Главная · Правильное питание · От чего зависят высота и интенсивность звука. Энергия звуковой волны. Интенсивность звука. Стоячие волны в органных трубах

От чего зависят высота и интенсивность звука. Энергия звуковой волны. Интенсивность звука. Стоячие волны в органных трубах

I = \frac{1}{T}\int\limits_t^{t+T}\frac{dP}{dS}dt,

где T - время усреднения, dP - поток звуковой энергии, переносимый через площадку dS .

Используется также физическая величина мгновенная интенсивность звука , представляющая собой мгновенное значение потока звуковой энергии через единичную площадку, расположенную перпендикулярно направлению распространения звука :

I(t) = \frac{dP(t)}{dS}.

Для плоской волны интенсивность звука может быть выражена через амплитуду звукового давления p 0 и колебательную скорость v :

I = {p_0v \over 2} = {v^2Z_S \over 2} = {p_0^2 \over 2Z_S},

См. также

Напишите отзыв о статье "Интенсивность звука"

Примечания

Литература

  • Интенсивность звука (сила звука) // Большая Советская энциклопедия (в 30 т.) / А. М. Прохоров (гл. ред.). - 3-е изд. - М .: Сов. энциклопедия, 1972. - Т. X. - С. 315–316. - 592 с.

Отрывок, характеризующий Интенсивность звука

Кутузов отступил к Вене, уничтожая за собой мосты на реках Инне (в Браунау) и Трауне (в Линце). 23 го октября.русские войска переходили реку Энс. Русские обозы, артиллерия и колонны войск в середине дня тянулись через город Энс, по сю и по ту сторону моста.
День был теплый, осенний и дождливый. Пространная перспектива, раскрывавшаяся с возвышения, где стояли русские батареи, защищавшие мост, то вдруг затягивалась кисейным занавесом косого дождя, то вдруг расширялась, и при свете солнца далеко и ясно становились видны предметы, точно покрытые лаком. Виднелся городок под ногами с своими белыми домами и красными крышами, собором и мостом, по обеим сторонам которого, толпясь, лилися массы русских войск. Виднелись на повороте Дуная суда, и остров, и замок с парком, окруженный водами впадения Энса в Дунай, виднелся левый скалистый и покрытый сосновым лесом берег Дуная с таинственною далью зеленых вершин и голубеющими ущельями. Виднелись башни монастыря, выдававшегося из за соснового, казавшегося нетронутым, дикого леса; далеко впереди на горе, по ту сторону Энса, виднелись разъезды неприятеля.
Между орудиями, на высоте, стояли спереди начальник ариергарда генерал с свитским офицером, рассматривая в трубу местность. Несколько позади сидел на хоботе орудия Несвицкий, посланный от главнокомандующего к ариергарду.
Казак, сопутствовавший Несвицкому, подал сумочку и фляжку, и Несвицкий угощал офицеров пирожками и настоящим доппелькюмелем. Офицеры радостно окружали его, кто на коленах, кто сидя по турецки на мокрой траве.
– Да, не дурак был этот австрийский князь, что тут замок выстроил. Славное место. Что же вы не едите, господа? – говорил Несвицкий.
– Покорно благодарю, князь, – отвечал один из офицеров, с удовольствием разговаривая с таким важным штабным чиновником. – Прекрасное место. Мы мимо самого парка проходили, двух оленей видели, и дом какой чудесный!
– Посмотрите, князь, – сказал другой, которому очень хотелось взять еще пирожок, но совестно было, и который поэтому притворялся, что он оглядывает местность, – посмотрите ка, уж забрались туда наши пехотные. Вон там, на лужку, за деревней, трое тащут что то. .Они проберут этот дворец, – сказал он с видимым одобрением.
– И то, и то, – сказал Несвицкий. – Нет, а чего бы я желал, – прибавил он, прожевывая пирожок в своем красивом влажном рте, – так это вон туда забраться.

Интенсивность звука (сила звука)

Интенсивностью звука называется физическая величина, равная средней по времени энергии, переносимой за единицу времени звуковой волной через единичную площадку, ориентированную перпендикулярно направлению распространения волны (плотность потока энергии). Для периодического звука усреднение проводится либо за промежуток времени, большой по сравнению с периодом, либо за целое число периодов.

Для плоской гармонической волны интенсивность звука равна:

где - амплитуда звукового давления; – амплитуда скорости колебаний; - плотность среды, в которой распространяется звук; – скорость звука в среде (фазовая или групповая, если дисперсия мала, то скорости практически совпадают).

В международной системе единиц СИ интенсивность звука измеряется в .

Уровень интенсивности

Уровень интенсивности – оценочная величина интенсивности, выраженная в децибелах (дБ). Число децибел N равно:

(2)

где - интенсивность данного звука, - пороговая интенсивность.

Пороговая интенсивность

Пороговая интенсивность – интенсивность, соответствующая порогу чувствительности уха человека. За пороговую интенсивность принята величина:

(3)

Другой количественной характеристикой звука является эффективное звуковое давление, т.к. человек физиологически воспринимает интенсивность звука как давление, которое оказывают звуковые волны на органы слуха. Количественной мерой в этом случае служит и уровень звукового давления . Следует отличать звуковое давление от давления звука. Давление звукового излучения (иначе – давление звука, радиационное давление) – постоянное давление, которое испытывает тело, находящееся в стационарном звуковом поле. Давление звукового излучения пропорционально плотности звуковой энергии. Оно мало по сравнению со звуковым давлением. Звуковое давление в несколько сот раз больше давления звука.

Эффективное звуковое давление – эффективное (или действующее) значение звукового давления (среднеквадратичное):

(4)

См. формулу (1).

Уровень звукового давления

Уровень звукового давления – оценочная величина давления, выражаемая в белах (Б) или децибелах (дБ):

(5)

где - условный порог слышимости; k – нормировочный коэффициент. Если k=1, то уровень звукового давления измеряется в белах (Б); если k=10, то уровень звукового давления измеряется в дБ.

