Главная · Правильное питание · Приручить стихию: Звуки о традиционном японском инструменте, известном как "водяная арфа". Звуковые волны и их характеристики. Звуковые волны вокруг нас Звуковые волны в музыке

Приручить стихию: Звуки о традиционном японском инструменте, известном как "водяная арфа". Звуковые волны и их характеристики. Звуковые волны вокруг нас Звуковые волны в музыке

Вследствие поворота в области энергетики возобновляемые виды энергии приобретают в земле Баден-Вюртемберг большое значение. Центральным элементом при этом становится использование энергии ветра. В 2011-м году местными ветроэнергетическими установками было произведено в этой земле около одного процента электроэнергии. Всего в эксплуатации было 380 ветроэнергетических установок. К 2020 году суммарная мощность ветроустановок должна вырасти с 500 мегаватт (состояние на 2012) до 3 500 мегаватт. Около десяти процентов всей электроэнергии должно будет вырабатываться ветроэнергетическими установками. Одна типичная ветроустановка с номинальной мощностью 2 МВт расположенная в благоприятной для этого местности земли Баден-Вюртемберг теоретически может снабжать электроэнергией свыше 1000 домашних хозяйств.

При развитии ветроэнергетики необходимо учитывать воздействие на людей и окружающую среду. Ветроэнергетические установки создают шум. При правильном планировании и достаточном расстоянии до жилищных застроек от ветроэнергетических установок не исходит какого-то акустического беспокойства. Уже на расстоянии нескольких сот метров шум ветроустановки почти не превышает естественного шума ветра в растительности. Наряду со звуковыми волнами, ветроустановки производят, вследствие обтекания воздухом вращающихся лопастей, шум более низкой частоты, так называемый инфразвук или экстремально низкий тон. Слух в этом диапазоне крайне нечувствителен. Все же в рамках развития ветроэнергетики существуют опасения, что эти инфразвуковые волны причиняют вред человеку или могут быть опасными для его здоровья. Эта брошюра призвана способствовать обсуждению данного вопроса.

Что же такое звук?

Звук состоит, если говорить просто, из волн сжатия. При распространении этих колебаний давления через воздух передается звук. Слух человека в состоянии улавливать звук частотой от 20 до 20 000 Герц. Герц - это единица измерения частоты, которая определяется количеством колебаний за секунду. Низкие частоты соответствуют низким тонам, высокие - высоким. Частоты ниже 20 Гц называют инфразвуком. Шум выше звукового диапазона, т.е. выше 20 000 Гц известен как ультразвук. Низкими частотами называют звук, преобладающая часть которого находится в диапазоне ниже 100Гц. Периодические колебания давления воздуха распространяются со скоростью звука, около 340 м/сек. Колебания низких частот имеют большую, а высокочастотные колебания короткую длину волны. Например, длина волны 20-ти герцового тона составляет 17,5 м, а при частоте 20 000 Гц - 1,75 см.

Как распространяется инфразвук?

Распространение инфразвука подчиняется тем же физическим законам что и все виды волн, распространяемые в воздухе. Отдельный источник звука, например генератор ветроэнергетической установки излучает волны, которые распространяются шарообразно во всех направлениях. Так как энергия звука при этом распределяется на все большую площадь, интенсивность звука на квадратный метр имеет обратно- геометрическую зависимость: с ростом расстояния звук становится тише (см. рисунок).

Наряду с этим существует эффект абсорбции волн в воздухе. Небольшая часть энергии звука при распространении превращается в тепло, за счет чего получается дополнительное снижение звука. Эта абсорбция зависит от частоты: звук более низкой частоты снижаются меньше, высокой частоты больше. Снижение интенсивности звука с расстоянием значительно превышает его потерю за счет абсорбции. Особенность состоит в том, что низкочастотные колебания очень легко проходят стены и окна, вследствие чего воздействие происходит внутри здания.

Где встречается инфразвук?

Инфразвук - это обычная составляющая часть нашей окружающей среды. Его излучают огромное число разнообразных источников. К ним принадлежат как природные источники, такие как ветер, водопад или морской прибой, так и технические, например обогреватели и кондиционеры, уличный и рельсовый транспорт, самолеты или аудиосистемы на дискотеках.

Шум ветроэнергетических установок.

Современные ветроэнергетические установки производят в зависимости от силы ветра шум во всем диапазоне частот, в том числе низкочастотные тона и инфразвук. Это происходит за счет срыва турбулентности, особенно на концах лопастей, а также на краях, щелях и распорках. Обтекаемая воздухом лопасть создает шум, похожий на шум крыла планера.

Излучение звука увеличивается с возрастанием скорости ветра до достижения установкой номинальной мощности. После этого она остается постоянной. Специфическое инфразвуковое излучение сопоставимо с излучением других технических установок.


