Главная · Правильное питание · Биологическое значение аллельных и неаллельных генов. Взаимодействие неаллельных генов. Полимерное действие генов

Биологическое значение аллельных и неаллельных генов. Взаимодействие неаллельных генов. Полимерное действие генов

Неаллельные гены также могут взаимодействовать между собой. При этом их принцип взаимодействия несколько иной, чем доминантно-рецессивные отношения как в случае аллельных генов.

Правильнее говорить не о взаимодействии генов, а о взаимодействии их продуктов, т. е. взаимодействии белков, которые синтезируются на основе генов.

Комплементарное взаимодействие неаллельных генов - это такое их взаимодействие, при котором их продукты дополняют действие друг друга.

Примером комплиментарного взаимодействия генов является цвет глаз у мушки дрозофилы. У мушек с генотипом S-B- обычные красные глаза, ssbb - белые, S-bb - коричневые, ssB- - ярко-алые. Таким образом, если оба неаллельных гена рецессивны, то никакой пигмент не синтезируется, и глаза становятся белыми. При наличии только доминантного гена S появляется коричневый пигмент, а только доминантного B - ярко-алый. Если же есть два доминантных гена, то их продукты взаимодействуют между собой, образуя красный цвет.

При комплиментарном взаимодействии генов при скрещивании гетерозигот (AaBb) возможны разные расщепления по фенотипу (9:6:1, 9:3:3:1, 9:3:4, 9:7).

Эпистаз - это такое взаимодействие неаллельных генов, когда действие одного гена подавляет действие другого. Эпистатичным (подавляющим) действием на другой ген может обладать как доминантный, так и рецессивный аллель данного гена. Расщепление по фенотипу при доминантном эпистазе, отличается от рецессивного. Эпистатичный ген обычно обозначают буквой I.

Примером эпистаза может служить появление цветного оперения во втором поколении при скрещивании белых кур разных пород. У одних генотип IIAA, у других - iiaa. F 1 - IaAa. В F 2 происходит обычное расщепление по генотипу: 9I-A- : 3I-aa: 3iiA- : 1iicc. При этом птицы с генотипом iiA- оказываются окрашенными, что определяет доминантный ген A, который у одного родителя был подавлен доминантным геном-ингибитором I, а у другого присутствовал только в рецессивной форме.

При полимерном взаимодействии неаллельных генов степень выраженности признака (его количество) зависит от количества доминантных аллельных и неаллельных генов. Чем больше генов участвуют в полимерном взаимодействии, тем больше различных степеней выраженности признака. Это происходит при комулятивной полимерии, когда все гены участвуют в накоплении признака. При некомулятивной полимерии количество доминантных генов не влияет на степень выраженности признака, достаточно хотя бы одного; а отличная по фенотипу форма наблюдается только у особей, у которых все полимерные гены рецессивны.

Полимерией, например, определяется цвет кожи человека. Влияние оказывают четыре гена (или четыре пары аллелей по другим источникам). Рассмотрим ситуацию с двумя парами. Тогда A 1 A 1 A 2 A 2 определит самый темный цвет, a 1 a 1 a 2 a 2 - самый светлый. Средний цвет кожи проявится, если два любых гена будут доминантны (A 1 a 1 A 2 a 2 , A 1 A 1 a 2 a 2 , a 1 a 1 A 2 A 2). Наличие одного доминантного гена приведет к цвету кожи близкому к светлому, но темнее, а трех доминантных - близкого к темному, но светлее.

Бывает, что один ген определяет несколько признаков. Такое действие гена называется плейотропией . Понятно, что здесь речь идет не о взаимодействии генов, а с множественным действием одного гена.