Условный порог слышимости

Условный порог слышимости задается как числовое значение звукового давления при частотах 1,5 – 3 кГц, равное

Более подробно теорию можно прочесть в методических указаниях «Шумы и вибрации» , а также в прилагаемом в конце данной работы списке литературы .

Описание прибора

Универсальный прибор SLM 329 (Sound Level Meter 329) позволяет провести измерения уровня эффективного звукового давления в широком диапазоне. Пределы измерений и спецификация прибора приведены в таблице 1.Шаг измерений и приборная погрешность приведены в таблице 2.

Прибор нельзя эксплуатировать в условиях:

повышенной влажности;

повышенной температуры (более );

при прямых ярких лучах Солнца; при попадании яркого света или заметном нагревании жидкокристаллический дисплей может стать чёрным, а сам прибор не пригодным для измерений. Однако если экстремальные условия всё же не привели к порче прибора, то после остывания в течение 1-2 часов прибор снова будет готов к работе;

сильного запыления или рядом с открытым огнём;

во время грозы или в районе сильных электромагнитных полей.

Перед началом работы прибор должен достичь комнатной температуры, поэтому, принеся его с мороза, не начинайте измерения сразу, подождите, пока прибор нагреется.

Питание осуществляется от батарейки 9 вольт. Когда ресурс батарейки заканчивается, в левой части дисплея появляется соответствующий значок. Необходимо сменить батарею. Смена батарейки производится только лаборантом или преподавателем.

Никогда не включайте прибор, когда открыт отсек батарейки.

Таблица 1

Технические характеристики и пределы измерений SLM 329 (спецификация прибора)

Параметр Значение
Дисплей Жидкокристаллический четырёхразрядный
Максимальная скорость измерений 2 измерения в секунду
Диапазон От 40 дБ до 130 дБ
Частоты измеряемых сигналов От 125 Гц до 8 кГц
Время проведения одного измерения В режиме FAST 125 мс, в режиме SLOW 1 с
Рабочая температура От до
Относительная влажность От 10% до 75%, конденсат не допустим
Оптимальная температура для проведения измерений
Индикация необходимости замены батарейки Если напряжение батарейки падает до уровня ниже 7,5 В, то на дисплее появляется значок
Рекомендуемые батарейки NEDA 1604 9V или 6F22 9V («Крона»)
Время непрерывной работы без замены питания В непрерывном режиме измерений время работы не более 10 часов
Вес 170 г с батарейкой
Размеры: длина ширина высота 231 53 33 мм

Таблица 2

Шаг и точность измерений

Элементы управления

1 – ёмкостной микрофон,

2, 4 – цифровой жидкокристаллический дисплей,

3 – клавиша включения (включить/выключить) (ON/OFF),

5 – клавиша для установки фильтров: «А» для обычных звуковых сигналов, «С» - для сигналов низкой частоты или содержащих низкочастотные компоненты,

6- клавиша «Быстро/Медленно» (FAST/SLOW) для установки скорости измерений: «Быстро» (FAST) для нормального режима, «Медленно» (SLOW) для измерения сигналов с увеличивающейся или уменьшающейся интенсивностью,

7 – клавиша «Уровень» (LEVEL) для переключения диапазонов измерений (40 дБ, 70 дБ) (60 дБ, 90 дБ) (80 дБ, 110 дБ) (100 дБ, 130 дБ),

8 – тумблер «CAL» для калибровки.

Порядок включения прибора и установки необходимых режимов измерений

1. Для включения прибора нажмите клавишу - самая верхняя на передней панели. Этой же клавишей выключите прибор по окончании измерений.

2. Включите режим максимального сигнала клавишей MAX – вторая сверху на передней панели. Индикация включённого режима находится на дисплее справа вверху. Если индикация по каким-то причинам пропала, то нажмите клавишу ещё раз. Она появится, а режим включится.


3. Далее надо установить фильтр. Если в изучаемом сигнале не предполагается низкочастотных компонент, то нажатием клавиши A/C надо установить фильтр А. Если предполагается проводить измерения сигналов низкой частоты или содержащих низкочастотную компоненту, то той же клавишей надо установить фильтр С. Индикация установленного фильтра расположена справа на дисплее.

4. Установите скорость проведения измерения клавишей FAST/SLOW. Как правило, для проведения измерений удобен режим FAST. Но если предполагается, что интенсивность сигнала может меняться в процессе измерения, то необходимо установить режим SLOW. Индикация на дисплее справа вверху.

5. Необходимо выбрать диапазон измерений. Выбор производится клавишей LEVEL. Индикация внизу дисплея. До получения результатов измерений и уточнения диапазона можно ориентироваться на следующие уровни звука:

(40 дБ, 70 дБ) – привычный "домашний" уровень: разговор, работающий телевизор, негромкие бытовые приборы;

(60 дБ, 90 дБ) – технические звуки, например, работающая дрель, пылесос, проезжающие близко автомобили и проч.;

(80 дБ, 110 дБ) – это уже достаточно громкие звуки, например, спортивный мотоцикл, автомобиль без глушителя, автомобиль, который ездит в режиме «Формулы-1» и т.п.;

(100 дБ, 130 дБ) – уровень звуков на грани болевых ощущений, при которых не слышно собеседника – взлетающий самолёт, ревущий турбодвигатель, канонада, выстрелы из ружья, пушечный фейерверк прямо «над ухом». Звуки такого уровня могут оказаться опасными для слуховых органов. Поэтому, если Вы намереваетесь проводить измерения в данном диапазоне, для безопасности используйте специальные наушники.

Для обеспечения правильности работы прибора его необходимо калибровать раз в год.

Процесс калибровки

В качестве источника звукового сигнала используется источник с уровнем эффективного звукового давления 94 дБ, частотой 1 кГц и синусоидальной формой импульсов. Для проведения измерений устанавливаются следующие режимы:

фильтр А,

время измерений FAST,

режим измерений без индикации MAX,

диапазон (80 дБ, 110 дБ).