Исследования показали, что инфразвуковое излучение ветроэнергетической установки находится ниже порога восприятия человека. Зеленая линия графика показывает, что на расстоянии 250 метров измеренные значения находятся ниже порога восприятия.

При этом сильный ветер, проходя через естественные препятствия, может создать инфразвук большей интенсивности. Для сравнения: внутри административного здания согласно измерениям, проведенным LUBW, уровень инфразвука лежит ниже зеленой линии. Скорость ветра в обоих случаях составляла ровно 6 м/с. Многие повседневные шумы содержат значительно больше инфразвука.

График вверху показывает как пример шум внутри легкового автомобиля. При скорости 130 км/час инфразвук становится даже слышим. При открытых боковых стеклах шум ощущается как неприятный. Его интенсивность составляет 70 децибел, т.е. в 10 000 000 раз сильнее, чем вблизи ветроагрегата при сильном ветре.

Оценка низкочастотного шума.

В диапазоне низкочастотных колебаний ниже 100 Гц находится плавный переход слухового восприятия от слышания силы звука и высоты тона до ощущения. Здесь изменяется качество и способ восприятия. Восприятие высоты тона снижается и при инфразвуке исчезает совсем. В общем это действует так: чем ниже частота, тем интенсивность звука должна быть сильнее, чтобы, вообще, можно было услышать шум. Низкочастотное воздействие более высокой интенсивности, как например вышеприведенный шум внутри автомобиля, часто воспринимается как давление на уши и вибрации. Длительное воздействие колебаний такой частоты могут вызвать в голове шум, чувство давления или раскачивания. Наряду со слухом существуют также другие органы чувств воспринимающие низкие частоты. Так чувствительные клетки кожи воспринимают давление и вибрацию. Инфразвук может также воздействовать на имеющиеся в теле пустоты, такие как легкие, ноздри и среднее ухо. Инфразвук очень высокой интенсивности имеет замаскированное воздействие в среднем и нижнем звуковом диапазоне. Это значит: При очень сильном инфразвуке слух не в состоянии одновременно воспринимать тихий звук в этом более высоком частотном диапазоне.

Влияние на здоровье

Лабораторные исследования воздействия инфразвука показывают, что высокая интенсивность выше порога восприятия может вызвать усталость, потерю концентрации и обессиливание. Наиболее известной реакцией организма является возрастающая усталость после многочасового воздействия. Может также нарушиться чувство равновесия. Некоторые исследователи ощутили чувство неуверенности и страха, у других уменьшилась частота дыхания.

Дальше, как и при звуковых излучениях, при очень высокой интенсивности временное снижение слуха, этот эффект известен посетителям дискотек. При долговременном воздействии инфразвука может развиться продолжительное расстройство слуха. Уровень шума в непосредственной близости от ветрогенератора очень далек от таких эффектов. Ввиду того, что порог слышимости отчетливо превышен, раздражение от инфразвука не ожидаются. О таких эффектах, о которых мы говорили, нет никакой научной документации.

Выводы:

Ультразвук, производимый ветроэнергетическими установками, находится определенно ниже границы чувствительности человека. Согласно сегодняшнему уровню науки, вредного воздействия ультразвука от ветроэнергетических установок не ожидается.

По сравнению со средствами передвижения, как автомобиль или самолет, инфразвук от ветроэнергетических установок ничтожно мал. Наблюдая общий диапазон звуковых частот, мы видим, что шум от ветроэнергетической установки уже в нескольких сотнях метров почти совсем не слышен на фоне ветра в растительности.

Необходимо обращать внимание на совместимость ветроэнергетических установок и жилых домов. Нормативными актами по использованию энергии ветра земли Баден-Вюртемберг предписывается для местного планирования и планирования использования площадей безопасное расстояние в 700 м между ветроэнергетическими установками и жилыми постройками. Как исключение, при тщательном изучении отдельных случаев, расстояние можно как увеличить, так и уменьшить.

Сегодня озвучка театральных пьес и кинофильмов относительно проста. Большинство необходимых шумов существует в электронном виде, недостающие записываются, обрабатываются на компьютере. Но еще полвека назад для имитации звуков использовались удивительной хитроумности механизмы.

