнтховена, позже было предложено регистрировать усиленные однополюсные отведения от конечностей. В усиленных однополюсных отведениях определяется разность потенциалов между конечностью, на которую накладывается активный электрод, и средним потенциалом двух других конечностей. В середине XX века метод ЭКГ был дополнен Вильсоном, который помимо стандартных и однополюсных отведений предложил регистрировать электрическую активность сердца с однополюсных грудных отведений. Таким образом, метод не «застыл», он развивается и совершенствуется. А суть его в том, что наше сердце сокращается под действием импульсов, которые проходят по проводящей системе сердца. Каждый импульс представляет собой электрический ток. Он зарождается в месте генерации импульса в синусовом узле, и далее идет на предсердия и на желудочки. Под действием импульса происходит сокращение (систола) и расслабление (диастола) предсердий и желудоч- 3

4 Центр научного сотрудничества «Интерактив плюс» ков. Причем систолы и диастолы возникают в строгой последовательности сначала в предсердиях (в правом предсердии чуть раньше), а затем в желудочках. Так обеспечивается нормальная гемодинамика (кровообращение) с полноценным снабжением кровью органов и тканей. Электрические токи в проводящей системе сердца создают вокруг себя электрическое и магнитное поле. Одной из его характеристик является электрический потенциал. При ненормальных сокращениях и неадекватной гемодинамике величина потенциалов будет отличаться от потенциалов, свойственных сердечным сокращениям здорового сердца. В любом случае как в норме, так и при патологии электрические потенциалы ничтожно малы. Но ткани обладают электропроводностью, и поэтому электрическое поле работающего сердца распространяется по всему организму, а потенциалы можно фиксировать на поверхности тела. Для этого нужен высокочувствительный аппарат, снабженный датчиками или электродами. Если с помощью этого аппарата, именуемого электрокардиографом, регистрировать электрические потенциалы, соответствующие импульсам проводящей системы, то можно судить о работе сердца и диагностировать нарушения его работы. Именно эта идея легла в основу концепции В. Эйнтховена. Основные задачи электрокардиографии формулируются следующим образом: 1. Своевременное определение нарушений ритмичности и частоты сердечных сокращений (выявление аритмий и экстрасистол). 2. Определение острых (инфаркт миокарда) либо хронических (ишемия) органических изменений сердечной мышцы. 3. Выявление нарушений внутрисердечных проведений нервных импульсов (нарушение проводимости электрического импульса по проводящей системе сердца (блокады)). 4. Определение некоторых легочных заболеваний как острых (например, тромбоэмболии легочной артерии), так и хронических (таких, как хронический бронхит с дыхательной недостаточностью). 4 Содержимое доступно по лицензии Creative Commons Attribution 4.0 license (CC-BY 4.0)

5 5. Выявление электролитных (уровень калия, кальция) и иных изменений миокарда (дистрофия, гипертрофия (увеличение толщины сердечной мышцы)). 6. Косвенная регистрация воспалительных заболеваний сердца (миокардит). В плановом порядке запись результатов ЭКГ проводится в специализированном помещении, оборудованном электрокардиографом. В некоторых современных кардиографах вместо обычного чернильного самописца используется термопечатающий механизм, который с помощью тепла выжигает кривую кардиограммы на бумаге. Но в этом случае для кардиограммы нужна особая бумага или термобумага. Для наглядности и удобства подсчета параметров ЭКГ в кардиографах используют миллиметровую бумагу. В кардиографах последних модификаций ЭКГ выводится на экран монитора, посредством прилагаемого программного обеспечения расшифровывается, и не только распечатывается на бумаге, но и сохраняется на цифровом носителе (CD, флеш-карта). Отметим, что, несмотря на усовершенствования, принцип устройства кардиографа регистрации ЭКГ практически не изменился с того времени, как его разработал Эйнтховен. Большинство современных электрокардиографов являются многоканальными. В отличие от традиционных одноканальных приборов они регистрируют не одно, а несколько отведений сразу. В 3-х канальных аппаратах регистрируются сначала стандартные I, II, III, затем усиленные однополюсные отведения от конечностей avl, avr, avf, и затем грудные V1 3 и V4 6. В 6-канальных электрокардиографах сначала регистрируют стандартные и однополюсные отведения от конечностей, а затем все грудные отведения. Помещение, в котором осуществляется запись, должно быть удалено от источников электромагнитных полей, рентгеновского излучения. Поэтому кабинет ЭКГ не следует размещать в непосредственной близости от рентгенологического кабинета, помещений, где проводятся физиотерапевтические процедуры, а также электромоторов, силовых щитов, кабелей, и т. д. Специальная подготовка перед записью ЭКГ не проводится. Желательно, чтобы пациент был отдохнувшим, выспавшимся, пребывал в спокойном состоянии. Предшествующие физические и 5