Справа сбоку расположено маленькое гнездо для ключа, которым можно провести калибровку, поворачивая который можно добиться показаний на дисплее до значения 94 дБ.

Калибровку прибора проводит только лаборант.

Порядок выполнения работы

Февраль 18, 2016

Мир домашних развлечений довольно разнообразен и может включать в себя: просмотр кино на хорошей домашней кинотеатральной системе; увлекательный и захватывающий игровой процесс или прослушивание музыкальных композиций. Как правило, каждый находит что-то своё в этой области, или сочетает всё сразу. Но какими бы не были цели человека по организации своего досуга и в какую бы крайность не ударялись - все эти звенья прочно связаны одним простым и понятным словом - "звук". Действительно, во всех перечисленных случаях нас будет вести за ручку звуковое сопровождение. Но вопрос этот не так прост и тривиален, особенно в тех случаях, когда появляется желание добиться качественного звучания в помещении или любых других условиях. Для этого не всегда обязательно покупать дорогостоящие hi-fi или hi-end компоненты (хотя будет весьма кстати), а бывает достаточным хорошее знание физической теории, которая способна устранить большинство проблем, возникающих у всех, кто задался целью получить озвучку высокого качества.

Далее будет рассмотрена теория звука и акустики с точки зрения физики. В данном случае я постараюсь сделать это максимально доступно для понимания любого человека, который, возможно, далёк от знания физических законов или формул, но тем не менее страстно грезит воплощением мечты создания совершенной акустической системы. Я не берусь утверждать, что для достижения хороших результатов в этой области в домашних условиях (или в автомобиле, например) необходимо знать эти теории досканально, однако понимание основ позволит избежать множество глупых и абсурдных ошибок, а так же позволит достичь максимального эффекта звучания от системы любого уровня.

Общая теория звука и музыкальная терминология

Что же такое звук ? Это ощущение, которое воспринимает слуховой орган "ухо" (само по себе явление существует и без участия «уха» в процессе, но так проще для понимания), возникающее при возбуждении барабанной перепонки звуковой волной. Ухо в данном случае выступает в роли "приёмника" звуковых волн различной частоты.
Звуковая волна же представляет собой по сути последовательный ряд уплотнений и разряжений среды (чаще всего воздушной среды в обычных условиях) различной частоты. Природа звуковых волн колебательная, вызываемая и производимая вибрацией любых тел. Возникновение и распространение классической звуковой волны возможно в трёх упругих средах: газообразных, жидких и твёрдых. При возникновении звуковой волны в одном из этих типов пространства неизбежно возникают некоторые изменения в самой среде, например, изменение плотности или давления воздуха, перемещение частиц воздушных масс и т.д.

Поскольку звуковая волна имеет колебательную природу, то у неё имеется такая характеристика, как частота. Частота измеряется в герцах (в честь немецкого физика Генриха Рудольфа Герца), и обозначает количество колебаний за период времени, равный одной секунде. Т.е. например, частота 20 Гц обозначает цикл в 20 колебаний за одну секунду. От частоты звука зависит и субъективное понятие его высоты. Чем больше звуковых колебаний совершается за секунду, тем «выше» кажется звучание. У звуковой волны так же имеется ещё одна важнейшая характеристика, имеющая название - длина волны. Длиной волны принято считать расстояние, которое проходит звук определённой частоты за период, равный одной секунде. Для примера, длина волны самого низкого звука в слышимом диапазоне для человека частотой 20 Гц составляет 16,5 метров, а длина волны самого высокого звука 20000 Гц составляет 1,7 сантиметра.

Человеческое ухо устроено таким образом, что способно воспринимать волны только в ограниченном диапазоне, примерно 20 Гц - 20000 Гц (зависит от особенностей конкретного человека, кто-то способен слышать чуть больше, кто-то меньше). Таким образом, это не означает, что звуков ниже или выше этих частот не существует, просто человеческим ухом они не воспринимаются, выходя за границу слышимого диапазона. Звук выше слышимого диапазона называется ультразвуком , звук ниже слышимого диапазона называется инфразвуком . Некоторые животные способны воспринимать ультра и инфра звуки, некоторые даже используют этот диапазон для ориентирования в пространстве (летучие мыши, дельфины). В случае, если звук проходит через среду, которая напрямую не соприкасается с органом слуха человека, то такой звук может быть не слышим или сильно ослабленным в последствии.

В музыкальной терминологии звука существуют такие важные обозначения, как октава, тон и обертон звука. Октава означает интервал, в котором соотношение частот между звуками составляет 1 к 2. Октава обычно очень хорошо различима на слух, в то время как звуки в пределах этого интервала могут быть очень похожими друг на друга. Октавой также можно назвать звук, который делает вдвое больше колебаний, чем другой звук, в одинаковый временной период. Например, частота 800 Гц, есть ни что иное, как более высокая октава 400 Гц, а частота 400 Гц в свою очередь является следующей октавой звука частотой 200 Гц. Октава в свою очередь состоит из тонов и обертонов. Переменные колебания в гармонической звуковой волне одной частоты воспринимаются человеческим ухом как музыкальный тон . Колебания высокой частоты можно интерпретировать как звуки высокого тона, колебания низкой частоты – как звуки низкого тона. Человеческое ухо способно чётко отличать звуки с разницей в один тон (в диапазоне до 4000 Гц). Несмотря на это, в музыке используется крайне малое число тонов. Объясняется это из соображений принципа гармонической созвучности, всё основано на принципе октав.