Взаимодействие аллельных генов

В состав генотипа входит большое количество генов, функционирующих и взаимодействуют как целостная система. Г. Мендель в своих опытах обнаружил только одну форму взаимодействия между аллельными генами - полное доминирование одной аллели и полную рецесивнисть другой. Генотип организма нельзя рассматривать как простую сумму независимых генов, каждый из которых функционирует вне связи с другими. Фенотипное проявления того или иного признака являются результатом взаимодействия многих генов.
Различают две основных группы взаимодействия генов: взаимодействие между аллельными генами и взаимодействие между неаллельнимы генами. Однако следует понимать, что это не физическое взаимодействие самих генов, а взаимодействие первичных и вторичных продуктов, которые обусловят тот или иной признак. В цитоплазме происходит взаимодействие между белками - ферментами, синтез которых опрелятся генами, или между веществами, которые образовываются под влиянием этих ферментов.
Возможны следующие типы взаимодействия:
1) для образования определенного признака необходимо взаимодействие двух ферментов, синтез которых опрелятся двумя неаллельнимы генами;
2) фермент, что был синтезирован с участием одного гена, полностью подавляет или инактивирует действие фермента, что был образован другим неаллельным геном;
3) два ферменты, образование которых контролируется двумя неаллельми генами, влияющими на один признак или на один процесс так, что их совместное действие приводит к возникновению и усилению проявления признака.
Взаимодействие аллельных генов. Гены, которые занимают идентичные (гомологические) локусы в гомологичных хромосомах, называются аллельными. У каждого организма есть по два аллельных гена.
Известны такие формы взаимодействия между аллельными генами: полное доминирование, неполное доминирование, кодоминированием и сверхдоминирование.
Основная форма взаимодействия - полное доминирование, которое впервые описано Г. Менделем. Суть его заключается в том, что в гетерозиготном организме проявление одной из аллелей доминирует над проявлением другой. При полном доминировании расщепления по генотипу 1:2:1 не совпадает с расщеплением по фенотипу - 3:1. В медицинской практике с двух тысяч моногенных наследственных болезней почти в половины имеет место доминированое проявления патологических генов над нормальными. В гетерозигот патологический аллель проявляется в большинстве случаев признаками заболевания (доминантный фенотип).
Неполное доминирование - форма взаимодействия, при которой у гетерозиготного организма (Аа) доминантный ген (А) не полностью подавляет рецессивный ген (а), вследствие чего проявляется промежуточный между родительскими признак. Здесь расщепление по генотипу и фенотипу совпадает и составляет 1:2:1
При кодоминировании в гетерозиготных организмах каждый из аллельных генов вызывает формирование зависимого от него продукта, то есть оказываются продукты обеих аллелей. Классическим примером такого проявления является система групп крови, в частности система АBО, когда эритроциты человека несут на поверхности антигены, контролируемые обеими аллелями. Такая форма проявления носит название кодоминированием.
Сверхдоминирование - когда доминантный ген в гетерозиготном состоянии проявляется сильнее, чем в гомозиготном. Так, у дрозофилы при генотипе АА-нормальная продолжительность жизни; Аа - удлиненная триватисть жизни; аа - летальный исход.

Множественный алелизм

У каждого организма есть только по два аллельных гена. Вместе с тем нередко в природе количество аллелей может быть более двух, если какой то локус может находится в разных состояниях. В таких случаях говорят о множественные аллели или множественный аллеломорфизм.
Множественные аллели обозначаются одной буквой с разными индексами, например: А, А1, А3 ... Аллельные гена локализуются в одинаковых участках гомологичных хромосом. Поскольку в кариотипе всегда присутствуют по две гомологичных хромосомы, то и при множественных аллелях каждый организм может иметь одновременно лишь по два одинаковых или различных аллели. В половую клетку (вместе с различием гомологичних хромосом) попадает только по одному из них. Для множественных аллелей характерное влияние всех аллелей на один и тот же признак. Отличие между ними заключается лишь в степени развития признака.
Второй особенностью является то, что в соматических клетках или в клетках диплоидных организмов содержится максимум по две аллели из нескольких, поскольку они расположены в одном и том же локусе хромосомы.
Еще одна особенность присуща множественным аллелям. По характеру доминирования аллеломорфные признаки размещаются в последовательном ряду: чаще нормальный, неизмененный признак доминирует над другими, второй ген ряда рецессивный относительно первого, однако доминирует над следующими и т.д. Одним из примеров проявления множественных аллелей у человека есть группы крови системы АВО.
Множественный алелизм имеет важное биологическое и практическое значение, поскольку усиливает комбинативну изменчивость, особенно генотипического.