6 Центр научного сотрудничества «Интерактив плюс» психоэмоциональные нагрузки могут сказаться на результатах, и поэтому нежелательны. Иногда прием пищи тоже может отразиться на результатах. Поэтому ЭКГ регистрируют натощак, не ранее чем через 2 часа после еды. Во время записи ЭКГ обследуемый лежит на ровной жесткой поверхности (на кушетке) в расслабленном состоянии. Места для наложения электродов должны быть освобождены от одежды. Поэтому нужно раздеться до пояса, голени и стопы освободить от одежды и обуви. Электроды накладываются на внутренние поверхности нижних третей голеней и стоп (внутренняя поверхность лучезапястных и голеностопных суставов). Эти электроды имеют вид пластин, и предназначены для регистрации стандартных отведений и однополюсных отведений с конечностей. Эти же электроды могут выглядеть как браслеты или прищепки. При этом каждой конечности соответствует свой собственный электрод. Чтобы избежать ошибок и путаницы, электроды или провода, посредством которых они подключаются к аппарату, маркируют цветом: к правой руке красный, к левой руке желтый, к левой ноге зеленый, к правой ноге черный. Однако возникает вопрос: зачем нужен черный электрод? Ведь правая нога не входит в треугольник Эйнтховена, и с нее не снимаются показания. Оказывается, черный электрод предназначен для заземления. Согласно основным требованиям безопасности, вся электроаппаратура, в том числе и электрокардиографическая, должна быть заземлена. Для этого кабинеты ЭКГ снабжаются заземляющим контуром. А если ЭКГ записывается в неспециализированном помещении, например, на дому работниками скорой помощи, аппарат заземляют на батарею центрального отопления или на водопроводную трубу. Для этого предназначен специальный провод с фиксирующим зажимом на конце. Таким образом, при проведении ЭКГ необходимо соблюдение целого ряда правил, основанных на понимании работы сердца и знаниях физики. Выявление нарушений ритма сердца, гипертрофии миокарда, перикардита, ишемии миокарда, определение локализации и протяженности инфаркта миокарда и иные се- 6 Содержимое доступно по лицензии Creative Commons Attribution 4.0 license (CC-BY 4.0)

7 рьезные заболевания диагностируются, главным образом, именно при проведении ЭКГ. Число людей, страдающих заболеваниями сердечно-сосудистой системы, неуклонно растет с каждым годом во всех уголках Земного шара, и огромную роль в выявлении этих патологий на ранних стадиях играет электрокардиограмма. От правильного проведения электрокардиографических манипуляций зависит качество диагностики и дальнейших врачебных манипуляций, направленных на улучшение состояния пациента. Список литературы 1. Альмухамбетова Р.К. Активные методы обучения электрокардиографии / Р.К. Альмухамбетова, Ш.Б. Жангелова, М.К. Альмухамбетов // Вестник Казахского Национального медицинского университета С Багаева Е.А. Загадки треугольника Эйнтховена. Кардиоинтервалография / Е.А. Багаева, И.В. Щербакова // Бюллетень медицинских Интернет-конференций Vol. 4. Issue 4. Р Зудбинов Ю.И. Азбука ЭКГ. Ростов н/д, Электрокардиографические отведения. Треугольник и закон Эйнтховена // Физиология человека [Электронный ресурс]. Режим доступа: (дата обращения:). 5. Ремизов А.Н. Медицинская и биологическая физика: Учебник. М.,


Электрокардиография (ЭКГ) Электрокардиография (ЭКГ) один из важнейших методов диагностики заболеваний сердца. Наличие электрических явлений в сокращающейся сердечной мышце впервые обнаружили два немецких

7. Электрокардиография 7.1. Основы электрокардиографии 7.1.1. Что такое ЭКГ? Электрокардиография самый распространенный метод инструментального обследования. Ее проводят, как правило, сразу же после получения

ММА им. И.М. Сеченова Кафедра факультетской терапии 1 ЭЛЕКТРОКАРДИОГРАФИЯ 1. Нормальная ЭКГ профессор Подзолков Валерий Иванович Происхождение ЭКГ Токи, генерируемые кардиомиоцитами во время деполяризации