Рассмотрим теорию музыкальных тонов на примере струны, натянутой определённым образом. Такая струна, в зависимости от силы натяжения, будет иметь "настройку" на какую-то одну конкретную частоту. При воздействии на эту струну чем-либо с одной определённой силой, что вызовет её колебания, стабильно будет наблюдаться какой-то один определенный тон звука, мы услышим искомую частоту настройки. Этот звук называется основным тоном. За основной тон в музыкальной сфере официально принята частота ноты "ля" первой октавы, равная 440 Гц. Однако, большинство музыкальных инструментов никогда не воспроизводят одни чистые основные тона, их неизбежно сопровождают призвуки, именуемые обертонами . Тут уместно вспомнить важное определение музыкальной акустики, понятие тембра звука. Тембр - это особенность музыкальных звуков, которые придают музыкальным инструментам и голосам их неповторимую узнаваемую специфику звучания, даже если сравнивать звуки одинаковой высоты и громкости. Тембр каждого музыкального инструмента зависит от распределения звуковой энергии по обертонам в момент появления звука.

Обертоны формируют специфическую окраску основного тона, по которой мы легко можем определить и узнать конкретный инструмент, а так же чётко отличить его звучание от другого инструмента. Обертоны бывают двух типов: гармонические и негармонические. Гармонические обертоны по определению кратны частоте основного тона. Напротив, если обертоны не кратны и заметно отклоняются от величин, то они называются негармоническими . В музыке практически исключается оперирование некратными обертонами, поэтому термин сводится к понятию "обертон", подразумевая под собой гармонический. У некоторых инструментов, например фортепиано, основной тон даже не успевает сформироваться, за короткий промежуток происходит нарастание звуковой энергии обертонов, а затем так же стремительно происходит спад. Многие инструменты создают так называемый эффект "переходного тона", когда энергия определённых обертонов максимальна в определённый момент времени, обычно в самом начале, но потом резко меняется и переходит к другим обертонам. Частотный диапазон каждого инструмента можно рассмотреть отдельно и он обычно ограничивается частотами основных тонов, который способен воспроизводить данный конкретный инструмент.

В теории звука также присутствует такое понятие как ШУМ. Шум - это любой звук, которой создаётся совокупностью несогласованных между собой источников. Всем хорошо знаком шум листвы деревьев, колышимой ветром и т.д.

От чего зависит громкость звука? Очевидно, что подобное явление напрямую зависит от количества энергии, переносимой звуковой волной. Для определения количественных показателей громкости, существует понятие - интенсивность звука. Интенсивность звука определяется как поток энергии, прошедший через какую-то площадь пространства (например, см2) за единицу времени (например, за секунду). При обычном разговоре интенсивность составляет примерно 9 или 10 Вт/см2. Человеческое ухо способно воспринимать звуки достаточно широкого диапазона чувствительности, при этом восприимчивость частот неоднородна в пределах звукового спектра. Так наилучшим образом воспринимается диапазон частот 1000 Гц - 4000 Гц, который наиболее широко охватывает человеческую речь.

Поскольку звуки столь сильно различаются по интенсивности, удобнее рассматривать её как логарифмическую величину и измерять в децибелах (в честь шотландского учёного Александра Грэма Белла). Нижний порог слуховой чувствительности человеческого уха составляет 0 Дб, верхний 120 Дб, он же ещё называется "болевой порог". Верхняя граница чувствительности так же воспринимается человеческим ухом не одинаково, а зависит от конкретной частоты. Звуки низких частот должны обладать гораздо бОльшей интенсивностью, чем высокие, чтобы вызвать болевой порог. Например, болевой порог на низкой частоте 31,5 Гц наступает при уровне силы звука 135 дБ, когда на частоте 2000 Гц ощущение боли появится при уже при 112 дБ. Имеется также понятие звукового давления, которое фактически расширяет привычное объяснение распространение звуковой волны в воздухе. Звуковое давление - это переменное избыточное давление, возникающее в упругой среде в результате прохождения через неё звуковой волны.

Волновая природа звука

Чтобы лучше понять систему возникновения звуковой волны, представим классический динамик, находящийся в трубе, наполненной воздухом. Если динамик совершит резкое движение вперёд, то воздух, находящийся в непосредственной близости диффузора на мгновение сжимается. После этого воздух расширится, толкая тем самым сжатую воздушную область вдоль по трубе.
Вот это волновое движение и будет впоследствии звуком, когда достигнет слухового органа и "возбудит" барабанную перепонку. При возникновении звуковой волны в газе создаётся избыточное давление, избыточная плотность и происходит перемещение частиц с постоянной скоростью. Про звуковые волны важно помнить то обстоятельство, что вещество не перемещается вместе со звуковой волной, а возникает лишь временное возмущение воздушных масс.

Если представить поршень, подвешенный в свободном пространстве на пружине и совершающий повторяющиеся движения "вперёд-назад", то такие колебания будут называться гармоническими или синусоидальными (если представить волну в виде графика, то получим в этом случае чистейшую синусойду с повторяющимися спадами и подъёмами). Если представить динамик в трубе (как и в примере, описанном выше), совершающий гармонические колебания, то в момент движения динамика "вперёд" получается известный уже эффект сжатия воздуха, а при движении динамика "назад" обратный эффект разряжения. В этом случае по трубе будет распространяться волна чередующихся сжатий и разрежений. Расстояние вдоль трубы между соседними максимумами или минимумами (фазами) будет называться длиной волны . Если частицы колеблются параллельно направлению распространения волны, то волна называется продольной . Если же они колеблются перпендикулярно направлению распространения, то волна называется поперечной . Обычно звуковые волны в газах и жидкостях – продольные, в твердых же телах возможно возникновение волн обоих типов. Поперечные волны в твердых телах возникают благодаря сопротивлению к изменению формы. Основная разница между этими двумя типами волн заключается в том, что поперечная волна обладает свойством поляризации (колебания происходят в определенной плоскости), а продольная – нет.

Скорость звука

Скорость звука напрямую зависит от характеристик среды, в которой он распространяется. Она определяется (зависима) двумя свойствами среды: упругостью и плотностью материала. Скорость звука в твёрдых телах соответственно напрямую зависит от типа материала и его свойств. Скорость в газовых средах зависит только от одного типа деформации среды: сжатие-разрежение. Изменение давления в звуковой волне происходит без теплообмена с окружающими частицами и носит название адиабатическое.
Скорость звука в газе зависит в основном от температуры - возрастает при повышении температуры и падает при понижении. Так же скорость звука в газообразной среде зависит от размеров и массы самих молекул газа, - чем масса и размер частиц меньше, тем "проводимость" волны больше и больше соответственно скорость.