Тим Скоренко

Эти удивительные шумовые машины выставлялись на протяжении последних лет в самых разных местах, впервые — несколько лет тому назад в Политехническом музее. Там мы подробно рассмотрели эту занимательную экспозицию. Дерево-металлические устройства, удивительным образом имитирующие звуки прибоя и ветра, проезжающего автомобиля и поезда, цокот копыт и звон мечей, стрекотание кузнечика и кваканье лягушки, лязг гусениц и разрывы снарядов — все эти удивительные машины разработал, усовершенствовал и описал Владимир Александрович Попов — актер и создатель шумового оформления в театре и кино, — которому и посвящена выставка. Наиболее интересна интерактивность экспозиции: приборы не стоят, как нередко у нас принято, за тремя слоями пуленепробиваемого стекла, а предназначены для пользователя. Подходи, зритель, притворись звукооформителем, посвисти ветром, пошуми водопадом, поиграй в поезд — и это интересно, действительно интересно.


Фисгармония. «Для передачи шума танка используется музыкальный инструмент фисгармония. Исполнитель нажимает одновременно несколько нижних клавиш (и черных, и белых) на клавиатуре и при этом накачивает воздух с помощью педалей» (В.А. Попов).

Шумовых дел мастер

Владимир Попов начинал карьеру в качестве актера МХАТа, причем еще до революции, в 1908 году. В своих воспоминаниях он писал, что с детства увлекался звукоимитацией, пытался копировать различные шумы, природные и искусственные. С 1920-х годов он окончательно уходит в звуковую отрасль, проектируя разнообразные машины для шумового оформления спектаклей. А в тридцатых его механизмы появились и в кино. Например, с помощью своих удивительных машин Попов озвучивал легендарную картину Сергея Эйзенштейна «Александр Невский».

Он относился к шумам как к музыке, писал партитуры для звукового фона спектаклей и радиопостановок — и изобретал, изобретал, изобретал. Некоторые машины, созданные Поповым, сохранились до сих пор и пылятся в подсобках различных театров — развитие звукозаписи сделало его хитроумные механизмы, требующие определенных навыков обращения, ненужными. Сегодня шум поезда моделируется электронными методами, в поповские же времена целый оркестр по строго заданному алгоритму работал с различными устройствами, чтобы создать достоверную имитацию приближающегося состава. В шумовых композициях Попова порой было задействовано до двадцати музыкантов.


Шум танка. «Если танк появляется на сцене, то в этот момент вступают в действие четырехколесные приборы с металлическими пластинами. Прибор приводится в действие вращением крестовины вокруг оси. Получается сильный звук, очень похожий на лязг гусениц большого танка» (В.А. Попов).

Итогами его работы стали книга «Звуковое оформление спектакля», вышедшая в 1953 году, и полученная тогда же Сталинская премия. Можно привести здесь много различных фактов из жизни великого изобретателя — но мы обратимся к технике.

Дерево и железо

Важнейшим моментом, на который далеко не всегда обращают внимание посетители выставки, является тот факт, что каждая шумовая машина — музыкальный инструмент, на котором нужно уметь играть и который требует определенных акустических условий. Например, «громовая машина» во время спектаклей всегда ставилась на самый верх, на мостки над сценой, чтобы раскаты грома разносились по всему зрительному залу, создавая ощущение присутствия. В небольшой же комнате она производит не такое яркое впечатление, звук ее не столь естественен и находится значительно ближе к тому, чем является на самом деле, — к лязгу железных колес, встроенных в механизм. Впрочем, «ненатуральность» некоторых звуков объясняется тем, что многие из механизмов не предназначены для «сольной» работы — только «в ансамбле».

Иные машины, напротив, идеально имитируют звук независимо от акустических свойств помещения. К примеру, «Перекат» (механизм, издающий шум прибоя), огромный и неповоротливый, настолько точно копирует удары волн о пологий берег, что, закрыв глаза, можно легко вообразить себя где-то у моря, на маяке, в ветреную погоду.


Конный транспорт №4. «Прибор, воспроизводящий шум пожарного обоза. Чтобы в начале действия прибора дать слабый шум, исполнитель отводит ручку регулятора влево, благодаря чему происходит смягчение силы шума. При перемещении оси в другую сторону шум возрастает до значительной силы» (В.А. Попов).

Попов делил шумы на ряд категорий: батальные, природные, индустриальные, бытовые, транспортные и т. д. Некоторые универсальные приемы могли использоваться для имитации различных шумов. Например, подвешенные на определенном расстоянии друг от друга листы железа различной толщины и размеров могли сымитировать и шум приближающегося паровоза, и лязг производственных машин, и даже гром. Универсальным устройством Попов называл также огромный барабан-ворчун, способный работать в разных «отраслях».

Но большинство подобных машин достаточно просты. Специализированные же механизмы, предназначенные для имитации одного и только одного звука, заключают в себе весьма занимательные инженерные мысли. Например, падение капель воды имитируется вращением барабана, боковую сторону которого заменяют натянутые на разных расстояниях веревки. При вращении они приподнимают неподвижно укрепленные кожаные хлыстики, которые хлопают по следующим веревкам — и это действительно похоже на капель. Ветры различной силы также имитируются с помощью барабанов, трущихся о всевозможные ткани.