Анализ ЭКГ «Вам расскажет всё сигнал, Что на ленту прибежал» Non multa, sed multum. "Дело не в количестве, а в качестве". Плиний Младший Скорость движения ленты При записи ЭКГ на миллиметровой бумаге со

1924 Нобелевская премия по физиологии/медицине вручается Эйнтховену за его работы по ЭКГ (1895 год). 1938 кардиологические Общества США и Великобритании вводят грудные отведения (по Wilson). 1942 - Goldberger

Физические основы электрокардиографии. В основе электрографических диагностических методик лежит регистрация разностей потенциалов между определѐнными точками организма. Электрическое поле это вид материи,

ТЕСТЫ ТЕКУЩЕГО КОНТРОЛЯ по теме «МЕТОДЫ ИССЛЕДОВАНИЯ СЕРДЕЧНО-СОСУДИСТОЙ СИСТЕМЫ» Выберите номер правильного ответа 1. Сердечные тоны это звуковые феномены, возникающие а) при аускультации сердца б) при

УДК 681.3 B.Н. БАЛЕВ, канд. техн. наук, A.Н. МАРЕНИЧ СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА АППАРАТНЫХ СРЕДСТВ ЭЛЕКТРОКАРДИОГРАФИЧЕСКОГО АНАЛИЗА В статті розглянуто принцип роботи пристроїв для зняття електрокардіограми,

Экспертная оценка комплекса аппаратно-программного для скрининга сердца «ECG4ME», ТУ 9442-045-17635079-2015, производства ООО "Медицинские компьютерные системы" (г. Москва) Врач кардиолог высшей категории

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ АМУРСКАЯ ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ Н.В.НИГЕЙ ИЗМЕРЕНИЕ ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ ТКАНЕЙ ОРГАНИЗМА И ЕГО ИЗМЕНЕНИЯ ЗА ЦИКЛ РАБОТЫ СЕРДЦА МЕТОДИЧЕСКИЕ

Остановка сердца или внезапная смерть Каждые 10 минут люди умирают от внезапной остановки сердца или около 500 000 человек в год. Как правило, это люди пожилого возраста, страдающие различными сердечнососудистыми

1. Цель реализации программы Совершенствование теоретических знаний и практических навыков для самостоятельной работы медицинской сестрой в отделениях и кабинетах функциональной диагностики по отдельным

НАРУШЕНИЕ РИТМА И ПРОВОДИМОСТИ Проводящая система сердца Функции проводящей системы сердца: 1. автоматизма 2. проводимости 3. сократимости пейсмекер первого порядка (синусно-предсердный узел) пейсмекер

Тесты текущего контроля по теме «Методы исследования сердечнососудистой системы. Сердечный цикл» Выберите номер правильного ответа 1. Впервые точное описание механизмов кровообращения и значение сердца

Синусовая аритмия у детей: причины, симптомы, лечение заболевания Самым главным органом тела человека является сердце, его работа заключается в доставке с током крови всех питательных веществ в ткани и

Электрокардиография Среди многочисленных инструментальных методов исследования, которыми в совершенстве должен владеть современный практический врач, ведущее место справедливо принадлежит электрокардиографии.

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ УКРАИНЫ Харьковский национальный медицинский университет ЭЛЕКТРОКАРДИОГРАФИЧЕСКИЙ МЕТОД ИССЛЕДОВАНИЯ. МЕТОДИКА РЕГИСТРАЦИИ И РАСШИФРОВКА ЭЛЕКТРОКАРДИОГРАММЫ Методические указания

Правильная постановка электродов Основные электроды (R) красный на правую руку (L) желтый на левую руку (F) зелёный на левую ногу (N) черный на правую ногу Грудные электроды (V1) красного цвета 4-е межреберье

ЭКГ понятным языком Атул Лутра Перевод с английского Москва 2010 СОДЕРЖАНИЕ Список сокращений... VII Предисловие... IX Благодарности... XI 1. Описание зубцов, интервалов и сегментов электрокардиограммы...1

ББК 75.0 М15 Макарова Г.Л. М15 Электрокардиограмма спортсмена: норма, патология и потенциально опасная зона. / Г.А. Макарова, Т.С. Гуревич, Е.Е. Ачкасов, С.Ю. Юрьев. - М.: Спорт, 2018. - 256 с. (Библиотечка

Ãëàâà 5. Íàðóøåíèÿ ðèòìà è ïðîâîäèìîñòè ñåðäöà от сердца (при чреспищеводном введении зонда). Это дает широкие возможности для уточненной диагностики аритмий, устраняя диагностические ограничения, имеющиеся