В жидкой и твёрдой средах принцип распространения и скорость звука аналогичны тому, как волна распространяется в воздухе: путём сжатия-разряжения. Но в данных средах, помимо той же зависимости от температуры, достаточно важное значение имеет плотность среды и её состав/структура. Чем меньше плотность вещества, тем скорость звука выше и наоборот. Зависимость же от состава среды сложнее и определяется в каждом конкретном случае с учётом расположения и взаимодействия молекул/атомов.

Скорость звука в воздухе при t, °C 20: 343 м/с
Скорость звука в дистиллированной воде при t, °C 20: 1481 м/с
Скорость звука в стали при t, °C 20: 5000 м/с

Стоячие волны и интерференция

Когда динамик создаёт звуковые волны в ограниченном пространстве неизбежно возникает эффект отражения волн от границ. В результате этого чаще всего возникает эффект интерференции - когда две или более звуковых волн накладываются друг на друга. Особыми случаями явления интерференции являются образование: 1) Биений волн или 2) Стоячих волн. Биения волн - это случай, когда происходит сложение волн с близкими частотами и амплитудой. Картина возникновения биений: когда две похожие по частоте волны накладываются друг на друга. В какой-то момент времени при таком наложении, амплитудные пики могут совпадать "по фазе", а также могут совпадать и спады по "противофазе". Именно так и характеризуются биения звука. Важно помнить, что в отличие от стоячих волн, фазовые совпадения пиков происходят не постоянно, а через какие-то временные промежутки. На слух такая картина биений различается достаточно чётко, и слышится как периодическое нарастание и убывание громкости соответственно. Механизм возникновения этого эффекта предельно прост: в момент совпадения пиков громкость нарастает, в момент совпадения спадов громкость уменьшается.

Стоячие волны возникают в случае наложения двух волн одинаковой амлитуды, фазы и частоты, когда при "встрече" таких волн одна движется в прямом, а другая – в обратном направлении. В участке пространства (где образовалась стоячая волна) возникает картина наложения двух частотных амплитуд, с чередованием максимумов (т.н. пучностей) и минимумов (т.н. узлов). При возникновении этого явления крайне важное значение имеет частота, фаза и коэффициент затухания волны в месте отражения. В отличие от бегущих волн, в стоячей волне отсутствует перенос энергии вследствие того, что образующие эту волну прямая и обратная волны переносят энергию в равных количествах и в прямом и в противоположном направлениях. Для наглядного понимания возникновения стоячей волны, представим пример из домашней акустики. Допустим, у нас есть напольные акустические системы в некотором ограниченном пространстве (комнате). Заставив их играть какую-нибудь композицию с большим количеством баса, попробуем изменить местоположение слушателя в помещении. Таким образом слушатель, попав в зону минимума (вычитания) стоячей волны ощутит эффект того, что баса стало очень мало, а если слушатель попадает в зону максимума (сложения) частот, то получается обратный эффект существенного увеличения басовой области. При этом эффект наблюдается во всех октавах базовой частоты. Например, если базовая частота составляет 440 Гц, то явление "сложения" или "вычитания" будет наблюдаться также на частотах 880 Гц, 1760 Гц, 3520 Гц и т.д.

Явление резонанса

У большинства твёрдых тел имеется собственная частота резонанса. Понять этот эффект достаточно просто на примере обычной трубы, открытой только с одного конца. Представим ситуацию, что с другого конца трубы подсоединяется динамик, который может играть какую-то одну постоянную частоту, её также впоследствии можно менять. Так вот, у трубы имеется собственная частота резонанса, говоря простым языком - это частота, на которой труба "резонирует" или издаёт свой собственный звук. Если частота динамика (в результате регулировки) совпадёт с частотой резонанса трубы, то возникнет эффект увеличения громкости в несколько раз. Это происходит потому, что громкоговоритель возбуждает колебания воздушного столба в трубе со значительной амплитудой до тех пор, пока не найдётся та самая «резонансная частота» и произойдёт эффект сложения. Возникшее явление можно описать следующим образом: труба в этом примере "помогает" динамику, резонируя на конкретной частоте, их усилия складываются и "выливаются" в слышимый громкий эффект. На примере музыкальных инструментов легко прослеживается это явление, поскольку в конструкции большинства присутствуют элементы, называемые резонаторами. Нетрудно догадаться, что служит цели усилить определённую частоту или музыкальный тон. Для примера: корпус гитары с резонатором ввиде отверстия, сопрягаемого с объёмом; Конструкция трубки у флейты (и все трубы вообще); Циллиндрическая форма корпуса барабана, который сам по себе является резонатором определённой частоты.

Частотный спектр звука и АЧХ

Поскольку на практике практически не встречаются волны одной частоты, то возникает необходимость разложения всего звукового спектра слышимого диапазона на обертоны или гармоники. Для этих целей существуют графики, которые отображают зависимость относительной энергии звуковых колебаний от частоты. Такой график называется графиком частотного спектра звука. Частотный спектр звука бывает двух типов: дискретный и непрерывный. Дискретный график спектра отображает частоты по отдельности, разделённые пустыми промежутками. В непрерывном спектре присутствуют сразу все звуковые частоты.
В случае с музыкой или акустикой чаще всего используется обычный график Амплитудно-Частотой Характеристики (сокращённо "АЧХ"). На таком графике представлена зависимость амплитуды звуковых колебаний от частоты на протяжении всего спектра частот (20 Гц - 20 кГц). Глядя на такой график легко понять, например, сильные или слабые стороны конкретного динамика или акустической системы в целом, наиболее сильные участки энергетической отдачи, частотные спады и подъёмы, затухания, а так же проследить крутизну спада.