Взаимодействие неалельних генов

Известно много случаев, когда признак или свойства детерминируются двумя или более неалельнимы генами, которые взаимодействуют между собой. Хотя и здесь взаимодействие условно, потому что взаимодействуют не гены, а контролируемые ими продукты. При этом имеет место отклонение от менделивских закономерностей расщепления.
Различают четыре основных типа взаимодействия генов: комплементарность, эпистаз, полимерию и модифицирующее действие (плейотропия).
Комплементарность это такой тип взаимодействия неаллельних генов, когда один доминантный ген дополняет действие другого неаллельного доминантного гена, и они вместе определяют новый признак, который отсутствует у родителей. Причем соответственный признак развивается только в присутствии обоих неаллельних генов. Например, сера окраска шерсти у мышей контролируется двумя генами (А и В). Ген А детерминирует синтез пигмента, однако как гомозиготы (АА), так и гетерозиготы (Аа) - альбиносы. Другой ген В обеспечивает скопления пигмента преимущественно у основания и на кончиках волос. Скрещивания дигетерозигот (АаВЬ х АаВЬ) приводит к расщеплению гибридов в соотношении 9:3:4. Числовые соотношения при комплементарном взаимодействии могут быть как 9:7; 9:6:1 (видоизменение менделивского расщепления).
Примером комплементарного взаимодействия генов у человека может быть синтез защитного белка - интерферона. Его образование в организме связано с комплементарным взаимодействием двух неаллельних генов, расположенных в разных хромосомах.
Эпистаз -это такое взаимодействие неаллельных генов, при котором один ген подавляет действие другого неаллельного гена. Угнетение могут вызывать как доминантные, так и рецессивные гены (А> В, а> В, В> А, В> А), и в зависимости от этого розличают эпистаз доминантный и рецессивный. Подавляющий ген получил название ингибитора или супрессора. Гены-ингибиторы в основном не детерминируют развитие определенного признака, а лишь подавляют действие другого гена.
Ген, эффект которого подавляется, получил название гипостатичного. При епистатичном взаимодействияи генов расщепление по фенотипу в F2 составляет 13:3; 12:3:1 или 9:3:4 и др. Окрас плодов тыквы, масть лошадей определяются этим типом взаимодействия.
Если ген-супрессор рецессивный, то возникает криптомерия (греч. хриштад - тайный, скрытый). У человека таким примером может быть "Бомбейский феномен". В этом случае редкий рецессивный аллель "х" в гомозиготном состоянии (мм) подавляет активность гена jB (определяющий В (III) группу крови системы АВО). Поэтому женщина с генотипом jв_хх, фенотипно имеет I группу крови - 0 (I).

Полигенное наследования количественных признаков

Плейотропия
- экспрессивность и пенетрантность генов
Большинство количественных признаков организмов определяется несколькими неаллельнимы генами (полигенами). Взаимодействие таких генов в процессе формирования признака называется полимерным. В этом случае две или более доминантных аллели в равной степени влияют на развитие одной и того же признаки. Поэтому полимерные гены принято обозначать одной буквой латинского алфавита с цифровым индексом, например: А1А1 и а1а1. Впервые однозначные факторы были выявлены шведским генетиком Нильсон-Эле (1908 г.) при изучении наследования цвета в пшеницы. Было установлено, что этот признак зависит от двух полимерных генов, поэтому при скрещивании доминантних и рецессивных дигомозигот - окрашенной (А1А1, А2 А2) с бесцветной (а1а1, а2а2) - в F, все растения дают окрашенные семена, хотя они светлее, чем родительские экземпляры, которые имеют красное семя. В F, при скрещивании особей первого поколения проявляется расщепление по фенотипу в соотношении 15:1, потому бесцветным является лишь рецессивные дигомозиготы (а1а1 а2а2). В пигментированных экземплярах интенсивность цвета очень отличается в зависимости от количества полученных ими доминантних аллелей: максимальная в доминантных дигомозигот (А1А1, А2 А2) и минимальная у носителей одного из доминантных аллелей.
Важная особенность полимерии - суммация действия неаллельних генов на развитие количественных признаков. Если при моногенном наследовании признака возможны три варианта "доз" гена в генотипе: АА, Аа, аа, то при полигенных количество их возрастает до четырех и более. Суммация "доз" полимерных генов обесчивает существования непрерывных рядов количественных изменений.
Биологическое значение полимерии заключается еще и в том, что признаки, кодируемые этими генами, более стабильны, чем те, которые кодируются одним геном. Организм без полимерных генов был бы очень неустойчивым: любая мутация или рекомбинация приводила бы к резкой изменчивости, а это в большинстве случаев имеет неблагоприятный характер.
У животных и растений есть много полигенных признаков, среди них и ценные для хозяйства: интенсивность роста, скороспелость, яйценоскость, количество молока, содержание сахаристых веществ и витаминов и т.п.
Пигментация кожи у человека определяется пятью или шестью полимерными генами. В коренных жителей Африки (негроидной расы) преобладают доминантные аллели, у представителей европеоидной расы - рецессивные. Поэтому мулаты имеют промежуточную пигментацию, но при браках мулатов у них возможно появление как более, так и менее интенсивно пигментированных детей.
Многие морфологические, физиологические и патологические особенности человека определяются полимерными генами: рост, масса тела, величина артериального давления и др. Развитие таких признаков у человека подчиняется общим законам полигенного наследования и зависит от условий среды. В этих в случаях наблюдается, например, склонность к гипертонической болезни, ожирению и др. Данные признаки при благоприятных условиях среды могут не проявиться или проявиться незначительно. Эти полигенные признаки отличаются от моногенных. Изменяя условия среды можно обеспечить профилактику ряда полигенных заболеваний.