4 ЭЛЕКТРОКАРДИОГРАФИЧЕСКАЯ КАРТИНА ИСПОЛЬЗУЕМЫХ РЕЖИМОВ СТИМУЛЯЦИИ Об одном из основных параметров работы любого имплантируемого антиаритмического устройства, режиме стимуляции, подробно говорилось в разделе

3 1. Целью изучения дисциплины является: овладение знаниями, умениями, навыками обследования больных с заболеваниями внутренних органов с помощью основных методов ультразвуковой и функциональной диагностики,

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «Уральский государственный университет им. А.М. Горького» Биологический факультет кафедра

Приобретенные пороки сердца профессор Хамитов Р.Ф. зав.кафедрой внутренних болезней 2 КГМУ Митральный стеноз (МС) Сужение (стеноз) левого атриовентрикулярного (митрального) отверстия с затруднением опорожнения

Нормальная электрокардиограмма Чтобы оправдаться в собственных глазах, мы нередко убеждаем себя, что не в силах достичь цели, на самом же деле мы не бессильны, а безвольны. Франсуа де Ларошфуко. Калибровочный

ЭКГ при гипертрофиях миокарда предсердий и желудочков Лучше совсем не знать чего-либо, чем знать плохо. Публий Гипертрофия сердечной мышцы - это компенсаторная приспособительная реакция миокарда, выражающаяся

69 С.П. ФОМИН Разработка модуля анализа электрокардиограммы УДК 004.58 Муромский институт (филиал) ФГБОУ ВПО «Владимирский государственный университет имени А.Г. и Н.Г. Столетовых» г. Муром В работе рассматривается

Система дистанционной кардио-теледиагностики Группа компаний «КОМНЕТ» - «ТЕХНОМАРКЕТ» г. Воронеж ПРИМЕНЕНИЕ НА ПРАКТИКЕ 2 НАЗНАЧЕНИЕ биомониторинг Система дистанционной кардио-теледиагностики это территориальнораспределенный

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УТВЕРЖДАЮ Первый заместитель министра Д.Л. Пиневич 19.05.2011 г. Регистрационный 013-0311 ЭКСПРЕСС-ОЦЕНКА ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ СЕРДЕЧНО-СОСУДИСТОЙ

Дела сердечные... Ветеринарный врач КСЦ «Измайлово», ООО «Эквимедика» Евсеенко Анастасия Основные жалобы владельцев: 1. Снижение работоспособности 2. Кашель, тяжелое дыхание 3. Отеки ног 4. Долгое восстановление

Секция: Клиническая медицина Альмухамбетова Рауза Кадыровна К.м.н., доцент, профессор кафедры интернатуры и резидентуры по терапии 3 Казахский Национальный медицинский университет Жангелова Шолпан Болатовна

ОСНОВЫ РАСШИФРОВКИ НОРМАЛЬНОЙ ЭЛЕКТРОКАРДИОГРАММЫ 2017 СОДЕРЖАНИЕ Список сокращений 2 Введение...2 Основные функции сердца.4 Формирование элементов ЭКГ...5 Расшифровка ЭКГ 9 Значения элементов ЭКГ в норме

ОТЧЕТ по результатам применения препарата КУДЕСАН в комплексной терапии нарушений сердечного ритма у детей. Березницкая В.В., Школьникова М.А. Детский центр нарушений ритма сердца Минздрава РФ В последние

ЭКГ при инфаркте миокарда Схема морфологических изменений в сердечной мышце при остром инфаркте миокарда По данным ЭКГ можно судить о продолжительности ОКС Электрокардиограмма при ишемической болезни сердца

Center of Scientific Cooperation "Interactive plus" Жоголева Екатерина Евгеньевна студентка ГБОУ ВО «Воронежский государственный медицинский университет им. Н.Н. Бурденко» Минздрава России г. Воронеж,

Секция: Кардиология Альмухамбетова Рауза Кадыровна профессор кафедры интернатуры и резидентуры по терапии 3 Казахский Национальный медицинский университет им.с.д.асфендиярова,алматы, Республика Казахстан

Профессия врач Выполнили: Анастасия Марусина Татьяна Матросова Научный руководитель: Ковшикова Ольга Ивановна «Я торжественно клянусь посвятить мою жизнь служению человечеству; Я буду честен в своей профессиональной

Секция 9: Медицинские науки Альмухамбетова Рауза Кадыровна кандидат медицинских наук, доцент профессор кафедры внутренних болезней 3 Казахский национальный медицинский университет Жангелова Шолпан Болатовна

Санкт-Петербургский Государственный Университет Математико-механический факультет Кафедра информационно-аналитических систем Курсовая работа Определение пульса по ЭКГ Чирков Александр Научный руководитель:

Миннесотский код расшифровка >>> Миннесотский код расшифровка Миннесотский код расшифровка Считается фактором риска по внезапной остановке сердца, но клиники не дает и чаще всего остается без последствий.