Распространение звуковых волн, фаза и противофаза

Процесс распространения звуковых волн происходит во всех направлениях от источника. Простейший пример для понимания этого явления: камешек, брошенный в воду.
От места, куда упал камень, начинают расходиться волны по поверхности воды во всех направлениях. Однако, представим ситуацию с использованием динамика в неком объёме, допустим закрытом ящике, который подключён к усилителю и воспроизводит какой-то музыкальный сигнал. Несложно заметить (особенно при условии, если подать мощный НЧ сигнал, например бас-бочку), что динамик совершает стремительное движение "вперёд", а потом такое же стремительное движение "назад". Остаётся понять, что когда динамик совершает движение вперёд, он излучает звуковую волну, которую мы слышим впоследствии. А вот что происходит, когда динамик совершает движение назад? А происходит парадоксально тоже самое, динамик совершает тот же звук, только распространяется он в нашем примере всецело в пределах объёма ящика, не выходя за его пределы (ящик закрыт). В целом, на приведённом выше примере можно наблюдать достаточно много интересных физических явлений, наиболее значимым из которых является понятие фазы.

Звуковая волна, которую динамик, находясь в объёме, излучает в направлении слушателя - находится "в фазе". Обратная же волна, которая уходит в объём ящика, будет соответственно противофазной. Остаётся только понять, что подразумевают эти понятия? Фаза сигнала – это уровень звукового давления в текущий момент времени в какой-то точке пространства. Фазу проще всего понять на примере воспроизведения музыкального материала обычной напольной стерео-парой домашних акустических систем. Представим, что две такие напольные колонки установлены в неком помещении и играют. Обе акустические системы в этом случае воспроизводят синхронный сигнал переменного звукового давления, притом звуковое давление одной колонки складывается со звуковым давлением другой колонки. Происходит подобный эффект за счёт синхронности воспроизведения сигнала левой и правой АС соответственно, другими словами, пики и спады волн, излучаемых левыми и правыми динамиками совпадают.

А теперь представим, что давления звука по-прежнему меняются одинаковым образом (не претерпели изменений), но только теперь противоположно друг другу. Подобное может произойти, если подключить одну акустическую систему из двух в обратной полярности ("+" кабель от усилителя к "-" клемме акустической системе, и "-" кабель от усилителя к "+" клемме акустической системы). В этом случае противоположный по направлению сигнал вызовет разницу давлений, которую можно представить в виде чисел следующим образом: левая акустическая система будет создавать давление "1 Па", а правая акустическая система будет создавать давление "минус 1 Па". В результате, суммарная громкость звука в точке размещения слушателя будет равна нулю. Это явление называется противофазой. Если рассматривать пример более детально для понимания, то получается, что два динамика, играющие "в фазе" - создают одинаковые области уплотнения и разряжения воздуха, чем фактически помогают друг другу. В случае же с идеализированной противофазой, область уплотнения воздушного пространства, созданная одним динамиком, будет сопровождаться областью разряжения воздушного пространства, созданной вторым динамиком. Выглядит это примерно, как явление взаимного синхронного гашения волн. Правда, на практике падения громкости до нуля не происходит, и мы услышим сильно искажённый и ослабленный звук.

Самым доступным образом можно описать это явление так: два сигнала с одинаковыми колебаниями (частотой), но сдвинутые по времени. Ввиду этого, удобнее представить эти явления смещения на примере обычных круглых стрелочных часов. Представим, что на стене висит несколько одинаковых круглых часов. Когда секундные стрелки этих часов бегут синхронно, на одних часах 30 секунд и на других 30, то это пример сигнала, который находится в фазе. Если же секундные стрелки бегут со смещением, но скорость по-прежнему одинакова, например, на одних часах 30 секунд, а на других 24 секунды, то это и есть классический пример смещения (сдвига) по фазе. Таким же образом фаза измеряется в градусах, в пределах виртуальной окружности. В этом случае, при смещении сигналов относительно друг друга на 180 градусов (половина периода), и получается классическая противофаза. Нередко на практике возникают незначительные смещения по фазе, которые так же можно определить в градусах и успешно устранить.

Волны бывают плоские и сферические. Плоский волновой фронт распространяется только в одном направлении и редко встречается на практике. Сферический волновой фронт представляет собой волны простого типа, которые исходят из одной точки и распространяется во всех направлениях. Звуковые волны обладают свойством дифракции , т.е. способностью огибать препятствия и объекты. Степень огибания зависит от отношения длины звуковой волны к размерам препятствия или отверстия. Дифракция возникает и в случае, когда на пути звука оказывается какое-либо препятствие. В этом случае возможны два варианта развития событий: 1) Если размеры препятствия намного больше длины волны, то звук отражается или поглощается (в зависимости от степени поглощения материала, толщины препятствия и т.д.), а позади препятствия формируется зона "акустической тени". 2) Если же размеры препятствия сравнимы с длиной волны или даже меньше её, тогда звук дифрагирует в какой-то мере во всех направлениях. Если звуковая волна при движении в одной среде попадает на границу раздела с другой средой (например воздушная среда с твёрдой средой), то может возникнуть три варианта развития событий: 1) волна отразится от поверхности раздела 2) волна может пройти в другую среду без изменения направления 3) волна может пройти в другую среду с изменением направления на границе, это называется "преломление волны".