Кожа для барабана

Пожалуй, самая замечательная история, связанная с реконструкцией машин Попова, случилась во время изготовления большого барабана-ворчуна. Для огромного, диаметром почти в два метра, музыкального инструмента требовалась кожа — но оказалось, что приобрести выделанную, но не выдубленную барабанную кожу в России невозможно. Музыканты отправились на настоящую скотобойню, где купили две свежеснятые с быков шкуры. «В этом было что-то сюрреалистическое, — смеется Петр. — Подъезжаем мы на машине к театру, а у нас в багажнике — окровавленные шкуры. Мы затаскиваем их на крышу театра, там мездрим, сушим — неделю на всю Сретенку запах стоял…» Но барабан в итоге удался на славу.

Каждый прибор Владимир Александрович в обязательном порядке снабжал подробной инструкцией для исполнителя. Например, устройство «Мощный треск»: «Сильные сухие разряды грозы выполняются с помощью прибора «Мощный треск». Встав на площадку станка прибора, исполнитель, подавшись грудью вперед и положив обе руки поверх зубчатого вала, обхватывает его и повертывает по направлению к себе».

Стоит заметить, что многие из машин, использованных Поповым, были разработаны до него: Владимир Александрович лишь усовершенствовал их. В частности, ветровые барабаны применялись в театрах еще во времена крепостного права.

Изящная жизнь

Одним из первых фильмов, целиком озвученным с помощью механизмов Попова, была комедия режиссёра Бориса Юрцева «Изящная жизнь». Помимо голосов актёров, в этом фильме, вышедшем на экраны в 1932 году, нет ни одного записанного с натуры звука — всё сымитировано. Стоит заметить, что из шести полнометражных фильмов, снятых Юрцевым, этот — единственный сохранившийся. Попавший в опалу в 1935 году режиссёр был сослан на Колыму; его фильмы, кроме «Изящной жизни», были утеряны.

Новая инкарнация

После появления звуковых библиотек про машины Попова почти забыли. Они отошли в разряд архаизмов, в прошлое. Но нашлись люди, заинтересованные в том, чтобы техника прошлого не только «восстала из пепла», но и вновь стала востребованной.

Идея сделать музыкальный арт-проект (тогда еще не оформившийся как интерактивная выставка) давно теплилась в сознании московского музыканта, пианиста-виртуоза Петра Айду — и вот наконец нашла свое материальное воплощение.


Прибор «лягушка». Инструкция к прибору «Лягушка» значительно сложнее, нежели аналогичные указания к прочим устройствам. Исполнитель квакающего звука должен был хорошо владеть инструментом, чтобы итоговая звукоимитация получилась достаточно натуральной.

Команда, работавшая над проектом, частично базируется в театре «Школа драматического искусства». Сам Петр Айду — помощник главного режиссера по музыкальной части, координатор производства экспонатов Александр Назаров — руководитель театральных мастерских и т. д. Впрочем, в работе над выставкой принимали участие десятки людей, не связанных с театром, но готовых помогать, тратить свое время на странный культурологический проект — и все это было не зря.

Мы беседовали с Петром Айду в одной из комнат с экспозицией, в страшном грохоте и гаме, извлекаемом из экспонатов посетителями. «В этой экспозиции множество пластов, — говорил он. — Некий исторический пласт, поскольку мы подняли на свет историю очень талантливого человека, Владимира Попова; интерактивный пласт, поскольку люди получают удовольствие от происходящего; музыкальный пласт, поскольку по окончании выставки мы планируем использовать ее экспонаты в наших спектаклях, причем не столько для озвучки, сколько как самостоятельные арт-объекты». В то время, как Петр говорил, за его спиной работал телевизор. На экране сцена, где двенадцать человек слаженно играют композицию «Шум поезда» (это фрагмент спектакля «Реконструкция утопии»).


«Перекат». «Исполнитель приводит прибор в действие мерным ритмическим покачиванием резонатора (корпуса прибора) вверх и вниз. Тихий прибой волн выполняется медленным ссыпанием (не до конца) содержимого резонатора с одного его конца в другой. Прекратив ссыпание содержимого в одну сторону, быстрым движением приводят резонатор в горизонтальное положение и сейчас же отводят его в другую сторону. Мощный прибой волн выполняется медленным ссыпанием до конца всего содержимого резонатора» (В.А.Попов).