Плейотропия

Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена. В дрозофилы ген белого цвета глаз одновременно влияет на цвет тела, длины, крыльев, строение полового аппарата, снижает плодовитость, уменьшает продолжительность жизни. У человека известна наследственная болезнь - арахнодактилия ("паучьи пальцы"-очень тонкие и длинные пальцы), или болезнь Марфана. Ген, отвечающий за эту болезнь, вызывает нарушение развития соединительной ткани и одновременно влияет на развитие нескольких признаков: нарушение строения хрусталика глаза, аномалии в сердечно-сосудистой системе.
Плейотропное действие гена может быть первичным и вторичным. При первичной плейотропии ген проявляет свой множественный эффект. Например, при болезни Хартнупа мутация гена приводит к нарушению всасывания аминокислоты триптофана в кишечнике и его реабсорбции в почечных канальцах. При этом поражаются одновременно мембраны эпителиальных клеток кишечника и почечных канальцев с расстройствами пищеварительной и выделительной систем.
При вторичной плейотропии есть один первичный фенотипний проявление гена, вслед за которым развивается ступенчатый процесс вторичных изменений, приводящих к множественным эффектам. Так, при серповидно клеточной анемии у гомозигот наблюдается несколько патологических признаков: анемия, увеличенная селезенка, поражение кожи, сердца, почек и мозга. Поэтому гомозиготы с геном серповидно клеточной анемии гибнут, как правило, в детском возрасте. Все эти фенотипные проявления гена составляют иерархию вторичных проявлений. Первопричиной, непосредственным фенотипним проявлением дефектного гена является аномальный гемоглобин и эритроциты серповидной формы. Вследствие этого происходят последовательно другие патологические процессы: слипание и разрушение эритроцитов, анемия, дефекты в почках, сердце, мозге - эти патологические признаки вторичны.
При плейотропии, ген, воздействуя на какой то один основнй признак, может также менять, модифицировать проявление других генов, в связи с чем введено понятие о генах-модификаторах. Последние усиливают или ослабляют развитие признаков, кодируемых "основным" геном.
Показателями зависимости функционирования наследственных задатков от характеристик генотипа является пенетрантность и экспрессивность.
Рассматривая действие генов, их аллелей необходимо учитывать и модифицирующее влияние среды, в которой розвивается организм. Если растения примулы скрещивать при температуре 15-20 ° С, то в F1 согласно менделивской схеме, все поколения будут иметь розовые цветы. Но когда такое скрещивание проводить при температуре 35 °С, то все гибриды будут иметь цветы белого цвета. Если же осуществлять скрещивания при температуре около 30 ° С, то возникает разное соотношение (от 3:1 до 100%) растений с белыми цветами.
Такое колебание классов при расщеплении в зависимости от условий среды получило название пенетрантность - сила фенотипного проявления. Итак, пенетрантность - это частота проявления гена, явление появления или отсутствия признака у организмов, одинаковых по генотипу.
Пенетрантность значительно колеблется как среди доминантных, так и среди рецессивных генов. Наряду с генами, фенотип которых появляется только при сочетании определенных условий и достаточно редких внешних условий (высокая пенетрантность), у человека есть гены, фенотипное проявление которых происходит при любых соединениях внешних условий (низкая пенетрантность). Пенетрантностью измеряется процентом организмов с фенотипным признаком от общего количества обследованных носителей соответствующих аллелей.
Если ген полностью, независимо от окружающей среды, определяет фенотипное проявление, то он имеет пенетрантность 100 процентов. Однако некоторые доминантные гены проявляются менее регулярно. Так, полидактилия имеет четкое вертикальное наследования, но бывают пропуски поколений.Доминантная аномалия - преждевременное половое созревание - присуще только мужчинам, однако иногда может передаться заболевания от человека, который не страдал этой патологией. Пенетрантностью указывает, в каком проценте носителей гена оказывается соответствующий фенотип. Итак, пенетрантность зависит от генов, от среды, от того и другого. Таким образом, это не константное свойство гена, а функция генов в конкретных условиях среды.
Экспрессивность (лат. ехргеssio - выражение) - это изменение количественного проявления признака в разных особей-носителей соответствующего аллелей.
При доминантных наследственных заболеваниях экспрессивность может колебаться. В одной и той же рсемье могут проявляться наследственные болезни от легких, едва заметных до тяжелых: различные формы гипертонии, шизофрении, сахарного диабета и т.д. Рецессивные наследственные заболевания в пределах семьи проявляются однотипно и имеют незначительные колебанийния экспрессивности.