Секция: кардиология МУСАЕВ АБДУГАНИ ТАЖИБАЕВИЧ Д.м.н., профессор, профессор кафедры скорой и неотложной медицинской помощи, Казахский Национальный медицинский университет им.с.д.асфендиярова, Алматы, Республика

УДК 616.1 ББК 54.10 Р 60 Посвящаю памяти моего отца Владимира Ивановича Родионова Научный редактор: Светлана Петровна Попова, канд.мед.наук, доцент, врач высшей категории, преподаватель кафедры инфекционных

5 Фотоплетизмография Введение Движение крови в сосудах обусловлено работой сердца. При сокращении миокарда желудочков кровь под давлением перекачивается из сердца в аорту и легочную артерию. Ритмические

В.Н. Орлов Руководство по электрокардиографии 9-е издание, исправленное Медицинское информационное агентство МОСКВА 2017 УДК 616.12-073.7 ББК 53.4 О-66 Орлов, В.Н. О-66 Руководство по электрокардиографии

ООО НИМП ЕСН г.саров «Миокард Холтер» «Миокард 12» Электрокардиограф «Миокард 3» Более 3000 медучреждений РФ работают на нашем оборудовании Домашний кардиоанализатор Миокард-12 Мобильный кардиоанализатор

Глава IV. Кровообращение На дом: 19 Тема: Строение и работа сердца Задачи: Изучить строение, работу и регуляцию работы сердца Пименов А.В. Строение сердца Сердце человека располагается в грудной клетке.

Сафонова Оксана Александровна преподаватель физической культуры Алексеева Полина Витальевна студентка Быстрова Дарья Александровна студентка ФГБОУ ВО «Санкт-Петербургский государственный архитектурно-строительный

Лектор и ответственная за обучение ин. учащихся на кафедре медицинской и биологической физики Межевич З.В. Физические основы электростимуляции Лабораторная работа: «Измерение параметров импульсных сигналов»,

Рябоштан Илья Андреевич студент Вишина Алла Леонидовна старший преподаватель ФГБОУ ВО «Ростовский государственный университет путей сообщения» г. Ростов-на-Дону, Ростовская область ЗДОРОВЬЕСБЕРЕГАЮЩИЕ

Гемодинамика. Физиология сердца. ЛЕКЦИЮ ЧИТАЕТ К.М.Н. КРЫЖАНОВСКАЯ СВЕТЛАНА ЮРЬЕВНА Гемодинамика - движение крови в замкнутой системе, обусловленное разностью давления в различных отделах сосудистого

ЭКГ при гипертрофии отделов сердца Определение Гипертрофия миокарда компенсаторноприспособительная реакция, развивающаяся в ответ на перегрузку того или иного отдела сердца и характеризующаяся увеличением

Scientific Cooperation Center "Interactive plus" Иванов Валентин Дмитриевич канд. пед. наук, доцент Елизаров Сергей Евгеньевич студент Кауль Ксения Максимовна студентка ФГБОУ ВО «Челябинский государственный

Школа электрокардиографии Синдромы гипертрофии миокарда предсердий и желудочков А.В. Струтынский, А.П. Баранов, А.Б. Глазунов, А.Г. Бузин Кафедра пропедевтики внутренних болезней Лечебного факультета РГМУ

Федорова Галина Алексеевна профессор Малиновский Вячеслав Владимирович доцент Вьюшин Сергей Германович старший преподаватель ФГБОУ ВО «Вологодский государственный университет» г. Вологда, Вологодская область

Аннотация к программе «Лечебная физкультура и спортивная медицина» Дополнительная профессиональная образовательная программа профессиональной переподготовки «Лечебная физкультура и спортивная медицина»

МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Работа 2 Вариант 1 Опорно-двигательная система. Скелет 1. В таблице между позициями первого и второго столбцов имеется определенная связь. Объект Нейрон Свойство Обеспечивает рост кости в толщину Обладает

Авторы: Чухлебов Николай Владимирович Баракин Виталий Васильевич Товстый Андрей Игоревич Руководитель: Трегубова Ирина Владимировна учитель математики, физики, технологии, художественный руководитель детского

МИНЗДРАВ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «Южно-Уральский государственный медицинский университет» Министерства здравоохранения Российской Федерации