Автоматы изготовлялись по оставленным Поповым чертежам и описаниям — сохранившиеся в коллекции МХАТа оригиналы некоторых машин создатели выставки увидели уже после окончания работ. Одной из основных проблем было то, что легко добываемые в 1930-х годах детали и материалы сегодня нигде не используются и в свободной продаже не водятся. Например, латунный лист толщиной 3 мм и размерами 1000x1000 мм найти практически нереально, потому что нынешний ГОСТ подразумевает разрезку латуни только 600x1500. Проблемы возникали даже с фанерой: требуемая 2,5-миллиметровая по современным стандартам относится к авиамодельной и достаточно редка, разве что из Финляндии выписывать.


Автомобиль. «Шум автомобиля производится двумя исполнителями. Один из них вращает ручку колеса, а другой нажимает рычаг подъёмной доски и приоткрывает крышки» (В.А. Попов). Стоит заметить, что с помощью рычагов и крышек можно было значительно варьировать звук автомобиля.

Была и еще одна сложность. Сам Попов неоднократно замечал: чтобы сымитировать какой-либо звук, нужно абсолютно точно представлять себе, чего хочешь добиться. Но, например, звук переключения семафора 1930-х годов никто из наших современников никогда не слышал в живую — как же удостовериться в том, что соответствующий прибор изготовлен правильно? Никак — остается только надеяться на интуицию и старые кинофильмы.

Но в общем и целом интуиция создателей не подвела — им все удалось. Хотя изначально шумовые машины предназначались для людей, умеющих с ними обращаться, а не для потехи, в качестве интерактивных экспонатов музея они очень хороши. Вращая рукоять очередного механизма, глядя на транслируемый на стену немой кинофильм, ты ощущаешь себя великим звукорежиссером. И чувствуешь, как под твоими руками рождается не шум, но музыка.

Следует учитывать, что звук может передаваться не только по воздуху, но и по конструкциям: стенам, трубам, перекрытиям. В них акустическая энергия распространяется в виде упругих колебаний (вибраций). В большинстве случаев возникновение шума происходит из-за преобразования энергии вибраций в звуковую энергию. Звук исходит от колеблющихся поверхностей машин, механизмов, перегородок и т. д. Очень хорошие источники звука - тонкостенные металлические поверхности, которые эффективно излучают звуковую энергию в окружающую среду в широком диапазоне частот.

Энергию упругих колебаний можно достаточно эффективно уменьшить с помощью так называемых вибропоглощающих покрытий. Возьмем две одинаковые по форме пластины, сделанные из металла и пластмассы, подвесим их на нити и ударим чем-нибудь твердым. В пластмассовой пластине колебания утихнут быстро, а металлическая будет "звенеть" еще некоторое время. В пластмассе акустическая энергия эффективно преобразовалась в тепловую. Для уменьшения излучения звука поверхности на нее наносят вибропоглощающее покрытие, в котором колебания затухают, как в пластмассовой пластине. Вибропоглощающее покрытие должно обладать большой жесткостью и высокими внутренними потерями акустической энергии. Чем больше жесткость покрытия, тем бoльшая часть энергии колебаний будет затрачена на его деформацию, а чем больше внутренние потери, тем больше энергии перейдет в тепло.

Вибропоглощающие покрытия широко применяются в автомобилестроении - для внутренней облицовки кузовов машин, в авиастроении - для нанесения на внутренние части фюзеляжей самолетов и т. д. Но не всегда использование того или иного вибропоглощающего покрытия дает положительный результат. Так, например, для снижения шума и вибрации отбойного молотка вибропоглощающее покрытие неэффективно.

Другой способ борьбы с вибрацией - виброизоляция. Для ее создания используется тот же принцип, что и для звукоизоляции: требуется такое препятствие, чтобы от него отразилось как можно больше энергии. С этой целью применяют упругие вставки (амортизаторы). Их устанавливают между работающей машиной или механизмом и его фундаментом. Обычно амортизаторы делают из резины, или они представляют собой стальные пружины. Важно правильно выбрать амортизатор, иначе виброизоляция может оказаться малоэффективной, а в ряде случаев вибрация даже усилится.

Защититься от шума можно и с помощью индивидуальных средств защиты. Прежде всего, это ушные протекторы. Первый тип протектора - тампон или заглушка из мягкого материала, предназначенная для разового применения. Если просто заткнуть ухо кусочком ваты, то эффект звукоизоляции будет мал, поскольку вата обладает небольшой плотностью и слишком пористая. В аптеках можно купить специально сконструированные утяжеленные вставки в ухо "Беруши" из волокнистого материала. Они обладают хорошими звукоизолирующими свойствами и гигиеничны. Иногда в продаже встречаются специальные пластмассовые заглушки-пробки разных размеров.