Многочисленные опыты подтвердили правильность установленных Менделем закономерностей. Вместе с тем, появились факты, показывающие, что полученные Менделем числовые соотношения при расщеплении гибридного поколения соблюдались не всегда. Это указывало на то, что взаимоотношения между генами и признаками носят более сложный характер. Выяснилось: один и тот же ген может оказывать влияние на развитие нескольких признаков; один и тот же признак может развиваться под влиянием многих генов .

Следует отметить, что взаимодействие генов имеет биохимическую природу, то есть взаимодействуют друг с другом не гены, а их продукты. Продуктом эукариотического гена может быть или полипептид, или тРНК, или рРНК.

ВИДЫ ВЗАИМОДЕЙСТВИЯ АЛЛЕЛЬНЫХ ГЕНОВ

Различают полное доминирование, неполное доминирование, кодоминирование, аллельное исключение.

Аллельными генами называются гены, расположенные в идентичных локусах гомологичных хромосом. Ген может иметь одну, две и более молекулярных форм. Появление второй и последующих молекулярных форм является следствием мутации гена. Если ген имеет три и более молекулярных форм, говорят о множественном аллелизме . Из всего множества молекулярных форм у одного организма могут присутствовать только две, что объясняется парностью хромосом.

Полное доминирование

Полное доминирование — это вид взаимодействия аллельных генов, при котором фенотип гетерозигот не отличается от фенотипа гомозигот по доминанте, то есть в фенотипе гетерозигот присутствует продукт доминантного гена. Полное доминирование широко распространено в природе, имеет место при наследовании, например, окраски и формы семян гороха, цвета глаз и цвета волос у человека, резус-антигена и мн. др.

Наличие резус-антигена (резус-фактора) эритроцитов обусловливается доминантным геном Rh . То есть генотип резус-положительного человека может быть двух видов: или RhRh , или Rhrh ; генотип резус-отрицательного человека — rhrh . Если, например, мать — резус-отрицательная, а отец резус-положительный и гетерозиготен по этому признаку, то при данном типе брака с одинаковой вероятностью может родиться как резус-положительный, так и резус-отрицательный ребенок.

Между резус-положительным плодом и резус-отрицательной матерью может возникнуть резус-конфликт.

Так называется вид взаимодействия аллельных генов, при котором фенотип гетерозигот отличается как от фенотипа гомозигот по доминанте, так и от фенотипа гомозигот по рецессиву и имеет среднее (промежуточное) значение между ними. Имеет место при наследовании окраски околоцветника ночной красавицы, львиного зева, окраски шерсти морских свинок и пр.

Сам Мендель столкнулся с неполным доминированием, когда скрещивал крупнолистный сорт гороха с мелколистным. Гибриды первого поколения не повторяли признак ни одного из родительских растений, они имели листья средней величины.