Отношением избыточного давления звуковой волны к колебательной объёмной скорости называется волновое сопротивление. Говоря простыми словами, волновым сопротивлением среды можно назвать способность поглощать звуковые волны или "сопротивляться" им. Коэффициенты отражения и прохождения напрямую зависят от соотношения волновых сопротивлений двух сред. Волновое сопротивление в газовой среде гораздо ниже, чем в воде или твёрдых телах. Поэтому если звуковая волна в воздухе падает на твердый объект или на поверхность глубокой воды, то звук либо отражается от поверхности, либо поглощается в значительной мере. Зависит это от толщины поверхности (воды или твёрдого тела), на которую падает искомая звуковая волна. При низкой толщине твёрдой или жидкой среды, звуковые волны практически полностью "проходят", и наоборот, при большой толщине среды волны чаще отражается. В случае отражения звуковых волн, происходит этот процесс по хорошо известному физическому закону: "Угол падения равен углу отражения". В этом случае, когда волна из среды с меньшей плотностью попадает на границу со средой большей плотности - происходит явление рефракции . Оно заключается в изгибе (преломлении) звуковой волны после "встречи" с препятствием, и обязательно сопровождается изменением скорости. Рефракция зависит также от температуры среды, в которой происходит отражение.

В процессе распространения звуковых волн в пространстве неизбежно происходит снижение их интенсивности, можно сказать затухание волн и ослабление звука. На практике столкнуться с подобным эффектом достаточно просто: например, если два человека встанут в поле на некотором близком расстоянии (метр и ближе) и начнут что-то говорить друг другу. Если впоследствии увеличивать расстояние между людьми (если они начнут отдаляться друг от друга), тот же самый уровень разговорной громкости будет становиться всё менее и менее слышимым. Подобный пример наглядно демонстрирует явление снижения интенсивности звуковых волн. Почему это происходит? Причиной тому различные процессы теплообмена, молекулярного взаимодействия и внутреннего трения звуковых волн. Наиболее часто на практике происходит превращение звуковой энергии в тепловую. Подобные процессы неизбежно возникают в любой из 3-ёх сред распространения звука и их можно охарактеризовать как поглощение звуковых волн .

Интенсивность и степень поглощения звуковых волн зависит от многих факторов, таких как: давление и температура среды. Также поглощение зависит от конкретной частоты звука. При распространении звуковой волны в жидкостях или газах возникает эффект трения между разными частицами, которое называется вязкостью. В результате этого трения на молекулярном уровне и происходит процесс превращения волны из звуковой в тепловую. Другими словами, чем выше теплопроводность среды, тем меньше степень поглощения волн. Поглощение звука в газовых средах зависит ещё и от давления (атмосферное давление меняется с повышением высоты относительно уровня моря). Что касательно зависимости степени поглощения от частоты звука, то принимая во внимание вышеназванные зависимости вязкости и теплопроводности, поглощение звука тем выше, чем выше его частота. Для примера, при нормальной температуре и давлении, в воздухе поглощение волны частотой 5000 Гц составляет 3 Дб/км, а поглощение волны частотой 50000 Гц составит уже 300 Дб/м.

В твёрдых средах сохраняются все вышеназванные зависимости (теплопроводность и вязкость), однако к этому добавляется ещё несколько условий. Они связаны с молекулярной структурой твёрдых материалов, которая может быть разной, со своими неоднородностями. В зависимости от этого внутреннего твёрдого молекулярного строения, поглощение звуковых волн в данном случае может быть различным, и зависит от типа конкретного материала. При прохождении звука через твёрдое тело, волна претерпевает ряд преобразований и искажений, что чаще всего приводит к рассеиванию и поглощению звуковой энергии. На молекулярном уровне может возникнуть эффект дислокаций, когда звуковая волна вызывает смещение атомных плоскостей, которые затем возвращаются в исходное положение. Либо же, движение дислокаций приводит к столкновению с перпендикулярными им дислокациями или дефектами кристаллического строения, что вызывает их торможение и как следствие некоторое поглощение звуковой волны. Однако, звуковая волна может и резонировать с данными дефектами, что приведет к искажению исходной волны. Энергия звуковой волны в момент взаимодействия с элементами молекулярной структуры материала рассеивается в результате процессов внутреннего трения.

В я постараюсь разобрать особенности слухового восприятия человека и некоторые тонкости и особенности распространения звука.

Для периодич. звука усреднение производится либо за промежуток времени, большой по сравнению с периодом, либо за целое число периодов. Для плоской синусоидальной бегущей волны И. з. I равна:

В сферической бегущей волне И. з. обратно пропорциональна квадрату расстояния от источника. В стоячей волне I=0, т. е. потока звук. энергии в среднем нет.

И. з. измеряется в СИ в Вт/м2 (в системе ед. СГС - в эрг/(с см)2) И. з. оценивается также уровнем интенсивности по шкале ; число децибел N=10lg(I/I0), где I - интенсивность данного звука, I0=10-12 Вт/м2.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ИНТЕНСИВНОСТЬ ЗВУКА

(сила звука) - средняя по времени энергия, переносимая звуковой волной через единичную площадку, перпендикулярную к направлению распространения волны, в единицу времени. Для периодич. звука усреднение производится либо за промежуток времени, больший по сравнению с периодом, либо за целое число периодов. I=pv/2=p 2 /2rc = v 2 rc/2, где р - амплитуда звукового давления, v - амплитуда колебат. скорости частиц, r - плотность среды, с - звука в ней. В сферич. бегущей волне И. з. обратно пропорц. квадратурасстояния от источника. В стоячей волне I=0, т. е. потока звуковой энергии в среднем нет. И. з. в гармонич. плоской бегущей волне равна плотности энергии звуковой волны, умноженной на скорость звука. мощность излучателя, т. е. излучаемую , отнесённую к единице площади излучающей поверхности. В. А. Красилъников.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "ИНТЕНСИВНОСТЬ ЗВУКА" в других словарях:

    - (абсолютная) величина, равная отношению потока звуковой энергии dP через поверхность, перпендикулярную направлению распространения звука, к площади dS этой поверхности: Единица измерения ватт на квадратный метр (Вт/м2). Для плоской волны… … Википедия

    - (от лат. intensio напряжение усиление), средняя по времени энергия, которую звуковая волна переносит в единицу времени через единицу площади поверхности, расположенной перпендикулярно к направлению распространения волны. Интенсивность звука… … Большой Энциклопедический словарь