Но все же гораздо более эффективно предохраняют от шума наружные ушные протекторы, или наушники. В числе их недостатков - неудобство и неприятные ощущения, возникающие при длительном ношении. Зато наушники обеспечивают хорошую звукоизоляцию, а с помощью жидкого уплотнения в специальных валиках - амбушюрах - достигается плотное прилегание к уху. При очень высоком уровне шума - выше 130 дБ (например, на стендах для испытаний авиационных реактивных двигателей) - недостаточны и наушники. В этом случае для защиты от шума приходится использовать специальные звукоизолирующие шлемы.

Идея поющей воды пришла в голову средневековых японцев сотни лет назад и достигла своего расцвета к середине XIX века. Подобная инсталляция называется «сюйкинкуцу», что в вольном переводе означает «водяная арфа»:

Как следует из видео, сюйкинкуцу представляет собой большой пустой сосуд, обычно установленный в земле на бетонном основании. В верхней части сосуда имеется отверстие, через которое внутрь капает вода. В бетонное основание вставлена дренажная трубка для отвода излишков воды, а само основание выполнено чуть вогнутым, чтобы на нём постоянно имелась неглубокая лужица. Звук капель отражается от стен сосуда, создавая естественную реверберацию (см. рисунок ниже).

Сюйкинкуцу в разрезе: полый сосуд на вогнутом сверху бетонном основании, дренажная трубка для отвода лишней воды, в основании и вокруг засыпка из камней (гравия).

Сюйкинкуцу традиционно являлись элементом японского садово-паркового дизайна, садов камней в духе дзэн. В старину их устраивали на берегах ручьёв возле буддийских храмов и домиков для чайной церемонии. Считалось, что омыв руки перед чайной церемонией и услышав при этом волшебные звуки из-под земли, человек настраивается на возвышенный лад. Японцы до сих пор уверены, что самые лучшие наиболее чисто звучащие сюйкинкуцу должны изготовляться из цельного камня, хотя в наши дни это требование не соблюдается.
К середине ХХ века искусство устройства сюйкинкуцу было почти утеряно – на всю Японию осталась пара-тройка сюйкинкуцу, но в последние годы интерес к ним переживает необычайный подъём. Сегодня их выполняют из более доступных материалов – чаще всего из керамических или металлических сосудов подходящего размера. Особенность звучания сюйкинкуцу в том, что кроме основного тона капли внутри ёмкости за счёт резонанса стенок возникают дополнительные частоты (гармоники), как выше, так и ниже основного тона.
В наших местных условиях создать сюйкинкуцу можно по-разному: не только из керамической или металлической ёмкости, но и, например, выложить непосредственно в земле из красного кирпича по методу изготовления эскимосских жилищ-иглу или отлить из бетона по т технологии создания колоколов – эти варианты по звучанию будут наиболее близкими к цельнокаменным сюйкинкуцу.
В бюджетной версии можно обойтись отрезком стальной трубы большого диаметра (630 мм, 720 мм), накрытым с торца сверху крышкой (толстым металлическим листом) с отверстием для стока воды. Использовать пластиковые ёмкости я бы не советовал: пластик поглощает некоторые звуковые частоты, а в сюйкинкуцу нужно добиться их максимального отражения от стенок.
Непременные условия:
1. вся система должна быть полностью скрыта под землёй;
2. основание и засыпку боковых пазух необходимо выполнять из камня (щебня, гравия, гальки) -- забивка пазух грунтом сведёт на нет резонансные свойства ёмкости.
Логично предположить, что решающее значение в инсталляции имеет высота сосуда – точнее, его глубина: чем сильнее в полёте разгоняется капля воды, тем звонче будет её удар об дно, тем интереснее и полнее будет звук. Но не стóит доходить до фанатизма и строить ракетную шахту -- вполне достаточно высоты ёмкости (отрезка металлической трубы) в 1,5-2,5 от размера её диаметра. Учтите, что чем шире объём ёмкости, тем ниже будет звучание основного тона сюйкинкуцу.
Физик Йошио Ватанабе (Yoshio Watanabe) лабораторно изучил особенности реверберации сюйкинкуцу, его исследование “Analytic Study of Acoustic Mechanism of «Suikinkutsu»” имеется в Интернете в свободном доступе. Для самых дотошных читателей – Ватанабе предлагает оптимальные на его взгляд размеры традиционных сюйкинкуцу: керамический сосуд со стенкой толщиной 2см колоколообразной или грушевидной формы, свободная высота падения капли от 30 до 40 см, максимальный внутренний диаметр около 35 см. Но учёный вполне допускает любые произвольные размеры и формы.
Можно поэкспериментировать и получить интересные эффекты, если сделать сюйкинкуцу как трубу в трубе: внутрь стальной трубы большего диаметра (например, 820мм) вставить трубу меньшего диаметра (630 мм) и немного меньшей высоты, а в стенках внутренней трубы дополнительно на разной высоте вырезать несколько отверстий диаметром примерно 10-15 см. Тогда пустой зазор между трубами будет создавать дополнительную реверберацию, а если вам повезёт, то и эхо.
Облегчённый вариант: в бетонное основание во время его заливки вертикально и чуть под углом вставить пару толстых металлических пластин шириной 10-15 сантиметров и высотой выше половины внутреннего объёма ёмкости – за счёт этого увеличится площадь внутренней поверхности сюйкинкуцу, возникнут дополнительные отражения звука, и соответственно немного возрастёт время реверберации.
Можно ещё радикальнее модернизировать сюйкинкуцу: если в нижней части ёмкости по оси падения воды подвесить колокольчики или тщательно подобранные металлические пластины, то от ударов по ним капель можно получить благозвучный саунд. Но учтите, что в этом случае искажается идея сюйкинкуцу, которая заключается в том, чтобы слушать именно естественную музыку воды.
Сейчас в Японии сюйкинкуцу устраивают не только в дзэнских парках и в частных владениях, но даже в городах, в офисах и в ресторанах. Для этого возле сюйкинкуцу устанавливают миниатюрный фонтан, иногда внутрь сосуда помещают один-два микрофона, затем их сигнал усиливают и подают на замаскированные неподалёку динамики. Результат звучит примерно так:

Хороший пример для подражания.

Энтузиасты сюйкинкуцу выпустили компакт-диск с записями различных сюйкинкуцу, созданных в разных концах Японии.
Идея сюйкинкуцу нашла своё развитие на другом берегу Тихого океана:

В основе этого американского «волнового органа» обычные пластиковые трубы большой длины. Установленные одним своим краем точно на уровне волн, трубы резонируют от движения воды и за счёт своего изгиба вдобавок работают как звуковой фильтр. В традициях сюйкинкуцу вся конструкция скрыта от глаз. Инсталляция уже включена в туристические справочники.
Следующее британское устройство тоже создано из пластиковых труб, но предназначено не для генерации звука, а для изменения уже имеющегося сигнала.
Устройство называется «Оргáн Корти» и представляет собой несколько рядов полых пластиковых труб, закреплённых вертикально между двумя пластинами. Ряды труб работают как естественный звуковой фильтр подобный тем, что установлены в синтезаторах и в гитарных «примочках»: какие-то частоты поглощаются пластиком, другие многократно отражаются и резонируют. В результате звук, поступающий из окружающего пространства, преобразуется случайным образом:

Интересно было бы поставить такое устройство напротив гитарного комбика или любой акустической системы и послушать, как при этом изменится звук. Воистину, «…всё вокруг есть музыка. Или может ею стать при помощи микрофонов» (американский композитор Джон Кейдж). …Думаю этим летом у себя за городом создать сюйкинкуцу. С лингамом.

В последние несколько лет множество людей, проживающих вблизи ветрогенераторов, утверждают, что вращающиеся лопасти вызывают у них различные заболевания. Люди жалуются на множество неприятных симптомов, начиная с головной боли и депрессии и заканчивая конъюнктивитом и носовыми кровотеченими. Действительно ли существует синдром ветрогенератора ? Или это просто еще одна мнимая болезнь, которая подогревается распространяющейся в интернете информацией?

Шум может вызвать раздражение и нарушение сна. Но сторонники синдрома ветрогенератора утверждают, что ветряные турбины несут в себе опасность для здоровья человека, связанную с низкочастотным шумом ниже порога восприятия человеческого слуха.

Синдром ветрогенератора

Синдром ветрогенератора — это клиническое наименование ряда симптомов, данное доктором, педиатром из Нью Йорка Ниной Пьерпонт (Nina Pierpont), которые наблюдаются у многих (но не всех) людей, проживающих вблизи промышленных ветровых турбин. В течение пяти лет Нина Пьерпонт обследовала людей, проживающих вблизи ветрогенераторов в США, Италии, Ирландии, Великобритании и Канаде. В 2009 году вышла ее книга «Wind Turbine Syndrome» (Синдром ветрогенератора).

Симптомы синдрома ветрогенератора, которые описывает Нина Пьерпонт:

  • нарушение сна;
  • головная боль;
  • шум в ушах;
  • давление в ушах;
  • головокружение;
  • тошнота;
  • визуальная размытость;
  • тахикардия (учащенное сердцебиение);
  • раздражительность;
  • проблемы с концентрацией и памятью;
  • панические приступы, связанные с ощущениями внутреннего пульсации или дрожанием, которые возникают во время бодрствования и во сне.

Она утверждает, что проблемы вызывает нарушение вестибулярной системы внутреннего уха низкочастотным шумом от турбин ветрогенераторов.