При скрещивании гомозиготных красноплодных и белоплодных сортов земляники все первое поколение гибридов имеет розовые плоды. При скрещивании этих гибридов друг с другом получаем: по фенотипу — 1/4 красноплодных, 2/4 розовоплодных и 1/4 белоплодных растений, по генотипу — 1/4 АА , 1/2 Аа , 1/4 аа (и по фенотипу, и по генотипу соотношение 1:2:1). Соответствие расщепления по генотипу расщеплению по фенотипу является характерным при неполном доминировании, так как гетерозиготы фенотипически отличаются от гомозигот.

Кодоминирование

Кодоминирование — вид взаимодействия аллельных генов, при котором фенотип гетерозигот отличается как от фенотипа гомозигот по доминанте, так и от фенотипа гомозигот по рецессиву, и в фенотипе гетерозигот присутствуют продукты обоих генов. Имеет место при формировании, например, IV группы крови системы (АВ0) у человека.

Для того чтобы представить, как происходит наследование групп крови у человека, можно посмотреть, рождение детей с какой группой крови возможно у родителей, имеющих один — вторую, другой — третью группы крови и являющихся гетерозиготными по этому признаку.

Р ♀I A i 0
II (A)
× ♂I B i 0
III (B)
Типы гамет I A i 0 I B i 0
F i 0 i 0
I (0)
25%
I A i 0
II (A)
25%
I B i 0
III (B)
25%
I A I B
IV (AB)
25%

Аллельное исключение

Аллельным исключением называется отсутствие или инактивация одного из пары генов; в этом случае в фенотипе присутствует продукт другого гена (гемизиготность, делеция, гетерохроматизация участка хромосомы, в котором находится нужный ген).

ВИДЫ ВЗАИМОДЕЙСТВИЯ НЕАЛЛЕЛЬНЫХ ГЕНОВ

Комплементарность, эпистаз, полимерия.

Неаллельные гены — гены, расположенные или в неидентичных локусах гомологичных хромосом, или в разных парах гомологичных хромосом.

Аллельные гены – гены, расположенные в одинаковых участках гомологичных хромосом и контролирующие развитие вариаций одного признака.

Неаллельные гены – расположены в разных участках гомологичных хромосом, контролируют развитие разных признаков.

  1. Понятие о действии генов.

Ген – участок молекулы ДНК или РНК, кодирующий последовательность нуклеотидов в тРНК и рРНК или последовательность аминокислот в полипептиде.

Характеристики действия генов:

    Ген дискретен

    Ген специфичен – каждый ген отвечает за синтез строго определенного вещества

    Ген действует градуально

    Плейотропное действие – 1 ген действует на изменение или проявление нескольких признаков (1910 Плате) фенилкетонурия, синдром Марфана

    Полимерное действие – для экспрессивности признака нужно несколько генов (1908 Нильсон-Эле)

    Гены взаимодействуют между собой через белковые продукты, детерминированные ими

    На проявление генов оказывают влияние факторы среды

  1. Перечислите типы взаимодействия между аллельными и неаллельными генами.

Между аллельными:

    Полное доминирование

    Неполное доминирование

    Кодоминирование

    Сверхдоминирование

Между неаллельными: (признак или свойства детерминируются двумя или более неаллельными генами, которые взаимодействуют между собой. Хотя и здесь взаимодействие условно, потому что взаимодействуют не гены, а контролируемые ими продукты. При этом имеет место отклонение от менделеевских закономерностей расщепления).

    Комплиментарность

  • Полимерия

  1. Сущность полного доминирования. Примеры.

Полное доминирование – тип взаимодействия аллельных генов, при котором доминантный ген (А) полностью подавляет действие рецессивного гена (а) (веснушки)

  1. Неполное доминирование. Примеры.

Неполное доминирование – тип взаимодействия аллельных генов, при котором доминантный аллель не полностью подавляет действие рецессивного аллеля, формируя признак с промежуточной степенью вырожденности (цвет глаз, форма волос)

  1. Сверхдомининрование как основа гетерозиса. Примеры.

Сверхдоминирование – тип взаимодействия аллельных генов, при котором ген, находящийся в гетерозиготном состоянии имеет большее фенотипическое проявление признака, чем гомозиготный.

Серповидно-клеточная анемия. А – гемоглобинA, а – гемоглобинS. АА – 100% нормальные эритроциты, больше подвержены малярии; аа – 100% мутированные (умирают), Аа – 50% мутированных, практически не подвержены малярии т.к. уже поражены

  1. Кодоминирование и его сущность. Примеры.