    - (от лат. intensio напряжение, усиление), средняя по времени энергия, которую звуковая волна переносит в единицу времени через единицу площади поверхности, расположенной перпендикулярно к направлению распространения волны. Интенсивность звука… … Энциклопедический словарь

    интенсивность звука - Количество звуковой энергии, переносимое звуковой волной в единицу времени через единичную площадку, перпендикулярную к направлению распространения звука [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] Тематики… … Справочник технического переводчика

    - (от латинского intetisio напряжение, усиление), сила звука, поток энергии через единичную площадку, перпендикулярную направлению распространения звуковой волны. Авиация: Энциклопедия. М.: Большая Российская Энциклопедия. Главный редактор Г.П.… … Энциклопедия техники

    интенсивность звука - 3.3 интенсивность звука, Вт/м2 (sound intensity): Усредненное по времени значение мгновенной интенсивности в стационарном во времени звуковом поле. Примечания 1 Интенсивность звука вычисляют по формуле (2) где T интервал интегрирования, с; 2… … Словарь-справочник терминов нормативно-технической документации

    интенсивность звука - сила звука отношение падающей на поверхность звуковой мощности к площади этой поверхности. Определяется как амплитудами всех частотных составляющих, так и числом источников, звучащих одновременно. Интенсивность звука измеряется в Вт/м2 или… … Русский индекс к Англо-русскому словарь по музыкальной терминологии

    интенсивность звука - rus интенсивность (ж) звука, интенсивность (ж) шума eng noise intensity fra intensité (f) du bruit deu Lärmintensität (f) spa intensidad (f) del ruido rus интенсивность (ж) (сила) звука, громкость (ж) звука eng sound intensity fra intensité (f)… … Безопасность и гигиена труда. Перевод на английский, французский, немецкий, испанский языки

    Сила звука, средняя по времени энергия, переносимая звуковой волной через единичную площадку, перпендикулярную к направлению распространения волны в единицу времени. Для периодического звука усреднение производится либо за промежуток… … Большая советская энциклопедия

    - [СИЛА ЗВУКА] количество звуковой энергии, переносимое звуковой волной в единицу времени через единичную площадку, перпендикулярную к направлению распространения звука (Болгарский язык; Български) интензивност на звука (Чешский язык; Čeština)… … Строительный словарь

Интенсивность звука (абсолютная) - величина, равная отношению потока звуковой энергии dP через поверхность, перпендикулярную направлению распространения звука, к площади dS этой поверхности:

Единица измерения - ватт на квадратный метр (Вт/м 2).

Для плоской волны интенсивность звука может быть выражена через амплитуду звукового давления p 0 и колебательную скорость v :

где Z S - удельное акустическое сопротивление среды.

Тело, являющееся источником звуковых колебаний, излучает энергию, которая переносится звуковыми колебаниями в пространство (среду), окружающее источник звука. Количество звуковой энергии, проходящей в одну секунду через площадь в 1 м 2 , расположенную перпендикулярно направлению распространения звуковых колебаний, называют интенсивностью (а также, силой) звука.

Величину ее можно определить по формуле:

I=P 2 /Cp 0 [Вт/м 2 ] (1.1)

где: Р - звуковое давление, н/м 2 ; С – скорость звука, м/с; р 0 – плотность среды.

Из приведенной формулы видно, что при увеличении звукового давления интенсивность звука возрастает и, следовательно, увеличивается его громкость.

9. Какие виды частотных спектров звука вы знаете?

Частотный спектр звука - график зависимости относительной энергии звуковых колебаний от частоты. Существуют два основных типа таких спектров: дискретный и непрерывный . Дискретный спектр состоит из отдельных линий для частот, разделенных пустыми промежутками. В непрерывном спектре в пределах его полосы присутствуют все частоты.

На практике звуковые волны одной-единственной частоты встречаются редко. Но сложные звуковыеволны можно разлагать на гармоники. Такой метод называется фурье-анализом по имени французского математика Ж.Фурье (1768-1830), который первым применил его (в теории теплоты).

ДВА ТИПА ПЕРИОДИЧЕСКИХ ВОЛН: а - прямоугольные колебания; б - пилообразные колебания. Амплитуда обеих волн равна А, а период колебаний Т - величина, обратная частоте f.

10. Какая полоса частот называется октавой?

Октава - полоса частот, в которой верхняя граничная частота в два раза больше нижней

Октава - единица частотного интервала, равна интервалу между двумя частотами (f2 и f1), логарифм отношения которых (при основании 2) log2(f2/f1)=1, что соответствует f2/f1=2;

11. Что понимают вод порогом слышимости?

Порог слышимости - минимальная величина звукового давления, при которой звук данной частоты может быть ещё воспринят ухом человека. Величину порога слышимости принято выражать в децибелах, принимая за нулевой уровень звукового давления 2·10 −5 Н/м 2 или 20·10 −6 Н/м 2 при частоте 1 кГц (для плоской звуковой волны). Порог слышимости зависит от частоты звука. При действии шумов и других звуковых раздражителей порог слышимости для данного звука повышается, причём повышенное значение порога слышимости сохраняется некоторое время после прекращения действия мешающего фактора, а затем постепенно возвращается к исходному уровню. У разных людей и у одних и тех же лиц в разное время порог слышимости может различаться. Он зависит от возраста, физиологического состояния, тренированности. Измерения порога слышимости обычно производят методами аудиометрии.

12. В каких единицах измеряется уровень звукового давления?

Звуково́е давле́ние - переменное избыточное давление, возникающее в упругой среде при прохождении через неё звуковой волны. Единица измерения - паскаль (Па).

Мгновенное значение звукового давления в точке среды изменяется как со временем, так и при переходе к другим точкам среды, поэтому практический интерес представляет среднеквадратичное значение данной величины, связанное с интенсивностью звука:

где - интенсивность звука, - звуковое давление, - удельное акустическое сопротивление среды, - усреднение по времени.

При рассмотрении периодических колебаний иногда используют амплитуду звукового давления; так, для синусоидальной волны

где - амплитуда звукового давления.