Чтобы понять, с чем связан синдром ветрогенератора, нужно сначала понять принцип работы человеческой вестибулярной системы, рецепторные клетки которой находится во внутреннем ухе. Внутреннее ухо состоит из преддверия, улитки и полукружных каналов. Овальный и круглый мешочек и полукружные каналы не относятся к органам слуха, они как раз и представляют собой вестибулярный аппарат, определяющий положение тела в пространстве, отвечающий за сохранение равновесия и регулирующий настроение и некоторые физиологические функции. Низкочастотный звук (инфразвук) мы не осознаем, но он влияет на вестибулярный аппарат. Низкочастотный шум от турбин стимулирует выработку ложных сигналов в системе внутреннего уха, которые и приводят к головокружению и тошноте, а также к проблемам с памятью, тревожности и панике.

Вестибулярный аппарат — это древняя система «управления и контроля», созданная природой, она появилась у животных еще миллионы лет назад, задолго до того, как появились первые люди. Почти идентичный аппарат есть у рыб и амфибий и множества других позвоночных. Не поэтому ли замечено, что вблизи ветряных турбин исчезают птицы, мыши, черви и другие животные. Похоже, они тоже страдают синдромом ветрогенератора.

Инфразвук, вследствие большой длины волны, свободно обходит препятствия и может распространяться на большие расстояния без значительных потерь энергии. Поэтому инфразвук можно рассматривать как фактор, загрязняющий окружающую среду. Т.е. если ветрогенераторы приводят к выработке инфразвука, то они все же не являются чистым источником энергии, поскольку загрязняют окружающую среду. А отфильтровать инфразвук намного сложнее, чем обычный звук. Устанавливаемые звуковые фильтры не позволяют его экранировать полностью.

Критика синдрома ветрогенератора

Надо отметить, что синдром ветрогенератора не признается официально. Критики Пьерпонт говорят, что написанная ею книга не рецензировалась и была издана самостоятельно. А ее выборка субъектов для исследований слишком мала и не имеет контрольной группы для сравнения. Саймон Чэпмэн, профессор в области здравоохранения, говорит, что термин «синдром ветрогенератора» появляется для распространения группами активистов, выступающих против ветропарков.

Некоторые недавние исследования объясняют синдром ветрогенератора силой внушения. Одно из исследований было опубликовано в журнале Health Psychology. В ходе проведения исследования 60 участников подвергались воздействию инфразвука и мнимого инфразвука (т.е. тишины) в течение 10 минут. До воздействия инфразвуком половине группы были продемонстрированы видеоролики, в которых описывались симптомы, появляющиеся у людей, проживающих рядом с ветрогенераторами. Люди, состоящие в этой группе, после «прослушивания» инфразвука имели большое количество жалоб на подобные симптомы вне зависимости от того, подвергались они воздействию настоящего или мнимого инфразвука.

Один из авторов исследования указывает, что «синдром ветрогенератора» является классическим случаем ноцебо-эффекта. Это злой близнец плацебо-эффекта, который вызывает отрицательную реакцию. Ноцебо эффект — это симптомы, которые возникают от негативной информации о продукте. Например, некоторые участники клинических испытаний, которых предупреждали о возможных пагубных побочных эффектах препарата, испытывали именно те побочные эффекты, даже если они на самом деле принимали пустышки.

Группа экспертов в 2009 году, спонсируемая Американской и Канадской ассоциацией ветроэнергетики, сделала вывод, что симптомы «синдрома ветрогенератора» наблюдается вообще у многих людей, подверженных стрессу, вне зависимости от того, воздействует ли на них инфразвук. Инфразвук, который производят ветрогенераторы, также производит транспорт, бытовая техника и человеческое сердце. Он не является чем-то особенным и не представляет собой фактор риска.

Однако, несмотря на критику синдрома, люди очень часто жалуются на головные боли, бессонницу, звон в ушах, которые они связывают с ветрогенераторами. Вероятно, Пьерпонт в чем-то права и люди действительно заболевают от инфразвука, не зря рядом с ветропарками исчезают животные. Может быть, некоторые люди являются сверхчувствительными к низкочастотным шумам или психологически предрасположены к реагированию на негативную информацию о ветряных турбинах. На самом деле, необходимо проведение дополнительных исследований, чтобы выявить все возможные факторы риска для здоровья человека и окружающей среды, связанные с ветряными установками.

(Просмотрели9 212 | Посмотрели сегодня 1)


Система хранения энергии рушит последние барьеры перед альтернативной энергетикой
Оконная ферма с использованием червей. «Вертикальный сад» в Первоуральске
Животный мир и человек. Где мы сейчас и куда двигаемся