Кодоминирование – тип взаимодействия аллельных генов, при котором в детерминации признака участвуют несколько аллелей гена и происходит формирование нового признака. Один аллельный ген дополняет действие другого аллельного гена, новый признак отличается от родительских (группы крови АВО).

Явление независимого друг от друга прояв­ления обоих аллелей в фенотипе гетерозиготы, иными слова­ми - отсутствие доминантно-рецессивных отношений между аллелями. Наиболее известный пример - взаимодействие алле­лей, определяющих четвертую группу крови человека (АВ). Из­вестна множественная серия, состоящая из трех аллелей гена I, определяющего признак группы крови человека. Ген I отвечает за синтез ферментов, присоединяющих к белкам, находящимся на поверхности эритроцитов, определенные полисахариды. (Этими полисахаридами на поверхности эритроцитов как раз и определяется специфичность групп крови.) Аллели 1 А и 1 в коди­руют два разных фермента; аллель 1° не кодирует никакого. При этом аллель 1° рецессивен и по отношению к 1 А, и по отношению к I B , а между двумя последними нет доминантно-рецессивных отношений. Люди, имеющие четвертую группу крови, несут в своем генотипе два аллеля: 1 А и 1 B . Поскольку между этими дву­мя аллелями нет доминантно-рецессивных отношений, то в ор­ганизме таких людей синтезируются оба фермента и формирует­ся соответствующий фенотип - четвертая группа крови.

Основные закономерности наследования впервые были разработаны Грегором Менделем. Любой организм обладает многими наследственными признаками. Наследование каждого из них Г. Мендель предложил изучать независимо от того, что наследуется другими. Доказав возможность наследования одного признака независимо от других, он тем самым показал, что наследственность делима и генотип состоит из отдельных единиц, определяющих отдельные признаки и относительно независимых друг от друга. Выяснилось, что, во-первых, один и тот же ген может оказывать влияние на несколько различных признаков и, во-вторых, гены взаимодействуют друг с другом. Это открытие стало основой для разработки современной теории, рассматривающей генотип как целостную систему взаимодействующих генов. Согласно этой теории, влияние каждого отдельного гена на признак всегда зависит от остальной генной конституции (генотипа) и развитие каждого организма есть результат воздействия всего генотипа. Современные представления о взаимодействии генов представлены на Рис. 1.

Рис. 1. Схема взаимодействия генов ()

Аллельные гены - гены, определяющие развитие одного и того же признака и расположенные в идентичных участках гомологичных хромосом.

При полном доминировании доминантный ген полностью подавляет проявление рецессивного гена.

Неполное доминирование носит промежуточный характер. При этой форме взаимодействия генов все гомозиготы и гетерозиготы сильно отличаются друг от друга по фенотипу.

Кодоминирование - явление, при котором у гетерозигот проявляются оба родительских признака, то есть доминантный ген в полной мере не подавляет действие рецессивного признака. Примером может служить окрас шерсти коров шортгорнской породы, доминантная окраска - красная, рецессивная - белая, а гетерозигот имеет чалую окраску - часть волосков красного и часть волосков белого цветов (Рис. 2).

Рис. 2. Окрас шерсти коров шортгорнской породы ()

Это пример взаимодействия двух генов.

Известны и другие формы взаимодействия, когда вступают во взаимодействие три и более гена - такой тип взаимодействия носит название множественный аллелизм . За проявление таких признаков отвечают несколько генов, два из которых могут находиться в соответствующих локусах хромосом. Наследование групп крови у человека - пример множественного аллелизма. Группа крови у человека контролируется аутосомным геном, его локус обозначается I, три его аллели обозначаются А, В, 0. А и В - кодоминантны, О - рецессивен по отношению к обоим. Зная, что из трех аллелей в генотипе может быть только две, мы можем предположить, что сочетания могут быть соответствующими четырем группам крови (Рис. 3).

Рис. 3. Группы крови человека ()

Для закрепления материала решите следующую задачу.

Определите, какие группы крови могут быть у ребенка, родившегося от брака между мужчиной, имеющим первую группу крови - I(0) и женщины, имеющей четвертую группу крови - IV(AB).

Неаллельные гены - это гены, расположенные в различных участках хромосом и кодирующие неодинаковые белки. Неаллельные гены могут взаимодействовать между собой. Во всех случаях взаимодействия генов менделевские закономерности строго соблюдаются, при этом либо один ген обуславливает развитие нескольких признаков, либо, наоборот, один признак проявляется под действием совокупности нескольких генов. Взаимодействие неаллельных генов проявляется в четырех основных формах: эпистаз, комплементарность, полимерия и плейотропия.

Комплементарность - тип взаимодействия генов, при котором признак может проявляться в случае нахождения двух или более генов в генотипе. Так, в образовании хлорофилла у ячменя принимают участие два фермента, если они находятся в генотипе вместе - развивается зеленая окраска хлорофилл, если находится только один ген - растение будет иметь желтую окраску. В случае отсутствия обоих генов растение будет иметь белый окрас и будет нежизнеспособно.

Эпистаз - взаимодействие генов, при котором один неаллельный ген подавляет проявления другого неаллельного гена. Примером служит окраска оперения у кур белых леггорнов, которая контролируется двумя группами ген:

доминантный ген - А, отвечает за белый окрас;

рецессивный ген - а, за цветную окраску;

доминантный ген - В, отвечает за черный окрас;

рецессивный ген - в, за коричневый окрас.

При этом белая окраска подавляет проявление черной (Рис. 4).

Рис. 4. Пример эпистаза белых леггорнов ()

При скрещивании дух гетерозигот, белой курицы и белого петуха, мы видим в решетке Пеннета результаты скрещивания: расщепление по фенотипу в соотношении

12 белых цыплят: 3 черных цыпленка: 1 коричневый цыпленок.

Полимерия - явление, при котором развитие признаков контролируется несколькими неаллельными генами, располагающимися в разных хромосомах.

Чем больше доминантных аллелей данного гена, тем больше выраженность данного признака. Примером полимерии является наследование цвета кожи у человека. За окраску цвета кожи у человека отвечает две пары генов:

если все четыре аллели этих генов будут доминантны, то проявится негроидный тип окраски кожи;

если один их генов будет рецессивный - окраска кожи будет темного мулата;

если две аллели будут рецессивными - окраска будет соответствовать среднему мулату; если будет оставаться только одна доминантная аллель - окраска будет светлого мулата; если рецессивны все четыре аллели - окраска будет соответствовать европеоидному типу кожи (Рис. 5).

Рис. 5. Полимерия, наследование цвета кожи человеком ()

Для закрепления материала решите задачу.

Сын белой женщины и чернокожего мужчины женился на белокожей женщине. Может ли сын, рожденный от такого брака, оказаться темнее своего отца?

Плейотропия - взаимодействие, при котором один ген контролирует развитие нескольких признаков, то есть один ген отвечает за формирование фермента, который влияет не только на свою реакцию, но и оказывает влияние на вторичные реакции биосинтеза.

Примером может являться синдром Марфана (Рис. 6), который вызывается мутантным геном, приводящим к нарушению развития соединительной ткани.

Рис. 6. Синдром Марфана ()

Такое нарушение приводит к тому, что у человека формируются вывих хрусталика глаза, пороки клапана сердца, длинные и тонкие пальцы, пороки развития сосудов и частые вывихи суставов.

Сегодня мы узнали, что генотип - это не простая совокупность генов, а система сложного взаимодействия между ними. Формирование признака есть результат совместного действия нескольких генов.

Список литературы

  1. Мамонтов С.Г., Захаров В.Б., Агафонова И.Б., Сонин Н.И. Биология. Общие закономерности. - Дрофа, 2009.
  2. Пономарева И.Н., Корнилова О.А., Чернова Н.М. Основы общей биологии. 9 класс: Учебник для учащихся 9 класса общеобразовательных учреждений/Под ред. проф. И.Н. Пономаревой. - 2-е изд., перераб. - М.: Вентана-Граф, 2005.
  3. Пасечник В.В., Каменский А.А., Криксунов Е.А. Биология. Введение в общую биологию и экологию: Учебник для 9 класса, 3-е изд., стереотип. - М.: Дрофа, 2002.
  1. Volna.org ().
  2. Bannikov.narod.ru ().
  3. Studopedia.ru ().

Домашнее задание

  1. Дать определение аллельным генам, назвать их формы взаимодействия.
  2. Дать определение неаллельным генам, назвать их формы взаимодействия.
  3. Решить задачи, предложенные к теме.